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Abstract Sensor nodes are increasingly deployed in
many environments. Most of these nodes feature on-
board sensor chips to measure environmental data such
as humidity, temperature and light. In this paper, we
show that seemingly innocuous and non-sensitive data
such as humidity measurements can disclose private
information such as human presence. We conduct sev-
eral experiments using Telos motes running TinyOS to
justify our claims. research to investigate mechanisms
to prevent the leakage of private information.

1 Introduction

Sensor networks are generally deployed to measure
some characteristics about a particular environment of
interest. The data they gather can then be analyzed
to extract important information regarding the occur-
rence of events in that environment. Some well-known
applications of sensor networks include surveillance of
critical infrastructure, tracking of environmental pollu-
tants, measurement of traffic flows, and climate sens-
ing and control in office buildings and homes.

Sensor networks are tools for collecting informa-
tion, and an adversary can gain access to sensitive in-
formation either by accessing stored sensor data or by
querying or eavesdropping on the network. Since sen-
sor networks communicate over a wireless medium,
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even a remote adversary can eavesdrop and gain ac-
cess to the data collected by the network. The need for
privacy of data is evident in applications where sensor
networks are deployed to collect personally identifi-
able information, such as sensing the location of peo-
ple in buildings for disaster preparedness. However, in
some environments, an adversary can use seemingly
innocuous data to derive sensitive information other
than the data monitored. In this paper, we discuss one
such instance of this problem. Specifically, we show
how seemingly innocuous data such as humidity mea-
surements can be used to determine human presence
or absence in a room. We show this because humid-
ity data is not considered to be privacy-sensitive today.
Hence, to reduce cost, the sensor networks monitor-
ing humidity data will likely to be unprotected, and the
data collected throughout such system might be shared
freely without regard to privacy concerns. The pre-
sent work, however, overturns this conventional wis-
dom by demonstrating that humidity data, is in fact,
privacy-sensitive, since it yields information about hu-
man presence. We conduct several experiments using
Moteiv Telos motes running TinyOS and the results
from these experiments justify our claims.

It may be argued that an adversary could collect
such personal information directly through site surveil-
lance. However, as prior work points out, the main
privacy problem posed by sensor networks is not that
they facilitate the collection of information that would
otherwise be impossible, but that sensor networks ag-
gravate the privacy problem by making important in-
formation easily available through remote access [6].
Hence, an adversary can gather information in a low-
risk, anonymous manner without being physically pre-
sent to maintain surveillance. As the results from the
experiments in our paper indicate, given a room with a
setup of sensor nodes that measure humidity, a remote
adversary can determine human presence or absence
in that room byonlyusing the humidity readings from
the sensor nodes deployed in that room.

We note that our system is not a substitute for a hu-
man activity/motion detector system. Rather, it serves
as a demonstration for inferring privacy-sensitive per-
sonal information such as human presence by only us-
ing humidity measurements. However, we envision that
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with further work, we would be able to improve our
current prototype to deduce human activities such as
speaking or drinking, and in some cases even breath-
ing patterns.

2 System Description

Before we explain the details of our system, we first
give a brief overview to summarize the main ideas in
our approach. In our system, we deploy a sensor node
in proximity to a user in a room. This sensor node per-
forms humidity measurements and reports the readings
to a data collection server. The humidity readings are
then processed at the server, and based on the dynam-
ics of the humidity data, we are able to detect human
presence and absence.

Our system consists of the following three phases:
(a) data acquisition, (b) data calibration, and (c) de-
tection algorithm. We now proceed to the detailed de-
scription of each of these phases.

2.1 Data Acquisition

For our experiments, we use the Sensirion SHT15 [13]
humidity sensor mounted on a Moteiv Telos mote [9,
12] that is placed within a distance of one meter from
the subject.

The Moteiv Telos is a popular mote architecture
in the sensor network research community. It features
the 8MHz TI MSP430 micro-controller, a 16-bit RISC
processor with 10 Kbytes of SRAM, a 48Kbytes flash
ROM, and a 12-bit Analog/Digital Converter with mul-
tiple input channels. It also carries a variety of sen-
sors that include the Hamamatsu light sensors and Sen-
sirion temperature and humidity sensors1 . Telos motes
run TinyOS, a real time operating system that is light
weight and is specially designed for sensor nodes that
have limited resources.

Sensirion SHT 15 is a high precision humidity sen-
sor that uses the CMOS process and outputs digital
values using its internal 12-bit A/D converter. It has
a typical resolution of 0.03% Relative Humidity (RH)
, and its humidity and temperature accuracies are±2.0
(%RH), and±0.3 (at 25◦ Celsius).

We use a small TinyOS application written in nesC
(the programming language for TinyOS) to obtain the
sensor readings and transmit them to the PC. The ap-
plication samples humidity and temperature data every
500 milliseconds from the SHT15. The readings are
then transferred to the UART, which is MSP430’s uni-
versal synchronous/asynchronous receiver/transmitter
(USART) set in an asynchronous mode. This allows us
to transfer the data from the Telos mote to the server
via a USB connection.

The data transferred from the Telos mote is read at
the serial port on the server. To process this data, we

1 Moteiv Telos motes carry a Sensirion SHT11 humidity sen-
sor, which is slightly less accurate than SHT15. For our exper-
iments, we replaced the onboard SHT11 sensor with SHT15 to
get better results.

implement a real-time analysis script written in MAT-
LAB. When an event is triggered at the serial port,
the script executes a callback function to process and
graph the raw data in real time.

2.2 Data Calibration

In order to process the received data, it must first be
calibrated to the standard units: Relative Humidity (RH)
for humidity and degree Celsius for temperature. We
use well-known standard techniques to perform data
calibration for humidity and temperature [13]. For the
sake of completeness, we briefly discuss them here.

We use Equation 1 to calibrate the raw temperature
readings obtained from the sensor node.

C = D1 +D2 · t (1)

In the above equation,D1 andD2 are temperature con-
version coefficients equivalent to−39.6 and 0.01 re-
spectively, andt is the raw temperature reading from
the sensor. To calibrate the raw humidity readings, we
use Equation 2 given below.

RH = (C−25) · (T1 +T2 ·s)+h (2)

In the above equation,C is the calibrated temperature
in degrees Celsius,T1 andT2 are the temperature com-
pensation coefficients equivalent to 0.01 and 0.00008
respectively,s is the raw humidity reading from the
sensor, andh is the temperature-uncompensated hu-
midity value given by:

h = K1 +K2 ·s+K3 ·s
2 (3)

whereK1, K2, andK3 are the humidity conversion co-
efficients equivalent to−4, 0.0405, and−2.8×10−6

respectively.

2.3 Detection Algorithm

Our detection algorithm determines human presence
or absence based on the dynamics of the calibrated hu-
midity data obtained from the previous phase. We now
proceed to describe the detection algorithm. Later, we
use results from an experiment to reason our method-
ology.

Algorithm
First, we apply a high pass filter to the calibrated hu-
midity data obtained in the second phase of Data Cal-
ibration, which is equivalent to the first order discrete
derivative of the input data. This will detect the changes
in the original data. Next, we set a threshold valueT
over the filtered humidity data. Finally, we set a sliding
window of sizen for the data samples from the high
pass filtered data. At any point of time, we evaluate
the samples in the current sliding window to check if
at leastm of these samples exceed the threshold value
T. If the check succeeds, then the system infers that a
human is present. This decision holds true until some
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Fig. 1 ExperimentA. (a) shows the Humidity and Temperature
readings in RH and degree Celsius units respectively. (b) shows
the resultant data when the high pass filter is applied over the
humidity readings. (c) shows actual human presence.

point of time, when the above check fails. At this point,
the system decides that the human is absent.
Defintion 1 Event E1 is the case where the system is
able to successfully detect human presence for a given
sample when the human is present. We defineDetec-
tion Rate as the ratio of the total number of samples
when event E1 occurs to the total number of samples
when the subject is present.
Defintion 2 Event E2 is the case where the system
detects human presence for a given sample when the
human is absent. We defineFalse Positive Rate as the
ratio of the total number of samples when event E2
occurs to the total number of samples when the subject
is absent.
Discussion
Our methodology is guided by experimental results.
To provide a better understanding of the reasoning be-
hind our detection algorithm, we consider an example
experiment. We conducted an experiment for a period
of over eight hours. The subject in the experiment was
a male. The total number of data samples obtained dur-
ing the course of the experiment were 30855. Of these,
there were 5756 samples when the subject was present
and 25098 samples when the subject was absent. From
now on, we shall refer to this experiment asA.

Figure 1(a) illustrates the calibrated humidity and
temperature data obtained during experimentA. From
inspection, the changes in humidity represented by jit-
ters in Figure 1(a) directly correlate to human presence
illustrated in Figure 1(c).

In light of the above observation, we apply a high
pass filter to the calibrated humidity data. The resultant
data is illustrated in Figure 1(b). Next, we set a thresh-
old valueT over the filtered humidity data. Ideally, we
would want to achieve a high correlation between hu-
man presence and the filtered data.

One possible way to determine human presence is
to check at any point of time whether the filtered hu-
midity data exceeds the thresholdT. Let us consider
the time intervalt1 = 189 to t2 = 210 during experi-
mentA. Figure 2(a) illustrates the decision on human
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Fig. 2 These figures compare the decision on human presence
(with respect to actual human presence) made by the system that
uses a thresholding mechanism and one that uses a sliding win-
dow mechanism in addition to the threshold, during the interval
t = 189 tot = 210 in experimentA

presence made by such a system during this time in-
terval.

Observe that the system determines human absence
in this time period, while the subject was actually pre-
sent. Due to the occurrence of such events through-
out the course of the experiment, the overall detection
rate obtained by using such a methodology is consid-
erably low. We have observed such occurrences when
the subject is either temporarily idle or further away
from the sensor node. Specifically, we found that the
detection rate for this system in experimentA is 42.74%,
when the thresholdT was set to 1.3. We defer un-
til later the explanation of the choice of the threshold
value.

We solve the above problem by using the sliding
window mechanism described earlier. Figure 2(b) il-
lustrates the decision on human presence made by this
system during the time interval[t1, t2] in experimentA.
Observe that the decision directly correlates to actual
human presence ash illustrated in Figure 2(c).

3 Experimental Results

We conducted various experiments for different time-
periods on different subjects. For each experiment, we
placed a sensor node beneath the desk of the subject. In
order to determine actual human presence, We preferr
this simple method since it is the least intrusive way of
obtaining actual presence for a given subject.

For each experiment, we analyzed the collected data
by varying the system parameters –T, n and m in
order to obtain the best trade-off between the Detec-
tion Rate and the False Positive Rate. Specifically, we
chose the system parameters in the following manner:
(a)T ∈ [1.0,1.3], (b) n∈ [10,30], and (c)m∈ [1,5]. In
general,we found thatT ≥ 1.0 was a good choice to
remove the noise in the filtered humidity data. Simi-
larly, whenn andmwere chosen from the above value
sets, better results were obtained. We now proceed to
the description of the experiments and the obtained re-
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Experiment Detection Rate False Positive Rate
A 95.59 2.67
B 92.25 28.33
C 91.80 29.70

Table 1 Final Results.This table summarizes the results from
three different experiments.
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Fig. 3 Final Decision for Experiment A. These figures com-
pare the final decision on human presence and absence made by
our system with actual human presence for experimentA.

sults. Later, we discuss how the system parameters in-
fluence the Detection Rate and the False Positive Rate.

We restrict our discussion to a few experiments to
conserve limited space. Table 1 summarizes the re-
sults from three different experiments. Recall exper-
iment A (c.f. Section 2.3) that was carried out on a
male subject for a period of over 8 hours. From a to-
tal of 30854 samples, the subject was present during
5756 samples while he was absent during the remain-
ing 25098 samples. By varying the system parameters,
we found that the Detection Rate varies from 47.78%
to 99.58%, while the False Positive Rate varies from
0.01% to 98.22%. We achieve a reasonable trade-off
with 95.59% Detection Rate and 2.67% False Positive
Rate, when the system parametersT, n, andm are set
to 1.2, 30 and 3 respectively. Fig 3 compares the deci-
sion on human presence and absence made by the sys-
tem relative to actual human presence for experiment
A.

Next, we conducted experimentBon a second male
subject for a period of over 14 hours. From a total of
51337 samples, the subject was present during 7663
samples and absent during the remaining 43674 sam-
ples. Again, we varied the system parameters while
evaluating the results. WhenT, n, and m are set to
1.2, 30, and 1 respectively, we achieve a trade-off with
92.25% Detection Rate and 28.33% False Positive Rate.

Finally, we conducted experimentC on a female
subject for a period of over 5 hours. From a total of
19566 samples, the subject was present during 13516
samples and absent during the remaining 6050 sam-
ples. When the system parameters are set to 1.2, 10,
and 3 respectively, we obtain a trade-off with 91.80%
and 29.70% as the Detection Rate and False Positive
Rate respectively.

We note that the False Positive Rate is relatively
high in Experiment B. This is primarily a result of the
subject not being careful with recording actual human

presence. We observed that the subject was around his
desk many times while he actually recorded that he
was away from his desk, thus appearing as present to
the system, while the “actual human presence” was set
to absent. This can be easily verified by changing the
system parameters,T, n andm to 1.2, 30, and 4, re-
spectively. The Detection Rate and the False Positive
Rate reduce to 50.99% and 3.14%. Similarly, we note
that the False Positive Rate is relatively high in ex-
periment C. After analyzing the experimental data, we
conclude that this is due to the fact that the number of
samples when the subject was absent is relatively low
– 6050 in total, therefore the resultant ratio is some-
what misleading. This can be compared to the num-
ber of samples the subjects were absent in experiments
A and B, which were 43,674 and 25,098 samples re-
spectively. Hence, even a low number of incorrectly
asserted samples during the period when subject C was
absent would lead to a high False Positive Rate.

Remark 1We note that the sliding window mechanism
can enable the system to use a lower threshold value
T in order to capture more humidity changes, thus in-
creasing the detection rate, while maintaining the num-
ber of false positives to a reasonably low value.

System Parameters vs Detection Rate and False Pos-
itive Rate. We now discuss the influence of the system
parameters on the Detection Rate and False Positive
Rate for a given experiment.

Remark 2We note that decreasingT and m and in-
creasingn results in higher values of the Detection rate
and False Positive Rate. Similarly, increasingT andm
and decreasingn results in lower values of the Detec-
tion Rate and False Positive Rate.

We now consider each system parameter individually
and discuss its influence on the Detection Rate and
False Positive Rate.

1. T. Given a< n,m> value pair, both Detection Rate
and False Positive Rate tend to decrease when the
thresholdT is increased. This is true because as the
threshold increases, there will be a decrease in the
number of samples that exceed the threshold, thus
resulting in lower values of the Detection Rate and
False Positive Rate.

2. n. Given a< T,m > value pair, both Detection
Rate and False Positive Rate tend to increase when
the sliding window sizen is increased. This can be
explained in the following manner. As the sliding
window size increases, the probability thatmsam-
ples within the sliding window exceed the thresh-
old increases. This results in higher values of the
Detection Rate and False Positive Rate.

3. m. Given a< T,n > value pair, both Detection
Rate and False Positive Rate tend to decrease when
m is increased. This is true because asm increases,
the probability thatm samples within a constant
size sliding window exceed the threshold decreases,
thus yielding lower values of the Detection Rate
and False Positive Rate.
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Fig. 4 T vs Detection Rate and False Positive Rate.These
graphs show the variation of the Detection Rate and the False
Positive Rate with respect to the thresholdT. For simplicity of
presentation, we restrict the graphs to specific values of the sys-
tem parameters.
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Fig. 5 n vs Detection Rate and False Positive Rate.These
graphs show the variation of the Detection Rate and the False
Positive Rate with respect to the sliding window sizen. For sim-
plicity of presentation, we restrict the graphs to specific values
of the system parameters.

Figure 4, 5 and 6 illustrate the variation of the De-
tection Rate and False Positive Rate with the system
parameters for experimentA.

Finally, we note that in our current prototype, we
tune the system parameters manually to obtain a rea-
sonable trade-off in the results. Ideally, we would want
an optimal range for the system parameters to derive
an upper bound on the results. In an advanced system,
these parameters could be derived via a learning phase
or on the basis of empirical data collected by a large
number of experiments. Also, while conducting our
experiments in real-time, we were able to notice sharp
changes in the humidity measurements when the sub-
ject was engaged in activities such as talking or drink-
ing a hot beverage. Furthermore, in some cases when
the sensor node was within reasonable proximity to the
subject, the humidity measurements were able to re-
flect the breathing pattern of the subject. We believe
that with further work, it may be possible to improve
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Fig. 6 m vs Detection Rate and False Positive Rate.These
graphs show the variation of the Detection Rate and the False
Positive Rate with respect tom. For simplicity of presentation,
we restrict the graphs to specific values of the system parame-
ters.

our current prototype to deduce such human activities
with reasonable accuracy.

4 Related Works

To the best of our knowledge, no prior work has been
done to demonstrate the use of humidity measurements
to determine human presence. Previous research on
privacy issues in sensor networks has either concen-
trated on data confidentiality or countermeasures against
traffic analysis.

Data confidentiality implies secrecy of the mes-
sages being communicated in the network, and has been
extensively studied in the past. A good summary of
previous work can be found in the following articles [1,
5, 11]. Typically, data confidentiality can be achieved
using data encryption. As a prerequesite to perform
encryption, each node in the sensor network need to
participate in a key distribution protocol [3,4,8,15] to
establish keys.

An adversary could perform traffic analysis to ei-
ther find the source or the sink of a connection. Ka-
mat et al. [7] and Ozturk et al. [10] both studied the
problem of source location in the context of sensor net-
work. They discussed possible countermeasures against
source location by using altered routing algorithms,
while Xi et al. [14] made refinements to some of their
solutions. The problem of sink location had been stud-
ied by Deng et al. [2]. The authors described two ex-
ample attacks and potential countermeasures against
such attacks.

5 Conclusion and Future Work

We show that seemingly innocuous and non-sensitive
data such as humidity measurements can disclose pri-
vate information such as human presence or absence.



6

We conduct several experiments using Telos motes run-
ning TinyOS and the results from these experiments
justify our claims.

As discussed earlier, we were able to notice clear
correlation between the changes in humidity measure-
ments with the activities that the subject was engaged
in, such as talking, drinking hot beverages, and breath-
ing patterns in some cases. With further research, we
hope to improve our current prototype to be able to
determine these various activities with reasonable ac-
curacy.

We note that it is worthwhile to investigate po-
tential areas where our system could have a positive
impact. Given that sensor nodes capable of humidity
measurements are very inexpensive and widely used,
it may be feasible to use our system for applications
such as automation of climate control in buildings, and
infant (or patient) monitoring.
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