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Abstract. Security measures that attempt to prevent breaches of com-
modity software have not used high assurance methods and tools. In-
stead, rational defenders have risked incurring losses caused by breaches
because the cost of recovery from a breach multiplied by the probability
of that breach was lower than the cost of prevention by high assurance,
e.g., by formal methods. This practice may change soon since breach-
recovery costs have increased substantially while formal methods costs
have decreased dramatically over the past decade.
We introduce the notion of selective high assurance and show that it
is economically justified, as producers can easily recoup its cost even
in very small commodity markets, and necessary for rational defenders
to decrease their breach recovery costs below a chosen limit. However,
these decreases depend on defenders’ risk aversion, which is difficult to
assess since risk preferences cannot be anticipated. A challenge is to
determine a lower bound on the economic value of selective high assurance
independent of the defenders’ risk preferences; i.e., a value that depends
only on the commodity software itself and the attacks it withstands.
We propose an approach to determine such a value and illustrate it for
SCION, a networking software system with provable security properties.

1 Introduction

Early observations regarding the use of high assurance methods in commodity
software security suggest that little, if any, such software has benefited from the
use of high assurance. High assurance includes formal methods for the specifica-
tion and proof of security properties. This has been generally understood to be
required to meet or exceed the evaluation assurance level EAL 7 of the Common
Criteria [?]. After four decades of research, a variety of formal methods and tools
have been used experimentally, but very little commodity software has included
provable security properties. In fact, only a few experimental software systems
whose code sizes are less than 50K SLoC have benefited from formal proofs
of security at the source code level, e.g., microkernels, micro-hypervisors, I/O
kernels, cryptographic libraries and protocols, and a few applications [?,?,?,?].
This raises the question of whether high assurance has any economic value for
commodity software security.

Why Not High Assurance? Over the past two decades, three reasons
have been given for not using high-assurance methods for commodity software.
? Authors’ addresses: Virgil Gligor, ECE Dept. and CyLab, Carnegie Mellon Univer-
sity, Adrian Perrig and David Basin, Computer Science Dept., ETH Zurich.



The first is that their opportunity cost is very high. That is, rapid innovation
in the commodity software market (undoubtedly fueled by the near-zero cost of
entry, no liability, and hardly any regulation) eschews the use of costlier high-
assurance methods in favor of developing functions to meet market demand [?].

The second reason is that many security properties that need to be proven for
large, complex commodity software are either unknown or difficult to prove and
hence the widespread use of high assurance becomes impractical. For example,
increasing software productivity includes adding new functions to and reusing
software components without causing backward incompatibility by removing or
modifying existing code. This suggests that in commodity software “only giants
survive” [?]. Software growth in size and complexity inevitably reaches the point
where no one can identify all key security properties of the final product. It be-
comes difficult to reason why even simple properties hold. Hence, high assurance
cannot be achieved, and even simple properties become expensive to prove.

The third reason is that, by analogy to cryptography, the pervasive use of
high-assurance methods that prevent security breaches is equivalent to reaching
near perfection, which is always impractical in commodity software. Instead,
a rational defender weighs the cost of preventing breaches by high assurance
against the cost of loss caused by breaches, whereby this loss, in expectation,
equals the cost of recovery from a breach multiplied by the probability of the
breach [?]. Until now the cost balance has always tilted away from high assurance.

Overview. We introduce the notion of selective high assurance and show
that producers can easily recoup its cost even in very small commodity software
markets. We then show that selective high assurance is necessary for rational
defenders to decrease the expected recovery costs from security breaches signif-
icantly.

If a rational defender would always reject high-assurance methods for breach
prevention in favor of low assurance and attack deterrence [?,?], then s/he would
attempt to minimize the losses caused by undeterred attacks and unavoidable
breaches; i.e., s/he would try to decrease both the cost of recovery from a breach
and the breach probability. In practice, a rational defender must assume that the
breach probability is 1 – as suggested by the NSA [?] and reinforced by recent
industry evidence [?] – and focus on minimizing the breach-recovery cost. We
argue that minimization of this cost liability requires cybersecurity insurance.
However, we show that, at the expected CAGR1 of 18.2% [?], the insurance
market will fail to cover many defenders’ cost liability for the foreseeable future
and argue that insurance gaps will exist forever. Thus, a rational defender’s
only recourse is to decrease the breach probability from 1 to a sufficiently low
value such that the expected loss would not exceed the cost of insurance, had
insurance been possible. Then we argue that neither low assurance nor attack
deterrence can lower this probability to desired levels in practice, and hence
rational defenders need selective high assurance to do so.

Finally, we argue that the extent to which selective high assurance is nec-
essary depends on the defenders’ risk aversion. To avoid this dependency, we

1 CAGR stands for compound annual growth rate.
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describe a way to find a lower bound on the value of selective high assurance
that depends only on the selected software components and the attacks they
withstand.

The numerical figures cited below, taken from industry reports, refer to sur-
veys and other empirical methods used to infer defenders’ beliefs and preferences.

2 Why Revisit High Assurance?

None of the reasons for avoiding it implies that high assurance is always unjustifi-
able for commodity software security. In fact, there are at least two basic reasons
for revisiting the case for it. First, the cost of high assurance has decreased dra-
matically during the past decade, while simultaneously the cost of recovery from
security breaches has increased substantially. The balance between the cost of
high assurance, which demonstrably prevents security breaches, and the cost of
recovery from breaches when high assurance is not used, is thus beginning to tilt
towards the use of high assurance.

Cost trends. Recent industry evidence shows that the cost of security
breaches is nearly 1% of the global GDP, representing a three-fold increase over
a decade ago2. The average cost of recovery from a single breach is about $4.24M
globally [?]. Although this figure drops to $3.28M for systems employing mature
zero-trust architectures, it is generally not lower than $2.9M for systems that
use the most advanced AI and automation tools for early breach detection and
recovery. At the same time, the cost of using formal specification and verifica-
tion methods and tools has decreased dramatically. A decade ago, this cost was
about $362/SLoC3 for well-known micro-kernel development, i.e., seL4 [?]. Use of
comparable formal methods has incurred a 33% lower per-SLoC cost (e.g., about
$225/SLoC), even after increasing labor costs to $300K/person-year; see an ap-
proximately 50% smaller and less known micro-kernel for I/O separation [?]. An
even lower cost of about $128/SLoC was incurred for the Ironclad project [?].
EverCrypt [?] achieves the lowest cost of any major system to date at under
$40/SLoC – one ninth of the SLoC cost of seL4. Although one could question
cost comparability – given the different systems’ complexity, how they are de-
signed, and the designers’ skill variability – the trend is unmistakable: the cost
of code-level formal verification is decreasing dramatically.

Selective high assurance. The second reason to revisit high assurance is
that it can be used selectively to prevent breaches of relatively small, security-
critical isolated software components (i.e., software “wimps”) rather than for
all other components of a large commodity software system, i.e., a software “gi-
ant” [?]. High assurance is practical for selected commodity software components
of non-trivial size, say 70K SLoC, early in the development cycle. How many se-
curity breaches could be demonstrably prevented by the selected components?
The answer depends on their size and complexity, desired security properties

2 Recent cost estimates range between 0.8% [?] to slightly over 1% [?] of global GDP.
3 SLoC stands for Source Lines of Code.
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and the attacks they counter, as well as whether the producer can recoup its
cost on the market.

An Example. Let the publicly unknown value t be the maximum number
of exploitable attack targets for a commodity software system, e.g., the number
of unremediated CVEs of a “giant” can be very large [?]. Let b, b � t, be the
number of attacks that can be countered by formally verifying selected code of
the “giant.” A software producer needs to select, isolate, and formally verify at
most b “wimps” to deny these attacks at a one-time cost Cb(verification). Let
Cb(recovery) be a defender’s minimum recurrent annual cost of recovery from
b breaches of the “giant” when all its code is unverified. Since the “giant” is
a commodity system, its market is comprised by m enterprises which use the
software n years, where m is of the order of tens of thousands worldwide and
n is of the order of ten years. Hence, the recovery from b breaches would have
a market cost of the order of Cb(recovery)·mn. Below we show that a producer
can recoup the cost of selective high assurance even in very small markets.

Recall that when the probability of a breach is 1 [?,?], a rational defender is
wiling to pay for breach prevention (e.g., by formal methods) if Cb(verification)≤
Cb(recovery)·1 [?]. A defender can always determine Cb(verification) by relying
on independent estimates by security companies, evaluation laboratories, and
technical literature. A producer’s selection of b “wimps” and their code sizes
can also satisfy this condition for most defenders since it can easily obtain the
lowest (average) breach cost from annual surveys of breach costs4. For example,
a typical US enterprise sustains 3 distinct breaches in 42 attacks per year [?] at
a cost of C3(recovery) = $8.7M (3×$2.9M),5 using the lowest (average) breach
cost of $2.9M [?]. Isolating and formally verifying 3 “wimps” of at most 72.5K
SLoC each would cost C3(verification) ≤$8.7M (3×72.5K SLoC×$40/SLoC).

Assume that all b attacks would target, and hence be countered by, the b for-
mally verified penetration resistant “wimps.” In this extreme scenario, most ratio-
nal defenders would find Cb(verification)≤Cb(recovery) and spend Cb(verification)
upfront because there is no cost after the first year, regardless of what the other
m−1 defenders do. Not spending Cb(verification) upfront is far riskier, since re-
mediating vulnerabilities by low assurance and limited deterrence after breaches
(see Section 3.2) cannot rule out future breaches and recovery-cost recurrence.

Now consider the other extreme scenario whereby an adversary targets and
causes b breaches per year by attacking the decreased target space of t− b vul-
nerabilities of the “giant.” That is, these vulnerabilities were not removed by the
formal verification of the b “wimps.” Since the producer has lowered the breach
probability by ε � 1 at the cost Cb(verification), the market cost for recovery
becomes (1-ε)·Cb(recovery)·mn. The producer can recoup Cb(verification) when

(1-ε)·Cb(recovery)·mn + Cb(verification) ≤ Cb(recovery)·mn
is satisfied, or equivalently when ε > [Cb(verification)/Cb(recovery)]/(mn).
Since Cb(verification) ≤ Cb(recovery), the smallest ε that satisfies the above con-

4 It is possible to select Cb(verification) > Cb(recovery), e.g., using an average per-
breach cost, and still satisfy the required condition for some defenders.

5 A decade ago, the average recovery cost of a US company was already $8.9M [?].
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dition is ε > 1/(mn).6 For any t� b, setting ε = b/(t− b) and using ε > 1/(mn)
shows that a producer can recoup Cb(verification) whenever t < b(mn + 1). As
shown below, this holds for values of t derived from industry surveys yielding very
small lower boundsm0 < m and n0 < n for commodity market sizes. A producer
could always recoup its cost by a commodity price increase of Cb(verification)/m
< Cb(verification)/m0, where m > m0 is the anticipated number of defenders.

A producer’s cost of using selective high assurance is easily recouped for all
cases between the above two extreme scenarios.

Estimating (t,m0, n0). How can we estimate t for a specific commodity soft-
ware system with b formally verified “wimps” as well as m0 and n0 from t <
b(m0n0+1)? Although all relevant CVEs for many commodity software systems
are published (e.g., https://www.cvedetails.com/product-list.php), industry sur-
veys cannot report t for any specific system, since that would reveal how many
vulnerabilities are left unremediated and encourage attacks. Instead, surveys
report only the total number of responders, R, and the total number of unreme-
diated vulnerabilities, V, covering an unknown number of commodity software
systems for a possibly unknown number of unknown organizations. Also unre-
ported in any survey is the average number of vulnerable software systems in
each organization, s, and the average number of individuals of each organization
reporting unremediated vulnerabilities independently, r, though typically r = 1.
Then, V = t × s × R/r, and therefore t = drV/sRe. Since most organizations
have many more commodity software systems than survey responders r/s ≤ 1,
and hence t ≤ dV/Re. From this and t < b(m0n0 + 1) we can derive m0 for a
given n0 > 1 years of software use.

For example, in a recent survey [?], 47% of 634 respondents reported that
their organizations had vulnerabilities in their software systems that were not
remediated over the past 12 months. On average, 1.1M individual vulnerabilities
were in this backlog and an average of only 46% were remediated. Hence, R
= 47%×634, V = (1-46%)×1.1M, and t ≤ d(1 − 46%) × 1.1M/(47% × 634)e =
1994. When t = 1994, the values of m > m0 and n > n0 that allow a producer to
recoup Cb(verification) are very small. That is, for b = 3, m0 = 332, or less than
5.3% of the more than 6,300 companies registered on the US stock exchanges,
and n0 as small as n0 = 2 satisfy the relation 1994 < 3(m0n0+1). For more
typical values of n0, such as n0 = 7, m0 decreases substantially, i.e., m0= 95.

The same survey [?,?] shows that 66% of 634 responders reported that their
organizations have backlogs of over 100,000 vulnerabilities, and 54% of these
responders reported that less than 50% of the vulnerabilities in their backlogs
were remediated. That is, each of 192 ((1-54%)×66%×634) organizations has at
least 50,000 unremediated vulnerabilities. Since s is unreported for any of these
organizations, we assume that each has s = 200 commodity software applications
– a figure reported in another survey [?] of 30,000 applications in 190 companies.
Thus, t ≥ 250 (50,000/200) and for b = 3, the relation 250 < 3(m0n0+1) yields
values of m0 and n0 that are much smaller than above, i.e., m0 = 42 for n0= 2,
and m0 = 12 for n0= 7.

6 If Cb(verification)<Cb(recovery), ε > 1/(mn)>Cb(verification)/Cb(recovery)·(mn).
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3 The Need for Selective High Assurance

In the previous section, we showed that a producer’s selective use of formal
methods is economically justified; i.e., the cost of selective high assurance can
be easily recouped. In this section, we show that selective high assurance is
necessary for rational defenders to decrease the probability of software breaches
and thus reduce the estimated cost of recovery below a chosen limit.

The rational defenders we consider are enterprises with the following common
characteristics: they use only low assurance for breach prevention and attack de-
terrence; they can afford to use advanced AI methods and automated tools for
early breach detection and low recovery cost; and they can afford all available
cybersecurity insurance needed to reduce financial losses to a minimum. A ra-
tional defender computes the expected recovery cost as

cost(defender) = recovery_cost(breach) × probability(breach)
and attempts to minimize either recovery_cost(breach) or probability(breach),
or both. Then rational defenders balance cost(defender) against the breach-
prevention cost before deciding whether prevention is cost effective [?].

3.1 Minimizing breach-recovery cost

Recent industry evidence [?] shows the lowest (average) recovery_cost(breach) =
$2.9M is currently achieved when an enterprise uses advanced AI methods and
automated tools that integrate the results of its many security administrative
tools, e.g., on the average from 60 to more than 75 security tools [?]. However,
to decrease the recovery_cost(breach) further and minimize cost(defender), any
rational defender would certainly purchase cybersecurity insurance whenever
possible. Why? Insurance providers spread recovery liability over many defenders
with market-clearing premiums, thus decreasing a defender’s cost to a minimum.

In 2021, the highest cyber-insurance premiums for IT-intensive industries
(e.g., financial services, healthcare, payment processing, pharmaceuticals, gam-
ing, and e-commerce) were under $2,500 per $1M liability with a small de-
ductible, i.e., $1K [?]. Assume that an insurable policy allows an optimistic
scaling factor7 of 2.9 to cover the cost of a typical US enterprise experiencing
an average of three breaches per year. A company acting as a rational defender
would require a recurrent yearly premium of about $21,750 (3×$2.5K×2.9). Al-
though these premiums increase for companies with higher breach-recovery costs,
even a ten-fold increase would be clearly affordable for the over 6,300 compa-
nies listed on the US stock exchanges and the top 25% of the more than 50,000
companies listed on all other stock exchanges worldwide.

Insurance gaps. In 2021, the cybersecurity insurance premium market was
about $9.5B worldwide [?], of which roughly $3.2B was in the US [?]. Only
about 1,103 ($3.2B/$2.9M) breaches could be covered in the US and about 2,173

7 This scaling accounts for the lowest recovery_cost(breach) = $2.9M, which assumes
that advanced AI methods and tools detect and recover from breaches. This is lower
than the recovery cost per breach of $3.28M in mature zero-trust architectures [?].
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($6.3B/$2.9M) in the rest of the world. Assuming the yearly average of three
breaches per US enterprise holds worldwide, a large gap appears between compa-
nies that could be insured and those which could not; namely, 5,932 US compa-
nies (6,300-1,103/3) and 11,775 in the top 25% worldwide ex-US (25%×50,000
– 2,173/3) could not be insured. Note that insurance gaps persist even if we
assume that each company sustains a single breach per year.

Remarkably, insurance gaps are expected to persist for the next decade, given
that the cybersecurity insurance market will reach an estimated $61.2B dur-
ing the next ten years at an expected CAGR of 18.2% [?], and assuming the
2021 ratio between the US market and the rest of the world remains about 1:2
($3.2B/$6.3B). That is, the US market would reach $20.4B in ten years, which
will cover fewer than 2,344 companies ($20.4B/$2.9M×3), accounting for only
37% of the 6,300 companies currently listed on the US stock exchanges. Simi-
larly, the insurance available worldwide ex-US in ten years could only cover 4,689
companies ($40.8/$2.9M×3) accounting for less than 40% of 11,775 companies.
Insurance gaps will persist worldwide ex-US for about nine years if we assume
that each company sustains a single breach per year. Note that gap estimates
exclude many other qualified companies, including large governments (i.e., city,
state, federal) and non-profit organizations (e.g., hospital chains), which are not
accounted for in these estimates.

Why do insurance gaps persist? Note that rational defenders create
significant insurance demand to minimize breach-recovery costs. Why would in-
surance providers not fully meet this demand and thereby eliminate insurance
gaps in the future? Insurance providers deny coverage for recurrent breaches
that would otherwise cause substantial provider losses. Uninsurable breaches
include those caused by failure to patch known vulnerabilities (e.g., published
CVEs), “insider” attacks, and “acts of war.” For instance, many enterprises have
very large backlogs of unpatched known vulnerabilities [?], which prevent cyber-
security insurance. Breach damage caused by outside attackers who penetrate
insider accounts (e.g., by malware exfiltration of credentials) and undetectably
masquerade as insiders cannot be insured. Although definitions of “acts of war”
can be disputed in foreign-state-sponsored attacks8, most cyber attacks against
a country’s infrastructure perpetrated by a foreign country are generally at-
tributable and indisputable. This means that companies that control critical
cyber infrastructures (e.g., energy generation and distribution) cannot recover
damages using insurance when foreign-state-sponsored attackers commit “acts
of war” by breaching these infrastructures.

Note that not all losses caused by security breaches can be covered even when
breach remediation costs are insurable. For example, losses caused by intellectual
property theft and third-party liabilities cannot be bounded and hence cannot
be covered by cybersecurity insurance.

8 The 2017 NotPetya malware attack, which was attributed to Russia’s military in-
telligence agency in the conflict with Ukraine, was found not to be an “act of war”
when deployed against the Merck pharmaceutical company, causing a $1.4B liability
for Merck’s insurers [?].
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The uncomfortable insurance gap may persist longer than anticipated, as cy-
bersecurity insurance costs are increasing, and liability of frequent state-sponsored
attacks may be harder to cover, if at all, in the near future [?].

3.2 Minimizing breach probability

Persistent insurance gaps show that minimum recovery costs cannot be reached
by most rational defenders. Many large companies listed on worldwide stock
exchanges, which certainly could afford cybersecurity insurance, appear to be
unable get it for the foreseeable future. As argued above, current low-assurance
methods for commodity software are unable to rule out, for instance, recurrent
insider-masquerading attacks, penetrations enabled by unpatched software vul-
nerabilities, and acts of war.

What alternatives for lowering recovery costs would a rational defender have,
since incurring a recurrent annual loss of C3(recovery) = $8.7M for three breaches
becomes unacceptable in future years? Given the cost(defender) equation above,
the only other way to minimize these losses is to decrease their probability;
e.g., to make breaches rare events, even if they are recurrent and uninsurable.
How much should this probability be decreased? A reasonable limit would be to
reach the cost of a hypothetically insured US company, whose cost would not
exceed the insurance premium. Using the cost(defender) equation, the condition
cost(defender) ≤ insurance_cost yields a probability upper limit

upper_limit = insurance_cost/recovery_cost ≥ probability(breach).
For a US enterprise, the probability of three breaches per year would decrease
from 1 to an upper limit of about 0.0025 ($21,750/3×$2.9M). Would a rational
defender find that such a decrease is possible by low-assurance and deterrence
methods? The answer is negative, even if this upper limit increases ten fold.

1
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Insufficiency of deterrence and low assurance. As shown in Figure ??,
assurance and deterrence are fundamentally different9 methods for defending
against security breaches [?,?]. The former aims to prevent attacks by imple-
menting security functions, following security principles, and gaining confidence
by using models, specifications and correctness proofs, and testing. The latter
includes techniques for increased attack cost, detection and response, audit and
punishment, and naming and shaming attackers. This difference is reflected in
different probability spaces corresponding to increased assurance and increased
deterrence, which map differently to the [0,1] range as illustrated in Figure ??.
Both mappings are monotonic, but not necessarily strictly so: intuitively, higher
assurance and higher deterrence lead – in different ways – to lower breach prob-
abilities. The desired upper limit shown above can bound these probabilities.

high

low*

lowhigh*

probabilityA(breach)

probabilityD(breach)

10

1

0

probability	=	min(probabilityA,	probabilityD)	

deterrence

breach-prevention
assurance	

upper	
limit

upper
	limit _

|

Fig. 2. Different Probabilities for Assurance and Deterrence

Deterrence requires punishment and punishment requires attack attribution
anywhere on the internet [?]. Attribution on the internet is expensive, few na-
tional security agencies can afford it, and hence it is not scalable even when they
can. Furthermore, many attacks originate – sometimes under false flag – from
countries that do not extradite attackers, thereby rendering attribution irrele-
vant. Without attribution, attacker punishment becomes impossible, which rules
out deterrence. This implies that, in practice, the probability of a breach cannot
be always be lowered sufficiently by deterrence such that it would not exceed
the desired upper limit, i.e., 0.0025 in our example.

9 This difference reflects the behavioral-economics [?] separation between increased
beliefs of trustworthiness (e.g., obtained by assurance of security properties) and
decreased betrayal aversion (e..g, obtained by attack-deterrence measures) [?].

9



Low-assurance methods that intend to decrease breach probability are of-
ten limited to informal penetration analyses, which typically develop breach
hypotheses and confirm or deny them by testing software from the OS kernel
up to the web application interfaces. However, these analyses have never offered
more than little or no assurance of penetration resistance [?]. Hence, they cannot
guarantee decreases of breach probability such that it would not exceed a desired
upper limit of, say, 0.0025.

Unfortunately, although deterrence and assurance are separable, the map-
pings to their respective probability spaces are not independent. In the absence
of inexpensive recovery measures (as in the case here), deterrence methods are
used to compensate for low assurance, and high assurance deters certain attacks;
see the use of cryptography. Furthermore, deterrence implementation requires
assurance and hence low assurance cannot always support effective deterrence.
These dependencies imply that the probabilities induced by low assurance and
deterrence cannot be multiplied to obtain a low breach probability. This means
that to enforce the upper limit on the breach probability would require that
the minimum of the deterrence and low-assurance breach probabilities must not
exceed this limit. Typically this is highly improbable, and hence irrational to
expect, even if the upper limit increases ten fold; e.g., if current insurance costs
increase by a factor of ten and recovery costs remain constant. For example, to
fall below the upper limit of 0.0025 shown above, the current empirically deter-
mined breach probability of 0.0714 (3 breaches/42 attacks [?]) would have to
decrease by a factor of over 1:28 (0.0714/0.0025) by either deterrence or low-
assurance measures, or both, which is highly improbable. A ten-fold increase in
the upper limit would have a probability decrease factor of 1:2.85 (0.0714/0.025),
which would still exceed the capabilities of such measures.

Market demand for selective high assurance. The only alternative left
to rational defenders aiming to decrease breach probability to some desired up-
per limit to lower the expected recovery cost is to demand strong evidence (i.e.,
proofs) of formal penetration resistance for isolated critical components of com-
modity software products from their producers; see Figure ??. Note that, in
principle, formal proofs of penetration resistance reduce – and often eliminate
– the need for deterrence, since an adversary’s attacks are unlikely to succeed.
This implies that the probability of a breach is lower than that provided by
deterrence; i.e., probabilityD > upper limit ≥ probabilityA in Figure ??.

Recall that a commodity software system can have a market of at least m
companies worldwide, where m is of the order of tens of thousands, and a lifetime
of n years, where n is of the order of ten years. Thus, the demand to decrease
breach probability for critical components of a single product by a non-negligible
fraction of these companies could be significant, since the market’s recovery-cost
savings could reach billions of dollars thereby exceeding the one-time cost of
formal proofs by orders of magnitude.

Formal proofs of penetration resistance are practical now, and hence market
demand for high assurance can be satisfied by the software industry in practice.
Static source code analysis for proving penetration-resistance properties was
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introduced over three decades ago10 and undoubtedly stronger high-assurance
methods and tools have appeared since then, e.g., for binary code and analysis
of additional properties. For example, there have been substantial advances in
formal property specifications, scaling model checkers, and increasing theorem-
prover performance, e.g., by combining them with SMT solvers. The economics
of security have been shifting for the past half a dozen years to the point that
selective high assurance has become practical for commodity software [?,?].

4 A Challenge

The extent to which selective high assurance can guarantee penetration resis-
tance of critical, isolated software ultimately depends on the defenders’ risk aver-
sion. Intuitively, to decrease breach probability to a desired upper limit, some
defenders would undoubtedly require more extensive use of high assurance meth-
ods and tools than others, according to their risk aversion. However, our challenge
is to determine an economic value of high assurance for penetration-resistance
properties of critical software components that is independent of defenders’ risk
aversion; i.e., a value that depends only on the commodity software components
and attacks they withstand. For example, this value would depend only on the
software component’s size, complexity, exposed interfaces, and attack surfaces.
This is important because commodity software development cannot usually an-
ticipate the context of its use and defenders’ preferences. Clearly, if we determine
10 The earliest high-assurance method and automated tool for analyzing penetration-

resistance properties were used on C language programs of the Trusted Xenix
(https://en.wikipedia.org/wiki/Xenix) kernel and system processes [?,?].
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such a value of selective high assurance for penetration resistance, then we obtain
a lower-bound economic value for all high assurance methods for the security of
that software component.

5 Illustrating a High-Assurance Value

How can one express the value of selective high assurance in business-understood
terms? Our approach is to illustrate a lower-bound on its economic value by
applying it to a relatively large software system that has formal proofs for its se-
curity properties, for example to the SCION protocols and services [?]. This will
yield realistic results since SCION has well-defined security properties, substan-
tial size and complexity, internet-facing interfaces, and known attack surfaces.
Hence, the lower-bound value of formal methods applied to its components can
be convincing to potentially skeptical business audiences.

The approach we take is to select from the more than two hundred thousands
of security vulnerabilities reported in the CVE11, and CWE (e.g., MITRE’s,
NIST’s) databases those that refer to networking software employed by the or-
dinary Internet. The selection process requires the use of automated tools that
were used in past projects that analyzed CVE data. Then we show which at-
tacks exploiting those vulnerabilities are countered by SCION protocols and
services after employing formal design and source-code verification. Finally, we
determine an industry-sanctioned average cost of recovering from breaches – or
ranges thereof – caused by those attacks in the ordinary Internet, and thus ob-
tain a lower-bound value of the formal methods that enables SCION to counter
those breaches.

Our approach suggests the following three tasks:
1. Automate vulnerability-directed scanning of the CVE and CWE databases.

The selected vulnerabilities must refer to communication services employed by
the ordinary Internet, e.g., BGP, control plane, data plane, DNS, NTP, AS,
ISP, vulnerabilities. A selection policy and mechanism are defined that enable
directed scanning of over two hundred thousand entries of the CVE and CWE
databases and to pick Internet-relevant ones for analysis.

2. Select SCION-countered vulnerability exploits. The Internet relevant CVE/
CWE reported vulnerabilities are examined to determine which exploits are
countered by the formal-method-based SCION design and implementation.

3. Determine the average cost of Internet recovery from the selected breaches.
The average cost of recovering from breaches caused by the SCION-countered
exploits selected above in the ordinary Internet can now be determined using
industry-illustrated average costs, e.g., [?]. Alternatively, lower-bound recovery
costs can be used for a stronger argument. In turn, this yields a value of the
opportunity loss caused by not using the formal-method-based SCION design and
source code. This is a demonstrable formal-methods value expressed in business-
understood terms.
11 The US vulnerability database (see https://nvd.nist.gov/general/nvd-dashboard and

https://cve.mitre.org/cve/identifiers/) currently contains over 200000 CVEs.
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6 Conclusion

We showed that it is possible to determine a useful economic lower bound for
selective high assurance and outlined an approach to calculate this. The remark-
able resemblance of Figures ?? and ?? and with those illustrating trust estab-
lishment [?] should be unsurprising. The notion of selective high assurance is an
example of how trust establishment can yield a flexible cost allocation among
security functions and assurances, residual risk reduction (e.g., when insurance
is available), and some adversary deterrence.

Recent industry reports indicate a shift from “presumed breach” and recov-
ery [?] to a “prevention-first” mindset [?]. We have argued that a shift to selective
high assurance is a necessary – but not the only – step in that direction. Industry
evidence shows that separate cloud services are now supporting selective formal
methods/automated reasoning for increasingly many applications [?]. In time,
selective high assurance could expand to more and more software components
and critical systems. In the limit, with the help of further automation, selective
high assurance could become a common and unremarkable discipline for all com-
modity software development.
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