
Using Software-based Attestation
for Verifying Embedded Systems in Cars

Arvind Seshadri Adrian Perrig Leendert van Doorn Pradeep Khosla
CMU CMU IBM & CMU CMU

arvinds@cs.cmu.edu perrig@cmu.edu leendert@ece.cmu.edu pkk@ece.cmu.edu

ABSTRACT

With advances in automobile electronics, we find a rapid prolifer-
ation of embedded systems in cars, both in safety-critical applica-
tions and for passenger comfort. These embedded systems are in-
creasingly networked for their operation and enhanced functional-
ity. However, the increased connectivity of embedded systems also
greatly complicates design, increases the number of failure modes,
and introduces the risk of remote malicious attacks, such as worms
and viruses. Moreover, car owners may alter the code on their car
to access features they did not pay for or achieve higher motor per-
formance. Such owner-initiated changes are likely to deteriorate
the car’s safety.

We propose SWATT, a SoftWare-based ATTestation mechanism
to detect and defend against these threats. SWATT enables an
external verifier to verify the code of a running system to detect
maliciously inserted or altered code. So far, code attestation has
been proposed as a mechanism to verify the code running on a
system, and special hardware mechanisms have been designed to
achieve this property, e.g., TCG (formerly known as TCPA) [15]
and NGSCB (formerly known as Palladium) [6]. However, special
hardware to provide attestation may not be available in legacy sys-
tems or due to cost reasons. Therefore, we design SWATT to be
software-based. Code attestation is instrumental to many applica-
tions, such as remote detection of malicious code (such as Trojan
horses and viruses) in embedded systems and gives an assurance
that critical embedded systems are running the correct code. If we
use SWATT to verify code running on embedded systems in a car,
an attacker is forced to perform a hardware change to hide the pres-
ence of altered code; greatly increasing the effort required by an
attacker and preventing entire classes of remote attacks.

1 INTRODUCTION

The number of embedded systems in cars is expanding. These em-
bedded systems are increasingly networked for enhanced function-
ality and firmware upgrades. Networking these devices has both
positive and negative aspects: on the positive side networking en-
hances capabilities, but on the negative side networking greatly
complicates design, increases the number of failure modes, and
introduces the risk of remote malicious attacks, like worms and
viruses. For example, recently, we have witnessed the “cabir” worm
that infects cell phones using their bluetooth interface [3], and we
could easily imagine worms that use similar mechanisms to propa-
gate from car to car on a highway. Another risk are car owners that
alter the firmware of embedded car systems to gain access to addi-
tional features, for example use the GPS technology of the General
Motors OnStar system without paying for the service [8]. It is clear
that unauthorized changes to firmware may interfere with other car
systems and thus reduce the car safety. Finally, car owners that

want to get more power out of their motor may alter the firmware
of the engine controller to change the CAM and valve timings [11].
If done incorrectly, such timing changes can cause catastrophic en-
gine damage, and even result in engine explosion.

Software updates are often used in embedded systems to patch
bugs in existing code or to add greater functionality. The update
mechanism also introduces a security vulnerability. An attacker
may exploit the update mechanisms to inject malicious code into
the device. This attack becomes increasingly serious, as we con-
tinue to network embedded systems and connect them to the Inter-
net.

So far, code attestation has been proposed as a mechanism to
verify the code running on a system, and special hardware mecha-
nisms have been designed to achieve this property, e.g., TCG (for-
merly known as TCPA) [15] and NGSCB (formerly known as Pal-
ladium) [6]. However, special hardware to provide attestation may
not be available in legacy systems or due to cost reasons.

We designed and implemented SWATT, a software-based ap-
proach to the problem of verifying the code running on an embed-
ded system [9]. SWATT enables an external verifier to verify the
code running on a system, without direct physical access to the em-
bedded system’s memory. SWATT is secure as long as the verifier
has a correct view of the hardware. In particular, the verifier needs
to know the clock speed, instruction set architecture (ISA) and the
memory architecture of the microcontroller on the embedded de-
vice, and the size of the device’s memories. To attack SWATT,
an attacker would need to change the hardware of the device. This
significantly increases attacker effort, previously an attacker simply
needed to upload malicious firmware, but with SWATT the attacker
also has to modify the hardware.

As a first step, we implemented SWATT on the Mica Mote sensor
network devices [4]. The motes have an 8-bit microcontroller with
no virtual memory support. Many of the embedded systems used in
cars, such as the engine timing controller, are based on these kind of
small microcontrollers. Hence, our approach is directly applicable
to car-based embedded systems.

Outline In Section 2, we give a problem definition and describe
the attacker model. Section 3 presents our general approach and
describes the implementation of SWATT on the mica mote sensor
network devices. In Section 4 we discuss related work, and we
present our conclusions in Section 5.

2 PROBLEM DEFINITION, ASSUMPTIONS, &
THREAT MODEL

Software attestation is a method to externally verify the code run-
ning on an embedded device, without physical access to the mem-
ory. Consider the setting that Figure 1 shows. We assume that
a verification device, which we call the verifier, wants to check



whether the code memory contents of an embedded device, which
we refer to as the device, is the same as some expected value. We
assume that the verifier knows the expected code memory contents.
For embedded systems used in cars, the verifier could be the man-
ufacturer or another authorized entity. So the expected value of the
device’s code memory will be known to the verifier. The goal is
to design an effective verification procedure such that it will suc-
ceed if the code memory contents of the device is the same as the
expected value, and it will fail with extremely high probability if
the code memory contents of the device differs from the expected
value even by a single byte. We say a verification procedure with
this property is a secure verification procedure.

We assume that the device contains a memory content verifi-
cation procedure that the verifier can activate remotely. (Alterna-
tively, this procedure could also be downloaded any time prior to
the verification.) To verify that the device’s memory matches the
expected memory contents, the verifier creates a random challenge
and sends it to the device. The device then computes the response to
the challenge using the verification procedure. Using its local copy
of the device’s expected memory, the verifier can locally compute
the expected response and verify the correctness of the device’s
response. Note that we do not need to assume that the device con-
tains a trusted version of the verification procedure—for example,
we assume that an attacker can take full control of a compromised
device and may not run the legitimate verification procedure. How-
ever, a secure design of the verification procedure will ensure that
the verification will fail if the memory content of the device does
not match the expected content no matter what code the device runs
for the verification.

� �� �� �
� �� �� � � � �� � �� � �� � �

����
��

PSfrag replacements Verifier Device

Device’s presumed memory content Device memory

request

response

Figure 1: Generic external memory verification. The verifier
has a copy of the device’s presumed memory, and sends a re-
quest to the embedded device. The device can prove its memory
contents by returning the correct response.

Threat Model. We assume that an attacker has full control over
the memory of the device. However, we assume that the attacker
does not modify the hardware of the device, e.g., increase the size
of the memory, or increase the clock speed of the processor. That
is, we assume that the verifier knows the exact hardware configu-
ration of embedded device. Also, it is assumed that impersonation
and proxy attacks, where the response to the challenge from the
verifier is computed by another entity on the device’s behalf, are
not possible.

2.1 Naive Approaches and Attacks

A naive approach for verifying the embedded device’s memory
contents is for the verifier to challenge the embedded device to
compute and return a message authentication code (MAC) of the
embedded device’s memory contents. The verifier sends a random
MAC key, and the embedded device computes the MAC on the en-
tire memory using the key and returns the resulting MAC value.
The random key prevents pre-computation and replay attacks, that
would be possible if a simple hash function were used. However,
we show that just verifying the response is insufficient—an attacker
can easily cheat. The embedded device is likely to have some

empty memory, which is filled with zeros. When an attacker alters
parts of the memory (e.g., inserting a Trojan horse or virus), the at-
tacker could store the original memory contents in the empty mem-
ory region and compute the MAC function on the original memory
contents during the verification process. Figure 2 illustrates this at-
tack. It is not necessary for the embedded device to have an empty
memory region for this attack to succeed. An attacker could just as
easily move the original code to another device that it could access
when computing the MAC.

3 SWATT: SOFTWARE-BASED ATTESTATION

In this section, we first discuss our general approach. We then
briefly describe the implementation of the SWATT memory content
verification procedure on the mica mote sensor network devices,
giving the assembler code. Our publication describes SWATT in
greater detail and also shows the results of our experiments [9].

3.1 Approach: Pseudorandom Memory Traversal

As mentioned in Section 2, the embedded device contains a mem-
ory content verification procedure that the verifier can activate re-
motely. This verification procedure uses a pseudorandom mem-
ory traversal. In this approach, the verifier sends the device a
randomly-generated challenge. The challenge is used as a seed to
the pseudorandom number generator (PRG) which generates the
addresses for memory access. The verification procedure then per-
forms a pseudorandom memory traversal, and iteratively updates
a checksum of the memory contents. The key insight, which pre-
vents the attack on MACs mentioned in Section 2, is that an at-
tacker cannot predict which memory location is accessed. Thus, if
the attacker alters the memory, it has to perform a check whether
the current memory access is to one of the altered locations, for
each iteration of the verification procedure. If the current memory
access indeed touches an altered location in the memory, the at-
tacker’s verification procedure needs to divert the load operation
to the memory location where the correct copy is stored. Even if
the attacker alters a single memory location, the increase in running
time of the verification procedure due to the added if statement
becomes noticeable to the verifier, as the verification procedure is
very efficient and performs many iterations. So a verifier will de-
tect the altered memory because either the checksum returned by
the embedded device is wrong, or the result is delayed a suspi-
ciously long time. We construct the verification procedure in a way
that a single additional if statement will detectably slow down the
checksum computation by the embedded device, in our implemen-
tation on the mica mote sensor nodes, the slowdown was 13%.

3.2 Design and Implementation of Verification Procedure on
Sensor Motes

We have designed and implemented our verification procedure for
sensor motes, which use an Atmel ATMEGA163L microcontroller,
an 8-bit Harvard Architecture with 16 Kbytes of program memory
and 1 Kbyte of data memory [4]. The CPU on the microcontroller
has a RISC architecture. We first describe our design and then show
its realization in assembly language of the ATMEGA163L.

We use the RC4 Pseudo-Random Generator (PRG) by Rivest
to generate the pseudo-random sequence of addresses for memory
access. RC4 takes a seed as input and outputs a pseudo-random
keystream.

To achieve a low probability of collision for different memory
contents, we need a sufficiently long output for the checksum. If
our checksum function outputs n bits, 2−n is a lower bound on
the collision probability. In this implementation, we use a 64-bit
checksum. Figure 3 shows the pseudo code of our implementation.



� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � �� � �� � �� � �

� �� �� �� �

� � �� � �� � �� � �

� �� �� �� �

� �� �� �� �

	 		 		 		 	

PSfrag replacements

Expected memory layout

Attacker’s memory layout

EmptyVerif. code

Firmware

Firmware

Malicious code Old verification code

Figure 2: Memory verification attack. The attacker replaces the verification code with malicious verification code and copies the old
verification code into empty memory.

algorithm Verify(m)
//Input: m number of iterations of the verification procedure
//Output: Checksum of memory
Let C be the checksum vector
and j be the current index into the checksum vector
for i← 1 to m do

//Construct address for memory read
Ai ← (RC4i � 8) + C((j−1) mod 8)

//Update checksum byte
Cj ← Cj + (Mem[Ai]⊕ C((j−2) mod 8) + RC4i−1)
Cj ← rotate left one bit(Cj)
//Update checksum index
j ← (j + 1) mod 8

return C

Figure 3: Verification Procedure (Pseudocode)

Assembly code Figure 4 shows the assembly code, written in the
assembly language of the Atmel ATMEGA163L microcontroller.

The architecture of the microcontroller has the following charac-
teristics:

• The microcontroller has a Harvard Architecture, with 16 Kbytes
of program memory and 1 Kbyte of data memory.

• The CPU inside the microcontroller uses a RISC ISA. This
means that all instructions except loads and stores have only
CPU register and immediate as operands. Only loads and
stores use memory addresses.

• The CPU has 32 8-bit general purpose registers, r0 – r31.
Registers r26 and r27 together can be treated as a 16-bit reg-
ister x, used for indirect addressing of data memory. Simi-
larly, r28 and r29 form register y and r30 and r31 form reg-
ister z. The upper and lower 8-bits of the 16-bit registers are
named using the suffix ’h’ and ’l’ after the name of the reg-
ister. Thus xh and xl refer to the upper and lower bytes of x
and similarly for y and z.

• Data and program memory can be addressed directly or in-
directly. To indirectly address data memory, one of x, y or
z registers holds the pointer to the memory location. In case
of program memory, only the z register can be used for in-
direct addressing. Indirect addressing has displacement, pre-
decrement and post-increment modes.

The main loop of our verification procedure is just 16 assembly
instructions and takes 23 machine cycles. Hence, the addition of a

Assembly explanation Pure assembly code

Generate ith member of random sequence using RC4
zh← 2 ldi zh, 0x02
r15← *(x++) ld r15, x+
yl← yl + r15 add yl, r15
zl← *y ld zl, y
*y← r15 st y, r15
*x← r16 st x, r16
zl← zl + r15 add zl, r15
zh← *z ld zh, z
Generate 16-bit memory address
zl← r6 mov zl, r6
Load byte from memory and compute transformation
r0← *z lpm r0, z
r0← r0 ⊕ r13 xor r0, r13
r0← r0 + r4 add r0, r4
Incorporate output of transformation into checksum
r7← r7 + r0 add r7, r0
r7← r7 << 1 lsl r7
r7← r7 + carry bit adc r7, r5
r4← zh mov r4, zh

Figure 4: Verification Procedure (Assembly Code)

single if statement (compare + branch) that takes 3 cycles, to the
main loop, adds a 13% overhead, in terms of machine cycles, to
each iteration of the loop. We show through experiments that this
overhead is externally detectable [9].

3.3 Discussion

SWATT provides code attestation without requiring any hardware
modifications. This is an important advantage, as owners, car man-
ufacturers, or service stations could verify the firmware on embed-
ded systems in the car without having direct access to the memo-
ries. SWATT could be used today on current cars, for example to
detect firmware alterations on the engine controller. For future net-
worked cars that may be connected to the Internet, we could use
SWATT to detect maliciously injected code, and to ensure that the
correct code is running on the system. As an example, the car key
could perform code attestation every time we start the engine, by
storing challenge-response pairs in the key. Since SWATT is purely
software based, it benefits from a lower deployment cost than hard-
ware based approaches.



4 RELATED WORK

Paar and Wollinger discuss security risks in cars and show how
security and cryptography can be used to achieve access control,
theft, anonymity, reliable communication, content protection, and
legal controls [7]. In addition to cryptographic processes, we pro-
pose SWATT in this article to further control these risks and protect
against changes of the car’s firmware.

The IBM 4758 secure cryptographic coprocessor [12, 13, 14]
runs a general purpose operating system and allows field upgrades
of its software stack. To ensure the integrity of the system it uses
a form of secure boot [1, 2] that starts from an initial trusted state
and each layer verifies the digital signature of the next layer be-
fore executing it. This ensures that the software stack has not been
altered.

Systems such as TCG (formerly known as TCPA) [15] and NGSCB
(formerly known as Palladium) [6] use essentially the same notion
to bootstrap trust but the mechanisms are very different. TCG and
NGSCB measure the integrity of the various components using a
secure hash function (SHA-1) and the result is stored in a separate
secure coprocessor. This coprocessor can attest to these measure-
ments by signing them with the attestation identity key that is stored
inside the coprocessor. What is measured differs per system, TCG
starts measurement from system boot and NGSCB starts measuring
when the Nexus takes control.

SWATT does not need a secure coprocessor and allows a trusted
external entity to verify the code on a device using software tech-
niques. Further, this verification need not be done at device boot
but can be carried out whenever the external verifier wishes to do
so. Once the code is verified, it forms the trusted computing base.
Hence we bootstrap trust entirely in software and provide guran-
tees similar to TCG or NGSCB, without requiring secure hardware.
Therefore, SWATT can be used with legacy systems that do not
have secure hardware and with systems that lack secure hardware
due to cost concerns.

Kennell and Jamieson propose techniques to verify the genuinity
of computer systems [5]. Central to their technique is the premise
that by including sufficient amount of architectural meta-information
that is generated in a complex CPU into a simple checksum of the
memory contents, an attacker with a different CPU, who is trying
to simulate the CPU in question will suffer a severe slowdown in
checksum computation. Unfortunately, their technique suffers from
security vulnerabilities [9, 10].

5 CONCLUSION

SWATT is a software-based technique for externally verifying the
code running on an embedded device. Central to our technique is a
carefully constructed verification procedure that computes a check-
sum over memory in such a way that an attacker cannot alter the
content of that memory without changing the externally observed
running time of the verification procedure while still producing the
correct checksum. In particular, we use a randomized access pat-
tern to force the attacker to insert check statements before every
memory access if the memory was altered.

SWATT is targetted towards embedded systems, without secure
hardware. It does code attestation and provides properties simi-
lar to TCG and NGSCB without requiring secure hardware. Thus,
SWATT can be used to detect malicious code. Hence, it can be
used as a primitive for building high confidence embedded systems
in a networked environment, where risk of attacks due to malicious
code is significant.

If we use SWATT to verify code running on embedded systems
in a car, an attacker is forced to perform a hardware change to hide

the presence of altered code; greatly increasing the effort required
by an attacker and preventing entire classes of remote attacks.

REFERENCES

[1] William A. Arbaugh, David J. Farber, and Jonathan M. Smith. A reliable boot-
strap architecture. In Proceedings of the IEEE Symposium on Research in Secu-
rity and Privacy, pages 65–71, May 1997.

[2] William A. Arbaugh, Angelos D. Keromytis, David J. Farber, and Jonathan M.
Smith. Automated recovery in a secure bootstrap process. In Proceedings of the
Symposium on Network and Distributed Systems Security (NDSS ’98), pages
155–167, March 1998.

[3] Celeste Biever. First cell phone worm emerges. http://www.
newscientist.com/news/news.jsp?id=ns99995111, June 2004.

[4] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David E. Culler, and
Kristofer S. J. Pister. System architecture directions for networked sensors. In Ar-
chitectural Support for Programming Languages and Operating Systems, pages
93–104, 2000.

[5] Rick Kennell and Leah H. Jamieson. Establishing the genuinity of remote
computer systems. In Proceedings of the 11th USENIX Security Symposium.
USENIX, August 2003.

[6] Next-Generation Secure Computing Base (NGSCB). http://www.
microsoft.com/resources/ngscb/default.mspx, 2003.

[7] Christof Paar and Thomas Wollinger. Eingebettete sicherheit und kryptographie
im automobil: Eine einführung. In Workshop Automotive SW Engineering and
Concepts, October 2003.

[8] John Schwartz. This car can talk. what it says may cause concern. http:
//www.nytimes.com/2003/12/29/technology/29car.html,De-
cember 2003.

[9] Arvind Seshadri, Adrian Perrig, Leendert van Doorn, and Pradeep Khosla.
Swatt: Software-based attestation for embedded devices. In Proceedings of the
IEEE Symposium on Security and Privacy, May 2004.

[10] Umesh Shankar, Monica Chew, and J. D. Tygar. Side effects are not sufficient to
authenticate software. In Proceedings of the 13th USENIX Security Symposium,
August 2004.

[11] Peter Shearman. The black mystic art of cam timing! http://mail.
symuli.com/vw/camp1.html, http://mail.symuli.com/vw/
camp2.html, http://mail.symuli.com/vw/camp3.html, 1997.

[12] S.W. Smith, E. Palmer, and S.H. Weingart. Using a high-performance, pro-
grammable secure coprocessor. In 2nd International Conference on Financial
Cryptography, 1998.

[13] S.W. Smith, R. Perez, S.H. Weingart, and V. Austel. Validating a high-
performance, programmable secure coprocessor. In 22nd National Information
Systems Security Conference, October 1999.

[14] S.W. Smith and S.H. Weingart. Building a high-performance, programmable se-
cure coprocessor. Computer Networks (Special Issue on Computer Network Se-
curity), 31:831–960, 1999.

[15] Trusted Computing Group (TCG). https://www.
trustedcomputinggroup.org/, 2003.


