

FastPass: Providing First-Packet Delivery

Dan Wendlandt, David G. Andersen, Adrian Perrig

March 29, 2006
CMU-CyLab-06-005

CyLab
Carnegie Mellon University

Pittsburgh, PA 15213

FastPass: Providing First-Packet Delivery

Dan Wendlandt, David G. Andersen, Adrian Perrig
Carnegie Mellon University

Abstract
This paper introduces FastPass, an architecture that thwarts
flooding attacks by providing destinations with total control
over their upstream network capacity. FastPass explores an
extreme design point, providing complete resistance to di-
rected flooding attacks. FastPass builds upon prior work
on network capabilities and addresses the oft-noted prob-
lem that in such schemes, a sender must first get one packet
through with no protection against DoS. FastPass provides
cryptographic availability tokens to senders that routers ver-
ify before expiditing their delivery. We present two variants
of the tokens. The first uses light-weight public key cryp-
tography and is practical in high-speed routers with mod-
est hardware additions. The second uses a symmetric hash-
chaining scheme and is easily implemented in software. In
sharp contrast to prior systems, our evaluation shows that
hosts using FastPass can quickly communicate regardless
of the size of the attack directed against the nodes.

1 Introduction
An ounce of prevention is worth a pound of cure.

– Benjamin Franklin

A packet saved is a connection earned.

– Anonymous

Over the past ten years, the Internet has expanded at a
frantic pace, changing the way people communicate, shop,
conduct business, and find information. While it seems
likely that this growth will continue in many areas, we be-
lieve that a lack of guaranteed availability presents a signifi-
cant barrier to the adoption of the Internet in many mission-
critical settings, particularly those that involve elements of
real-time control and response.

Denial-of-Service (DoS) attacks that consume network
capacity are one of the persistent threats to availability in
today’s Internet architecture, and a subject of much recent
study [16, 25, 26, 27, 34, 35]. Many of the techniques inves-
tigated in prior work make significant inroads against DoS,
greatly increasing the resources an attacker must possess
in order to mount an effective attack. Network capabilities
schemes, such as SIFF and TVA, are a promising building

block for a DoS-resistant network architecture. By priori-
tizing packets explicitly authorized by the destination, capa-
bility schemes elevate legitimate flows over floods of attack
traffic.

In this paper, we study an extreme design point not of-
fered by any DoS protection mechanism to date: Regard-
less of how many nodes an attacker controls, an attack
directed at a destination cannot prevent or delay an au-
thorized source from communicating with the destina-
tion. FastPass builds upon a existing network capability
systems [34, 35]; its contribution is a mechanism that lets
senders inform the network that a packet has been autho-
rized by the receiver with no active input from the destina-
tion. This mitigates a fundamental criticism of capability
systems: that they are vulnerable to attacks on the capabil-
ity set-up channel [3].

Stateless router-based capability schemes require an ini-
tial request packet to reach a destination without the protec-
tion of a capability in order to “bootstrap” the process. In
SIFF, an early stateless capability scheme, request packets
were transmitted as best effort traffic. A host establishing
a connection was treated identically to the larger volume of
attack traffic. As a result, the host had to retry until its pack-
ets probabilistically got through. Improving on SIFF, TVA
separated legitimate traffic from attackers by fair queueing
traffic based upon the ingress interface to the current ISP.
Though this provided a significant improvement over the
prior best-effort design, in the best case, this scheme pro-
vides per-host fairness. Hosts still require O(N) time to es-
tablish a capability.

This paper explores FastPass, which delivers the request
in O(1) time. FastPass routers verify cryptographic tokens
in request packets to determine if a destination has autho-
rized the traffic. Unlike conventional capabilities, these to-
kens are not path specific. As a result, they can be provided
to the clients in advance or out of band. Once the capability
has been established, subsequent packets are protected by
the capability mechanism. On top of FastPass, we envision
a system in which clients can obtain tokens in many ways.
Examples include:

• A user obtains a token from a large, distributed token
provider, similar to today’s content delivery networks.
The service may grant the token based upon a small
financial deposit, proof of computational work, or by
a history of being a good customer. The service is re-
sistant to DoS because of its sheer size and geographic
disparity.

1

• A bank customer obtains a cryptographic authentica-
tion dongle from the bank in order to securely access
her account. The user’s computer securely obtains a
token from this dongle.

We first examine the properties that an ideal protected
connection setup mechanism would provide (Section 2).
We then examine two realizations of our system, FastPass-
PK and FastPass-Hash (Section 3). The first is a design for
a future Internet architecture that requires modest additional
hardware in routers to verify tokens. The second provides
fewer security guarantees but is less computationally inten-
sive making it reasonable for deployment within today’s In-
ternet. Our evaluation (Section 4) finds that FastPass suc-
cessfully provides O(1) setup time, and our implementation
study (Section 4) finds that both schemes are practical for
use even in high-speed routers.

2 Assumptions
We make assumptions in three main areas: router hardware,
network architecture, and identification of malicious traffic.

In this section we discuss the foundations upon which our
work builds; in Section 7, we discuss the trade-off between
the benefits our system provides and the additional costs it
imposes. While it may turn out that the costs are too high—
or not—we believe that it is an aspect of the design space
well worth understanding.

2.1 Router Hardware Assumptions
We consider future architectures that may have reasonable
hardware support for cryptographic operations. The mech-
anisms we present require the addition of a shim header
between the IP and transport headers, and we assume that
routers and end-hosts could be upgraded to support this pro-
tocol in addition to whatever changes are needed for the
core capability scheme.

2.2 Network Architecture Assumptions
FastPass extends a generic router-based network capabil-
ity scheme similar to SIFF [34] or TVA [35]. A network
capability is additional information carried by packets that
encodes an authorization to send traffic to a destination. Ca-
pabilities can be validated by intermediate routers to deter-
mine their authenticity. Receivers provide these capabilities
to the hosts that send packets to them to grant the senders
permission to transmit.

A common realization of capabilities is for intermediate
routers to cryptographically mark packets as they go by.
The receiver can then echo the content of these markings
(i.e., the capability) back to the sender, which the sender
can then attach to subsequent packets to obtain an elevated
level of service.

FastPass is agnostic to which capabilities it uses, but the
capability scheme must (1) be unforgeable. Attackers must

not be able to generate or steal capabilities to communi-
cate with a particular destination. In addition, the capability
scheme should: (2) require constant router state, indepen-
dent of the number of flows or packets that traverse a par-
ticular router. (3) Be efficient, requiring a modest amount
of computation at routers and a modest amount of space in
packets.

FastPass requires a constant-memory traffic monitoring
algorithm that can police flows to throttle those that exceed
their rate. One such technique is a multi-stage filter, which
can accurately track the largest flows through a router using
constant space [12]. This technique is similar to that used
in TVA to police elephants in constant space.

Finally, FastPass and its underlying capability-based ar-
chitecture only affect traffic during periods of congestion.
When the network is not congested, best-effort “unwanted”
traffic will still reach the destination.

2.3 Identification of Malicious Traffic

DoS attacks on resources, such as CPU or memory, that
are located directly on the end-host require only that the
end-host identify and drop malicious requests. Bandwidth
exhaustion attacks are significantly different, in that the re-
source exhaustion and damage to legitimate use occurs be-
fore the end-host can decide about which requests to accept
or deny. FastPass and its underlying capabilities provide a
mechanism for end-hosts to efficiently inform the network
infrastructure about what traffic is legitimate and should be
prioritized. As a policy-independent component of the net-
work, FastPass itself does not detect attacks or decide what
traffic to prioritize. Instead, it provides a building block
flexible enough to handle a wide range of prioritization poli-
cies. For the remainder of this paper, we write under the
assumption that end-hosts make these decisions, they could
also be made by firewalls or other servers associated with
the end host. Like all capability schemes, our evaluation
of FastPass assumes that end-hosts can with some reliably
distinguish legitimate traffic from attack traffic once it has
reached the host, an assumption we believe can hold for
most, but perhaps not all, Internet services.

We believe this assumption is realistic for a number of
reasons. Internet services fall into several categories with
respect to their ability to differentiate traffic. Private ser-
vices (e.g., an organization’s IMAP email server) have a
pre-established, often small set of users. These services
can easily distinguish traffic. Authorized services may serve
large, open communities, but have the ability to distinguish
users. A large online retailer would be an example of such
a service. Finally, public services are those who have no
means of differentiating users, and benefit from serving all
users equally. Examples include sites such as Wikipedia.

Private and authorized services can continue to operate
while serving only authorized users, perhaps with some re-
duction in traffic volume. Public services present a greater
challenge. It is here that FastPass’s ability for third-party

2

token granting can help. One can imagine a third-party ser-
vice that collects a small, refundable deposit on behalf of
one or more public services. In return, it grants these users
tokens to ensure their ability to use the service, revoking
the deposit only if the user (identified by their token) sends
malicious traffic. While this is certainly not the only way
to protect a large service, it hints at the ways that even a
completely open service could be protected in a FastPass-
enabled environment.

3 Design
FastPass aims to provide guaranteed connectivity in the face
of attacks that flood a destination with traffic from remote
machines. This section presents the design of FastPass by
enumerating the goals it seeks to meet, outlining its basic
mechanism of operation, and then examining two variants,
one which provides better security and the other which is
much less computationally expensive.

3.1 Definitions and Goals

We define Time to Communication (TTC) as the time re-
quired to successfully establish an “uninterruptable” con-
nection protected by capabilities or filters. We measure
TTC from the initiation of communication (e.g., sending a
TCP SYN packet). In a capability-based scheme, the TTC
would end when the sender receives a reply to its capability
request. In a reactive filtering-based scheme like Pushback
or AITF, we instead measure TTC as the time required to
install enough filters to allow normal communication.

Both capability and filter based schemes protect against
direct bandwidth flooding attacks in which hosts anywhere
on the Internet direct traffic to the destination in order to
congest a bottleneck link. We consider TTC within this
framework and defer until Section 6 a discussion of indi-
rect attacks that require an attacker to be located near the
victim behind the bottleneck link.

FastPass provides a bootstrapping mechanism for a gen-
eral capability-based traffic authorization mechanism, a
process by which routers determine the relative priority for
forwarding packets when capacity is limited. Many mech-
anisms could improve availability by protecting the initial
set-up packet. To understand why we designed FastPass as
we did, we first enumerate several desirable properties for
whatever mechanism determines packet priority.

1. Provide a constant, small TTC: Mission critical ap-
plications and services should be able to guarantee connec-
tion establishment within a small, bounded amount of time.
To do so, they must have complete control over the use
of incoming capacity provisioned by their provider. This
property should hold in the face of large traffic floods and
be independent of the network capacity, the number of at-
tackers, and the network topology between the senders and
receivers. In effect, guaranteed availability should depend

only on the amount of incoming traffic already authorized
by the destination. This property is not achieved by current
DoS-prevention mechanisms.

2. Be robust to malicious participants & non-
participants: Any Internet-scale traffic authorization sys-
tem should be robust to negligent or malicious components
in the infrastructure. For the foreseeable future, routers will
continue to have bugs, software will be subverted, and oper-
ators will make mistakes or even act maliciously. An ideal
traffic authorization scheme is robust to misbehavior by en-
tities not on the direct path between sender and receiver. If
attacks remain possible, an attacker’s influence should di-
minish as the distance from the victim increases [5].

3. Support a wide range of admission policies: Re-
ceivers may apply vastly different policies for allocating
network resources. Private sites may allow access only to
expressly authorized users. Public sites may require proof
of computation or a Captcha [28] (reverse Turing test) be-
fore granting access. Each of these policies has merit in
different circumstances; an infrastructure should not man-
date a particular one. A Captcha, for example, would be
inappropriate for a service accessed primarily by other pro-
grams, and computational puzzles can be biased against
small clients such as PDAs. An ideal scheme could be
adapted to support arbitrary authorization schemes.

4. Permit fine-grained control of incoming requests:
An ideal scheme would provide control over the rate of traf-
fic for both the data connection and the capability request
channel. A receiver should be able to precisely specify
which senders are allowed to send packets and how many
packets they may send.

5. Support a flexible notion of identity: The identifier
used by a destination to inform the infrastructure about its
preference for or against a flow should be flexible and topol-
ogy independent. For example, an authorization mechanism
should not require that the user connect from a given IP ad-
dress. The mechanism for identity should also have suffi-
cient granularity as to identify different hosts on the same
network, or even two different hosts behind a single NAT IP
address.

By focusing on these design principles FastPass presents
a novel solution to the Denial-of-Capability vulnerability
and therefore represents a significant step forward in devel-
oping robust network availability solutions.

3.2 FastPass Public Key Design
The section presents FastPass-PK, a traffic authorization
scheme based on the use of public key signatures to allow
routers to verify traffic authorization tokens.

3.2.1 Overview

In FastPass, hosts obtain a traffic authorization token that
allows them to connect to a destination even in the case of
extreme network congestion. A host may obtain these to-

3

Figure 1: The FastPass connection setup packet adds two headers after the IP header. The capability header
contains fields for three capabilities: one to be verified for priority forwarding, one to be marked by the router
to build a new capability, and one to be echoed back to the remote host. The token header contains proof of
authorization by the destination specified in the IP header.

kens in a variety of ways, as noted in the introduction: di-
rectly from the destination at an earlier time, from a third
party service, or an entirely out of band mechanism.

The basis of FastPass-PK’s tokens is a destination-
specific public key signature, which routers can verify using
the destination’s public key to confirm that a destination has
authorized the token-holder to send traffic to it.

At a high level, FastPass operates as follows:

1. A destination domain D generates a public/private key
pair, KD and KD

−1.

2. D distributes its public key KD along with its reacha-
bility information in a BGP-like inter-domain routing
protocol. At each AS, this key is injected into the IGP.
Each router thus has the public key of all destinations
in its routing table.

3. D uses its private key KD
−1 to run a token granting

service, or provides pre-made tokens to a trusted third
party to distribute tokens on its behalf.

4. When a source S wishes to have protected connection
set-up to D at some point in the future, it requests a
token from D’s token granting service.

5. D’s token granting service may require some proof
of identification or work in order to grant S a token.
To provide a token, it uses the private key to create a
digital signature proving that the token-owner has the
right to contact D at some point in the future. The to-
ken consists primarily of the signature itself, as well
as some meta-data for expiration time and verifying
uniqueness, as discussed below.

6. When S decides to contact D, it includes the token
within a capability setup request packet (see Figure 1)
and sends the packet to D.

7. Routers along the path mark the capability header as
they forward it in order to create a router-based capa-
bility that will protect future packets sent to D. The
exact markings are specific to the underlying capabil-
ity scheme, such as TVA.

8. When forwarding a capability request, the router gives
priority to packets by checking to see if they have a
valid token. The router uses D’s public key (acquired
in step #2) and meta-data in the packet to verify that the
token contains a signature generated using D’s private
key and is therefore authorized.

9. Request packets with valid tokens are placed in a high-
priority traffic queue for forwarding, while packets
with failed tokens are forwarded as best-effort traffic.

3.2.2 FastPass-PK Keys and Trust Model

FastPass-PK performs keying on a per-domain basis; we
borrow from the idea of a “Failure Atomic Unit” in rout-
ing [29], and assume that the indivisible units of routing on
the core Internet are directly tied to a particular organiza-
tion and to a group of machines that are “linked by failure”
(e.g., they share a common bottleneck, access link, etc.).
While this granularity is not strictly necessary—FastPass
could operate on a per-prefix basis—per-domain is a better
match in the face of route aggregation and limited routing
table sizes.

FastPass-PK uses the Rabin-Williams cryptosystem [23],
known for its extremely fast signature verification, which
only requires a single modular exponentiation. Each desti-
nation domain can generate its own public/private key pair
(KD,K−1

D) independent of any other entity, where KD de-
notes the public key, and K−1

D denotes the private key. Al-
though the public key could be signed by a Public-Key In-
frastructure (PKI) and distributed as public-key certificates,
we propose to distribute the public keys directly through
the inter-domain routing protocol along with the reachabil-
ity information. In general, overloading a protocol with ad-
ditional functionality and requirements is not advisable, but
in this case, the public key information is used to authen-
ticate tokens for reaching the destination. Since the token
verification process is intimately tied to the forwarding pro-
cess for reaching the destination, distribution through the
routing protocol is the preferred distribution mechanism to
avoid inconsistencies between routing state and public-key
information. The reason why we can avoid a PKI is due to
the observation that traffic follows the reverse path of route

4

Figure 2: The public key token layout. At the top is
the standard token header including expiration and id
fields. The majority of the packet consists of the Rabin
signature.

updates in BGP—thus, a malicious router that could replace
the public key would be on the path towards that destination
anyways. Hence, a PKI does not introduce a security advan-
tage that would offset the overhead of establishing a PKI in
this specific case.

Tokens consist of a short message with a digital signature
of that message, to guarantee the authenticity of the token
when it is verified by a router. The message consists of two
values: I, an identifier unique to all currently valid tokens
distributed by a given destination; and T , the global time at
which the token expires and is no longer considered valid.
The signature S is a Rabin-Williams signature of these two
values under the private key of D: {I || T}K−1

D
. The signa-

ture ensures integrity and authenticity of the token informa-
tion, preventing alteration of the identifier or the expiration
timestamp.

Source address information is omitted from the token by
design. Tokens can thus be given to a sender without know-
ing anything about how, or even with what device, that indi-
vidual will eventually contact the destination. This provides
the flexible identity identified above that handles issues such
as mobility or NATs and also greatly expands the possible
mechanisms for token distribution.

3.2.3 Token Granting and Management

FastPass intentionally does not specify a specific mecha-
nism for token dissemination or for the access control policy
used by the destination to grant these tokens. This general-
ity is a major strength of the design.

Tokens can be generated by standard PCs without spe-
cialized hardware. In fact, in the simple case tokens may
be generated by the same machines that provide the ser-
vice being protected. In this way, a host already using the
service can assure reachability at a future time. A differ-
ent service might use a trusted third party running a large
Akamai-like CDN to distribute tokens. A destination can
pre-generate tokens and provide them to the third-party with
instructions on the admission policy for distributing the to-

kens. More generally, any out-of-band mechanism, rang-
ing from text-messaging to carrier pigeon, can be used to
communicate token information. Finally, mechanisms such
as smart cards could allow trusted users to generate tokens
themselves without ever contacting the destination.

In addition to standard capability functionality, end-hosts
will also need to have software for managing their to-
kens. This consists primarily of storing acquired tokens
and potentially refreshing tokens that are about to expire; no
cryptographic processing must be performed. Token man-
agement software might also assist in the transaction be-
tween the host and the token granting service, for example,
prompting a user for a username and password or perform-
ing computation as a proof-of-work.

3.2.4 FastPass-PK Protocol Details

FastPass tokens protect capability request packets by giving
them priority over un-authorized packets as they proceed to
the destination and acquire their initial router-based capa-
bility.

Conceptually, capability systems have two output queues
per interface: authorized traffic and best effort traffic. The
former is strictly prioritized over the latter.

When a router receives a capability request packet, it first
marks the packet’s capability header to add its contribution
to the future router-based capability. It then checks to see if
a token has been included in the packet. If no token exists,
a next-hop lookup is performed and the request is placed in
the best-effort queue for forwarding. If there is a token, the
router first checks the expiration time T of the token against
its internal clock to see if the token is still valid. This func-
tion requires coarse time synchronization on the order of
minutes. Next, the router uses a Bloom Filter-based [13]
duplicate detection scheme (Section 3.2.5) to test if it has
seen the token ID I before. If the token is expired or a du-
plicate, a route lookup is performed and the packet is placed
in the best-effort queue with the token removed.

If I and T are valid, the router looks up the next hop and
the public key associated with the destination of the packet.
The router then checks the Rabin-Williams signature of I
and T and places verified tokens in the authorized traffic
queue. Those that fail are stripped of their token and trans-
mitted best effort.

As in TVA, we assume that capability request traffic is
limited to a small static fraction, such as 5%, of link capac-
ity, with the remainder of the link available for capability
protected and best-effort traffic. For each outgoing inter-
face, a router can only transmit packets with the valid bit
set at 5% of the link rate. If more valid requests exist for
an outgoing queue then capacity to transmit them, as many
are checked as possible and the remainder are forwarded
best-effort.

Once the packet arrives at the destination, this host then
determines whether or not to echo a capability to the re-
quester. Possessing a valid token does not imply that the

5

destination will grant the requesting host the right to send it
capability-protected data traffic. A token simply grants the
sender the ability to prioritize a request as it traverses the
path to the destination. Note that if desired, the token pro-
tected request packet can also include a return-path token to
protect the server’s capability reply packet.

3.2.5 Minimizing Token Reuse

An attacker with a single token must not be able to reuse
this token to mount a successful attack. FastPass ensures
two properties governing token reuse: (1) A token can only
be used at a very infrequent rate on any given path; (2) As a
result, only a small number of duplicated tokens will reach
the links near the victim.

FastPass provides these properties by hashing the token’s
ID and the destination AS into a Bloom filter and reject-
ing ID/destinations that have appeared previously. This ap-
proach limits token reuse to once per s seconds, an effective
limit on the power of a replay attack. Bloom filters pro-
vide very compact lookups and have no false negatives, but
they do have a small false positive probability, which we
can drive to arbitrarily low rates. To illustrate this, consider
a router with a gigabit link on which 5% of the capacity is
allocated to token requests. The router will process up to
40,000 requests/sec. A Bloom filter of 160 KB can prevent
duplicates for one second with a false positive rate under

1
1,000,000 . A circular buffer configuration of s Bloom filters
can therefore filter traffic for s seconds with a s

1,000,000 false
positive rate. The false positive rate can be reduced with
more memory, and its effects can be driven arbitrarily small
by giving valid users multiple independent tokens to use on
subsequent request attempts.

Importantly, this scheme also ensures that a particular to-
ken can only be used once to attack any given link while the
router duplicate state is still valid. DDoS attacks depend on
a flood of traffic converging on the victim; the Bloom filters
ensure that only a small trickle of replayed tokens are able
to reach the victim’s bottleneck.

3.2.6 Token Verification Speed

When we began designing a traffic authorization scheme,
we intended for the public key scheme to be a strawman, be-
cause we “knew” that it was too computationally expensive
to allow near the data plane. To our surprise, as we discuss
in Section 5, a user-level software router implementation of
our system using Rabin-Williams signatures is capable of
processing 12,400 requests/sec, and a hardware implemen-
tation should be capable of well over 1 million.

3.3 Fastpass-Hash
While FastPass-PK is in the context of a future Internet ar-
chitecture, it is computationally expensive enough that a
change in the trend of computational power vs. network

Figure 3: The hash-chain tree rooted at a destination
with secret key K0.

capacity could render it quite expensive. As an alternative,
we present FastPass-Hash, which requires little additional
computation to process verification packets, at the cost of
some resistance to compromised or malicious routers.

3.3.1 Hash-Chain Token Design

FastPass-Hash replaces FastPass-PK’s use of public-key
cryptography with significantly faster symmetric key opera-
tions based on a chain of hash values.1 The disadvantage to
this approach is that routers now contain a destination spe-
cific secret that if exposed increases the destination’s vul-
nerability to bandwidth exhaustion attacks. We now explain
the ways in which FastPass-Hash deviates from the design
presented above.

Each destination domain D has a secret symmetric key
K0, used to sign capabilities. Instead of distributing its pub-
lic key, the destination releases a hash of the secret key un-
der a public one-way hash function H to create K1 = H(K0).
D releases K1 to each of its directly connected upstream
providers along with reachability information in BGP. Each
provider uses H to hash the value they received and cre-
ate K2 = H(K1), which is then passed on to any domains to
which that route to D is advertised.

The result is a tree with branches that are identical hash-
chains K0, K1, ..., Ki rooted at the destination and following
the same AS-level path traversed by its BGP reachability
information, as shown in Figure 3. Each domain uses the
Ki it received as the shared secret between a destination and
all routers in that domain. Note that a domain’s key is not
unique, as all AS’s i hops away from D will have Ki.

This shared secret allows the router to verify that tokens
came from D, although with weaker guarantees than public
key cryptography, as we discuss below.

1The first network capability design used a hash chain to time out ca-
pabilities, not to authorize request packets [2].

6

Figure 4: The FastPass-Hash token contains a stan-
dard token header as well as a series of 16-bit values
derived from the hash Vi = Hash(T ,I).

As in the public key case, each token contains T and I
values representing the token expiration time and a token ID
unique to the destination. These values are included in the
token as plaintext values. A FastPass-Hash token consists
of a list of values V1, ... , Vn, where Vi = H(Ki, I,T). Vi is
the value needed to prove authorization to a router located
in an AS that received the key Ki. When generating the
token FastPass-Hash uses the AES block cipher in one-way
function mode [8] with a publicly known 128-bit AES key
kAES. The output of this function is a 128-bit hash, O =
EkAES(I || T)⊕ (I || T). Only the first 16 bits of this value
are used as Vi to conserve packet space. When generating
the token, the granter decides on the number of Vi values
to generate by estimating a bound on the AS-path length
between the source and destination.

Router behavior upon receiving a token mirrors the de-
scription of FastPass-PK, with the exception of how the to-
ken itself is verified. A route lookup for the destination will
yield the key Ki, which the router uses along with the plain-
text I and T values to perform the hash operation. In parallel
the route then compares this computed value against all of
the values Vi included within the token. If one matches, the
router verifies that the token is not a duplicate and has not
expired and enqueues it with priority. If any of the tests
fail, the token is stripped and the request is placed in the
best-effort queue.

3.3.2 Security Analysis

The main drawback of FastPass-Hash is that the compro-
mise or malicious operation of a router containing Ki means
that arbitrary tokens can be forged for destination D in all
domains that have a secret K j where j ≥ i. We refer to such
AS’s as “outer domains”. This results from the fact that
knowledge of the compromised hash value allows computa-
tion of all subsequent hash values. However, FastPass-Hash
has the desirable property that the highest degree of trust
goes to those few domains closet to the destination. Logi-
cally, the closest domains have D as a customer, as a peer-

ing partner, or as a customer of a customer, etc, and likely
have incentives to protect the key. As a result, FastPass-
Hash provides strong protection on par with FastPass-PK
against a large number of directed attackers attempting to
exhaust a bottleneck link near the destination. As the hash-
chain lengthens there is a higher likelihood that someone
in a chain has exposed a key value, but the ability to cause
damage through the use of an exposed secret also declines
with distance from D, offsetting much of the risk.

Standard security measures must be used to safe-guard
routing information during communication and storage to
keep the Ki values private. However, the possibility of an
intentional compromise by an operator also merits consid-
eration. We reject the use of “trusted

computing” mechanisms to hide keys from operators as
too heavyweight and opaque for actual deployment. We
briefly suggest two flexible approaches to reduce the risk
of key exposure:

1. “Distancing” untrusted domains: It may be undesir-
able to trust a neighboring domain even though it is topo-
logically close. To solve this problem, a domain could hash
a value several times before passing it on to a less trusted
upstream or peer, reducing the harm from key exposure by
one of these parties.

2. Releasing multiple hash-chains: Another way to
mitigate the risk of exposed keys is to release multiple
key chains along different paths. If a key of one chain is
exposed, paths covered by other chains remain protected.
However, unless the client is capable of informing the to-
ken service which chain it is on, tokens must include values
for all possible key chains.

Fastpass-Hash provides a light-weight counterpart to
FastPass-PK which trades off security for a fast and cheap
implementation that maintains the remainder of key Fast-
Pass properties, including bounded time to communication.
Significantly, FastPass-Hash is fast enough that it could be
used to protect all packets, not just connection setup re-
quests, if a designer were so inclined.

4 Analysis & Evaluation

This section presents an analytical evaluation of Fast-
Pass, followed by an evaluation of our implementation of
FastPass-PK within the Click modular router [20].

4.1 Attack Power Analysis

In today’s Internet, attackers can easily overwhelm victims
with traffic. Each attacker can generate an abnormally high
volume of traffic, sending at a rate proportional to its up-
stream capacity C. A well-behaved sender will back off
when its packets are lost, retrying at an interval of seconds,
sending at a rate Rgood <<C. The attack power of an aggre-
gate of Nbad attackers is thus NbadC

NgoodRgood
. When the number

7

of attackers is large, as in a DDoS attack, the effect of the at-
tack is to effectively eliminate the good traffic, as even a few
percent loss causes good senders to time out and retry. Early
capability-based systems such as SIFF used this model, re-
lying on retries over time to eventually establish a protected
channel.

To address this, a number of approaches have been pro-
posed to even the playing field. In the absence of spoofing,
a system that fair-queues based upon the sender’s IP address
reduces the effect of asymmetric sending rates. With perfect
fair queueing, the attack power of a set of attackers if Nbad

Ngood
,

a significant improvement. Similar parities can be achieved
by requesting that good senders increase their sending rate
when the receiver is under attack [30] or through the use of
computational puzzles [9]. These designs effectively leave
an attacker’s power linear in the number of attack hosts in-
stead of linear in the aggregate bandwidth of those hosts, a
significant improvement.

TVA fair queues requests based upon their ingress inter-
face into the current ISP. Because using either the source IP
or a path marking such as Pi [33] is susceptible to spoofing
either by end-hosts or by compromised routers outside of
the ISP, the designers of TVA felt that this approximation is
a better choice than a potentially “more fair” but less secure
approach based on per-source fair queueing. Unfortunately,
the necessity of relying on only information generated at
the ISP gives attackers an advantage under some real-world
topologies, which we examine further in Section 4.3.2.

In contrast to prior schemes, FastPass sets up a secure
channel in constant time, regardless of the number of attack-
ers, provided the attackers do not have valid tokens and that
the source has not “oversold” its capacity (Section 6). Fast-
Pass avoids the topological dependence of earlier schemes
by making use of an identifier that both precisely identifies
the source and is unforgeable.

4.2 Evaluation Implementation
We have implemented FastPass-PK in the Click modular
router [20], running on top of a generic capability system
based on TVA [35]. Our prototype runs in userland because
of the absence of public-key functions in the Linux kernel.2

The implementation uses the Rabin-Williams signature im-
plementation from SFS [21], which in turn uses the GNU
MP library. Our implementation forwards 19,200 152 byte
unsigned packets per second and 12,400 public-key signed
packets per second. The unsigned packets are limited by
running in user space, and the signed packets (intended to
be 5% of the link capacity) are limited by cryptographic
processing.

We ran experiments using the Emulab [31] pc3000 hosts
equipped with 3GHz 64-bit Intel Xeon processors and 2GB
RAM. To maximize the data-rate available for comparing

2We are currently porting our implementation to kernel-Click and be-
lieve this implementation will be complete by the camera-ready deadline,
if applicable.

TTC for different schemes, unless otherwise noted the en-
tire capacity of the router dedicated to the request chan-
nel. To assure that cryptographic processing or userlevel
forwarding do not create bottlenecks in our testbed, we arti-
ficially constrain link capacities in the network. In the sce-
narios described below, the request channel for a backbone
link is 5 Mbps and the request channel the bottleneck link
is 1 Mbps. With five percent of a link dedicated to requests,
this setup represents 100Mbps and 20Mbps links, respec-
tively. We limit each attackers to 240 Kbps, or a quarter of
the victim’s capacity.

Each Emulab host emulates a single large Internet do-
main, similar to a transit AS. Domains represent different
regions of trust in the network, and so requests are priori-
tized as they enter the domain. With TVA, this means that
packets are fair-queued based on their entrance point into
the trust domain. FastPass examines tokens when packets
reach a new domain. To provide a more realistic topology,
each domain connects to a number of “neighbor” networks
that are co-located on the same physical machine in our ex-
periments. These neighbors represent customers or peers
of the main network, and are connected to the domain with
2Mbps links. These additional networks are important be-
cause TVA handles requests by attempting to isolate traffic
from different networks from those that contain attackers.
Links between large domains have a static latency of 10 ms,
but no latency is imposed on the communication between a
domain and its neighbor networks.

For each experiment run, each domain in the topology
has the same number of attacking hosts, and sends the same
number of capability set-up requests. Attackers and senders
are randomly assigned to a neighbor network, with attackers
constantly flooding capability setup requests to the victim.
Legitimate senders are randomly placed into a neighbor net-
work and send their initial request at a random time. Our
experiments set the capability request timeout to 500ms, an
aggressive but reasonable value that favors schemes such as
TVA or SIFF which retransmit during congestion.

We limit the number of neighbor networks with attackers
to at most one-third of the neighbors of each domain. This
favors TVA, which assumes that good request traffic can be
isolated from bad traffic on a per-domain basis.

4.3 Time to Communication

We calculate Time to Communication (TTC) as the time
from when a request is first sent to the time the capability
reply is received, minus the minimum propagation time be-
tween the nodes. TTC thus includes the time the packet is
queued and time spent waiting for a timeout as a result of
packet loss, but is independent of the propagation delay. A
perfect TTC is zero.

The following experiments compare FastPass, TVA’s AS-
input marking, and the simple best-effort requests used in
SIFF in order to understand the reasons for their differing
performance.

8

1 .. 20
1 Domain A

Victim

2

3 18

19

20

1 Mbps (bottleneck)

2 Mbps

Neighbor
Networks

Figure 5: Barbell Topology, with one domain and 20
neighbor networks. The attack victim is connected to
the domain by the 1 Mbps bottleneck link.

0 10 20 30 40

Number of Attackers
-1

0

1

2

3

4

5

6

7

A
vg

.T
im

e
to

 C
ap

ab
il

it
y

Best-Effort (SIFF)
TVA
FastPass

Figure 6: Average TTC for FastPass, TVA, and best-
effort as the number of attackers increases. TVA and
best-effort grow linearly, while FastPass is constant.

4.3.1 Simple Barbell Topology

We first consider the simple barbell topology in Figure 5.
There is one domain with 20 neighbors that is connected to
the destination by a 1Mbps bottleneck link. Figure 6 shows
the average TTC each scheme provides for a given number
of attackers. TVA clearly outperforms best-effort, but the
TTC of both grows linearly with additional attackers. In
contrast, FastPass’s TTC is constant (and very small), since
packets with valid tokens have priority over attack traffic,
regardless of the number of attackers.

Interestingly, the barbell is an ideal topology for TVA,
because the bottleneck router can perfectly distinguish good
and bad traffic on a per-domain basis. Figure 7 shows that
when 2

3 of the domains are “good”, those good domains
have a perfect TTC, while nodes in the remaining domains
must compete with the attackers near them. This causes the
long tail observed in the figure. FastPass achieves a near-
zero TTC for all hosts.

4.3.2 Dual Domain Topology

The “dual domain” topology shown in Figure 8 contains
more than one trust domain, so TVA cannot perfectly isolate
all legitimate users. Good and bad traffic from domain B

0 10 20
Time to Communication (sec)

0

0.2

0.4

0.6

0.8

1

P
er

ce
n

ta
g

e
o

f
S

et
-u

p
 A

tt
em

p
ts

FastPass
TVA
Best-Effort (SIFF)

Figure 7: The CDF showing completion times for the
single run of each mechanism with 40 total attackers
on the Barbell topology.

5 Mbps

Victim

1 Mbps (bottleneck)

2 Mbps
Domain A

Domain B

Figure 8: The dual domain topology, each with 20
neighbor networks. Domains A and B are connected
via a 5 Mbps link, while Domain A is the sole provider
of access for the victim over a link of of 1 Mbps.

has mixed by the time it reaches the bottleneck, so all good
nodes in domain B are at a disadvantage. Figure 9 shows the
CDF of TTC using this topology. TVA clients in domain
“A” have a high success rate, but TVA clients in domain
“B” experience significant delays and failures. Note that
the “x” axis is longer than in the previous figure. FastPass
again satisfies all requests immediately, demonstrating the
value of an authorization mechanism that does not depend
on topology.

5 Implementation Considerations

When proposals such as secure BGP have met with con-
cerns about using public key cryptography on the routing
plane for performance reasons [18], why do we believe it
may be feasible to use similar techniques on the much more
performance-critical forwarding plane? This section exam-
ines the performance of optimized public key cryptographic
operations on modern hardware to explore the hardware
costs of deploying a FastPass-like architecture. Perhaps sur-
prisingly, we find that a high-end PC could support a giga-

9

0 10 20 30 40 50 60

Time to Communication (sec)
0

0.2

0.4

0.6

0.8

1
P

er
ce

nt
ag

e
of

 S
et

-u
p

A
tt

em
pt

s

FastPass (Both Domains)
TVA (Domain A)
TVA (Domain B)

Figure 9: CDF from the dual domain topology showing
FastPass and TVA performance with 40 attackers. The
FastPass lines for both domains overlap, but the TTC
for TVA clients in domain B is degraded.

bit per second of normal FastPass-protected traffic with no
hardware cryptographic assistance.

Our implementation of the FastPass public key tokens
uses the extremely fast Rabin-Williams (RW) signature
scheme, which has the exceptional property that it requires
only a single modular multiplication for signature verifica-
tion. This overhead is in stark contrast, for example, with
RSA verification, which requires roughly 1,500 modular
multiplications. It is the extremely low cost of RW veri-
fication that makes FastPass-PK practical.

The second reason FastPass is practical is because the
tokens need be applied to only a fraction of the traffic—
the capability request packets. Schemes such as TVA then
automatically refresh capabilities by piggybacking them on
top of existing, protected traffic. In the resulting system, the
token-protected request channel can be a small fraction—
perhaps 5%—of the capacity of the network links.

This section first examines the cost of verifying RW
signatures in software on a modern microprocessor, and
then extrapolates from recent FPGA implementation re-
sults to estimate the performance of implementing FastPass
with customized hardware support. Following this explo-
ration, we examine the (much lower) costs of the hash-chain
scheme.

5.1 Software FastPass Verification
While hardware implementations are the likely choice for
high-speed routers, lower-end routers may also need to ver-
ify tokens. In addition, tokens will often be generated
by servers running commodity hardware. Table 1 shows
the speed of signature verification and generation on a
3.2Ghz Pentium-IV based PC with 1GB of RAM running
Linux 2.6.11. The Rabin-Williams implementation is from
SFS [21].

Operation single op rate
Rabin verify - 1024 61 µsec 16,459 / sec
Rabin verify - 2048 182 µsec 5,490 / sec
Rabin sign - 1024 3.4 msec 297 / sec
Rabin sign - 2048 20 msec 48 / sec

Table 1: Rabin-Williams software benchmark results.

Signature verification, at roughly 12,400 operations per
second, is the clear bottleneck for a software router. Click is
capable of forwarding over 400kpps on older hardware [20],
and recent measurements indicate that it can exceed 1Mpps.
We therefore conservatively assume that a kernel-Click
router performing FastPass-RW verification could support
12kpps of token traffic, which then permits 240kpps of data
traffic. At an average packet size of 512 bytes, such a router
could support 983Mbps.

Recent hardware trends are also very favorable for a soft-
ware FastPass-PK implementation. First, newer 64-bit ar-
chitectures speed many of the large multiplication opera-
tions needed for cryptographic operations. While our Em-
ulab evaluation used 64-bit machines, the Rabin-Williams
implementation was not optimized to make use of them.
Second, each packet’s RW signatures can be verified inde-
pendently. This type of “embarrassingly easy” parallelism
is ideally suited to the multi-core processor architectures
that are emerging.

5.2 Hardware FastPass Verification
How fast could a dedicated hardware implementation of
FastPass perform? This section presents a rough, conser-
vative estimate of how fast hardware implementations in
FPGA and ASIC packages might perform.

Rabin-Williams verification is based upon modular mul-
tiplication of very large numbers. Most hardware imple-
mentations of RW use optimized Montgomery multiplica-
tion [24] to achieve very fast ASIC and FPGA results. As
we explain below, a contemporary implementation on a
high-end FPGA should be able to achieve over 1

2 million
ops/sec in an FPGA, and nearly 2.5 million ops/sec in a
custom ASIC implementation. This rate is 10% of the for-
warding rate of the fastest OC-192 line card available for
Cisco routers [10]. While an ASIC implementation may be
costly, the line cards that would require it already cost in
excess of $100,000.

An FPGA implementation in 2003 by McIvor et al.
achieved 69,306 1024-bit modular multiplications/sec on a
Xilinx XC2V3000 FPGA [22]. This implementation used a
71Mhz clock rate and consumed 10,332 FPGA slices. We
conservatively assume that a modern FPGA implementa-
tion can operate at 140Mhz [32]3. A large FPGA provides
roughly 100,000 slices. As a result, a parallelized FPGA

3The 2V3000 was a mid-range FPGA when the original study was per-
formed. Here, we compare to the capabilities of the most recent Xilinx vir-
tex 4 4VLX200 FPGA, with a maximum system clock speed of 500Mhz.

10

implementation on a single core should be able to achieve
140
71 ∗ 100,000

10,332 ≈ 20 times the performance of a non-parallel
implementation in 2003, or roughly 1.3 million ops/sec. I/O
limitations reduce the off-chip I/O to about 9Gbit/sec, or
about 3 million ops/sec. Applying a reasonable fudge fac-
tor to account for the other, much less expensive operations
in verifying a RW signature, we conclude that an FPGA im-
plementation can support 500,000 packets per second of ca-
pability request traffic. We assume that an ASIC could run
at twice the clock rate (280Mhz) with at least 3x as many
computation units as the much less dense FPGA implemen-
tation. An ASIC could therefore support well in excess of
2.5Mpps.

5.3 Cryptographic Optimizations

Unlike conventional cryptographic applications, FastPass
has additional flexibility that may lead to even more effi-
cient solutions. For example, rare incorrect token verifica-
tion is tolerable. A false positive (permitting a forged sig-
nature) is preferable to a false negative (ignoring a valid
signature), since the former is likely to be caught at a sub-
sequent router. Even false negatives may be tolerable if their
probability is sufficiently low, and they do not determinis-
tically deny service to a particular client. As an example,
Bernstein has devised an approximate Rabin-Williams ver-
ification with a low (2−100) false positive rate that provides
significant performance benefits [7] that shows promise in
being adapted to provide significant performance improve-
ments in FastPass-PK.

5.4 FastPass-Hash Implementation

The Hash-chaining scheme used in FastPass-Hash (Sec-
tion 3.3) requires routers to implement a keyed hash (a
MAC). Our design uses the AES block cipher in one-way
function mode [8], which requires one block cipher opera-
tion for input sizes smaller than the hash size (128 or 256
bits). Our design deliberately keeps the token size under
256 bits to eliminate the otherwise expensive key-setup step
for hash generation.

The OpenSSL AES-128 CBC implementation on our
Emulab nodes performs 4.1 million ops/sec, and the AES-
256 cbc performs 3.3 million ops/sec. As a result, a soft-
ware implementation of FastPass-Hash is would be suitable
even for some of the fastest links available today. For ex-
tremely cutting-edge interfaces (e.g., OC-768 line cards),
the hardware support for the FastPass-Hash scheme is very
simple. Numerous AES hardware implementations exist,
for FPGAs or ASICs, that can process many gigabits of data
per second. The fastest implementations are, in fact, faster
than any commonly available wide-area network link [15].

5.5 Ingress Verification

If verifying tokens for even a small fraction of traffic proves
too expensive, an ISP may choose to verify signatures only
at their trust boundaries, using an internal “verified” flag
to permit subsequent routers to act on the request packets
without extra computation. This scenario is similar to the
use of MPLS or other technologies to avoid large routing
tables and routing lookups in the core of a meshed net-
work [11], and is already familiar to large ISPs. In a similar
vein, for either performance or deployment, routers could
offload token verification to either a directly connected pro-
cessor or—because tokens occupy only a small fraction of
the network capacity—to a remote server via a tunnel. Such
an approach may be easier to deploy in the short term, and
could help pool hardware resources more efficiently.

6 Oversubscription & Provisioning

FastPass provides an extremely reliable way for receivers to
inform the network whether traffic is desired or not. This
provides strong guarantees in the face of a directed attack
in which malicious hosts anywhere on the Internet gener-
ate floods of traffic addressed to the destination. Resilience
to directed attacks alone, however, does not guarantee that
a sender and receiver can communicate when they desire.
Any link along the path between the two hosts could still be
congested by traffic flowing between other hosts. We term
the deliberate creation of such congestion by colluding at-
tackers an indirect attack This section examines how such
attacks can be performed and considers a number of poten-
tial defenses against them. It concludes by explaining why
the damage caused to a particular victim by an indirect at-
tack is strictly less than the damage that can be caused by a
direct attack.

In a collusion attack, a host C shares a bottleneck link
with a victim destination D. C authorizes hosts anywhere
on the Internet to send it large amounts of traffic, filling the
bottleneck. Such an attack can be effective against both the
data channel and the token validation channel in FastPass,
and against the capability request channel in other systems.
In general, any system that determines priority purely based
on whether it is authorized by the destination is vulnerable
to this type of attack. For example, filtering schemes such
as Pushback and AITF permit victims to filter traffic that
is destined to the victim; they cannot block traffic destined
to other hosts, even if that traffic congests a link shared by
the victim. The same problem was noted as a challenge to
TVA [35].

Collusion is an instance of oversubscription, in which
the collective amount of traffic authorized by destinations
is greater than the bottleneck capacity of the links it tra-
verses. This general problem of quality of service has been
a subject of considerable research. While solving this gen-
eral problem is important, we restrict our attention to over-

11

subscription caused by malice, because it is not as easily
addressed through over-provisioning.

In general, an indirect attack is strictly weaker than a di-
rect attack because of topological dependencies. First, an
attacker must have nodes located strategically near the vic-
tim, as opposed to a direct attack in which the attack nodes
can be virtually anywhere. (We note, however, that a do-
main that was sloppy with its key management could serve
as such a resource; an attacker need not always have a com-
promised host in that location.) Second, by definition, an
indirect attack spreads its resources more widely than a di-
rect attack, unless the routes to the colluder take identical
paths through the minimum capacity links to the victim.

An indirect attack can be launched against either a sender
or a receiver, but attacks against receivers are more serious:
Sending nodes located near a sending victim can attempt to
clog the victim’s upstream capacity, but the attacking nodes
are limited by their own access link capacity. In contrast,
a receiving node near a receiving victim can authorize an
unlimited amount of inbound traffic.

Fortunately, destination-based fairness or per-destination
capacity limits offer a good—though not perfect—solution
to the problem of indirect attacks. ISPs can use a number of
simple, effective tactics to reduce the power of many collu-
sion attacks. For example, the ISP can push a set of limits
to its border routers. Examples of effective limits include:

Per-destination-AS fair queueing: Ensure that traffic is
shared between destination autonomous systems, perhaps
with appropriate weights to account for large and small cus-
tomers, or those who pay different amounts.

Customer capacity limit propagation: If a customer
has an access link capacity of x, then no border router
should pass more than x traffic to the customer.4

Elephant squashing: Like the monitoring scheme used
in SIFF and TVA, monitor the largest F flows and limit them
so that no destination AS consumes more than 1

F of the total
link capacity.

While such limits are not perfect, they greatly reduce
the effects of collusion attacks. Interestingly, these tactics
are completely ineffective against directed attacks that come
from widely dispersed sources: under such an attack, they
merely push the packet loss to the edge, but good flows still
experience vastly increased loss. Only in conjunction with a
scheme to prevent directed attacks do they show their value.
With each of these schemes, the fairness decisions can be
made on a per-AS basis instead of a per-flow basis, requiring
far fewer resources to implement. The limits could likely be
tied in with a customer’s service level agreement (SLA) that
may already exist to govern latency and throughput guaran-
tees.

4An intriguing question for future study is whether such limits on the
data plane could be enforced automatically by the border router attached
to the customer by preventing the customer from authorizing more than
a small multiple of its actual bottleneck capacity. Unfortunately, such a
restriction is not possible for the token channel, since they may be granted
and used at arbitrary times.

Per-destination filters of this sort limit destination-based
attacks to a multiple of a colluder’s capacity, the same limit
that is already faced for sender-directed collusion attacks.
Protection for senders can be provided more easily by fair
queueing on a per-sender basis in the links near the sender.
At this point, the level of aggregation is relatively low, and
ISPs already have per-sender configuration information.

Finally, indirect attacks are more susceptible to correc-
tion through policy or legal means. In a directed attack, the
attacking nodes can be located well away from the victim,
both physically and in jurisdiction. In contrast, colluding
attacks require nodes located near the victim. Such nodes
would be more related to the victim—sharing the same up-
stream ISP, for instance—which would facilitate identifying
the colluders and enforcing AUPs and applicable laws.

7 Discussion

FastPass attempts to satisfy an ambitious goal: providing
100% resilience to directed attacks. At the cost of surpris-
ingly modest hardware additions, we believe that it does so.
In Section 3.1, we enumerated several goals that an ideal
traffic authorization scheme should meet. How well does
FastPass meet those goals, and where does it fall short?

1. Constant, Small TTC. FastPass succeeds in this
regard; to our knowledge, FastPass is the only DDoS-
resilience scheme that provides O(1) time to capability, re-
gardless of an attacker’s strength. As noted in Section 6,
however, FastPass and its kin require additional support to
deal with indirect attacks, and do not do so perfectly.

2. Robust to Malice. The robustness of FastPass de-
pends on three subsystems: The cryptographic strength of
its keys, the security of the token distribution mechanism,
and the routing system that distributes keys. FastPass-PK
and FastPass-Hash’s keys are as secure as their underlying
public and symmetric cryptosystems, respectively. We as-
sume for now their strength, but recognize that a compro-
mise in these schemes could require extensive changes to
Internet routers.

Preserving token secrecy is important to ensure that to-
kens are only used by their intended recipient. While Fast-
Pass allows arbitrary token distribution mechanisms, such
mechanisms should be designed with care to avoid subvert-
ing the effectiveness of tokens. Secrecy during use is of
lesser import: an attacker could steal the token to send its
own requests by sniffing the token and then sending it on its
own ahead of the original token, but such an attack is quite
difficult unless the attacker already controls the path to the
destination.

Finally, key distribution in FastPass is accomplished by
routing protocols. As explained in Section 3.2.2, FastPass
tightly binds the availability of a route with the availability
and correctness of a key. As a result, FastPass key distri-
bution for a destination is vulnerable only to attackers who
can already interfere with routing to that destination. Ide-

12

ally, FastPass would be used in conjunction with a secure
routing protocol such as S-BGP [18] to prevent alteration
of either routes or keys.

By disseminating keys via routing, remote stub domains
may not be able to verify requests until they reach a router
in the “default-free” core. Fortunately, this lack of filtering
does not harm the destination, but it does let a stub domain
waste its own bandwidth. 5

3. Support Many Admission Policies. FastPass suc-
ceeds very well in this regard. Unlike systems that use a
fixed policy such as fair-queueing, FastPass allows each do-
main to allocate tokens in a manner it chooses.

4. Fine-grained Control of Requests. As with admis-
sion policies, FastPass permits senders to allocate tokens as
they wish. Tokens are not single-use, as we would prefer,
because of the rotating bloom filter that performs duplicate
suppression. Instead, tokens grant permission to send a low
rate of requests for a period of time (at least minutes, possi-
bly hours or days). We believe this approximation is suffi-
cient for most applications.

A perfect system would perform token verification on a
per-host basis instead of a per-domain basis. FastPass com-
promises this goal to avoid the routing table explosion that
would result from per-host keys. As a result, FastPass re-
quires a mechanism within large domains to permit hosts
to request capabilities that they can give to their communi-
cants. We leave the design and implementation of such an
architecture for future work.

5. Flexible Identity. FastPass does not encode identity
verification into the network; it requires only that a host pos-
sess a token with the proper signature. Identity is negotiated
end-to-end between senders and token granters. Tokens can
be used per-flow, per-host-pair, or (at high cost) even per-
packet. As a result, FastPass can be used to differentiate
hosts behind NATs, different processes on a machine, and
so on, as an application desires.

7.1 Open Issues
Deployment. In this paper, we have studiously avoided the
issue of incremental deployment and other pesky practical
problems, preferring to design FastPass unencumbered by
the reality of the Internet’s hundred million or so current
users. Our design of FastPass-Hash and the FastPass shim
header is compatible with today’s protocols, but we reserve
for the future an analysis of the effectiveness of a partial
deployment.

Token granting services. The mechanism by which
hosts obtain tokens is clearly an important one, and a com-
plete release of FastPass must include at least one option.

Routing Changes. Current capability systems are bound
to a specific path. If the path changes and the bottleneck is

5An interesting issue for future work is a keying scheme in which the
token validation keys could be combined as a part of address aggrega-
tion. Such a scheme would have the attractive property that authorization
policies become more specific as traffic nears the victim, as suggested by
Ballani et al. [5].

congested, senders must acquire a new capability. FastPass
makes this acquisition easy, but senders will still experience
transient packet loss before they realize they must acquire
a new capability. This aspect of capability systems could
interfere with some load balancing schemes, and is an im-
portant aspect of future work.

8 Related Work
Approaches to dealing with flooding attacks fall broadly
into two categories, detection and prevention. Detection-
based approaches generally attempt to provide a means to
trace packets back to the host or network from which they
originated [6, 26, 27], or to force attackers to use their real
IP addresses during attacks [14]. While these approaches
provide a means to deter attacks via legal or social conse-
quences, unlike FastPass, they do not prevent a DoS attack
from harming the victim.

FastPass, on the other hand, attempts to prevent a destina-
tion from being overwhelmed with unwanted packets. Fast-
Pass shares this goal with the capability systems [2] that it
builds upon, such as TVA [35] and SIFF [34].

An alternative to capability systems are those that permit
senders to shut out unwanted packets. Pushback allows a
victim to push relatively coarse-grained filters out into the
network that filter the largest sources of traffic to the vic-
tim [16]. AITF refines this approach to support much more
fine-grained filtering [4]. Additionally, AITF relies on a
strong distinction between the “network edge” and a largely
trusted and well-connected “network core”.

In stark contrast to all filtering schemes, FastPass adheres
to a default deny policy for preferentially treating packets.
Default deny is a long-standing principle in the design of
secure systems.

Overlay-based approaches such as Mayday [1] and
SOS [19] aim to protect servers by deploying networks of
nodes that filter traffic on their behalf. While this approach
has the advantage of being compatible with today’s Internet
architecture, its requirement for a large network of proxies
means that it is primarily suited to protecting well-funded
services that can afford such an overlay network, and less
suited to protecting smaller services or individual clients.

While FastPass and related schemes address packet
floods, other attacks target a server by flooding it with
expensive application-layer requests. Approaches such as
Kill-Bots use Captchas to rapidly distinguish human- and
machine-generated requests at Web servers [17]. This work
complements FastPass: A successful approach to DoS mit-
igation must address attacks at all layers.

9 Conclusion
The time-to-capability (TTC, i.e., the duration to set up
a capability-protected connection) is a critical metric for
capability-based architectures. Early capability systems,

13

such as SIFF, did not protect the capability request chan-
nel, but relied on statistical measures to acquire a capabil-
ity [34]. Consequently, the waiting time to getting a capa-
bility was linear in the attacker’s network capacity. .More
recent systems, such as TVA [35] fair queue based on the
ingress link to an ISP. While this approach is promising, but
in the worst case, the TTC can exponentially increase with
distance to the destination.

FastPass considers an extreme design point: providing
guaranteed first packet delivery in the face of directed at-
tacks, in the context of a future network infrastructure pro-
viding dedicated cryptographic support. Our analysis and
evaluation show that this approach drastically outperforms
prior systems, and that our design could be implemented
with modest hardware requirements. While much work re-
mains to be done, and many attacks remain to be addressed,
we believe that FastPass could be a valuable component of
a future network architecture.

References
[1] D. G. Andersen. Mayday: Distributed Filtering for Internet Services.

In Proc. 4th USENIX Symposium on Internet Technologies and Sys-
tems (USITS), Mar. 2003.

[2] T. Anderson, T. Roscoe, and D. Wetherall. Preventing Internet denial
of service with capabilities. In Proc. 2nd ACM Workshop on Hot
Topics in Networks (Hotnets-II), Nov. 2003.

[3] K. Argyraki and D. R. Cheriton. Network capabilities: The good,
the bad, and the ugly. In Proc. ACM Workshop on Hot Topics in
Networks (Hotnets-IV), Nov. 2005.

[4] K. Argyraki and D. R. Cheriton. Active Internet traffic filtering:
Real-time response to denial-of-service attacks. In Proc. USENIX
Annual Technical Conference, Anaheim, CA, Apr. 2005.

[5] H. Ballani, Y. Chawathe, S. Ratnasamy, T. Roscoe, and S. Shenker.
Off by default! In Proc. ACM Workshop on Hot Topics in Networks
(Hotnets-IV), Nov. 2005.

[6] S. Bellovin. ICMP Traceback Messages, Internet-Draft, draft-
bellovin-itrace-00.txt, Work in Progress, Mar. 2000.

[7] D. J. Bernstein. A secure public-key signature system with extremely
fast verification. 2000.

[8] J. Black, P. Rogaway, and T. Shrimpton. Black-box analysis of the
block-cipher-based hash-functions constructions from PGV. In Ad-
vances in Cryptology (CRYPTO 2002), 2002.

[9] W. chang Feng, E. Kaiser, W. chi Feng, and A. Luu. The design and
implementation of network puzzles. In Proc. IEEE INFOCOM, Mar.
2005.

[10] Cisco Systems. Cisco 12000 series one-port oc192c/stm-64c dpt line
card, Feb. 2006.

[11] B. Davie and Y. Rekhter. MPLS: Technology and Applications. Aca-
demic Press, San Diego, CA, 2000.

[12] C. Estan, S. Savage, and G. Varghese. Automatically inferring pat-
terns of resource consumption in network traffic. In Proceedings of
ACM SIGCOMM, 2003.

[13] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: A
scalable wide-area Web cache sharing protocol. In Proc. ACM SIG-
COMM, pages 254–265, Sept. 1998.

[14] P. Ferguson and D. Senie. Network Ingress Filtering. Internet Engi-
neering Task Force, May 2000. Best Current Practice 38, RFC 2827.

[15] A. Hodjat and I. Verbauwhede. Minimum area cost for a 30 to 70
gbits/s aes processor. In 2004 IEEE Annual Symposium On VSLI
(ISVSLI).

[16] J. Ioannidis and S. M. Bellovin. Implementing Pushback: Router-

Based Defense Against DDoS Attacks. In Proc. Network and Dis-
tributed System Security Symposium (NDSS), Feb. 2002.

[17] S. Kandula, D. Katabi, M. Jacob, and A. Berger. Botz-4-Sale: Sur-
viving Organized DDoS Attacks That Mimic Flash Crowds. In Proc.
NSDI.

[18] S. Kent, C. Lynn, J. Mikkelson, and K. Seo. Secure border gateway
protocol (S-BGP) - real world performance and deployment issues.
In Proc. NDSS, 2000.

[19] A. D. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure overlay
services. In Proc. ACM SIGCOMM, pages 61–72, Aug. 2002.

[20] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The
Click modular router. ACM Transactions on Computer Systems, 18
(3):263–297, Aug. 2000.

[21] D. Mazières, M. Kaminsky, M. F. Kaashoek, and E. Witchel. Sep-
arating key management from file system security. In SOSP, pages
124–139, Dec. 1999.

[22] C. McIvor, M. McLoone, J. McCanny, A. Daly, and W. Marnane.
Fast montgomery modular multiplication and rsa cryptographic pro-
cessor architectures. In Proc. Asilomar Conference on Signals, Sys-
tems and Computers, pages 379–384, Nov. 2003.

[23] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of
Applied Cryptography. CRC Press Series on Discrete Mathematics
and its Applications. CRC Press, 1997.

[24] P. L. Montgomery. Modular multiplication without trial division.
Math. Computation, (44):519–521, 1985.

[25] K. Park and H. Lee. On the effectiveness of route-based packet fil-
tering for distributed DoS attack prevention in power-law Internets.
In Proc. ACM SIGCOMM, Aug. 2001.

[26] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Network sup-
port for IP traceback. IEEE/ACM Transactions on Networking, 9(3),
June 2001.

[27] A. C. Snoeren, C. Partridge, et al. Single-packet IP traceback.
IEEE/ACM Transactions on Networking, 10(6), Dec. 2002.

[28] L. von Ahn, M. Blum, N. Hopper, and J. Langford. CAPTCHA:
Using hard AI problems for security. In Advances in Cryptology –
EuroCrypt, 2003.

[29] M. Vutukuru, N. Feamster, M. Walfish, H. Balakrishnan, and
S. Shenker. Revisiting internet address: Back to the future! Tech-
nical Report pending assignment, MIT Computer Science and Arti-
ficial Intelligence Laboratory, Feb. 2005.

[30] M. Walfish, H. Balakrishnan, D. Karger, and S. Shenker. DoS: Fight-
ing fire with fire. In Proc. ACM Workshop on Hot Topics in Networks
(Hotnets-IV), Nov. 2005.

[31] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. New-
bold, M. Hibler, C. Barb, and A. Joglekar. An integrated experi-
mental environment for distributed systems and networks. In Proc.
USENIX OSDI, pages 255–270, Dec. 2002.

[32] Xilinx. Virtex-4 overview. http://www.xilinx.com/
products/silicon_solutions/fpgas/virtex/
virtex4/overview/index.htm, Feb. 2006.

[33] A. Yaar, A. Perrig, and D. Song. Pi: A path identification mecha-
nism to defend against DDoS attacks. In Proc. IEEE Symposium on
Security and Privacy, 2003.

[34] A. Yaar, A. Perrig, and D. Song. SIFF: A stateless Internet flow filter
to mitigate DDoS flooding attacks. In Proc. IEEE Symposium on
Security and Privacy, May 2004.

[35] X. Yang, D. Wetherall, and T. Anderson. A DoS-limiting network
architecture. In Proc. ACM SIGCOMM, Aug. 2005.

14

http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex4/overview/index.htm
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex4/overview/index.htm
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex4/overview/index.htm

	Introduction
	Assumptions
	Router Hardware Assumptions
	Network Architecture Assumptions
	Identification of Malicious Traffic

	Design
	Definitions and Goals
	FastPass Public Key Design
	Overview
	FastPass-PK Keys and Trust Model
	Token Granting and Management
	FastPass-PK Protocol Details
	Minimizing Token Reuse
	Token Verification Speed

	Fastpass-Hash
	Hash-Chain Token Design
	Security Analysis

	Analysis & Evaluation
	Attack Power Analysis
	Evaluation Implementation
	Time to Communication
	Simple Barbell Topology
	Dual Domain Topology

	Implementation Considerations
	Software FastPass Verification
	Hardware FastPass Verification
	Cryptographic Optimizations
	FastPass-Hash Implementation
	Ingress Verification

	Oversubscription & Provisioning
	Discussion
	Open Issues

	Related Work
	Conclusion

