
ACComplice: Location Inference using
Accelerometers on Smartphones

Jun Han, Emmanuel Owusu, Le T. Nguyen, Adrian Perrig, Joy Zhang

{junhan, eowusu, lenguyen, perrig, sky}@cmu.edu

Carnegie Mellon University

Abstract—The security and privacy risks posed by smartphone
sensors such as microphones and cameras have been well docu-
mented. However, the importance of accelerometers have been
largely ignored. We show that accelerometer readings can be
used to infer the trajectory and starting point of an individual
who is driving. This raises concerns for two main reasons.
First, unauthorized access to an individual’s location is a serious
invasion of privacy and security. Second, current smartphone
operating systems allow any application to observe accelerometer
readings without requiring special privileges. We demonstrate that
accelerometers can be used to locate a device owner to within a
200 meter radius of the true location. Our results are comparable
to the typical accuracy for handheld global positioning systems.

I. INTRODUCTION

Location privacy has been a hot topic in recent news after it

was reported that Apple, Google, and Microsoft collect records

of the location of customers using their mobile operating sys-

tems [12]. In some cases, consumers are seeking compensation

in civil suits against the companies [8]. Xu and Teo find

that, in general, mobile phone users express lower levels of

concern about privacy if they control access to their personal

information. Additionally, users expect their smartphones to

provide such a level of control [20].

There are situations in which people may want to broadcast

their location. In fact, many social networking applications in-

corporate location-sharing services, such as geo-tagging photos

and status updates, or checking in to a location with friends.

However, in these instances, users can control when their

location is shared and with whom. Furthermore, users express

a need for an even richer set of location-privacy settings than

those offered by current location-sharing applications [2]. User

concerns over location-privacy are warranted. Websites like

“Please Rob Me” underscore the potential dangers of exposing

one’s location to malicious parties [5]. The study presented here

demonstrates a clear violation of user control over sensitive

private information.

This research was supported by CyLab at Carnegie Mellon under grants
DAAD19-02-1-0389 and W911NF-09-1-0273, from the Army Research Office,
and by support from NSF under TRUST STC CCF-0424422, IGERT DGE-
0903659, and CNS-1050224, and by a Google research award. The views
and conclusions contained here are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements,
either express or implied, of ARO, CMU, Google, NSF or the U.S. Government
or any of its agencies.

Accelerometers are a particularly interesting case because of

their pervasiveness in a large assortment of personal electronic

devices including tablet PCs, MP3 players, and handheld gam-

ing devices. This array of devices provides a large network for

spyware to exploit.

Furthermore, by correlating the accelerometer readings be-

tween multiple phones it is possible for an adversary to de-

termine whether the phones are in close proximity. Because

phones undergoing similar motions can be identified by their

accelerations, events such as earthquakes or even everyday

activities like public transportation (e.g., bus, train, subway)

produce identifiable motion signatures that can be correlated

with other users. As a consequence, if one person grants GPS

access, or exposes their cellular or Wi-Fi base station, then they

essentially expose the location of all nearby phones, assuming

the adversary has access to these devices.

a) Contributions: Our key insight is that accelerometers

enable the identification of one’s location despite a highly

noisy trajectory output. This is because the idiosyncrasies of

roadways create globally unique constraints. Dead reckoning

can be used to track a user’s location long after location services

have been disabled [6]. But as we show, the accelerometer can

be used to infer a location with no initial location information.

This is a very powerful side-channel that can be exploited even

if location-based services on the device are disabled.

b) Threat Model: We assume that the adversary can

execute applications on the mobile device, without any special

privileges except the capability to send information over the

network. The application will use some legitimate reason to

obtain access to network communication. This is easily accom-

plished by mimicking a popular application that many users

download; e.g., a video game. In the case of a game, network

access would be needed to upload high scores or to download

advertisements. We assume that the OS is not compromised,

so that the malicious application simply executes as a standard

application. The application can communicate with an external

server to leak acceleration information. Based on the leaked

information, the adversary can extract a mobile user’s trajectory

from the compromised device via data analysis.

Our goal is to determine the location of an individual driving

in a vehicle based solely on motion sensor measurements. The

general approach that we take is to first derive an approximate

motion trajectory given acceleration measurements–which we

discuss in §II. We then correlate that trajectory with map978-1-4673-0298-2/12/$31.00 c© 2012 IEEE

Trajectory Mapping

Map Matching

Starting Point

Prediction

Trajectory Inference

Trajectory Model

Translation Model
Sensor

Readings

Map

Data

Fig. 1. System architecture of ACComplice

information to infer the location–which we discuss in §III.

Figure 1 depicts the overall system architecture. In §IV, we

present our experimental results. We provide further discussions

in §V, a discussion of related works in §VI, and conclude in

§VII.

II. BACKGROUND: TRAJECTORY INFERENCE

The section provides a background description of the trajec-

tory inference model. First, we discuss a statistical method for

translating sensor samples to displacements. Next, we present

a statistical model for inferring trajectories.

A. Displacement Estimation

We show that a sequence of motion sensor readings can

be used to generate an estimation of the motion trajectory of

the handset. We use a probabilistic dead reckoning method

called Probabilistic Inertial Navigation (ProbIN). In our prior

work, we developed ProbIN to estimate a user’s indoor location

using inertial and magnetic sensors when GPS signals are not

available [14], [15].

Classical dead reckoning has inherent limitations when es-

timating the motion trajectory from motion sensor readings.

The main problem is drifting error. Drifting occurs because

the position of the vehicle at time t depends on the position

at t −1, and the displacement estimated at time interval [t −1,

t]. Drifting error aggregates over time, pushing the estimated

trajectory further away from the truth. Even after applying

noise smoothing methods on the sensor readings, such as the

Kalman Filter [17], the estimated trajectory may be significantly

different than the ground truth as reported in many previous

works [4], [18], [14].

The ProbIN approach is different from the standard dead

reckoning approach in two ways:

1) Instead of using the actual values of the sensor measure-

ments for displacement estimation, we treat the measure-

ments only as “observations” of the underlying motion.

Dead

Reckoning

ProbIN

Sensor

Readings Displacement

Motion

Fig. 2. The standard dead reckoning approach uses a physics-based model
to translate the measured values of the underlying motion to displacements.
ProbIN uses a statistical model to directly map the sensor readings to displace-
ments.

By using the ProbIN statistical model, these observations

are directly mapped to the displacement of the vehicle

(Figure 2).

2) The standard dead reckoning approaches calculate the

displacement deterministically from the sensor readings.

ProbIN frames displacement estimation as a probabilistic

process, where a sensor reading can correspond to many

displacements with different probabilities. ProbIN uses

a Bayesian framework to combine the translation model

and the trajectory model in order to search for the optimal

trajectory.

B. Quantizing Sensor Readings

To simplify the model and to make the computation efficient,

we first convert the continuous space to the discrete space by

quantizing the sensor readings and the displacement space.

Fig. 3. An example of clustering sensor readings into motion labels. The
acceleration vector measurements (in units of g = 9.81 m/s2) are grouped into
clusters M0031, M0099 and M0059 using k-means clustering.

[0.08,0.40,0.08][0.09,0.49,0.06][0.04,0.16,0.08] · · ·

⇓

M0099,M0099,M0031, · · ·

Fig. 4. An example of representing a sequence of sensor readings (in units
of g = 9.81 m/s2) with a sequence of motion labels.

We cluster acceleration vectors in the training data using the

standard k-means clustering algorithm which result in k clusters

(as shown in Figure 3). During the training and testing phase,

an acceleration vector is first labeled by its nearest cluster. This

motion label is later used for representing the sensor reading

(as shown in Figure 4).

This quantization step results in loss of precision of the input

data as we reduce the acceleration readings from a continuous

high dimension space to a one-dimensional discrete space. The

reduced feature space has relatively small vocabulary size (e.g.,

k=200, as used in one of our experiments). Empirical results

show, however, that such quantization does not affect the end-

to-end system performance. Similarly, we quantize all possible

displacements seen in the training data, for the sampling time

interval, ∆t. In the subsequent discussion, we refer to the

quantized acceleration values and the displacement values as

motion labels and displacement labels, respectively.

C. ProbIN Model

ProbIN builds a statistical model to map the sensor readings

directly to the displacement. From the training data, ProbIN

learns the probability of translating a displacement label D

to its corresponding motion label M with probability P(M|D).
Again, there are alternative Ms to translate to one D because

of the inherent noise in sensor data. The conditional translation

probabilities for a particular value of D = d have to satisfy:

∑
M

P(M|D = d) = 1 (1)

In addition to the translation model, ProbIN also models the

trajectory pattern. The underlying assumption is that there are

regularities in a vehicle’s trajectory and we can calculate the

probability of a trajectory given the trained trajectory model.

Intuitively, it is more likely to have a trajectory where the car

drives forward and then makes a left turn than a trajectory with

a sequence of alternating turns (e.g., left, right, left, then right).

From the collected training data, we can build a trajectory

model and estimate the likelihood of a trajectory D̃ which is a

sequence of displacement labels D.

Combined, the goal of ProbIN is to find an optimal displace-

ments vector D̃∗ such that:

D̃∗ = argmax
D̃

P(M̃|D̃)P(D̃) (2)

The translation model is used to estimate P(M̃|D̃). Assuming

that the translating conditional probability is independent and

identically distributed (i.i.d.), we can break down the condi-

tional probability of the sequence P(M̃ = M1,M2, . . . ,MT |D̃ =
D1,D2, . . . ,DT) to:

P(M̃|D̃) =
T

∏
t=1

P(Mt |Dt). (3)

By assuming that the trajectories satisfies the Markov as-

sumption that the displacement at time t only depends on n−1

Fig. 5. An example of trajectory hypotheses with the highest probability
generated by the decoder (in meters)

previous displacement segments in the past, we can break down

the trajectory probabilities P(D̃) down to:

P(˜D = D1,D2, . . . ,DT) =
T

∏
t=1

P(Dt |Dt−n+1, . . . ,Dt−1). (4)

D. Training ProbIN

Both statistical translation and trajectory models

need to be trained in order to estimate P(M|D) and

P(Dt |Dt−n+1, . . . ,Dt−1). If the training data is labeled (i.e., we

know the corresponding displacement for each sensor reading),

it is straightforward to calculate P(M|D) using the Maximum

Likelihood Estimation (MLE) and P(Dt |Dt−n+1, . . . ,Dt−1)
using MLE with proper smoothing mechanism such as the

modified Kneser-Ney method [3]. Labeled data requires

recording the displacement corresponding to each sensor

sample. In our case samples occur every 0.02 to 0.1 seconds

depending on the sampling frequency, rendering this approach

is impractical. To solve this problem, ProbIN uses an

approximated EM algorithm to train both the translation and

trajectory models.The main idea of this solution is to treat the

displacement at each time as “hidden” information. Through

the iterative EM process, we approximate the unknown

displacement and update the model accordingly.

The training data contains multiple trips of a car driving

normally with the smartphone constantly collecting motion

sensor data. For each trip, we record the actual starting and

ending positions through the GPS receiver. The training process

goes through the following steps:

1) Initialize the model by assuming the sensor readings are

correct and apply a physics-based approach to estimate

D for each M.

2) E-step: based on the current translation model and the

trajectory model, estimate the trajectory of each trip with

the constraint that the starting and ending positions of

the estimated trajectory match the true starting/ending

positions.

3) M-step: from estimated trajectories for all trips, update

the translation model and the trajectory model. Go to E-

step. Repeat till model converges.

E. Decoding Trajectory

Once the statistical models are trained, we can apply the

model on the input sensor reading sequence and decode it with

an optimal trajectory (as shown in Figure 5).

In the probabilistic navigation framework, each motion la-

bel can be translated into multiple displacement labels with

different probabilities. For an input sensor reading sequence

of T labels, if the average number of displacement labels

for a motion label is m then the total number of possible

trajectories is mT . The goal of the decoder is to search through

all possible trajectories and find the one with the highest

probability P(D̃|M̃).

It is infeasible to calculate P(D̃|M̃) for each of the mT

trajectories and select the best one as the output. Instead, we

use a stack decoder to approximate the optimal trajectory and

keep the computing time complexity linear to T . After applying

the translation model on the input motion label sequence and

building a lattice, the stack decoder scans the lattice from

left t = 1 to the end of the sequence t = T . At each time t,

the decoder extends the partial hypotheses from t − 1 with

all possible displacements translated from Mt and calculate

corresponding translation and trajectory probabilities for the

augmented partial hypotheses. As the n-gram trajectory model

can only differentiate trajectory sequences that have different

n−1 ending displacement labels, the stack decoder only needs

to keep the best partial hypothesis for each trajectory model

endings. Also, we prune out partial hypotheses at each time t

if their probabilities are much worse than the best alternative

at this stage.

III. TRAJECTORY MAPPING

We now present the process for associating the motion

trajectories obtained from ProbIN to the most likely location

on a map. We thus demonstrate that an adversary can deduce

the trajectory and starting point from acceleration information.

The mapping of a motion trajectory to a path on a map is the

first challenge we need to address. This problem is complicated

by the noise in the motion trajectory. In §III-A we describe

our approach to map matching. The map matching algorithm

outputs a score of how closely a motion trajectory matches a

given path on the map.

Using the similarity score as our guide we search the map

for the best fit. We follow a brute-force approach for finding

the starting position by computing a similarity for all starting

locations. Our predicted map location will be the one containing

a driving route most similar to our trajectory.

While this approach is computationally expensive, we make

use of several constraints that reduce the number of candidate

paths. We make use of the fact that trajectories can be uniquely

identified. For example, the inherent idiosyncrasies of roads and

the fact that every turn adds an additional constraint reduces

the number of potential trajectory candidates. There are more

optimizations that can be incorporated in a sophisticated attack.

We discuss areas for optimization in §V.

(a) (b)

Fig. 6. An example step of the map matching algorithm. (a) and (b) are the
before and after steps as Pi is mapped to a candidate road segment.

A. Map Matching Algorithm

Our map matching algorithm maps motion trajectory points,

MT = [P1, P2,..., Pn], to corresponding points on a road net-

work. This matching is accomplished by mapping each motion

trajectory point to the best corresponding candidate segment.

Our algorithm follows Greenfield’s approach for map match-

ing [7], by utilizing similarity measures to assign scores of can-

didate road segments. We use distance and angle as similarity

measures to map motion trajectory onto road segments.

Consider the problem of matching point Pi to a road segment

as illustrated by Figure 6. Assuming that Pi−1 is mapped to a

point on road segment C1, potential road segment candidates

for Pi are compared. The candidate edges are defined as a road

segment onto which the previous trajectory point is mapped,

and its adjacent segments. In this case, in addition to C1,

segments C2, C3, and C4 are all candidate segments. In order

to map Pi to a candidate road segment, we use two similarity

measures Sd and Sα . Sd is calculated using the orthogonal

projection, d, of Pi to a candidate road segment. Pi has four

projections to its possible candidate segments, d1, d2, d3, and

d4 corresponding to each of its candidate segments. Specifically

Sd can be computed with the following equation:

Sd = a∗d−1 (5)

where a is a weighting constant empirically determined to

be 100. Sα is calculated using the angle α between a motion

trajectory segment and a candidate segment by computing the

following:

Sα =C ∗ cos(α)N (6)

where C and N are the weighting and rate constants, respec-

tively. The rate constant N is used to vary the rate of decrease of

Sα with respect to α . The constants are determined empirically:

C = 25 and N = 4. The final score is computed by the following:

STotal = Sd +Sα (7)

where a greater STotal denotes a better score for the corre-

sponding candidate.

Based on this scoring mechanism, Pi is mapped to a point on

C3. The remaining points of the motion trajectory are realigned

Motion Trajectory

Mapped Points

GPS

(a) Pittsburgh, PA

Motion Trajectory

Mapped Points

GPS

(b) Mountain View, CA

Fig. 7. Verification of map matching algorithm with the known starting point. (a) and (b) show Experiment 2a (Pittsburgh, PA) and Experiment 2b (Mountain
View, CA), respectively. The green (star) curve indicates the motion trajectory obtained from ProbIN. The red (circle) curve indicates the mapped points. The
blue (x-mark) curve indicates the ground truth (i.e., actual route traveled) obtained from GPS data.

to the mapped point on C3, which is depicted in Figure 6(b).

This realignment mitigates the effect of the noise inherent in

the motion trajectory.

To verify the results, we perform the aforementioned map

matching algorithm on a map with a known starting point. We

pre-processed motion paths to remove highly transient noise in

the motion trajectory, which smooths the data while preserving

key features of the trajectory. Figure 7 illustrates the map

matching process of a motion trajectory.

Figures 7(a) and (b) show matching procedures for Experi-

ment 2a and Experiment 2b, respectively. The green (star) curve

shows the motion trajectory obtained from ProbIN. The red

(circle) curve illustrates the corresponding mapped points on

a map. The blue (x-mark) curve shows the ground truth using

GPS data to validate our algorithm.

B. Starting Point Prediction

This section explains an algorithm that can be used to predict

a starting point of a trajectory by applying the map matching

algorithm to all points on a given map. First the trajectory

is aligned to every point on the map (each node represents

a possible starting point). In order to determine the most likely

starting point, we compare each mapped route using a trajectory

difference metric (explained below).

We take the first point of the trajectory, P0, and plot all

candidate starting pionts. Let Mi be a point on a road network

that has been matched to Pi, a point on the motion trajectory.

We define Dist(Mi,Pi) as the distance between Mi and Pi.

Summing up Dist(Mi,Pi) from 1 to s, where s is the number

of mapped points, we obtain the difference score DS, given by

the following equation:

DS =
s

∑
i=1

Dist(Mi,Pi) (8)

Figure 8 shows Dist(Mi,Pi) for all corresponding points

between the motion trajectory and the mapped points. The

difference score DS in Figure 8(a) is the sum of lengths of

Dist(Mi,Pi) for all i. Once DS is computed for each starting

point on the map, the starting points are ranked in ascending

order because a small DS is a good indicator that the actual

and predicted paths are similar.

In the case of erroneous starting points, the map matching

algorithm can encounter a dead end or may not be able to match

any road on the map to the motion trajectory, in which case the

map matching algorithm simply maps several motion trajectory

points to a single map location. Many starting points will not

result in any valid candidate paths, especially for longer paths

– we detect these cases and reject those paths.

We then take the top ten ranked points sorted in ascending

order of DS to locate the actual starting point. Among the highly

ranked points, the points are likely to form a few clusters of

nodes that have closely matched routes with the aligned motion

trajectory. If only a few clusters on a map are found, it is an

indication with strong certainty that the actual starting point is

in one of the clusters.

However, the motion trajectory is a noisy estimate of an

actual traveled route. Because the map matching algorithm is

topologically sensitive, some trajectories may not be accurately

scaled. In order to account for this fact, we stretch the motion

trajectory and repeat the prediction algorithm. With varied

trajectory scales, the probability of finding a valid match

between motion trajectory and the actual traveled route greatly

increases. The following section provides evaluation data.

ProbIN

Mapped Points

Difference Metric

(a)

ProbIN

Mapped Points

Difference Metric

(b)

Fig. 8. Difference Metric using Dist(Mi,Pi). (a) shows the entire motion
trajectory and the corresponding mapped points on the map. (b) shows a close-
up of (a)

IV. EVALUATION

This section discusses the experiments used to evaluate

the methodologies mentioned in §II and §III. First, we show

how ProbIN is achieved from data sample collected while

driving. Second, we demonstrate map matching and starting

point identification with collected data from different driving

routes.

A. Experiment 1: ProbIN

1) Configuration: In our research, we focus on the mobile

smartphones in common use. Each device is usually equipped

with a 3-axis accelerometer and magnetometer providing infor-

mation about the acceleration in the device’s coordinate system

and the azimuth angle identifying the direction showing to the

north.

Our approach is evaluated on the iPhone 4, which is addition-

ally equipped with a 3-axis gyroscope. By utilizing the rotation

rate that is provided by the gyroscope a more accurate orien-

tation can be calculated. However, since the most smartphones

do not have a gyroscope, in our experiments we will derive

the vehicle’s position based solely on the accelerometer and

magnetometer reading. We use the magnetometer to improve

the accuracy of the trajectory inference phase. However, we

are able to obtain a trajectory with only accelerometer mea-

surements.

The orientation pitch and roll angle can be calculated from

the accelerometer reading when the phone is not moving. We

assume that at the beginning of each drive the phone is lying

still in the car and that the car is standing still on a level street.

Thus, we will be able to estimate the rough initial orientation

of the phone. During the drive, the acceleration values are not a

reliable source for recalculating the pitch and roll angle. Even

if the car would be temporarily standing (e.g., at a stop sign)

the vibration caused by the running car engine adds additional

noise to the accelerometer reading. Therefore, the initial pitch

and roll angles will be used for transforming the acceleration

into the world’s coordinate system during the entire drive.

In the training phase, the raw sensor reading is transformed

into the acceleration in world’s coordinate system, which is

then double integrated in order to calculate the displacement.

By summing up the displacements the trajectory of the car

(a) GPS

(b) Physics−based

(c) ProbIN

Fig. 9. A comparison of trajectories produced by GPS (a), a physics-based
positioning technique (b), and the ProbIN statistical model (c)

can be estimated. This trajectory is used for bootstrapping the

ProbIN statistical model.

In the evaluation phase, the statistical model is applied to

translate the raw sensor readings into the displacements, which

form the vehicle’s trajectory. By applying a map-matching

technique introduced in §III the estimated trajectory can be

overlayed on the map in order to identify and correct different

turns.

We demonstrate ProbIN based on a data sample collected

during 22 kilometers of driving. We used the first 18 kilometers

of the collected data for training the ProbIN model. Then we

used the remaining 4 kilometers for evaluation.

In our approach the estimation provided by the physics model

is used for bootstrapping the ProbIN model. However, the tra-

jectory of the physics-based estimation contains an error, which

grows with time and traveled distance. Thus, the trajectory of 18

kilometers estimated by the physics model would be inaccurate

and inappropriate for bootstrapping the ProbIN model. In our

approach we split the long data sequence of 18 kilometers into

short sequences based on GPS data. The idea is to identify

the locations where the car stopped temporarily (e.g., at a stop

sign, at a traffic light, in a traffic jam, etc.). These locations

indicate the end of one short sequence and the start of the next

short sequence. Thus, instead of using the 18 kilometer long

trajectory estimation we utilize the physics based estimation of

shorter trajectories, which are more accurate. The short data

sequences are then used for creating the ProbIN model, which

is then used for estimating the 4 kilometer long test trajectory.

Figure 9 (a) depicts the trajectory of the vehicle based on

the collected GPS data in the testing phase. This trajectory is

considered to be the true trajectory. Figure 9 (b) is the result

achieved by applying the state-of-the-art physics-based posi-

tioning technique. As depicted, the estimated trajectory differs

significantly from GPS-based trajectory in shape, direction and

size.

Figure 9 (c) shows the trajectory estimated based on applica-

tion of the ProbIN statistical model. The shape of this trajectory

is very similar to the shape of the reference trajectory. Based

on the shape, different turns can be identified. Additionally,

the similarity in the direction and the size of both trajectories

allows the application of the map-matching. Then the trajectory

can be “snapped” to the road of a map in order to identify the

vehicle’s current position in the world’s coordinate system.

B. Experiment 2: Map Matching

To evaluate the algorithm, we conducted two experiments

in different cities and states. We conducted Experiment 2a in

Pittsburgh, PA; with a driving distance of ≈ 9.7 km for 15

minutes. Experiment 2a utilized a map of Pittsburgh with an

area of size 11 km x 10 km, with a total of 10108 number of

points. We conducted Experiment 2b in Mountain View, CA;

with a driving distance of ≈ 4.4 km for 13 minutes. Experiment

2b accessed a map covering parts of Mountain View, Sunnyvale,

and Santa Clara, with an area of size 12 km x 10 km, with a

total of 10096 number of points. This is shown in Table I.

Experiment 2a Experiment 2b
Geographical Location Pittsburgh, PA Mountain View, CA

Driving Length ≈ 9.7 km ≈ 4.4 km
Driving Time ≈ 15 minutes ≈ 13 minutes

Map Size 11 km x 10 km 12 km x 10 km

TABLE I
DESCRIPTION OF EXPERIMENTS FOR MAP MATCHING.

As mentioned from §III-B, probability of finding a valid

match increases by scaling the motion trajectory because of its

inherent noise. For both experiments, we repeated the prediction

algorithm by varying the lengths of the motion trajectory with

stretch factors of 1.0, 1.25, and 1.50 fold. The prediction

algorithm formed two starting point clusters for Experiment

2a highlighted in Figure 11(a). We define a cluster to be any

five or more predicted points located within 200 meter radius.

As shown in the figure, the actual starting point is within one

of the two clusters. Similarly, Figure 11(b) for Experiment

2b also illustrates two clusters indicating the probable starting

point. The two experiments clearly show that the adversary can

accurately pin-point the starting point as well as the traveled

route with high probability. A limitation of our implementation

is that we often identify more than one possible starting point

clusters. However, reducing the search space to a few locations

is significant. Moreover, other information can be used to

eliminate some of the clusters.

An adversary can deduce a starting point with higher proba-

bility for longer trajectories because as the length of trajectory

increases, it creates globally unique constraints. We demon-

strate this effect empirically in Figure 10. As lengths of the

two experiments were varied from 1 km to 9.7 km and 4.4

km for Experiments 2a and 2b, respectively, we find that the

accuracy of our starting point prediction increases.

0 2 4 6 8 10 12
0

2

4

6

8

10

12

Length of Motion Trajectory (km)

S
ta

rt
in

g
 p

o
in

t
c
lu

s
te

rs

Experiment 2a: Pittsbugh, PA

Experiment 2b: Mountain View, CA

Fig. 10. This figure depicts the crowding of predicted starting point locations,
within a 200 meter radius from the true starting point, as the trajectory length
increases.

V. DISCUSSION

We now address several topics not yet explained in detail.

First, we discuss why an application vetting process may not

prevent this sort of attack. Second, we discuss methods for re-

ducing the search space during the map matching phase. Third,

we discuss how reducing the sampling frequency can limit

the effectiveness of the attack. Fourth, we explore alternative

methods for location inference on smartphones.

A. Application Vetting

Apple’s vetting process may seem to help in detecting appli-

cations that attempt to misuse accelerometer readings to infer

location. In an effort to identify low-quality and potentially

malicious applications, Apple implements a vetting process

in which moderators must approve of any application that is

developed for the iPhone before it gets distributed to the market.

The application vetting cycle is best illustrated by the following

process: (1) developers submit an application to Apple, (2)

Apple decides to approve or disapprove of the application,

(3) the application is distributed to the market via the App

Store or iTunes. At first glance it would seem that this vetting

process provides for greater security against malicious use of

sensory data as compared to models that rely on end users to

report suspicious software. However, applications can easily use

accelerometer data to violate user privacy even on the iPhone:

• Accelerometer information is currently viewed as harm-

less; thus an application that uses accelerometer data

maliciously is likely to be approved.

• Since it is challenging to detect applications that misuse

accelerometer information, application vetting by the mar-

ketplace is unlikely to help against this threat.

B. Map Search Tractability

§II showed how one can deduce the trajectory and the starting

location from acceleration data given a map of a city. Initially,

GPS Trajectory

Stretched Factor: 1.50

Stretched Factor: 1.25

Stretched Factor: 1.00

(a) Pittsburgh, PA

GPS Trajectory

Stretched Factor: 1.50

Stretched Factor: 1.25

Stretched Factor: 1.00

(b) Mountain View, CA

Fig. 11. This figure shows the top ten predictions made by the map matching algorithm for each stretch factor. Notice that many of the predictions gather in
clusters. This is because a trajectory with a slightly different starting point can still trace a similar route as the ground truth; leading to a low DS. Experiments
2a and 2b are shown on the left and right, respectively.

the search space may seem intractable to search. This would

certainly be an issue if the attacker needed to search the entire

map of the United States, let alone the entire world. However

in many cases the attacker has access to other sources of

information, including publicly available data, that can help

reduce the search space from a global scale down to a more

tractable area such as a region or a city.

If the attacker knows the name or e-mail address, they can

easily reduce the search space using online search (e.g., social

networks, city and state public records, etc.). In cases where

the victim’s phone is accessing a network through Wi-Fi, the

attacker can make use of the IP address for geo-ip location

lookup.

Our work presents a proof-of-concept of these attacks, with

the intent to raise awareness about location privacy leakage

associated with accelerometer data. The results presented here

use displacements exclusively for starting point prediction. We

foresee the possibility of stronger attacks in real world examples

if attackers incorporate additional contextual information. For

instance, including additional sensors, such as an ambient light

sensor and microphone, can further assist in determining where

the car is traveling (e.g., through tunnels, or near railroads).

Moreover, different roads have different speed limits, traffic

patterns, road surfaces, road angles (both in the direction

of road as well as perpendicular), and road features (e.g.,

bridge transitions, speed bumps, potholes, uneven surface, etc.).

Temporal information such as traffic light timings and road

congestion information could be used in addition for disam-

biguation, given the public availability of road congestion data.

C. Sensor Sampling Frequency

The effectiveness of the attack depends on the frequency

of the accelerometer readings. Consequently, if the sampling

frequency of the sensor is reduced, there is less information

to produce an accurate trajectory. The experiments shown here

are based on a sampling frequency of approximately 30 Hz.

However, the attack is still possible for longer trajectories due

to global constraints that accumulate.

D. Alternative Inference Methods

Similar types of attacks are possible with the use of cellular

and Wi-Fi signals. While this is true, we claim that our work

highlights a more significant attack risk for two reasons. First,

inferring a trajectory with accelerometer data is more accurate

than using cellular and Wi-Fi traces. As shown from our

experiments, our trajectories and matched geo-locations indi-

cate a high degree of accuracy. Second, the method presented

in this paper is possible on the large category of devices

without cellular or Wi-Fi radio. These devices include PDAs,

tablet PCs, digital cameras, MP3 players, and handheld gaming

devices. Because these devices are widely used, this may be a

prevalent attack. Victims carrying such devices in their bags

and/or pockets may be unwittingly sharing their location with

malicious software.

VI. RELATED WORK

Several prior works show that accelerometer data collected

from wearable sensors can be used for activity recognition [1],

[10], [11], [16]. Bao et al. utilized multiple biaxial accelerom-

eters situated on different areas of the body to classify ev-

eryday activities with subject-independent training data with

84% accuracy [1]. Ravi et al. found that using a single tri-

axial accelerometer worn near the pelvic region is sufficient

to classify a wide variety of tasks with a high degree of

fidelity, but certain tasks that involved only arm movement

were comparatively more difficult to identify [16]. Maurer et

al., similarly, used a single triaxial accelerometer to identify

user activities with great success [11]. In their study, however,

the accelerometer was combined with other sensors such as

ambient light and sound sensors to classify a wider gamut of

applications. Additionally, the accelerometer was placed on the

wrist instead of the pelvis. Liu et al. have created the uWave

software to use triaxial accelerometer data on mobile phones

for highly accurate gesture recognition [10].

There have also been studies on using acceleration data as

one part of a set of data to detect user locations [19], [13]. Lee

and Mase propose a dead reckoning, or incremental, approach

to using human motor data to predict user motion trajectories

given a starting point [19]. However, their device utilized a

variety of motor sensors worn by human users of which the

accelerometer was only one component. Additionally, they

tackle the problem of determining location detection in indoor

environments via detecting how human users walked. More

closely related to our work, Mohan et al. developed Nericell, a

software package that piggybacks on mobile smartphones and

uses the accelerometer as one of a large suite of smartphone

sensors to detect traffic conditions and road deformities such as

pot holes [13]. This study also tackles the problem of virtually

reorienting the received acceleration data, which can be of

arbitrary orientation.

VII. CONCLUSION

As we demonstrate in this paper, accelerometer readings are

highly sensitive. Our results indicate that accelerometers can

be used to locate the device owner even if all localization

mechanisms on the device are disabled. We illustrate this

through a series of experiments conducted in Pittsburgh, Penn-

sylvania and Mountain View, California. Our proof-of-concept

implementation infers a smartphone’s location to within a 200

meter radius of the true location.

We hope that this work will encourage future versions of

mobile platforms to restrict access to accelerometer information

as strictly as microphone and camera sensors.

REFERENCES

[1] Ling Bao and Stephen S. Intille. Activity recognition from user-annotated
acceleration data. pages 1–17. Springer, 2004.

[2] Michael Benisch, Patrick Kelley, Norman Sadeh, and Lorrie Cranor.
Capturing location-privacy preferences: quantifying accuracy and user-
burden tradeoffs. Personal and Ubiquitous Computing, pages 1–16.
10.1007/s00779-010-0346-0.

[3] Stanley F. Chen and Joshua Goodman. An empirical study of smoothing
techniques for language modeling. In Arivind Joshi and Martha Palmer,
editors, Proceedings of Annual Meeting of the Association for Computa-

tional Linguistics, pages 310–318, 1996.
[4] Carl Fischer, Kavitha Muthukrishnan, Mike Hazas, and Hans Gellersen.

Ultrasound-aided pedestrian dead reckoning for indoor navigation. Pro-

ceedings of the first ACM international workshop on Mobile entity

localization and tracking in GPS-less environments - MELT ’08, page 31,
2008.

[5] Dan Fletcher. Please rob me: The risks of online oversharing, February
2010.

[6] Clment Fouque, Philippe Bonnifait, and David Btaille. Enhancement of
global vehicle localization using navigable road maps and dead-reckoning.
2010.

[7] Joshua Greenfield. Matching GPS observations to locations on a digital
map. Proc. 81st Annual Meeting of the Transportation Research Board,
2002.

[8] Kashmir Hill. Koreans seek 25 million from apple over iphone location-
tracking. August 2011.

[9] J Lester, B Hannaford, and Borriello Gaetano. Are you with me? - using
accelerometers to determine if two devices are carried by the same person.
In Proceedings of Pervasive, 2004.

[10] Jiayang Liu, Lin Zhong, Jehan Wickramasuriya, and Venu Vasudevan.
uwave: Accelerometer-based personalized gesture recognition and its
applications. Pervasive and Mobile Computing, 5(6):657 – 675, 2009.

[11] Uwe Maurer, Anthony Rowe, Asim Smailagic, and Daniel P. Siewiorek.
ewatch: A wearable sensor and notification platform. In IEEE Workshop

on Wearable and Implantable Body Sensor Networks, 2006.
[12] Declan McCullagh. Microsoft collects locations of windows phone users,

April 2011.
[13] Prashanth Mohan, Venkata N. Padmanabhan, and Ramachandran Ramjee.

Nericell: rich monitoring of road and traffic conditions using mobile
smartphones. In Proceedings ACM conference on Embedded network

sensor systems, SenSys, pages 323–336, 2008.
[14] L. T. Nguyen and Y. Zhang. Probabilistic infrastructureless positioning

in the pocket. In Proceedings of The International Conference on Mobile

Computing, Applications, and Services (MobiCASE), October 2011.
[15] L. T. Nguyen, Y. Zhang, and M. Griss. Probin: Probabilistic inertial

navigation. In The third Mobile Entity Localization and Tracking (MELT)

Workshop held at the 7th IEEE International Conference on Mobile Ad-

hoc and Sensor Networks, November 2010.
[16] Nishkam Ravi, Nikhil D, Preetham Mysore, and Michael L. Littman.

Activity recognition from accelerometer data. In Proceedings of Confer-

ence on Innovative Applications of Artificial Intelligence (IAAI), pages
1541–1546, 2005.

[17] Greg Welch and Gary Bishop. An introduction to the Kalman filter.
University of North Carolina at Chapel Hill, Chapel, pages 1–16, 1995.

[18] Widyawan, Martin Klepal, and Stephane Beauregard. A backtracking
particle filter for fusing building plans with PDR displacement estimates.
pages 207–212, March 2008.

[19] Seon woo Lee and Kenji Mase. Activity and location recognition using
wearable sensors. IEEE Pervasive Computing, 1:24–32, 2002.

[20] Heng Xu and Hock hai Teo. Alleviating consumers’ privacy concerns
in location-based services: A psychological control perspective. In
International Conference on Information Systems, pages 793–806, 2004.

