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Abstract—With the steady increase in the resolution of cameras
and screens, and the ever-expanding creation of information,
data volumes have been rising exponentially. However, standard
bulk-transfer still performs inefficiently and require complex
configuration, especially for high-speed long-distance transfers.
While next-generation Internet architectures promise signifi-
cant improvements through path-aware networking (PAN), their
adoption requires modern tools. To overcome these limitations,
we propose Hercules, which combines efficient host networking
and congestion control in the first high-speed bulk-transfer tool
with native multipath support. We show that Hercules is outper-
forming bulk-transfer tools (GridFTP, bbcp) in intercontinental
transfers, achieving up to 90% increase in goodput. Even in local
testbeds, Hercules achieves competitive goodput in a 1500-byte
MTU environment, and outperforms bbcp and GridFTP using a
3400-byte MTU. Finally, we demonstrate how Hercules natively
aggregates multiple inter-domain paths while behaving fair to
competing flows.

Index Terms—High-speed networking, bulk transfer, path-
aware networking, SCION Internet architecture

I. INTRODUCTION

The topic of efficient utilisation of network resources has
accompanied the Internet throughout its growth to over 4
billion users in the last 30 years. However, the last two decades
witnessed a surge in the volume of generated data. Large cor-
porations, such as Google and Amazon, built dedicated global
networks to move their enormous data [1], [2]. Academic
and research institutions deploy and interconnect networks
to transfer petabytes of data necessary for modern scientific
collaboration [3], [4]. Even operating a crypto-currency node
may require downloading over 380GB [5] at a time when
shipping hard-disks is still common for transferring large
amounts of data [6], [7].

While bulk transfer tools are designed to tackle these use-
cases, in practice they suffer from a variety of limitations.
At first, the ubiquitous TCP transport protocol is unable
to efficiently utilise the network bandwidth, especially in
high bandwidth-delay-product (bdp) networks, such as inter-
or transcontinental networks. To overcome this issue, bulk
transfer tools stripe their data across multiple TCP connec-
tions [8]–[10], which creates unfairness harming other TCP
flows. Despite of the progress made in improving TCP on these
networks [11]–[13], TCP remains inadequate for transferring
bulk data as it still requires extensive tuning on end-hosts
to achieve high performance [14]. Furthermore, UDP-based

alternatives [15]–[17] remain constrained by the limits of
general-purpose OS network stacks, not reaching sufficient
performance for high-speed bulk transfer. Finally, path-aware
networking (PAN) has been shown to improve transmission
rates and reduce transmission times by bypassing network
congestion [18], [19]. Simultaneous use of multiple paths ac-
celerates transmission rates to fulfill performance requirements
of modern bulk-transfer applications [20], [21]. Nevertheless,
path selection and multipath have largely remained unsup-
ported in the current Internet [22], [23].

To overcome these limitations, we design and implement
Hercules, the first high-speed bulk transfer tool with native
multipath support on top of a next-generation Internet archi-
tecture, incorporating state-of-the art components. Hercules
defines a reliable, datagram-oriented protocol for bulk transfer
that is layered upon UDP, and ensures fair use of shared
network infrastructure by utilising Performance-oriented Con-
gestion Control (PCC) [24]. To scale beyond the limitations
of single-path architectures and to more efficiently utilise
the available network bandwidth, Hercules forwards traffic
across multiple paths using the path control provided by the
SCION next-generation Internet. SCION allows inter-domain
multipath without configuration changes in the network by in-
corporating the AS-level path into the packet header. Hercules
leverages the recent Linux express data path (XDP) to achieve
high packet processing performance – competitive with the
hardware acceleration afforded TCP – while coexisting with
the general OS network stack and without requiring exclusive
access to the network interface. Finally, Hercules allows user-
friendly file transfers by avoiding complex tuning on endhosts.
To this end, we make the following contributions:

• We present the design, implementation and evaluation of
Hercules, a high-speed bulk transfer tool based on the
SCION next-generation Internet architecture.

• We show that Hercules outperforms existing bulk transfer
tools [9], [25], while incorporating the benefits of path-
aware networking.

The remainder of this work is structured as follows: In Sec-
tion II, we provide required background focusing on SCION,
PCC and AF XDP. After discussing limitations of modern
bulk transfer tools in Section III, we present our Hercules
design in Section IV. Afterwards, we evaluate Hercules against
state-of-the-art bulk transfer tools in Section V, followed byISBN 978-3-903176-57-7© 2023 IFIP



related work in Section VI and conclusions in Section VII.

II. BACKGROUND

The SCION Internet architecture [26], PCC [24], and
Linux’s express data path [27] form the foundation for Her-
cules.

A. The SCION Internet Architecture

SCION [26] is a clean-slate Internet architecture designed
to provide route control, failure isolation, and explicit trust
information for end-to-end communication. SCION enables
path-aware networking through implementing packet carried
forwarding state, where every packet contains a compact rep-
resentation of the complete inter-domain path to the intended
destination (in the form of hop fields) in its packet header. Each
hop field represents an AS on the path. Through cryptographic
mechanisms, the SCION architecture ensures that a packet
can not depart from its specified path along the way. Conse-
quently, SCION applications can ensure that packets traverse
the Internet over the selected path. Distributing traffic over
multiple paths can consequently be implemented in SCION
by directing packets via different paths, i.e., by encoding the
particular paths into the SCION header when creating the
packets. SCION hosts can choose to use one or more paths to
each destination, using different paths for different purposes or
even multiple paths for a single purpose. Moreover, the sender
is aware of path failures or new availabilities and can thus
react appropriately, for example, by switching paths. SCION
is currently deployed in a global production network [28] as
well as a research testbed [29].

B. Performance-oriented Congestion Control (PCC)

PCC [24] is a congestion control algorithm based on empir-
ical observations of the performance resulting from changes
in the sending rate. It evaluates the benefit of increasing
or decreasing the rate using a series of paired trials. For a
transmission rate r and ϵ < 1, it sends at the rate r · (1 + ϵ)
for an interval, and at r · (1− ϵ) for another interval. Then, for
each trial, PCC collates the acknowledgements and assesses
the utility (a function of throughput and loss) of the action in
that interval. After multiple such pairs of trials, PCC selects the
action (increasing or decreasing) that resulted in greater utility.
After selecting an action, PCC begins adjusting its sending rate
in that direction. If the utility decreases, PCC starts again with
a new series of trials.

By basing decisions on these trials, PCC ignores spurious
losses and better utilises the available bandwidth across vari-
ous network environments.

C. Linux’s Express Data Path (XDP)

XDP [27] enables high-performance networking by circum-
venting the traditional OS network stack and providing a direct
interface to the network device for user space programs. To
avoid data copies, an XDP socket shares a memory buffer,
the UMEM, between the user-space program, the kernel, and
the network device. The UMEM is divided into equally sized

frames that can be used for receiving or transmitting data and
utilises ring buffers for coordination between the program,
kernel, and network device. By bypassing the network stack,
XDP allows a program to achieve transfer rates close to the
line rate of the network device, but without taking ownership
from the kernel and preventing other programs from using the
device.

III. LIMITATIONS OF LONG DISTANCE HIGH-SPEED BULK
TRANSFER

We observe four core limitations of long distance high-speed
bulk transfer, which we discuss in this section:

1) TCP in high bandwidth-delay product (bdp) environ-
ments: TCP usually reacts to particular network events, e.g.,
packet loss or RTT increase, by changing the size of the
congestion window. However, this window-based approach
shows problems filling high bdp links [30], in particular
reducing the window size in case of random packet loss.
Consequently, bulk transfer tools often run a large number
of parallel flows, behaving unfairly to competing flows.

2) TCP needs high tuning effort: To saturate modern 40+
Gbps network links, TCP requires specific tuning on endhosts.
Particular parameters like buffer sizes need to be configured
on each host and congestion control algorithms need to be
set according to current network settings. Finally, also bulk
transfer applications require configuration to perform best e.g.,
window size for bbcp. While applying proper tuning increases
performance in local networks, modern bulk transfer tools still
suffer from TCP’s poor performance on high bdp links.

3) UDP limited by general-purpose network stacks: UDP-
based transport protocols offer high flexibility by avoiding the
strict congestion control model of TCP, showing significant
improvements in, e.g., global Internet traffic [31]. However,
UDP-based approaches are missing the performance improve-
ments that TCP stacks experienced and are often limited by
general purpose OS network stacks [16], [17].

4) Multipath capabilities: While emerging approaches (e.g.,
mpath [19]) provide application-layer approaches, these are
not deployed widely or cannot provide sufficient performance.
MPTCP [32] and MPQUIC [33] enable multipath at interface-
level, while MPTCP requires a dedicated network interface per
path. Both approaches define a path as an outgoing interface
and are consequently unable to achieve multipath over a single
interface. To enable end-to-end multipath, intricate configura-
tion in the network is required. Finally, MPTCP implements
a pessimistic congestion control in the sense that multiple
MPTCP flows can achieve at most as much bandwidth as a
single TCP flow at shared bottlenecks, which can erroneously
slow down the sending rate in some use-cases.

IV. HERCULES

Hercules is a high-volume data-transfer tool with inte-
grated multipath capabilities and congestion control, enabling
efficient bulk transfer in high-speed local and inter-domain
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Fig. 1: Overview of the Hercules architecture

networks. Hercules consists of four core components, which
we refer to as the four pillars:

1) Hercules Protocol: Our custom Hercules protocol is a
performance-oriented bulk transfer protocol based on Reliable
Blast UDP [15], that transfers chunks of a file over a series
of rounds.

2) High Performance through AF XDP: To achieve high
performance network throughput, Hercules employs Linux’s
express data path (XDP) [27] socket type to bypass the
traditional in-kernel network stack and achieve high transfer
rates from user space.

3) Multipath via SCION: Hercules can utilise multiple net-
work paths and provides a simple interface for specifying path
preferences. Thus, it enables routing traffic around bottlenecks
or distrusted parties by being built on top of the SCION
network architecture.

4) PCC Congestion Control: Hercules is deployable in
public networks as it utilises the PCC [24] algorithm to
distribute network resources across competing flows.

Figure 1 shows how the four pillars of Hercules interact. In
the sending direction, the protocol splits the file into chunks.
Multiple worker threads handle the chunks and interact with
the path-manager to schedule chunks over the selected paths.
The path manager allocates memory for a packet for the
respective chunk and adds the proper path headers. This
memory block is handed over to the following layers, starting
with the PCC layer. Hercules creates a dedicated PCC flow
for each path. Finally, packets traverse Hercules’ AF XDP
layer, where each thread owns one XDP socket (xsk), which
is responsible for writing packets to the NIC. On the receiving
side, data flows in the opposite direction: Packets are read from
the NIC by one or more xsks and traverse PCC congestion
control. For each packet, the receiving thread copies the chunk

Client Server

(1): L,
⌈
L
w

⌉
, p, flags −−−−−−−−−−−→

←−−−−−−−−−−− (2): L,
⌈
L
w

⌉
, p, flags

(3): ACK{0, ∅} −−−−−−−−−−−−−−−−→

←−−−−−−−−−−−−−−−− (4): ACK{0, ∅}

(5): DATA{0, chunk0} −−−−−−−−−−→

(6): DATA{1, chunk1} −−−−−−−−−−→
...

(7): DATA{i, chunki} −−−−−−−−−−−→

←− (8): NACK{n, (b0, e0), . . . , (bn, en)}

(9): DATA{i+1, chunki+1} −−−−−−−→
...

(10): DATA{
⌈
L
w

⌉
, chunk⌈L

w ⌉} −−−−−→

←− (11): ACK{n, (b0, e0), . . . , (bn, en)}

(12): DATA{j, chunkj} −−−−−−−−−−→
...

Fig. 2: Example Hercules protocol trace showing connection
establishment and transfer of a file of size L bytes and payload
(chunk) size of w bytes.

from the packet into the proper slot of the destination file. The
layers again interact through passing the memory location of
the packet.

Hercules also supports transferring a file to multiple desti-
nations in parallel, while supporting multipath communication
to each destination. The four pillars are instantiated for each
destination (while keeping a single instance of the file in main
memory) and operate independently of each other.

A. The Protocol

Hercules operates in a client-server model, where the client
acts as the sender, transmitting a file to the server that acts as
the receiver. Both are engaged for a single transmission.

1) Overview: Hercules transmits over a series of rounds.
After a handshake, the first round begins and the sender se-
quentially transmits the file’s chunks, intermittently adjusting
the sending rate based on the feedback of the congestion
control. Meanwhile, the receiver periodically acknowledges
chunks. After the sender has transmitted all the chunks, a
new round begins where chunks lost in the previous round
are retransmitted. This procedure repeats until the entire file
has been acknowledged by the receiver, at which point, both
endpoints terminate. This round-based approach, inspired by
the constant-rate bulk-transfer protocol RBUDP [15], reduces
the number of control messages on the network in delay-
insensitive applications such as bulk-transfers.

We next describe the connection and path establishments,
congestion control, and reliability mechanisms.

2) Connection Establishment: A Hercules connection is
established over UDP using four messages exchanged between
the client and server, as well as the reservation of resources



for the connection, as depicted by Messages 1–4 of Figure 2.
The connection is initiated by the client for the transmission
of a file of size L. First, the client divides the file into

⌈
L
w

⌉
chunks, each at most w bytes in length. The MTU and the
path header size determine the possible chunk size. Next,
the client notifies the server of L and w using a handshake
packet (m.1), which the server immediately echoes (m.2) and
proceeds to prepare a file mapping for storing the received
file. The immediate echo allows the client to calculate rttC, an
initial estimation of the round-trip-time (RTT) for initialising
transport parameters. Similarly, the client sends an empty
acknowledgement on receipt of the echoed packet (m.3) to
allow the server to calculate its RTT estimation rttS, which is
required by congestion control (see Section IV-D). Once the
server completes the space allocation for the file, it sends an
empty acknowledgement to signal that it is ready to receive
data (m.4).

3) Data Transmission and Reliability: Data packets in
Hercules contain the index of the chunk being transmitted
along with the data. In contrast to TCP, Hercules is not a
windowed protocol. Although the sender transmits chunks
sequentially, the receiver is always prepared to receive any
chunk. On receipt of a chunk, the receiver immediately writes
the chunk to its location in the file, identified by the chunk
index.

Hercules transmits data in a series of rounds. In the first
round, the sender transmits the entire file, without retrans-
mission (DATA Messages 5–10). In the second round, the
sender retransmits lost chunks after aggregating the acknowl-
edgements from the receiver (Messages 12 onward). Unlike
in RBUDP, the receiver does not wait until the end of the
round to acknowledge data. Instead, the receiver periodically
acknowledges chunks using acknowledgement packets (m.11),
which confirm the receipt of ranges of chunk-ids. Additionally,
the receiver sends negative acknowledgements (NACKs) to
signal lost packets whenever packets arrive out-of-order on a
path to the receiver. Subsequent rounds are comprised of the
retransmission from the previous round. With these adaptations
to RBUDP, we obtain the properties needed by Hercules’
strict performance requirements, whereas UDT [17] employs
window-based flow control and SABUL [16] uses TCP for
control messaging.

B. High Performance through AF XDP

Recent works show that AF XDP as kernel fast path allows
significantly higher networking speeds than regular posix sock-
ets [27]. However, we observe that for our complex use case
of a reliable, path-aware bulk transfer protocol, system design
and application tuning are essential. We integrate AF XDP
into Hercules with close attention to efficiently implementing
main-memory access through the whole sending and receiving
process. Especially queue selection, multi-threading and cache
alignment play an important role for Hercules tuning. Conse-
quently, we perform the following optimization techniques to
send and receive at high rates:

a) SCION header caching and optimized SCION stack:
Hercules pre-computes the SCION header for each path
(which does not change over the lifetime of the connection)
and re-uses the cached header for each packet on a particular
path. Furthermore, the SCION dispatcher limits the overall
endhost performance [34] and needs to be bypassed for high
speeds.

b) Efficient multithreading: Packet creation on the client
and packet parsing on the server side is distributed over
multiple threads. Each thread manages its own XDP socket.
The usage of multiple XDP sockets provides important op-
timization potential: On the client side, multiple cores can
be used in parallel (each socket is bound to a particular
core) to increase throughput. On the server side, receive-side
scaling (RSS) allows to distribute packets to XDP sockets
while efficiently distributing load over multiple cores.

c) Cache-aligned sending queues: To efficiently support
multiple worker threads, we implement cache-aligned, thread-
safe send queues, which optimize the interaction of multiple
threads with XDP by reducing cache misses.

C. Multipath via SCION

As presented in Section II, a SCION path consists of
multiple hop fields, each representing an AS on inter-domain
path, encoded in an efficient way into the SCION Header [26]
of each packet. This allows SCION applications to direct a
SCION packet via a particular path by encoding the respective
hop fields into the SCION header, giving full control over the
inter-domain paths to applications.

Hercules uses SCION’s path-awareness primarily to aggre-
gate the capacities of multiple paths. In addition to the com-
plete path encoded in the SCION Header, Hercules adds the
path index field p to the packets to simplify the identification
of paths (i.e., to reduce the overhead of using the complete
path as identifier).

At the beginning of the transfer, Hercules performs a
separate handshake on each path to probe its connectivity
and calculate its RTT. After accepting the handshake on a
particular path, the server sends its control messages over the
path on which the data was received. Given the diverse RTTs
and bandwidths of paths, each path is congestion-controlled
independently, the congestion control algorithm is initialised
using the RTT inferred from the path handshake. After the
client receives a handshake response, the respective path is
enabled and the data transfer over this path starts.

The use of independent congestion-control algorithms on
each path results in Hercules receiving bandwidth proportional
to the number of paths traversing a shared network bottleneck.
While this may be unfair to single-path protocols, most data
transfer tools similarly employ TCP by striping data across
independent connections [8]–[10]. Using SCION’s path in-
formation, however, Hercules could detect and avoid shared
or congested inter-domain links. Each hop on the SCION
path contains the ingress and egress interface numbers of the
respective AS, which create a unique identifier combined with
the AS number. In combination with monitoring the enabled
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Fig. 3: High-speed LAN M2M goodput for 1500- and 3400-
byte MTU sizes (200Gbps link, <1ms RTT), 4 parallel flows.

paths, Hercules could be able to detect shared bottlenecks
through these identifiers, i.e., by intersecting the identifier list
of multiple paths.

D. Congestion Control

Hercules uses PCC [24] to regulate its sending rate in
response to network congestion. PCCs core idea is to adjust
the performance of a flow by results obtained from a set of
trials with varying sending rate. Rate adjustments in PCC
occur periodically as governed by the measurement interval
I . PCC performs trials over multiple measurement intervals
to determine whether to change the current sending rate, and
in which direction the rate needs to be changed. In Hercules,
each path is congestion-controlled independently. We set I
to a multiple (a random factor in the interval [1.7, 2.2] [24])
of the initial round-trip time rttC, obtained from each path’s
handshake. Hercules aggregates the acknowledged chunks as
well as the NACKs to calculate the utility of each current
sending rate. While the NACKs are sent back to the client
immediately to notify about packet loss, Hercules bulk transfer
nature allows to delay acknowledgements to be sent at the
end of the measurement intervals, since the transfer size
is known on the server side. This provides synergies with
PCC, since acknowledgements are only required at the end of
each interval. Furthermore, Hercules sends significantly fewer
acknowledgements, which reduces the load on the reverse link.

V. EVALUATION

In this section we evaluate Hercules’ performance compared
to state-of-the-art bulk transfer tools GridFTP [25] and bbcp
[9], as well as iperf3 [35] in a set of experiments. We run
iperf3 with default system settings and also with tuned TCP
settings called iperf3+ following the guidelines set forth by the
Energy Sciences Network (ESNET) [14]. GridFTP and bbcp
also use tuned TCP settings.

We present three core types of experiments to evaluate
Hercules’ performance. We start with an intra-lab high-
performance experiment, followed by two experiments run-
ning large distance transfers. Finally, we perform multipath
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transfers over SCION, evaluating Hercules’ multipathing ca-
pabilities and its fairness to competing flows.

A. High-Performance Intra-Lab Transfers

Researchers and institutions often need to transfer large
quantities of data between different hosts within the same in-
stitution. We therefore ascertain Hercules’ single-path limits in
a high-speed intra-lab setup. Despite Hercules being optimized
for high-bdp links, we aim to achieve at least comparable
performance to GridFTP and bbcp in local networks.

We evaluate Hercules between two adjacent servers with
1500 and 3400 Ethernet frame sizes (MTUs).1 Each server is
equipped with AMD EPYC 7543P 32-Core processors (up
to 3.70GHz), 128GiB of RAM (8 banks), and 200Gbps
Mellanox ConnectX-6 cards, which are directly connected via
a 200Gbps Ethernet link with an average round-trip-time of
245 µs. To better utilise the CPU, we bind the transfer tools to
the same CPUs as the network interface card using the numactl
command line utility (except GridFTP which does not support
easily changing the binary to be executed).

Figure 3 shows the goodput of the transfer tools with 4
parallel flows at 1500-byte and 3400-byte MTUs. We run
Hercules in a configuration without PCC (Hercules+) and with
PCC. With a 1500-byte MTU, Hercules and GridFTP achieve
a comparable median goodput of 31Gbps, bbcp 45Gbps and
Hercules+ 52Gbps. With a 3400-byte MTU, Hercules+ clearly
outperformed the other tools achieving 140Gbps median
goodput, while Hercules achieves 80Gbps. Bbcp and GridFTP
result in slightly higher performance compared to the 1500-
byte MTU. These results prove that Hercules is in these lower-
BDP environments comparable to the existing TCP network
stack, and for larger MTUs outperforms other TCP-based
systems.

B. Intercontinental Transfers

International research collaborations often co-fund and op-
erate shared infrastructure such as the ITER project [37] and
CERN. The massive amounts of data generated by these in-
frastructures must often be transferred thousands of kilometres

1XDP currently only supports up to around 3400 byte frames [36].
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over research networks. We therefore evaluated Hercules on
the South Korean academic network KREONet2 [38], which
interconnects research networks globally. For each candidate,
we performed 10 transfers eastward from Hong Kong to
Chicago, United States via Daejeon, South Korea; a distance of
over 12 500 km with an RTT of 194ms. Each endpoint was
equipped with an Intel Xeon Silver 4114 CPU (2.20GHz),
16GiB of memory (1 bank), and an Intel X710 10Gbps
Ethernet card.

At 10Gbps and almost 200ms RTT, KREONet2 has a
bandwidth-delay-product of around 242.5MB. Figure 4 shows
the goodput in this setting. Losses resulted in median transfer
rates below 2Gbps for the single TCP flows (iperf3, bbcp,
and GridFTP), thus requiring the use of multiple TCP flows
(bbcp4,10, GridFTP4,10). However, we observe that the perfor-
mance stagnates for more than 4 flows for bbcp and GridFTP,
due to many flows canceling potential performance gains
through congestion. In contrast, Hercules maintained above
8Gbps with a single flow, thereby outperforming multiple
competing TCP flows.

The change in goodput over time in Figure 5 provides
further insights about the performance of Hercules and iperf3.
We increase the runtime for iperf3 to 120 s and incorporated
iperf3 with PCC. We observe that iperf3 with H-TCP [13]
required over 40 s to increase its transmission rate to around
5Gbps. While iperf3 with PCC performed better, it still
required over a minute to exceed 8Gbps before slowly de-
creasing towards 6Gbps. By contrast, within 10 s Hercules
exceeded ∼9Gbps and remained above it for the rest of
the transmission. Hercules performs better than iperf3 with
PCC, since Hercules combines the userspace implementation
of PCC with high-speed and low-latency networking. The PCC
kernel module implementation used in iperf3 in contrast was
significantly adapted [39] due to missing features in kernel
modules, i.e., per packet state and proper RTT estimations.

To further analyze the performance at higher network
speeds, we perform 10 transfers for each candidate between
two machines on a 100Gbps link over the Atlantic. Figure 6
depicts the results, all candidates use 4 parallel flows. Each
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Fig. 6: Goodput of large-distance transfer over the Atlantic
(100Gbps, 152ms RTT).

server is equipped with an Intel(R) Xeon(R) Gold 6230 pro-
cessor (20 cores, up to 3.90GHz), 32GiB of RAM (1 bank),
and 100Gbps Mellanox ConnectX-5 interface cards. We ob-
serve that Hercules outperforms the other candidates achieving
27Gbps median goodput for 1500-byte MTU. GridFTP results
in around 14Gbps median goodput and bbcp in 16.5Gbps for
1500-byte MTU. With a 3400-byte MTU, Hercules achieves
41Gbps median goodput, compared to 22Gbps for bbcp and
18Gbps for GridFTP, resulting in a performance increase of
around 90% and 125%, respectively. Since we suspect that the
available main-memory bandwidth of a single memory bank is
limiting Hercules’ performance, we run the same experiment
with iperf3+ and HercPerf, a variant of Hercules that sends
dummy packets instead of actual payload, avoiding the copy
of chunks on both sides. However, the remaining architecture
of Hercules stays unchanged, which allows a fair comparison
against iperf3+. Our assumption about the memory bottleneck
is confirmed as the avoidance of in-memory copies of chunks
allows Hercules to achieve around 95Gbps goodput, while
iperf3+ only marginally outperforms bbcp and GridFTP. We
observe, that without the limitation of a single memory bank,
Hercules is able to fill the available 100Gbps link.

C. Multipath Transfer over SCION

After analyzing the short and long distance, single-path
experiments, we evaluate Hercules’ native multipath capabil-
ities measuring its performance across 20 transfers utilising
two SCION paths over the transcontinental academic network
GÉANT. Figure 7 depicts the network topology used in this
experiment.

The transfer starts in Geneva, CH over a single 10Gbps link
to the next border router in CERN, which provides two SCION
paths to Amsterdam, NL. One path traverses Paris, FR and the
other path Hamburg, DE. Both paths provide similar RTTs of
22.9ms and 24.5ms, respectively. Since each location was
provisioned with a single 10Gbps duplex link, the packets
leaving Geneva on both the Paris and Hamburg paths share
Geneva’s outgoing 10Gbps capacity. While running Hercules
over two fully disjoint paths with 10Gbps will likely double
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Fig. 7: Topology of the utilised GÉANT nodes. Data is
transferred from Geneva, CH to Amsterdam, NL over both
available paths.

the throughput, we decide to include a shared bottleneck to
evaluate how Hercules combining multiple PCC flows behave
in this scenario. Furthermore, 15 s after the transmission’s
start, we reduced the available bandwidth of one path by
congesting the link at Hamburg for 15 s with UDP traffic. We
anticipate that Hercules is capable of reacting fairly to the
congestion by shifting the majority of its traffic to the path
over Paris.

For non-SCION IP traffic there is only a single path
available from Geneva to Amsterdam (over Paris). Comparing
a TCP-based system against Hercules in this setting will result
in unfair outcomes, since singlepath traffic can either run
completely over the congested path or over the uncongested
one. While the first scenario gives Hercules an unfair ad-
vantage, the latter would not include any congestion for the
TCP-based system. Consequently, we decide to also configure
the two paths for non-SCION traffic and compare Hercules
against two independent iperf3+ flows, one for each path. In
contrast to untuned iperf3, we expect iperf3+ to completely
saturate the available bandwidth, to create a fair comparison
against Hercules. While Hercules is capable of aggregate both
SCION paths without any configuration effort in the network,
by simply specifying the usage of both paths, we were required
to apply additional configuration to the intermediate nodes to
create two end-to-end paths via dedicated VLANs.

Figure 8 shows the per-path and aggregated throughputs
achieved by Hercules and the two independent, tuned TCP
flows of iperf3+. Both tools increase their throughput to
around 5Gbps per path in the first seconds, fully saturing the
available 10Gbps. When faced with congestion on one path
starting at 15 s, Hercules and iperf3+ increased transmission
on the second path to fully use the available capacity of
Geneva’s outgoing link. Finally, after the congestion ends,
Hercules and iperf3+ adjust their throughput back to 5Gbps
per path. The slower reaction time of Hercules is likely due
to PCC, which is known to react more slowly to changes in
network conditions [40].

Through Hercules’ utilization of both paths, it was able to
maintain a total minimum throughput of 7.5Gbps during the
congested period, and an overall throughput of 8.6Gbps. We
show, that Hercules is natively able to aggregate the bandwidth
of both paths (despite being limited by the shared bottleneck
in Geneva) and react fairly to congestion through a failover to
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Fig. 8: Per-path and total throughput of Hercules and two
independent TCP flows running over GÉANT.

the uncongested path. Although the two tuned iperf3+ flows
provide similar results, these are only possible in the TCP/IP
network with manual network configuration.

From this experiment, we conclude that Hercules native
multipath provides the anticipated results by simply configur-
ing it to use both paths in parallel. Iperf3+ was able to make
use of both available paths through manual configuration in
the network. While this is possible in smaller networks, the
configuration complexity is increasing significantly in larger
networks. Finally, we expect promising benefits from Her-
cules native multipath support on top of the SCION Internet
architecture in Internet-scale networks, allowing bandwidth
aggregation over larger numbers of heterogeneous paths and
shared bottleneck detection based on the contained hops in the
SCION header.

VI. RELATED WORK

Works attempting to satisfy the need for high-BDP bulk
transfer consists of single-flow and multiple-flow approaches.

a) Single-Flow Approaches: Single-flow approaches re-
fine TCP or provide an alternate protocol. H-TCP [13],
HSTCP [12], Scalable TCP [41] and CUBIC [11] improve
TCP’s throughput in high-BDP networks by being more ag-
gressive for large congestion windows, thereby quickly filling
available bandwidth; FAST TCP [42] and BBR [43] use delay
to detect network congestion; and the PCC algorithms [24],
[40] employ online-learning to find ideal sending rates.

Unfortunately, approaches using single TCP connections
require extensive network-stack tuning and do not scale to
high-BDP links [44], [45]. Reliable Blast UDP [15] sends UDP
packets at a pre-configured rate and performs retransmissions
at the end of the file transfer. SABUL [16] adds congestion
control and periodic acknowledgements to RBUDP for use
on shared links, and UDT [17] further improves congestion
avoidance.



Although Hercules is a new UDP-based protocol, it lever-
ages advancements in congestion control to enable use on
shared links, provides a more performant user-space imple-
mentation, and can use multiple network paths.

b) Multiple-Flow Approaches: Other schemes employ
multiple flows either on a single path through the network,
known as striping, or on multiple network paths. TCP strip-
ing [46] is more common and is employed in data-transfer
tools such as GridFTP [8], bbcp [9], mdtmFTP [10]. In TCP
striping, the sending program opens multiple TCP connections,
divides the file to be transferred into parts, and transmits them
in parallel over the connections. Unfortunately, TCP striping
improves performance at the expense of other TCP flows,
dominating shared network bottlenecks.

Multipath TCP [32] defines a path as the interface over
which data is transferred. For mTCP [18] and mPath [19],
which utilise one-hop in-network overlays to provide divergent
IP routes. Finally, other approaches, such as Huang et al.
[23] and Phoebus [22], integrate with the network to control
the network path. Hercules allows both simultaneous use of
multiple network paths and congestion-controlled transmission
in public networks.

Finally, gfal2 [47] integrates multiple backends into a single
library, allowing applications to easily switch between proto-
cols.

VII. CONCLUSIONS

With the expanding deployment of path-aware networks
(PAN), exciting opportunities arise for higher performance
and higher quality of communication. In this paper, we
present Hercules, a new bulk transfer system that leverages
a combination of cutting-edge networking technologies of the
past decade, including kernel bypass high-speed networking,
performance-oriented congestion control (PCC), and path-
aware networking. The intricate engineering behind Hercules
outperforms established systems such as GridFTP and BBCP
by a staggering 90% in a large-distance environment. Hercules
allows inter-domain path aggregation and failover without
configuration changes in the network, through a simple con-
figuration interface.

The Hercules code is available open-source [48]. In future
work, we plan to investigate what other networking applica-
tions can benefit from these new technologies.
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