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ABSTRACT
Log-based PKI enhancements propose to improve the current TLS
PKI by creating public logs to monitor CA operations, thus pro-
viding transparency and accountability. In this paper we take the
first steps in studying the deployment process of log-based PKI en-
hancements in two ways. First, we model the influences that par-
ties in the PKI have to incentivize one another to deploy a PKI en-
hancement, and determine that potential PKI enhancements should
focus their initial efforts on convincing browser vendors to deploy.
Second, as a promising vendor-based solution we propose deploy-
ment status filters, which use a Bloom filter to monitor deploy-
ment status and efficiently defend against downgrade attacks from
the enhanced protocol to the current TLS PKI. Our results provide
promising deployment strategies for log-based PKI enhancements
and raise additional questions for further fruitful research.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—Secu-
rity and Protection; K.6.0 [Management of Computing and In-
formation Systems]: General—Economics; K.6.5 [Management
of Computing and Information Systems]: Security and Protec-
tion—Authentication
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1. INTRODUCTION
Public-key infrastructures (PKIs) such as those used for the Trans-

port Layer Security (TLS) protocol bind a web server’s name to a
public key that can then be used to set up an end-to-end encrypted
connection between a client and the server. In the TLS PKI, a cer-
tificate authority (CA) signs a public-key certificate that binds a
server name to a public key, and a client can verify this certificate
during TLS connection setup. The public keys of trusted CAs are
installed in the client’s browser or operating system, allowing the
client to authenticate the server by a chain of signed certificates
from a trusted CA to the server.
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However, the current TLS PKI is worryingly brittle. CAs are a
single point of failure, and CA errors or compromises have resulted
in unauthorized certificates being issued for sites such as Google,
Facebook, Skype, Yahoo, Microsoft, and Mozilla [1, 10, 13, 18, 19,
26]. Such forged certificates are currently difficult to detect, and
can be used for a variety of nefarious purposes, including theft of
sensitive user data (such as credit card numbers) and government
surveillance.

To combat these issues, log-based proposals such as Certificate
Transparency (CT) [15] introduces public logs to monitor all cer-
tificates issued by CAs. These public logs provide transparency
by ensuring that only publicly-logged certificates are accepted by
clients, allowing any misbehavior by CAs, particularly the issuance
of unauthorized certificates, to be detected by clients and servers
alike. Other log-based schemes have proposed to further add re-
silience to compromise and features such as monitoring of revoked
certificates [11, 22, 24].

However, with log-based proposals and with other proposed PKI
enhancements, the deployment process requires careful study. In
particular, we observe several shortcomings in our understanding
of the deployment process:
• We lack insights about the incentives of parties in TLS and

how they influence one another to enact changes to the PKI.
• The incentives for an individual entity to deploy public logs

have not been enumerated.
• Proposals often do not consider the security benefits that they

offer during, as opposed to after, the deployment process.
As a result, most log-based proposals have not gained widespread
traction, and some suffer from downgrade attacks, in which an ad-
versary makes a server falsely appear to have not yet deployed the
PKI enhancement. This attack downgrades the security of the PKI
to that of the legacy PKI, which is used instead of the enhancement.

In this paper, we take steps to address these shortcomings. We
model incentives and mutual influences in today’s TLS, studying
how different parties in the PKI influence one another with respect
to deployment, and the incentives that these parties have to deploy
public logs. We then propose deployment status filters (DSFs), a
mechanism that uses Bloom filters to detect the deployment status
of a PKI enhancement at a domain, thus protecting against down-
grade attacks. DSFs amplify the incentives for domains to deploy
a PKI enhancement and can be deployed by browser vendors, who
are able to effectively incentivize other PKI parties to also adopt
the enhancement.

While our work on tackling this important challenge is still pre-
liminary, we make the following contributions in this paper:
• We formulate a model capturing how deployment decisions

by various parties (users, domains, CAs, and browser ven-
dors) affect other parties’ deployment decisions.

• We make observations regarding the deployment of public



logs and effective deployment of log-based proposals.
• We propose DSFs, a browser vendor-driven mechanism for

determining deployment status and incentivizing deployment
while preventing downgrade attacks.

2. BACKGROUND
In this section we provide background information on log-based

PKI proposals for readers. In particular, we describe the parties in
these proposals and provide an overview of the general log-based
approach. The terminology we introduce in this section will be
used throughout the rest of the paper. We then conclude the section
with a short description of recent log-based proposals and their at-
tempts to mitigate downgrade attacks.

2.1 Parties
Figure 1 shows the parties in a log-based PKI proposal and inter-

actions between them that we will refer to in the rest of the paper.
PKIs are primarily concerned with authenticating a server to a

client during the TLS handshake. Often this authentication takes
place in the client’s browser, which is provided by a browser vendor
(hereafter simply a vendor). As part of the handshake, the server
sends the client a public-key certificate signed by a certificate au-
thority (CA). The CA is responsible for verifying the identity of
the server before signing and issuing the server’s public-key certifi-
cate [16]. For example, a CA issuing a certificate for yahoo.com
is responsible for making sure that an authorized representative of
yahoo.com is indeed requesting the certificate, and that only ya-
hoo.com holds the private key corresponding to the public key con-
tained in the certificate.

Log-based proposals introduce several new parties to the PKI.
One of these parties is the public log, which maintains a publicly-
visible database of CA operations. While the exact mechanism of
how this database is structured varies among proposals, all of the
proposals discussed below store their databases in a Merkle Hash
Tree (MHT) [17]. Public logs must track CA operations and re-
spond to client queries regarding CA behavior, such as the presence
of an observed certificate in the log’s database. Additionally, logs
that detect CA misbehavior may be required in some proposals to
disseminate the evidence of the CA’s misbehavior.

Some proposals additionally introduce log monitors, which watch
the public logs to ensure that they are correct (only logging valid
certificates) and consistent (not retroactively modifying certificates).
This functionality is split into several parties in some proposals, and
have different names in each proposal. The terms auditor, monitor,
and validator all refer to entities that fall under the category of log
monitors and primarily have the responsibility of tracking log be-
havior and corroborating proofs for responses provided by the logs.
Additionally, some log monitors watch logs for suspicious certifi-
cates that may be the result of a compromise, and randomly request
and verify log proofs to ensure proper log behavior.

2.2 Overview of Log-Based Proposals
We now give a brief overview of certificate issuance and vali-

dation in log-based proposals. A layout of the general log-based
architecture is illustrated in Figure 1.

Log-based proposals add the extra step of registering a TLS cer-
tificate at a public log. Usually the domain or CA sends a certificate
to the log for registration, but any party can submit a certificate for
logging. A registration request is sent to the log, who checks the
request and the certificate to make sure they are valid and responds
with a message indicating that the certificate has been or will be
logged. This message is signed and usually takes the form of a
timestamp to indicate when the certificate was registered or a log
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Figure 1: General architecture of the log-based PKI model.
Solid lines indicate information sent during the certificate is-
suance and validation process, and dotted lines indicate the
possible ways in which certificates are registered at the log, and
how log proofs for a certificate can be obtained.

proof, either of which can be used immediately..
When a client initiates a TLS handshake with the domain, the

client must also obtain a log proof for the domain’s certificate or
some other form of proof that the certificate was recorded in a pub-
lic log. This proof is often provided by the domain itself, but may
be retrieved directly from a public log. The client then verifies both
the certificate and the proof to ensure that a valid chain from a root
CA key to the domain’s key exists and that the certificate has been
checked and registered at a public log. Log proofs are also digi-
tally signed by public logs and are thus non-repudiable, allowing
log misbehavior to be proven to third parties.

Logged certificates are stored in MHTs, which can provide an
append-only property [5] guaranteeing that no previously-observed
certificates were retroactively removed or altered. The MHT struc-
ture also allows log proofs to be verified efficiently (requiring loga-
rithmic time in the number of stored certificates). Log monitors can
check these proofs over time to ensure that logs are maintaining the
append-only property, and that logs are not adding any suspicious
certificates to the MHT.

2.3 Specific Log-Based Proposals
We now briefly summarize several recent log-based proposals

in the literature. Because we address downgrade attacks in this
paper, we focus on the attempts of these proposals to mitigate these
attacks by providing proofs of absence, in which a log can prove
that a domain’s certificate has not been logged.

Certificate Transparency (CT) [15] is a project by Google to add
transparency to CA operations, monitoring all issued certificates to
detect suspicious certificates. In CT, a certificate must be valid and
publicly logged in order for a client to accept the certificate. A
certificate can be submitted to a log by the CA, the domain, or by
a client who observes the certificate. Certificate Issuance and Re-
vocation Transparency (CIRT) [22] adds revocation functionality
to CT through a new MHT that allows logs to provide efficiently-
verifiable proofs of absence as well as presence.

The Accountable Key Infrastructure (AKI) [11] focuses on en-
hancing the log-based PKI with support for revocation and aims to
handle events such as the loss or compromise of a private key. To
recover from catastrophic events such as trusted CA compromise or
domain key loss, AKI uses cool-off periods, during which a certifi-
cate is logged and publicly visible, but not valid for authentication
purposes. These cool-off periods ensure that the domain has time
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Figure 2: Mutual incentives. Solid arrows indicate a strong
influence, while dotted arrows indicate a weak influence.

to detect a misissued certificate and contact the relevant CAs and
logs to rectify the situation. In AKI, certificates contain policies
that specify trusted CAs for the domain, as well as cool-off periods
for various events (such as key loss). Logs’ MHTs in AKI are or-
ganized differently from those in CT, allowing them to efficiently
prove the absence of a certificate as well as its presence, defending
against downgrade attacks. This organization is also used in Po-
liCert [24] and ARPKI [4], whose logs are based on those of AKI.

3. DEPLOYMENT MODEL
In this section we describe our model for deployment efforts in

log-based PKIs. We describe mutual influences among parties in
the PKI. We then discuss and evaluate incentives for each party to
deploy a public log, and conclude the section with our observations
on the deployment process.

3.1 Mutual Influences
We consider the influences of each of the four main parties on

each other, which are summarized in Figure 2. We classify these in-
fluences into strong influences, which can effectively force a party
to deploy a proposal, and weak influences, which may not always
incentivize deployment.

Vendors and CAs: vendors have a strong influence on CAs,
since browsers are many users’ primary interface to the TLS PKI.
Vendors can refuse to acknowledge the authority of a CA in their
browsers by excluding the CA from the browser’s root CA store [20].
However, this influence is limited for some CAs due to too-big-
to-fail CAs: vendors cannot remove the largest CAs without cut-
ting off access to many TLS-enabled sites, which runs counter to
browsers’ goal of enabling connectivity to websites [3, 16].

Since almost all modern web browsers are EV-aware, vendors
can also influence CAs by refusing to show the EV indicator for
EV certificates from a specific CA (usually for security reasons).
Google has proposed this approach in Chrome as part of its deploy-
ment of CT [14], but it should be noted that the official guidelines
for EV certification are set by the CA/Browser Forum [9].

Vendors and domains: vendors can strongly influence domains
in several ways. As with CAs, vendors can change security indi-
cators for specific non-deploying domains. Vendors may also carry
out extra checks such as retrieving log proofs, since for example
anyone in CT can submit a certificate to a log, and thus even a
non-deploying domain may have a log proof corresponding to its
certificate. However, a non-deploying domain would not include

this proof in a TLS handshake, requiring an extra round trip for the
browser to query for and obtain the proof, slowing a client’s con-
nection to the domain. Even if the domain is not concerned about
enhanced security and thus not incentivized by the browser’s secu-
rity indicator, the domain may be incentivized by the possibility of
slowing connections from all clients using the deploying browser.

Vendors and clients: Vendors have a strong influence on clients.
Many modern browsers have the capability to receive push software
updates and install these updates without client interaction (mainly
for security purposes [12]), and thus a deploying browser vendor
could easily reach its clients with new PKI functionality. While this
capability does not incentivize clients to deploy a PKI proposal, it
helps deployment by allowing a single browser vendor to quickly
deploy and upgrade the proposal on its clients’ machines.

Clients have a weak influence on vendors. While clients do not
often do so, they can switch away from browsers that do not meet
their desired level of usability, security, or connection speed. Even
small differences in page loading times can affect whether or not
a client visits a website [21], and thus browsers that differ signif-
icantly in how quickly they load pages can cause clients to switch
browsers. Additionally, security issues such as TLS warnings can
affect connectivity to HTTPS sites. Many clients click through
these warnings [2, 7], and thus a browser making it difficult or im-
possible to click through TLS warnings may cause its clients to
switch to a different browser.

CAs and domains: CAs and domains have arguably the clos-
est business relationship of any two parties in the current PKI due
to the fact that almost all HTTPS domains purchase certificates
from CAs, and these purchases represent a majority of the CAs’
business. CAs and domains have a strong influence on each other
through this business relationship. This economic connection also
manifests itself in deployment incentives for a new PKI proposal.
For example, a deploying CA can easily incentivize non-deploying
domains to adopt a new scheme by selling certificates of the new
proposal at a better price than legacy certificates, or the CA could
stop selling legacy certificates altogether.

On the other hand, as the CA’s customers, domains can also in-
fluence the behavior of CAs, and domains could incentivize a CA
to adopt a new proposal as well. Since domains tend to choose
CAs based on the services they bundle with the certificate [3], do-
mains could simply switch CAs. As long as the CA is approved by
the browser, clients can establish TLS connections with a domain
regardless of which CA signs its certificate.

Domains and clients: domains and clients may also share a
close relationship for business or data privacy reasons. Domains
that deploy a PKI proposal can incentivize clients to deploy the
new scheme by offering a more secure service, particularly when
the domain stores private user data. For example, the domain can
detect the version of browser the clients are using and encourage
them to switch to the latest version on the domain’s webpage.

Clients can also influence domains by switching to a different
service that does offer the security benefits provided by deploy-
ing the new PKI, particularly if the domain provides a security-
sensitive service such as e-banking. However, if there is no similar
service to switch to, then the clients cannot exert this influence, and
thus we claim that clients have a weak influence on domains.

3.2 Log Deployment Incentives
Log-based proposals envision that anyone in the Internet can de-

ploy a log, but in practice operating a reliable log requires more
than just the desire to do so. In general, a party must continually
maintain a public log (though some interactions can be automated),
and thus proposals such as CT and AKI expect some minimum
availability from logs, with Google requiring 99% [14]. We there-
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fore consider the incentives that exist for various parties to deploy
a public log and expend this continual effort.

Vendors: public logs operated by vendors can be useful for de-
tecting misbehaving CAs. Vendors that detect misbehaving CAs in
their logs can then block those CAs’ public keys in their browser.
For the purposes of protecting their users, vendors can also use their
own logs to detect suspicious certificates rather than relying on logs
operated by other parties, such as CAs, whose misbehavior may be
correlated with those of the logs.

CAs: though many CAs today are not interested in deploying
public logs,1 providing a hurdle to global CA-driven deployment,
logs operated by CAs have several advantages. CAs keep track of
the certificates that they sign and issue, and can thus monitor logs
for suspicious certificates, especially those that bear their signature.
These suspicious certificates can be identified using systems such
as Perspectives [25] or PoliCert [24]. CAs can also watch for sus-
picious certificates from other CAs, and expose this misbehavior in
order to gain a competitive advantage in the CA market.

Domains: there is little incentive for a domain to operate a pub-
lic log, since from a security perspective it can only help in pro-
tecting the domain itself along with a few high-profile sites. In
particular, a domain can recognize its own TLS public-key certifi-
cates and detect misissued certificates for its own name, and the
domain may also be able to do the same for several high-profile
sites whose public keys are well-known. However, the operating
costs in availability and bandwidth is likely to be higher than the
benefit a log provides to the domain. In particular, the domain can
simply monitor other logs to detect forged certificates for its name.

Clients: clients have almost no incentive to operate a public log,
since like domains, they are not familiar with most sites’ public
keys and can simply query other logs to determine whether or not a
certificate is valid and logged. However, unlike domains, they gen-
erally have no TLS public keys of their own and thus cannot even
watch for suspicious certificates for even a single domain without
knowing the domain’s authentic key a priori.

3.3 Observations
We now present several observations that we have made from

examining our model.
Provider-customer relationships closely map to strong influ-

ences. We observe the existence of several provider-customer re-
lationships among the parties as shown in Figure 3. Users are
customers of browser vendors and of domains, while domains are
customers of CAs. These relationships map closely to strong in-

1http://www.certificate-transparency.org/feb-2014-survey-responses

fluences, with providers exerting strong influences over their cus-
tomers. Deploying at providers is likely to spur further adoption at
their customers through their influences, and in particular, providers
who are not customers (vendors and CAs in our model) are ideal
choices to influence adoption in the rest of the PKI.

Without concerted action and adequate choice, customers gen-
erally have a weak influence on their providers. We observe that
the influence of customers on their providers is limited to switch-
ing their business to a different provider. However, if a provider
has little or no viable competition, such as a company that controls
a large majority of its market share, then customers do not even
have the influence of switching providers. Therefore, deploying a
PKI proposal at a customer is unlikely to incentivize adoption at its
provider unless the proposal is wildly successful.

On the other hand, providers have a much more direct influence
on their customers. The customers are already interested in the
provider’s product or service, and increasing security by deploy-
ing a PKI proposal is unlikely to lose customers unless the change
causes the existing product or service to suffer. For example, re-
call that browser vendors can deploy a PKI proposal for all of its
users by simply integrating the proposal into the browser. Unless
the change causes slowdown or reduced connectivity in the browser
through excessive warnings or failures, users are unlikely to switch.

Deployment must reach domains and clients to be effective.
PKI proposals ultimately aim to enhance the security of client-
domain communication, and therefore deployment must take place
at both domains and clients to be effective. In particular, domains
must indicate in their certificates or during the handshake that they
are using the PKI proposal. Clients or their browsers must deploy
the proposal to gain security benefits, since all of the log-based pro-
posals discussed in section 2.3 require the client browser to verify
both the domain certificate and an SCT or log proof.

Deployment is best driven by vendors and CAs. Regarding
deployment of public logs, both vendors and CAs have the re-
sources to maintain a high-availability log server. They can lever-
age their logs to provide greater security to their own customers
and to detect misbehavior by potential competitors. Indeed, the ex-
isting known logs in the ongoing deployment of CTs are operated
by Google (a vendor) and several CAs.2

For deployment of the overall proposal, however, we argue that
vendor-driven deployment is the most effective. While neither ven-
dors nor CAs are customers of other entities, vendors have a strong
influence over every other party. A vendor can add browser fea-
tures that effectively deploy a proposal at all of its customers, and
few vendors need to deploy a proposal to spur adoption among a
majority of Internet users. Therefore, vendors should exert their
strong influences over other parties to most effectively deploy a
proposed PKI enhancement.

4. DEPLOYMENT STATUS FILTERS
In this section, we introduce DSFs, which allow client browsers

to determine whether or not a domain has deployed a PKI enhance-
ment. Full adoption of a PKI enhancement requires significant time
and effort, and during the adoption process, knowing the deploy-
ment status of a domain is necessary to prevent downgrade attacks.
We first provide an overview of DSFs and their operation, and de-
scribe how they fit into log-based PKIs and how clients utilize them
to detect deployment status. We discuss the benefits of using DSFs
and justify its approach as a viable strategy according to our mu-
tual influences model from section 3. We then enumerate several
challenges that remain in order to bring DSFs to fruition.

2http://www.certificate-transparency.org/known-logs
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4.1 Operation
DSFs determine whether or not a domain has deployed a given

PKI enhancement in order to prevent downgrade attacks. They are
intended to be used during the early deployment process and may
not be necessary after a majority of domains have deployed the en-
hancement and indicate this during the handshake (at which point
log checking can be performed for each non-deploying domain).
Vendors implement and maintain DSFs in client browsers, allowing
clients to check the deployment status of a domain without contact-
ing additional parties. DSFs are independent from absence proofs
in proposals such as AKI and CIRT; while both allow clients to
know whether or not a domain has deployed, DSFs can be checked
by the client without querying any additional parties because they
are stored in the browser rather than at an externally-located log.

Figure 4 illustrates the way in which DSFs fit into the log-based
PKI ecosystem. The browser vendor maintains a Bloom filter and
inserts the domain names of deploying domains into the filter. The
vendor can obtain these names by receiving a certificate and corre-
sponding log proof from the CA, domain, log, or client. Domains
can query logs directly to obtain this information if the logs store
the certificates along with the corresponding proofs. We envision
that a majority of domains will be registered in a DSF by a CA
or domain, since clients are not expected to track certificates and
proofs themselves. Rather, vendors periodically push the filter in
its current state to client browsers (such as with each new release
of the browser or on a daily/weekly basis), so that all clients have
up-to-date information on which domains have deployed.

During the process of deploying a PKI enhancement, a deploy-

ing client utilizing DSFs follows the decision process shown in Fig-
ure 5. The client checks for some indication of deployment from a
domain, such as the inclusion of log proofs with the domain’s TLS
certificate. If the domain does not indicate that it has deployed the
enhancement, clients who have DSFs in their browsers can check
the domain’s deployment status by querying the DSF’s Bloom fil-
ter. If the domain has not deployed the enhancement, the client can
simply continue the connection setup using the legacy PKI.

If on the other hand the DSF indicates that the domain has de-
ployed the enhancement, there are several possibilities: (a) the
domain has multiple certificates, only some of which use the en-
hancement, and is sending a certificate that does not use the en-
hancement; (b) the domain has not deployed the enhancement and
is thus a false positive in the DSF; or (c) the domain is under a
downgrade attack. In any of these cases, the client will take a fall-
back action, most commonly to query a log with the domain’s name
for certificates that may be logged.

The fallback action must check domain’s deployment status care-
fully before proceeding with the connection, as it may be an at-
tempted downgrade attack. By querying a log, the client can de-
termine whether or not a logged certificate for the domain exists.
If DSFs are used to monitor the deployment of a proposal such as
AKI that provides proofs of absence, the client can obtain this proof
from the log to ensure that the domain has not yet deployed the en-
hancement. If the domain has a logged certificate but did not send
it to the client, the client should abort and retry the handshake to
obtain the logged certificate.

Because public logs usually store certificates rather than domain
names, logs must also offer a service to efficiently find certificates
or their corresponding log proofs given a domain name. Logs can
achieve this property by adopting an approach similar to CIRT [22],
which combines MHTs with a binary search tree, to enable efficient
domain-name-based lookups in public logs.

False positives in the DSF cause a fallback action such as query-
ing a public log for a non-deploying domain, but the domain may
have no corresponding proof in the log, effectively resulting in a
wasted round trip to query the log. While these false positives am-
plify the incentives for domains to deploy the enhancement and
indicate this fact in their certificates or TLS handshakes, vendors
must change the hash functions regularly in their DSFs to avoid
false positives for the same domains over subsequent time periods.

False negatives are also possible, since the browser may not im-
mediately add newly-deploying domains to the DSF and push them
to clients. However, we can assume that browsers will update their
filters relatively frequently during the deployment process in order
to minimize false negatives. Vendors can also provide advanced
users with a feature to manually add certificates to the DSF in or-
der to eliminate false negatives for individual users.

4.2 Benefits
We now describe several important benefits of DSFs.
Near-complete prevention of downgrade attacks. False neg-

atives are only possible for domains that have deployed but have
not yet been added to the DSF. Therefore, downgrade attacks are
only possible for these domains, limiting the window of opportu-
nity for adversaries aiming to carry out downgrade attacks. Oth-
erwise, false negatives are not possible because DSFs make use of
Bloom filters, and thus downgrade attacks, which rely on the DSF
reporting that a deploying domain has not deployed the enhance-
ment, are impossible for a registered domain.

Vendor-driven deployment. The vendor is an ideal party at
which to implement DSFs. As seen in Figure 2, vendors have
strong influence on all other parties, particularly on their browser
clients, since vendors can simply push the filters to all browsers to
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deploy the PKI enhancement throughout the Internet. DSFs also
make vendors a bigger part of the PKI ecosystem. Though ven-
dors take part in the current PKI by designing the user interface to
TLS and by collaborating on important TLS standards such as EV
certificates [8], their part in certificate verification is quite minor
considering that the client carries out the verification process.

Incentivization of domains. The delay caused by a fallback
action in the case of a non-deploying domain amplifies the incen-
tives for domains to deploy a PKI enhancement. With DSFs, non-
deploying domains will not have certificates in the filter and a client’s
fallback action may involve contacting more logs to retrieve log
proofs, slowing connections to the non-deploying domains. False
positives in the DSF will result in performing these extra checks
for some non-deploying domains, but the false positive rate of the
DSF’s underlying Bloom filter can be tuned to a desired value, and
the hash functions of the DSF’s Bloom filter can easily be changed
or randomized with each version of the DSF in order to ensure that
a single domain is not always a false positive.

Size and ease of implementation. We expect that DSFs will be
quite small by modern standards. Given a false positive rate p with
n items in a Bloom filter, the number of bits m in a Bloom filter and
the optimal number k of hash functions is given by

m =− n ln p
(ln2)2 , k =

m
n

ln2. (1)

We assume a rough upper bound of 10 million certificates [6]
each representing a unique domain name, though this number will
likely be much less since DSFs are only intended to be used during
the deployment process. Then for a 1% false positive rate the size
of a DSF should be at most 13 MB, which is well below the stor-
age limit of modern client machines. Figure 6 shows the storage
requirements for a range of false positive rates, which even for a
0.01% false positive rate does not exceed 24 MB. Given that larger
smartphone apps larger, we find this space requirement reasonable
even for space-limited devices such as smartphones.

Browsers can easily change their hash functions with each itera-
tion of the DSF. For example, if we let h be a hash function, hi be
the ith hash function of the DSF out of k functions as described in
Equation 1, and j be the version of the DSF (with each update from
the browser resulting in a new version number), then the browser
can implement hi(d) for a domain name d as hi(d) = h(i‖ j‖d)

mod m where ‖ denotes concatenation.
DSFs can also be easily implemented and integrated into the ex-

isting infrastructure. Browser-based mechanisms to enhance TLS
are not new; for example, Google Chrome pushes CRLSets [12]
to clients to ensure that clients do not accept revoked certificates.
CRLSets use the existing Chrome update mechanism, and we en-
vision that DSFs can similarly leverage the existing infrastructure
for browser updates. Additionally, like CRLs, Bloom filters are a
relatively simple data structure and thus can be quickly and easily
implemented, reducing the deployment cost for vendors.

Efficiency and privacy. In light of proposals such as Let’s En-
crypt3 that aim to vastly increase the amount of TLS certificates
and traffic in the Internet, we envision that efficiency will be criti-
cal in checking deployment status to avoid high latency. An OCSP
lookup, for example, takes almost 500 ms on average [23], and we
envision that a log query will take a similar amount of time. Thus
DSFs provide more efficient checking by only performing queries
for sites that have likely deployed the enhancement.

DSFs also provide several advantages over purely log-based ap-
proaches such as proofs of absence. Without DSFs, clients who
want to confirm that a domain has deployed an enhancement must
query a log server to obtain a proof of absence. Not only does this
extra query require an additional round trip, increasing page load-
ing times, but this query also results in a loss of privacy for the
client, since the log can see which domain’s proof the client is re-
questing. Additionally, there may also be multiple logs that must
be checked for consistency among logs, incurring an even greater
latency cost than just one round trip. Thus DSFs provide a more
efficient and privacy-oriented solution than proofs of absence.

5. REMAINING CHALLENGES
We now list several important challenges that remain to bet-

ter understand the deployment efforts for log-based PKI enhance-
ments.

Measuring influence. We hope to extend our model with met-
rics that can be quantitatively analyzed and use real-world technical
and economic data to perform a detailed analysis of the extent to
which the parties in the PKI ecosystem influence one another. In
doing so, we hope to quantify the strength of mutual influences
rather than simply classifying an influence as strong or weak.

Vendor/CA relations. The relationship between vendors and
CAs is difficult to characterize, since they are not customers of each
other, yet exert influence over each other and collaborate on impor-
tant standards such as EV certificate guidelines. We hope to distill
deeper insights from our data and gain a clearer understanding of
mutual influences and incentives.

Tuning the false positive rate. False positives add unnecessary
latency to a client’s connection setup with a non-deploying domain.
This extra latency can incentivize deployment and thus a higher
false positive rate spurs rapid adoption of the enhancement; how-
ever, a false positive rate that is too high will result in an unpleasant
user experience for the client, whose connections to a greater num-
ber of sites suffer from added latency. Thus we hope to explore this
tradeoff in more detail and determine an optimal false positive rate.

Fallback actions. While we propose obtaining log proofs as the
fallback action for the filter, there are many other possibilities for
this action. A client could even specify policies that govern dif-
ferent fallback actions for various circumstances, similarly to how
PoliCert allows domains to specify how TLS errors should be han-
dled by the browser [24]. We hope to explore other fallback actions
and their effects on deployment incentives.

3https://letsencrypt.org/



6. CONCLUSIONS
In this paper we have formulated a simple model to examine

mutual influences in the PKI ecosystem, and analyzed this model
to argue that browser vendors and CAs are ideal starting points for
initial deployment efforts, and that CAs have the greatest incentive
to deploy public logs. We have also proposed DSFs as a vendor-
based solution to check the deployment status of domains and pro-
tect clients from downgrade attacks to regular TLS. Though there
are still details to be worked out, our work has addressed an impor-
tant problem in deploying enhancements to the current PKI, and
identified future research topics that can further incentivize deploy-
ment that makes these much-needed PKI enhancements successful.
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