
Fleet: Defending SDNs from Malicious Administrators

Stephanos Matsumoto
CMU/ETH Zurich

smatsumoto@cmu.edu

Samuel Hitz
ETH Zurich

hitzs@student.ethz.ch

Adrian Perrig
ETH Zurich

aperrig@inf.ethz.ch

Categories and Subject Descriptors

C.2.1 [Computer Systems Organization]: Computer Communi-
cation Networks—Network Architecture and Design

Keywords

Secure Software-Defined Networks

ABSTRACT

We present the malicious administrator problem, in which one or
more network administrators attempt to damage routing, forward-
ing, or network availability by misconfiguring controllers. While
this threat vector has been acknowledged in previous work, most
solutions have focused on enforcing specific policies for forward-
ing rules. We present a definition of this problem and a controller
design called Fleet that makes a first step towards addressing this
problem. We present two protocols that can be used with the Fleet
controller, and argue that its lower layer deployed on top of switches
eliminates many problems of using multiple controllers in SDNs.
We then present a prototype simulation and show that as long as
a majority of non-malicious administrators exists, we can usually
recover from link failures within several seconds (a time dominated
by failure detection speed and inter-administrator latency).

1. INTRODUCTION
Software-defined networks (SDNs) separate the control plane and

the data plane, with routing decisions made at a centralized con-
troller (which may be physically distributed across multiple ma-
chines), and switches simply forwarding packets according to these
decisions. Routing decisions are installed in switches as flow rules,
which match packet fields with an action such as forwarding or
dropping. Packets that do not match any rule are sent to the con-
troller, which can decide how to handle the packet and install a flow
rule for similar subsequent packets.

With the greater centralized and fine-grained control that SDN
provides, however, comes a greater risk of outages resulting from
network administrator error. Human error is reportedly responsi-
ble for 50 to 80 percent of network outages [6], and an adminis-
trator who misconfigures a controller can easily degrade network

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

HotSDN’14, August 22, 2014, Chicago, IL, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2989-7/14/08 . . . $15.00.

http://dx.doi.org/10.1145/2620728.2620750.

performance, even if the controller is functioning correctly and no
problematic flow rules are installed in switches. We call this the
malicious administrator problem, where a network administrator
misconfigures a correctly functioning controller in a way that ad-
versely affects network performance1.

Detecting suboptimal network performance is challenging. Even
if one assumes Byzantine controller failures, for example, sim-
ply determining what constitutes a “fault” if a controller is func-
tioning properly but misconfigured is difficult to pinpoint. More-
over, enforcing policies that determine what flow rules should and
should not be installed in switches is not sufficient, since a flow rule
may harm network performance while still conforming to a pol-
icy. While previous proposals have followed these approaches (§2),
predicting the outcome of a new flow rule is still a challenge.

In this paper, we design Fleet, a controller architecture that makes
a first step towards addressing the malicious administrator problem,
and present two approaches that can be used with Fleet (§4). The
first approach leverages a threshold voting protocol to ensure that
the network has a single configuration, while the second approach
allows selection among multiple, independently-created configura-
tions from each of the administrators. While the two approaches
have fundamental differences, they both leverage logically central-
ized, physically distributed controllers and make use of digitally
signed information. The use of multiple physical controllers cre-
ates the need for switches to dynamically associate with these con-
trollers, and digital signatures require switches to be able to ver-
ify these signatures. Fleet has a controller layer collocated with
switches to provide both of these features at the switches them-
selves.

In summary, our paper makes the following contributions:

• A definition, adversary model, and list of assumptions for the
malicious administrator problem (§3).

• Fleet, which enables two possible approaches to the mali-
cious administrator problem: an easily-deployable single-
configuration approach, and a multi-configuration approach
more resilient to malicious administrators (§4).

• An argument for Fleet’s intermediate “switch intelligence”
layer between controllers and switches and how this layer
facilitates higher-level switch functionality (§4.1).

• A simulation and evaluation of the single-configuration ap-
proach, as well as a discussion on how we could implement
our multi-configuration approach (§5).

• A discussion of future work and related problems motivated
by Fleet, such as how to maintain data secrecy with malicious
administrators (§6).

1Our use of the word “malicious” does not necessarily assume ma-
licious intent, since an administrator may accidentally misconfigure
the network.

103

2. BACKGROUND AND RELATED WORK
Currently known threat vectors to SDNs include attacking the re-

liability of network forensic data, the authentication between con-
trollers and switches, and vulnerabilities in switch firmware [5],
as well as the availability of SDN controllers [10]. One poten-
tial mitigation for these attacks is to take a distributed systems ap-
proach to prevent compromised controllers from negatively affect-
ing network availability, such as replication and diversity of hard-
ware/software [5]. While replication is necessary to mitigate mis-
behavior, it is unrealistic that a company would deploy a diversity
of hardware and software in their network, since it increases the
complexity of maintaining and updating network equipment.

The idea of distributing controllers over several physical ma-
chines has also been studied in other work. HyperFlow uses a
logically centralized but physically distributed controller in which
switches connect to the physically closest part of the controller,
which updates the other physical machines on network events via a
publish/subscribe system [12]. However, if a HyperFlow controller
fails, its switches must be reconfigured to connect to a new con-
troller. ElastiCon addresses this problem by proposing a dynamic
migration protocol between controllers and implements a dynamic
load balancing system based on this protocol [2].

Flow rules that might adversely affect network availability can
be blocked by using security policies to detect and prevent the in-
stallation of such rules in switches. FortNOX accomplishes this
by enforcing role-based source authentication and security policies
on candidate flow rules [7], while VeriFlow does so by dividing
the network into equivalence classes based on the domains of the
rules to efficiently check adherence to invariant properties in the
network [4]. These approaches are orthogonal to the work in this
paper and can complement our approach in a real deployment.

2.1 Threshold Signatures
The use of threshold cryptography among controllers has been

previously suggested as a possible solution to transmit correct in-
formation from controllers to switches [5]. However, to our knowl-
edge no further work has incorporated this technique. Threshold
cryptography can be applied to a variety of signature schemes, but
in this paper we apply threshold techniques to Schnorr signatures,
which are simple and efficient in addition to being secure [8].

Threshold signatures incorporate a secret sharing scheme, most
commonly Shamir’s secret sharing scheme, which splits a secret
among n parties such that at least k of them are needed to recon-
struct the secret [9]. The scheme generates n points on a polynomial
of degree k− 1 so that any k points uniquely determines the poly-
nomial using interpolation and a given point on this polynomial
(such as its value at x = 0) contains the secret. Previous work has
applied this technique to Schnorr signatures to create a distributed
threshold signature scheme, which can also use a verifiable secret
sharing scheme to ensure that the dealer creating the private key
shares cannot cheat [11].

3. PROBLEM DEFINITION
Our main objective in this paper is to address the malicious ad-

ministrator problem, which we define as preventing k malicious
administrators out of n total administrators from adversely affect-
ing routing/forwarding, recovery from failures, or availability in the
network. The parameter k allows the network to be set to a specific
level of resilience to malicious administrators. While the number
n of total administrators does not necessarily need to be small, we
assume that even for large networks the number of network admin-
istrators will not exceed 10.

3.1 Adversary Model
The adversary in this problem is a group of k possibly colluding

malicious administrators whose goal is to reduce network availabil-
ity. To accomplish this goal, administrators may accidentally or
deliberately misconfigure their controller with policies that cause
undesired flow rules to be pushed to switches. However, besides
the controller’s configuration, an administrator cannot influence the
controller. Thus, for example, an administrator cannot send con-
troller messages that respond to a switch message unless the switch
has indeed sent such a message, nor can a controller send arbitrary
messages to the switch.

3.2 Assumptions
We assume that switches are preconfigured with the necessary

cryptographic keys to authenticate controller messages. Thus a
malicious administrator cannot, for example, preinstall other keys
during setup. We also assume that each administrator has the same
view of the network topology during the protocol. The OpenFlow
specification makes similar assumptions, requiring that switches be
configurable with certificates authenticating them to the controller
and vice versa, and notes that configuration of the flow entries at
switch startup is out of scope [3].

With regards to controllers, we assume that the administrators’
machines are loosely time-synchronized to within several seconds.
We also assume that each administrator has a connection to each
switch, and that there is a communication channel that is always
available and allows administrators to exchange messages. We can
achieve such a channel by for example reserving certain links in the
network specifically for inter-administrator communication or by
using an entirely separate network to enable this communication.

Finally, we assume that all non-malicious administrators share a
common routing policy in the sense that any non-malicious admin-
istrator will agree with a configuration proposed by any other non-
malicious administrator. We make this assumption on the basis that
in a real-world deployment, there will be network-wide guidelines
for routing and forwarding depending on the purpose and require-
ments of the network.

3.3 Desired Properties and Metrics
Our protocol aims to achieve the following properties:

• Indistinguishability: Outside of link failures and subsequent
recovery, the network configuration should be the same as
long as the number of malicious administrators does not ex-
ceed k.

• Rapid recovery: In the event that a link fails, the controller
should find and install a new configuration on the order of
seconds.

• Protocol independence: Our approach should not rely on
details of the underlying routing or cryptographic protocols.

We evaluate our approach using the following metrics:

• Probability of compromise: the probability that a group of
k malicious administrators can cause the use of a different
network configuration than that of the benign administrators.

• Protocol overhead: the time and computational overhead of
the protocol, measured from the point at which a link failure
is detected and when a fix has been proposed.

• Recovery time: the time between the moment a link fails
and when a fix has been issued.

4. FLEET CONTROLLER DESIGN
We begin with an overview of the Fleet controller architecture,

which consists of an administrator layer with shared storage and a

104

Admin 1 Admin 3Admin 2

Switch Intelligence Layer

Administrator Layer

Fleet Controller

Data Plane

Shared Data Storage

Intra-Controller Link

Controller-Switch Link

Figure 1: Diagram of a Fleet controller with 3 administrators

in a small sample network.

switch intelligence layer as shown in Figure 1. These layers are
logically part of the controller, but physically separated. In par-
ticular, the switch intelligence layer is physically collocated with
switches, with each instance of switch intelligence operating on
top of a switch. Administrators upload their configurations to ma-
chines in the administrator layer, which coordinate the selection of
one or more network configurations. The selected configurations
are then verified and translated into flow rules by the switch intelli-
gence layer and pushed to the switches’ flow tables.

We then describe two approaches to addressing the malicious ad-
ministrator problem with the Fleet controller. The first is a straight-
forward single-configuration approach, requiring a threshold of ad-
ministrators to agree to a high-level routing configuration that is
then pushed to the switch intelligence. We achieve this through a
voting protocol in which administrators take turns proposing and
voting on high-level routing decisions following network events
such as a link or switch failure or flow expiration. Once a proposal
is accepted by a threshold number of administrators, it is pushed
to the switch intelligence, which handles flows according to these
rules.

Our second approach requires more significant changes to be de-
ployable and is not guaranteed to always use non-malicious routes,
but can still use correct routes with even a single non-malicious
administrator. The crux of the idea is to create n routing configura-
tions, one for each administrator, and allow the switch intelligence
to probabilistically select one of the configurations for each flow
based on a set of metrics. Malicious administrators can then only
disrupt network operation in their own configurations.

4.1 Controller Overview
Fleet utilizes a single, logically centralized controller physically

distributed across separate machines, as shown in Figure 1. There
are two layers in our controller: an administrator layer, which con-
tains a physical machine for each administrator along with a shared
data storage system, and a switch intelligence layer, which operates
on top of switches and mediates communication between switches
and the administrator layer. This includes verifying signed mes-
sages, translating routing configuration to flow rules, and connect-
ing to a different administrator machine in case one is unresponsive.

The administrator layer consists of a set of physically separated
machines to which administrators upload their network configura-
tions and a shared data storage system. We assume that the ad-

ministrators utilize out-of-band channels to communicate with one
another, and use a distributed data storage system such as Oracle
Coherence2 or Hazelcast3 to ensure that they all maintain a con-
sistent view of the network. While Fleet does not require a one-to-
one correspondence between administrators and machines to which
they upload configurations, we argue that such a separation pre-
vents the failure of a single machine from disconnecting multiple
administrators.

Administrators are responsible for equipping their controller with
a routing configuration that determines a set of metrics by which
routes should be chosen. A simple configuration, for example, may
always select a path with the fewest hops. These configurations
may be straightforward and based only on network metrics, or may
also incorporate fine-grained network routing policies. For exam-
ple, in an ISP’s network, these guidelines may contain information
about business relationships and how flows to or from those en-
tities should be routed. Because these policies may vary widely
depending on the network requirements and on the metrics that can
be gathered through OpenFlow, we consider the specific encoding
of configurations outside the scope of this paper.

The switch intelligence layer consists of a set of switch intelli-
gence instances, one for each switch in the network (though there
may be fewer in very large networks). An instance of switch intelli-
gence serves as a basic controller which handles tasks that switches
cannot easily perform on their own, such as verifying administrator
signatures and translating routing configuration into flow rules. If
a switch receives a packet that does not match any of its rules, it
passes the packet to its switch intelligence, which pushes an appro-
priate flow rule according to its routing configuration.

Since switch intelligence runs on top of switches, it does not
access administrators’ shared data but instead receives necessary
information as messages from the administrators. Therefore, the
switch intelligence is also responsible for facilitating communica-
tion between switches and administrators, connecting to a subset
of administrator controllers and dynamically changing this set for
load-balancing purposes if necessary. Because the switch intelli-
gence is part of the controller and interacts with the administrators
on behalf of the switch, we do not have to change connected admin-
istrators using controller-switch messages. Instead, this handover
can be coordinated entirely within Fleet while the switch remains
connected to a single switch intelligence instance.

The use of a switch intelligence layer presents several challenges
in practice. As current switch hardware does not support the func-
tionality enabled by switch intelligence, migrating to the use of this
layer would either require an additional device to be installed at
each switch, or a new switch entirely. While the switch intelligence
layer ensures that a malicious administrator cannot easily compro-
mise many switches from a single physical location, the increased
complexity in switches contrasts with the prevailing philosophy of
keeping SDN switches simple. For better interoperability with cur-
rent SDN architectures, we point out that the switch intelligence
layer can also be implemented as a single machine that interacts
with all switches in the network.

4.2 Single-Configuration Approach
In this approach, we set a threshold t of administrators that must

agree on a configuration in order to install it in the network. We
define t = k+ 1 so that even if k administrators are malicious, the
single configuration cannot be altered without the agreement of at
least one benign administrator. Since t ≤ n− k (otherwise at least
one malicious administrator must agree to reach the threshold), we

2http://www.oracle.com/technetwork/middleware/coherence/
3http://www.hazelcast.com

105

can see that n ≥ 2k+1, ensuring that there is always a majority of
non-malicious administrators. We then use Shamir’s secret shar-
ing to distribute shares of a private key among them, and install
the corresponding public key in the switch intelligence instances.
The distribution of the private key can be done without a trusted
dealer [1], or by using a verifiable secret sharing protocol [11].

When a link failure is detected, an administrator controller can
initiate a vote to determine a workaround path for the link. A con-
troller becomes the initiator by broadcasting a unique vote identi-
fier, which is then used to seed a generator returning a pseudoran-
dom permutation of the numbers 1 through n, which is called the
proposal sequence. This permutation can be independently com-
puted by each administrator in order to ensure that the sequence is
correct.

The proposal sequence is used to determine the order in which
administrators propose fixes for the broken link. The voting time
is divided into time periods of a predetermined length called voting

epochs. In each epoch, an administrator proposes a fix according
to its routing policy, and the other administrators have until the end
of the epoch to accept or reject the fix based on their own routing
policies.

Administrators can then cast a vote for a proposal by signing
the proposal according to a threshold signature scheme, produc-
ing a signature share that can be independently verified by other
administrators. For efficiency, we use a threshold Schnorr signa-
ture [11]. If a proposal receives fewer than t votes before the end
of the epoch, then it fails and the next epoch begins with a new
proposal. If the vote succeeds, then a valid signed routing config-
uration can be reconstructed from the signature shares and sent to
the switch intelligence layer to be implemented in the switches.

We use the above voting protocol instead of the Paxos protocol
because controllers still must generate a valid signed configuration.
Without a threshold signature scheme, a smaller group of malicious
administrators may be able to push a valid malicious configuration
to the switch intelligence. The threshold signature scheme ensures
that some minimum threshold of agreement is always required to
generate a valid configuration, and in particular prevents k collud-
ing malicious administrators from agreeing on a network-wide con-
figuration.

The distribution of votes in this approach implies that each ad-
ministrator has equal authority in the entire network. Because this
may not be true in practice, we also suggest that in such a case the
administrators create more than n signature shares and distribute
the shares to provide some administrators with more votes than oth-
ers. In this case the threshold t should be strictly greater than the
total number of votes held by any set of k malicious administrators,
in order to prevent such a set of creating a valid configuration.

4.3 Multi-Configuration Approach
Our multi-configuration approach is more resilient and allows

administrators to create network configurations more independently
of each other, but requires more changes to the existing SDN ar-
chitecture. Therefore, we propose this approach as an avenue of
further exploration, describing our preliminary work in this space
and noting the challenges of taking this approach.

In the multi-configuration approach, each administrator has its
own routing configuration and can construct it independently of the
other administrators. While administrators are expected to follow
any network policies when creating a configuration, they are free
to choose the remaining routes according to any available informa-
tion. They then send their configurations to the switch intelligence
layer, which stores these configurations. Since the number of ad-
ministrators for a network is assumed to be small (i.e., less than 10),
storing and selecting among these configurations should not create

a large storage or computational burden on the switch intelligence
layer.

These configurations are then deployed alongside each other to
create a series of n routing planes, each of which can be used by
traffic in the network. Because we consider several routing planes
simultaneously in operation, we can relax the requirement that all
non-malicious administrators agree on each others’ configurations.
Additionally, we do not need any sort of consensus among admin-
istrators, eliminating the need for a voting protocol and threshold
signatures. Because any of the routing planes can be used, we also
are able to tolerate up to n− 1 malicious administrators, since we
only need a single good plane in order to ensure network availabil-
ity.

However, this approach produces other challenges in practice. In
particular, who should choose which routing plane to use and how?
While we could endhost applications the ability to select routing
planes based on their own requirements, this would require sig-
nificant changes to the SDN architecture. Therefore, we propose
that the switch intelligence layer probabilistically choose a routing
plane for each flow and adjust these choices if necessary. How-
ever, this requires the switch intelligence to have its own metrics
for evaluating the performance of a flow. Allowing switch intelli-
gence instances to evaluate metrics in this way would also require
changes to current SDNs.

This approach also has several drawbacks compared to the single-
configuration approach. For example, the switch intelligence needs
to maintain more information because it stores each administrator’s
configuration. Additionally, since administrators can simply ignore
the planes, it can be difficult to detect whether or not an administra-
tor’s plane is violating network routing guidelines. Finally, because
any of the planes can be used and it is not apparent which path is
best by only analyzing the configuration, this approach is reactive
rather than preventative. That is, the use of a bad path can only be
detected after it is being used, allowing even a single malicious ad-
ministrator to temporarily reduce network performance (however
small that probability may be).

Since a single malicious administrator can cause an undesired
path to be used and because it is difficult to detect network rout-
ing policy violations, this approach allows for the possibility of
data exfiltration. In particular, a malicious administrator may cause
potentially sensitive traffic from one host in the network to be redi-
rected to a machine that he controls, allowing data to be extracted
in spite of a multi-configuration approach. This paper focuses on
finding solutions that maintain network availability, but we hope to
address this problem in future work.

5. ANALYSIS AND EVALUATION
We first present a brief analysis of the security of both our single-

configuration and multi-configuration approaches. We then de-
scribe simulations we conducted on an implementation of the single-
configuration approach and discuss the results of those simulations.

5.1 Security Analysis
In the single-configuration approach, a malicious administrator

must be able to forge a Schnorr signature on an incorrect routing
configuration in order to cause a malicious route to be used. Forg-
ing such a signature is equivalent to solving the discrete logarithm
problem, for which no polynomial-time algorithm (in the number
of bits) exists. Furthermore, an administrator who proposes a mali-
cious configuration can get at most k signature shares, and because
the signature threshold is k+1, the adversary gains no information
about the value of the split secret key or signature.

106

Figure 2: Recovery time from link failure detection to agree-

ment on a fix based on the total number of administrators, us-

ing a 1024-bit or 2048-bit shared secret key.

Figure 3: Duration from link failure detection to agreement

on a fix based on the number of malicious administrators and

voting epoch length.

In the multi-configuration approach, a malicious administrator
simply pushes a routing configuration to the switch intelligence
layer. The switch intelligence then probabilistically selects a rout-
ing plane to use for each flow, altering these probabilities as it gains
information about a plane’s performance. However, the probability
of compromise is 1/n if the switch intelligence has no information.
Since n is small, a malicious route will likely be selected, even
though a loss of unavailability may be short-lived as the switch in-
telligence stops using the malicious plane.

5.2 Simulation and Evaluation
Our multi-configuration approach can tolerate more malicious

administrators over a long term, but we did not implement it due
to the challenges of defining an appropriate metric with which to
evaluate route performance and of evaluating these metrics to dy-
namically select among different network configurations. While
this approach provides several interesting topics for further explo-

Figure 4: Total recovery time for a broken link based on how

long it takes for the link failure to be detected.

ration (§6), we chose to defer implementation until some of the
existing challenges have been resolved.

We implemented our single-configuration approach in a Mininet
virtual machine running Ubuntu Linux 13.10 on a host with an In-
tel Core i5-3470S 2.9 GHz CPU. The VM instance was allocated
a single CPU core and 1 GB of RAM. Both layers of Fleet were
implemented in Python using the POX4 framework, and our code
for threshold Schnorr signatures was implemented using the Py-
Crypto5 and gmpy26 libraries, which are written in C and Python.
The keys used in the threshold signature protocol were generated
using OpenSSL. We simulated Fleet on randomly generated topolo-
gies with 20 switches and 50 hosts, tearing down randomly-selected
links and measuring both the protocol overhead in time and the re-
covery time. The switches periodically exchange LLDP packets in
order to update the topology and detect link failures.

Figure 2 shows the effect of two different Schnorr public key
sizes on the time required by the voting protocol with a varying
number of administrators n. Even with no malicious administrators,
all of the signature shares will be verified when they are broadcast.
For 2048-bit keys, the number of administrators has a much larger
impact than in the 1024-bit case. All of our subsequent measure-
ments therefore use 1024-bit keys.

Figure 3 illustrates the effect of the number of malicious ad-
ministrators and voting epoch durations on the time overhead of
the voting protocol, averaged over 100 simulated runs. As the
number of malicious administrators increases we can see how the
overhead increases. Longer voting epochs also increase the over-
head, since an epoch with a malicious proposer results in a lack of
consensus and requires a new round of voting. Because all non-
malicious administrators agree, any non-malicious proposal will
result in agreement on a correct configuration. Therefore a higher
ratio of malicious administrators lead to more routing rounds on
average. Shorter voting epochs lead to faster consensus in case a
proposal gets rejected. The duration of the voting epoch can be
made smaller if the inter-administrator latency is low, and thus the
communication channels between administrators should be well-
engineered.

4http://www.noxrepo.org/pox/about-pox/
5https://www.dlitz.net/software/pycrypto/
6https://gmpy2.readthedocs.org/en/latest/intro.html

107

Finally, we measured the total recovery time for a link from the
moment of failure to the installation of a new configuration in the
switch intelligence, which includes the link failure detection time
as well as the protocol overhead. Figure 4 shows the recovery time
in a worst-case scenario (maximum number of malicious admin-
istrators) depending on the link failure detection delay. While the
number of malicious administrators affects the recovery time, the
link failure detection time dominates. We thus argue that the most
important factors to Fleet’s performance in practice are the link fail-
ure detection time and the inter-administrator latency.

6. FUTURE WORK
In future work, we plan to extend the implementation of our

single-configuration approach, deploying Fleet on real hardware.
Additionally, we plan to test Fleet in several SDN deployments at
ISPs and universities. Because our simulations did not scale to test
large networks, we plan to use these deployments to further study
how latency among administrators and switches affect our proto-
col in real deployments. Given that the inter-administrator latency
dominates the time overhead of the voting protocol, we do not an-
ticipate that the size of the network itself will have a significant
effect on the time needed to install a new configuration in the net-
work.

We also plan to develop a method and series of metrics for evalu-
ating routing planes in our multi-configuration approach. In partic-
ular, we plan to investigate which metrics are most easily collected
in SDNs and which most accurately describe the network perfor-
mance based on the needs of an application. With such a method,
we can implement and test the performance of this approach against
the single-configuration approach. Since the multi-configuration
approach only requires one non-malicious administrator but allows
for the possibility of a malicious route being used, it would be in-
teresting to explore the tradeoffs between maintaining availability
and tolerating a greater number of malicious administrators.

Finally, we plan to extend our approaches to handle malicious
administrators with respect to secrecy in order to prevent data exfil-
tration. A malicious administrator who successfully attacks routing
may be able to exfiltrate data from a host in the network to a remote
location. While this paper focuses on preventing the manipulation
of network configurations, we believe that preventing the exfiltra-
tion of information, be it information about the network, personal
data, passwords, or business policies, is an important research chal-
lenge that must be addressed in current networks, particularly those
operating in commercial or corporate environments.

7. CONCLUSION
In this paper we present the malicious administrator problem and

propose approaches to address this problem. While similar prob-
lems have been documented before, we focus on maintaining avail-
ability in a network where one or more controllers are misconfig-
ured. Our results show that Fleet is able to achieve this goal with
little time overhead, provided that inter-administrator communica-
tion and failure detection is fast. Additionally, our work motivates
other important questions in this underexplored area of SDN secu-
rity, particularly in how to maintain secrecy of data in the network
if there are malicious administrators.

We believe that our first steps in this area can be used to address
both accidental and malicious network configurations. Corporate
networks can leverage this property for such uses as expanding ge-
ographically and hiring network administrators locally, rather than
displacing existing administrators. Our approaches also allow com-
panies to train network administrators through real everyday net-
work operations without risk of unavailability in the event of a mis-

configuration. Through further work in this space, we hope to spur
future improvements to securing SDN operation and management.

8. REFERENCES
[1] Ivan Damgård and Maciej Koprowski. Practical threshold

RSA signatures without a trusted dealer. Springer, 2001.

[2] Advait Dixit, Fang Hao, Sarit Mukherjee, TV Lakshman, and
Ramana Kompella. Towards an elastic distributed SDN
controller. In Proceedings of the second ACM SIGCOMM

workshop on Hot topics in software defined networking,
2013.

[3] Open Networking Foundation. OpenFlow switch
specification version 1.4.0, 2013.

[4] Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and
P Brighten Godfrey. VeriFlow: Verifying network-wide
invariants in real time. 2012.

[5] Diego Kreutz, Fernando Ramos, and Paulo Verissimo.
Towards secure and dependable software-defined networks.
In Proceedings of the Second ACM SIGCOMM Workshop on

Hot Topics in Software Defined Networking, 2013.

[6] Juniper Networks. What’s behind network downtime?, 2008.

[7] Philip Porras, Seungwon Shin, Vinod Yegneswaran, Martin
Fong, Mabry Tyson, and Guofei Gu. A security enforcement
kernel for OpenFlow networks. In Proceedings of the First

Workshop on Hot Topics in Software Defined Networks,
2012.

[8] Claus-Peter Schnorr. Efficient identification and signatures
for smart cards. In Proceedings of Advances in Cryptology

(Crypto). Springer, 1989.

[9] Adi Shamir. How to share a secret. Communications of the

ACM, 22(11), 1979.

[10] Seungwon Shin, Vinod Yegneswaran, Phillip Porras, and
Guofei Gu. AVANT-GUARD: scalable and vigilant switch
flow management in software-defined networks. In
Proceedings of the 2013 ACM SIGSAC Conference on

Computer & communications security, 2013.

[11] Douglas R Stinson and Reto Strobl. Provably secure
distributed Schnorr signatures and a (t,n) threshold scheme
for implicit certificates. In Information Security and Privacy.
Springer, 2001.

[12] Amin Tootoonchian and Yashar Ganjali. HyperFlow: a
distributed control plane for OpenFlow. In Proceedings of the

2010 Internet Network Management Conference on Research

on Enterprise Networking. USENIX Association, 2010.

108

