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Abstract—Secure Simple Pairing (SSP) and Link Manager
Protocol (LMP) authentication are two main authentication
mechanisms in Bluetooth specification. In this paper, we present
two novel attacks, called link key extraction and page blocking
attacks, breaking LMP authentication and SSP authentication,
respectively. The link key extraction attack allows attackers to
extract link keys of Bluetooth devices generated during the SSP
procedure by exploiting Bluetooth HCI dump. The page blocking
attacks by man-in-the-middle (MITM) attackers enforce Blue-
tooth connections, enabling subsequent SSP downgrade attacks to
bypass the SSP authentication challenge. In order to demonstrate
the efficacy, we implement our attacks on various real-world
devices and show that (1) a target link key is dumped into a
log and extracted efficiently, possibly leading to the subsequent
impersonation attack, and (2) malicious MITM connections can
be established with 100% success rate, enabling subsequent
SSP downgrade attack. We investigate the root causes for the
vulnerabilities and present mitigations.

I. INTRODUCTION

Authentication mechanisms of Bluetooth, such as pairing
and Link Manager Protocol (LMP) authentication, are the
first-line defense for billions of users to protect their de-
vices from unauthorized pairing attempts. To authenticate
a newly connected device, the pairing process generates a
shared secret, called a link key. The link key is the only
hidden value of security parameters for LMP authentication
and encryption key generation. For the quick resumption of
future sessions, the link key can be saved after the initial
pairing and reused, omitting the later pairing procedures. LMP
authentication enables the paired devices to authenticate each
other by challenging whether they possess the same link key.
In order to improve the pairing experiences and security, the
Bluetooth standard introduced Secure Simple Pairing (SSP)
since Bluetooth v2.1. Specifically, SSP has the following four
authentication mechanisms with different security levels: (1)
Just Works, (2) Numeric Comparison, (3) Out of Band, and
(4) Passkey Entry. Furthermore, SSP—except Just Works—
provides resilience against man-in-the-middle (MITM) attacks
by taking advantage of public-key cryptography.

Despite the authentication mechanisms, with its growing
popularity, Bluetooth has inevitably emerged as a major attack
surface; the specification flaws of SSP [1]–[6] and the imple-
mentation flaws in Android, iOS, Windows, and Linux made
by each vendor [7]–[10] have been exploited. BIAS [7] pre-
sented how to perform impersonation attacks by breaking the
LMP authentication. KNOB [8] presented an attack method on
the subsequent encryption key negotiation protocol by manip-
ulating the Bluetooth firmware layer. In addition, downgrading
SSP has been discussed in several previous studies. The attack

methods posed a question “what security guarantees do the
Bluetooth authentication mechanisms actually provide?”.

In this paper, we present and demonstrate two novel at-
tacks for persistent Bluetooth impersonation, exploiting the
Bluetooth authentication mechanisms with increased viability
and effectiveness: link key extraction attack and page blocking
attack. The proposed attacks aim to break LMP authentication
and pairing authentication, respectively, considering the target
device’s status, either bonded or non-bonded.

First, the link key extraction attack extracts link keys of
Bluetooth devices by exploiting the Bluetooth protocol log
(i.e., HCI dump) in which link keys are logged. The attack
exhibits a significant impact on Bluetooth security compared
to the previous attacks: 1) the attack aims to extract semi-
permanent (saved) link keys. Once the key is extracted, the
attacker can continuously exploit it for multiple sessions,
breaking forward secrecy. Note that many existing attacks are
only valid for a single session. 2) The attack requires access
to the Bluetooth protocol layer that is typically open to users,
such that it increases practicality, while the previous attacks
require firmware layer manipulation.

Second, the page blocking attack establishes a MITM con-
nection in a deterministic manner, which can be subsequently
leveraged to downgrade SSP to Just Works mode. Although
downgrading SSP has been discussed in several previous
studies [1]–[3], how to establish and implement the MITM
attack on Bluetooth connections have never been discussed
in the literature. Since the Bluetooth handshake transcripts
for connection establishment are delivered through a wireless
channel, it is practically challenging to force the victim device
to justly connect to the attacker’s device in practice1. Our page
blocking attack solves this problem by exploiting the novel
vulnerability we found; the lack of verification procedure of
the Bluetooth authentication mechanism that checks whether
the connection initiator actually initiates the pairing.

The main contributions of our work are summarized as:
• We first present a link key extraction attack that exploits

the security flaw in the HCI dump, which records all data
passed through the HCI interface in a log file, including
link keys. We then describe how to extract link keys by
exploiting the HCI flaw against Android and Windows
systems in practice.

• Next, we propose a page blocking attack that ensures
MITM connection establishment between a victim and

1On the basis of our experiment, the success rate of establishing the
MITM connection shows 42∼60%. More detailed experiment results will be
explained in Section VI.
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attacker devices in a deterministic manner. It then leads
to a subsequent SSP downgrade attack to Just Works by
exploiting the lack of the authentication mechanism for
the connection initiator.

• We demonstrate the efficacy of the link key extraction and
page blocking attacks via real-world implementations.
More precisely, our implementation of the link key ex-
traction shows that various systems (i.e., six smartphones
and two PC systems) are logging 128-bit link keys into
the HCI dump, which are extractable. We also implement
the page blocking attack on seven smartphones, and
show that the attack can force the victim devices to be
connected to the attacker’s device with a 100% success
rate and then downgraded to Just Works.

• To thwart our discovered attacks, we propose several
short-term mitigation mechanisms that are deployable in
the current Bluetooth networks and also discuss potential
long-term mitigation strategies.

Responsible Disclosure. We reported our findings and tech-
nical details to the Bluetooth SIG, and claimed the necessity
for the specification revision such as the link key payload
encryption. We are now waiting for their responses, as of April
5th, 2022.

II. BACKGROUND

Bluetooth technology is implemented based on either Basic
Rate Enhanced Data Rate (BR/EDR) or Bluetooth Low Energy
(BLE). BR/EDR, also known as classic Bluetooth, usually
suits for high throughput services such as hands-free, audio
distribution that are normally used in car infotainment and
headset devices. Whereas, BLE, also known as Bluetooth
Smart, is designed to support applications that have lower
throughput and duty cycle such as IoT devices. The two
variants of the Bluetooth technology share a core system
architecture in common, which consists of three components:
host stack (or host), controller, and host controller interface
(HCI). Above the core system, Bluetooth application services
can be run at the application layer. Fig. 1 describes a typical
architecture of Bluetooth system. Server/client interoperability
of application services is accomplished by the specifications
called Bluetooth profile such as Hands-Free profile (HFP),
Phone Book Access Profile (PBAP), and the network function-
alities for the profiles are supported by the core components.

A. Bluetooth Architecture

The Bluetooth core components are described as follows.
1) Host Stack: Host stack runs core protocols to manage

connection and logical links for profile services in the applica-
tion layer. The core protocols include Generic Access Profile
(GAP) for device connection, Service Discovery Protocol
(SDP) for service discovery and connection, and Logical Link
Control and Adaptation Protocol (L2CAP) for data fragmen-
tation, reconstruction, and per-channel communications, for
instance. Some host stack solutions are implemented based on
open source projects such as BlueZ [11] and Bluedroid [12],
and can be customized without much difficulty in practice.

Core system 

Application 

host 

L2CAP 

SDP 
GAP 

ATT/ 
GATT 

Profile services 

SMP 

controller 

BR/EDR and LE Radio (PHY) 

Link Controller 

Baseband resource Manager 

HCI 

Device Manager Link Manager 

Protocols 

Fig. 1: Bluetooth system architecture

2) Controller: The controller manages the traffic of Blue-
tooth communications between devices. Link Manager Proto-
col (LMP) in the controller supports security operations, in-
cluding key generation, device authentication, and data encryp-
tion and decryption. Its software implementation is typically
dependent on the hardware structures within chipset. For this
reason, it is almost infeasible for the third party developers to
install their customized operations to the controller.

3) HCI: It enables data communication between the host
and controller via a serial interface. HCI is defined in the
Bluetooth specification [13] as a set of commands and events
for the host and the controller to interact with each other, along
with a data packet format and a set of rules for flow control.
Since HCI is separated from the host, it allows a host stack
to be deployed with one or more controllers independently.
Furthermore, HCI is used to deploy a protocol tracking tool,
called HCI dump, which records whole HCI data into log files.

B. Bluetooth BR/EDR Discovery and Connection

BR/EDR devices can discover each other and establish a
new connection with the target device by the following pro-
cedures. Any device can be either an initiator or a responder.

1) Target Discovery: A responder device is set to a discov-
erable mode, and wait for receiving any inquiry message. An
initiator device broadcasts inquiry message to every device in
the supported signal range and requests a response message
from any responder. When any potential responder device re-
ceives the message, it responds to the inquiry by broadcasting
its information such as Bluetooth address (BDADDR), device
name, and supporting service.

2) Connection Establishment: The initiator device begins
the connection establishment by sending a page request to the
BDADDR of a discovered target device. The target responder
then sends a page response message to the initiator. Finally,
the initiator assigns an LT ADDR, which is a logical transport
address, to the responder to establish a Bluetooth connection.

2



1. Establish connection 

Device 1 Device 2 

2. IO capabilities 

3. ECDH key parameters 

4. Authentication Stage1  
(key parameter authentication) 

6. Generate a link key 

7. LMP authentication 

8. Encryption 

5. Authentication Stage2  
(DH key authentication) 

(a) For non-bonded devices

1. Establish connection 

Device 1 Device 2 

2. IO capabilities 

3. ECDH key parameters 

4. Authentication Stage1  
(key parameter authentication) 

6. Generate a link key 

2. LMP authentication 

3. Encryption 

(omitted) 

5. Authentication Stage2  
(DH key authentication) 

(b) For bonded devices

Fig. 2: Pairing and authentication procedures

To prevent unintentional connections, a responder may set the
non-connectable mode to disable the page procedure.

C. Bluetooth Pairing and Authentication

Once two devices are connected, they conduct pairing, LMP
authentication and encryption to enforce the security rules as
shown in Fig. 2.

1) Secure Simple Pairing: Pairing refers to a procedure of
authenticating a newly connected device. In the legacy pairing,
a PIN number is manually entered. However, as it has been
recognized as vulnerable to diverse attacks [14], [15], Secure
Simple Pairing (SSP) was developed as a cryptographically-
enforced protocol. If two devices are connected, they exchange
their IO capabilities2 and ECDH key parameters. They then
authenticate each other based on the ECDH public parameters
and secret values exchanged in the previous step in the
‘Authentication Stage 1’; and finally the same link key is
derived in each device from the secret key (called DHKey)
agreed using ECDH algorithm as shown in Fig. 2a.

Once a link key is generated, both devices may save
it to reuse for subsequent authentication (called ‘bonding’)
such that the later pairing procedures can be omitted for the
‘bonded’ devices. For bonded devices, only LMP authentica-
tion is performed based on the previously shared link key as
shown in Fig. 2b.

2) LMP Authentication and Encryption: For the bonded
devices, SSP is omitted and only the LMP authentication
is launched between them. During the LMP authentication
procedure, each device checks if they possess the same link
key via a challenge-response protocol. Specifically, a verifier
challenges a prover with two arbitrary values, and the prover
then calculates and responds with a hash of the values and
its link key. On receipt of it, the verifier can confirm whether
the prover possesses the same link key by comparing its local
calculation result and the response value.

2Depending on the selected IO capabilities, the suitable association model
is selected among the following four options: Numeric Comparison, Just
Works, Out of Band, and Passkey Entry. For example, Numeric comparison
is launched when both devices have capabilities of displaying a six-digit
number and providing a ‘Yes/No’ input method for manual comparison and
authentication code confirmation.

After the LMP authentication, both devices generate an
encryption key using an encryption key generator that takes
the following parameters: a public random number, an extra
result value obtained from the challenge-response procedure
in LMP authentication, and a link key.

III. SYSTEM AND ATTACK MODELS

A. System Model

We suppose a Bluetooth system composed of three devices,
A, M, and C, each of which plays different roles as follows.
M is a device with sensitive data which can be shared via
Bluetooth profile services such as Phone Book Access Profile
(PBAP), Hands-Free Profile (PBAP), and Message Access
Profile (MAP) (e.g., mobile phone). C is another device trying
to pair with M as a trusted client (e.g., car-kits, headset
devices, or PC). A is a malicious device aiming to connect
to the Bluetooth services in M to access sensitive data by
impersonating C. SSP authentication and LMP authentication
procedures are supposed to protect the Bluetooth communica-
tions between M and C for each bonded or non-bonded case.
However, we will demonstrate how our two attacks break them
in the subsequent sections.

B. Attack Model and Assumption

In our attack model, an attacker’s final goal is to Bluetooth
connect to M in order to mine sensitive information. To this
end, the attacker establishes a long-term presence around M
(i.e., a hard target), collecting a list of pairing devices (i.e., soft
targets) that are easily accessible and relatively unprotected.
Once C is determined, the attacker harvests pairing information
of C, impersonates C using A, and establishes an illicit and
persistent connection to M. In the attack, we assume that the
attacker A can (1) silently access and manipulate C, (2) extract
HCI dump from C, (3) sniff USB data of HCI from C, and (4)
obtain BDADDR of C.

As for the first assumption, there are many real-world sce-
narios where C (e.g., car-kit, headset device, etc) receives less
security attention than M (e.g., smartphones). For instance,
on-board infotainment devices do not directly store secure
information. They thus tend to be easily shared without much
security concern, making C vulnerable to physical access by
A. As for the second assumption, some operating systems
provide HCI dump tools. For example, Android supports a
background HCI dump option among its native hidden menu,
called ‘Bluetooth HCI snoop log’ that anyone can activate
in a straightforward way. As for the third assumption, there
are various USB analyzers such as ‘Free USB Analyzer’
[16], which are free to use. Thus, it is also not a strong
assumption that the attacker can sniff the USB interface
for HCI data extraction in practice. Finally, for BDADDR
tracking, Cominelli et al. [17] proved that it is possible to
calculate an actual BDADDR from Bluetooth signals in 4
seconds.

Therefore, we consider that our attack model and assump-
tions are reasonable in practice, posing realistic threats. On
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the basis of the attack models and assumptions, we describe
the details of attack implementations in the next sections.

IV. LINK KEY EXTRACTION ATTACK

Link key extraction attack aims to extract bonded link keys.
Once a link key is extracted, A can leverage it continuously
for impersonation attacks as well as eavesdropping against M.
Thereby sensitive Bluetooth data such as phone books, mes-
sages, and phone call conversations of M will be continuously
leaked.

Although link keys are used by the controller, it typically
has limited storage for only supporting light, small, and low-
powered Bluetooth chipset designs. Thus, the host stack which
typically has enough storage is used to manage (e.g., storing
and reloading) link keys. Whenever a link key is generated, the
controller sends the link key to the host stack through HCI via
HCI Link Key Notification for the purpose of future reuse.
After that, on the subsequent re-connection, if LMP needs the
link key for a certain device, the controller requests the link
key to the host using HCI Link Key Request, and then the
host replies to the event with a corresponding key via HCI.
While a link key is loaded in the messages it is not protected,
i.e. the link key is transmitted through the HCI as plaintext.
Furthermore, the HCI may leak its data more easily than the
host and the controller. Thus, the attacker extracts HCI data of
a target device for the purpose of obtaining a target link key,
which is the point that our link key extraction attack exploits.
Next, we show how to extract HCI data, and describe our
attack procedure.

A. Extracting HCI Data from HCI Dump

The HCI dump is a widely used HCI logging method
by Bluetooth implementations [18], [19]. It allows users to
log the whole HCI data in RFC 1761 format [20] between
a host and a connected controller. The link key related
HCI messages, such as HCI Link Key Request and HCI
via HCI Link Key Notification, are also logged by the HCI
dump, including a link key in their payload.

The HCI dump log can be easily parsed as shown in
Fig. 3. In the figure, a mobile phone and a headset device
are bonded with a link key ‘71bb87cecb...’, and the key
information is captured from the HCI in the mobile phone.
When they start to authenticate each other, each controller
requests a corresponding link key to the connected host with
HCI Link Key Request. The bottom of the figure shows that
HCI Link Key Request Reply, which is the reply command
for the event, includes the corresponding link key. If an
attacker can get the HCI dump from a device, he can exploit
it to extract link keys in the device.

Some Linux-based operating systems support SW tools of
HCI dump. For example, one can launch an HCI dump after
installing the ‘bluez-hcidump’ package on Ubuntu, which can
be an effective attack surface for the attacker. Android OS
also provides an HCI dump tool. However, no installation of
the hcidump package is required, as the HCI dump module
is built in the package of the Android host stack solution

Host 

Controller 

HCI HCI 

1. Authentication start 

Host 

Controller 

2. HCI_Link_Key_Request 

3. HCI_Link_Key_Request_Replay 

2. HCI_Link_Key_Request 

3. HCI_Link_Key_Request_Replay 

Fig. 3: A link key in a HCI packet and its HCI dump

Fig. 4: HCI dump menu in Android Automotive platform

by default. Further, the module can be easily executed via
Android’s native menu, ‘Android developer options’, a set of
hidden menu. Therefore, anyone can activate it by operating an
Android settings app, tapping the build number several times
[21], and performing the HCI dump via ‘Bluetooth HCI snoop
log’ option. The snoop log option enables background logging
for HCI dump, which can be extracted by users via ‘Android
bug report’ [22] without any system access permission. Hence,
it is straightforward for the attacker to extract an HCI dump
log, including link keys, from an Android platform.

Capturing HCI dump from released products is also possible
by leveraging their HW ports. Many vendors (e.g., Bluetooth
headset manufacturers) provide HCI dump tools for debugging
purposes. Although they require hardware access, such as
debugging port wiring, it may not be difficult for well-
motivated attackers to carry out the attack.

B. Extracting HCI Data via USB Sniffing

While some platforms (e.g., Android OS and Linux-based
OS) provide HCI dump, the others (e.g., Microsoft Windows
host stack and CSR harmony host stack solutions) do not
support it. However, the HCI data can still be leaked through
its hardware interface.

There are typically two types of Bluetooth chipsets. One is
the ‘controller-type’ consisting of controller components. It is
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connected to an Application Processor which has host compo-
nents inside. The other is the ‘stand alone-type’ which consists
of the whole core components, including host stack, HCI,
and controller. The Bluetooth system using the controller-
type chipset employs physical transport interfaces such as
UART or USB for the HCI. It is thus possible to sniff the
hardware port with capturing equipment. For example, FTE
commercially provides a device called FTS4USB™ [23] that
can capture UART/USB HCI data by connecting electronic
wires to hardware ports between AP and controller.

Windows OS can also support a USB-type Bluetooth dongle
as the Bluetooth controller. Specifically, the host stack is
implemented on CPU, and the host and the controller are
connected via USB, which is the hardware interface of the
HCI. To extract HCI data, the attacker may sniff the USB using
various USB analyzers available online for free. In Section
VI-B1, we describe how to extract a link key via USB sniffing
in practice.

C. Attack Procedure

Direct extraction of HCI data from a private device M
would be difficult in a naive way because all of the precon-
ditions, such as executing HCI dump or USB sniffing, can
hardly be satisfied in practice. For example, when the attacker
accesses M and tries to silently extract the HCI dump log, it
may fail if M is locked. Hence, our attack model does not aim
to extract a link key directly from the victim device. Rather, by
taking advantage of the fact that a pair of bonded devices share
exactly the same link key, the attacker aims to leverage the link
key from C which can be easily shared with the attacker (e.g.,
headset, car-kit, or PC), and deliver the attack against M.

In the attack procedure, the attacker can sniff physical
interface of HCI on Windows PC, or gather HCI dump logs
on Android systems such as an Android automotive platform.
Fig. 4 shows the Android automotive platform providing HCI
dump functionality from the developer options menu. (The
real-world implementation of HCI data extraction is described
in Section VI-B1.)

As shown in Fig. 5, the link key extraction attack progresses
as follows:

1) A accesses C and manipulates it to record HCI data such
as HCI dump or USB sniffing.

2) As A targets to extract the bonded link key from C, he
changes BDADDR of A to impersonate M

3) C establishes a connection and initiates LMP authentica-
tion procedure with A. As A spoofs M, the controller
in C requests to its host the link key associated with M.

4) The host responses to the link key request from its
controller, at this time, the link key is logged into a
HCI dump log.

5) The attacker disconnects the link at the beginning of the
LMP authentication.

6) The attacker extracts HCI dump, and finally gathers the
link key between C and M by analyzing the HCI dump.

PC

2. Spoofing BDADDR

5. Drop LMP authentication

1. Enable HCI dump

6. Extract HCI dump

Mobile (M) Mobile client (C)Attacker (A)

Host 
in client

Controller 
in client

3. HCI_Link_Key_Request

4. HCI_Link_Key_Request_Reply

<Inside BT core system of C>

3. LMP authentication

7. Impersonate C

Fig. 5: Link key extraction attack procedure

7) By leveraging the link key extracted from C, A can
mount impersonation attack later against M and finally
extract its private data.

In step 3), any authentication failure may cause the elimina-
tion of the link key in the device of C, leading to the failure of
LMP authentication of our attack. Since controllers typically
request the link keys from their hosts before executing the
LMP authentication, having C be an authentication initiator
(in step 3) and dropping LMP authentication by A (in step
5) ensures recording of the link key in HCI dump (in step
4) without authentication failure. The link key extracted from
C can also be used by A for an impersonation attack against
M. Additionally, A would be able to decrypt not only the
future, but also the past communications of M captured by
air-sniffers using the key.

V. PAGE BLOCKING ATTACK

In this section, we first describe previous SSP downgrade
attack and its practical limitation. We then describe our page
blocking attack and discuss its practical implication.

A. Previous SSP Downgrade Attacks and Limitation

SSP adopts ECDH key exchange algorithm for secure
communications. However, among the four SSP authentication
modes, Just Works mechanism cannot verify the authenticity
of the exchanged ECDH key parameters, since it is designed
for devices without IO capability such as a headset device.
Thus, Just Works is not immune to MITM attacks and many
previous MITM attacks on SSP [3], [24], [2], [1] have fo-
cused on downgrading the other more secure modes to Just
Works to avoid manual verification of the ECDH parameters.
Downgrade attack can begin by setting a spoofing device to
‘NoInputNoOutput’ IO capability. When two devices start to
run the SSP protocol, they first exchange their IO capability
information to determine which of the SSP association modes
shall be executed. If at least one of them is set as NoInput-
NoOutput mode, due to the lack of IO capability, Just Works
automatically confirms the authenticity of exchanged ECDH
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key parameters without user verification and the spoofing
device can pass SSP authentication challenges.

The downgrade attack seems straightforward in a theoretical
aspect, but they just assumed that M and A have been
already connected before the attack by any means. However,
in practice, when (potential victim) M tries to initiate a
pairing procedure with C, M would connect to one of C
and A in an indeterministic way, implying the attacker cannot
guarantee M will be actually connected with the malicious
device A. Contrarily, our page blocking attack can enforce
such malicious connections to the attacker’s device A in a
deterministic manner.

Besides, once a Bluetooth network is established, the
BDADDR of each device is no longer used. The connection
initiator assigns the responder an LT ADDR which is a
logical transport channel in the Bluetooth network to address a
message destination on subsequent data communications. For
this reason, the same BDADDR between C and A is valid only
during the initial stage of Bluetooth network establishment, of
which time window size is very short in practice. Thus, if C
responds to the page request earlier than A, C is more likely
to be connected to M, which might reduce the possibility of
MITM establishment of A.

To overcome this limitation, our page blocking attack makes
A work as the connection initiator while making M still
seem to be the connection initiator from the victim’s point of
view. After that, our attack allows subsequent SSP downgrade
attacks to be conducted without any signs of abnormality,
since it works as usual by our design. Specifically, our attack
exploits the lack of verification procedure of the Bluetooth
authentication mechanism that checks whether the connection
initiator actually initiates the pairing.

B. Attack Procedure

Page blocking attack aims to make A definitely establish
a MITM connection to M in the unreliable wireless com-
munication environment. To this end, we design ‘Physical
Layer Only Connection’ (PLOC). Detailed attack procedures
are explained in two parts in this section.

1) Page Blocking Attack Procedure: Page blocking attack
begins by making A initiate the connection instead of M.
However, subsequent pairing attempts of A may fail as it will
suddenly show a pairing confirmation popup on the display of
M at an unexpected time. Thus, in order to ensure that the
popup shall not appear or at least be displayed as soon as the
user has attempted to pair, we first confined the role of A to
the connection initiator (rather than a responder) and M to
the pairing initiator in page blocking attack. In the attack, we
also make A stay connected without proceeding a host layer
connection procedure (which is called ‘PLOC’) until M sends
a pairing request to A. While under PLOC with a spoofing
device, whenever M initiates a pairing procedure with C, the
pairing request would be certainly sent to A, as M considers it
is already connected with C so that it will omit the subsequent
connection procedure and send the pairing request directly to
the established link which is actually connected to A.

Mobile (M) Mobile client (C)

Inquiry response

Page response

Page request

Start pairing

Inquiry

(a) Normal pairing

PC

4. Inquiry

5.Inquiry response

2. Spoofing

6. Start pairing

3. Connect (Page request, response)

PLOC

Mobile (M) Mobile client (C) Attacker (A)

Omit Paging

1. Change
IO capability

(b) Pairing under page blocking attack

Fig. 6: Pairing procedures

Page blocking attack is a kind of man-in-the-middle attack
on the connection establishment protocol between two de-
vices. Fig. 6a describes a normal pairing procedure between
M and C. M first discovers nearby devices (using inquiry
and response messages). Among the discovered devices, M
establishes Bluetooth connection with C (using page request
and response) if C is the selected responder, and then it initiates
a pairing procedure with C. Page blocking attack intervenes in
the above protocol. Fig. 6b depicts the attack procedure which
progresses as follows:

1) A changes its IO capability to NoInputNoOutput.
2) A impersonates C by spoofing the BDADDR.
3) A establishes a connection to M and stays in PLOC.
4) M broadcasts the inquiry message to discover nearby

devices including A and C.
5) Once C receives the inquiry message, it replies to M.
6) M begins the pairing procedure. Since M is already

connected with the spoofing device A, the host of M
omits the connection re-establishment procedure with C,
and initiates the pairing procedure with A through the
connected link rather than C without perceiving it.

In the attack, as IO capability of A is set to NoInput-
NoOutput (step 1), the subsequent pairing will proceed in Just
Works mode, thereby SSP downgrade is realized because the
challenge from SSP authentication stage 1 will be bypassed. In
addition, M can function as ordinary while staying in PLOC
since most mobile devices are implemented for supporting
multiple connections in practice. Thus, M performs device
discovery as well as pairing steps (step 4 and 6) as above.

2) Subsequent SSP Downgrade Attack: When M initiates
the pairing, whether it displays a confirmation popup or not
depends on its Bluetooth version. Regarding the confirmation
popup issue, the security guideline for SSP authentication
stage 1 in the Bluetooth specification defines how to validate
exchanged key parameters. Fig. 7 partially shows the map-
ping information for each Bluetooth version; ‘DisplayYesNo’
device denotes the capability of displaying a six-digit number
and taking yes or no choice from users. ‘NoInputNoOutput’
indicates the device is not equipped with any IO interface. As
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(a) IO capability mapping on version 4.2 and lower
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pair on device A. Device A 
does not show the 
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(b) IO capability mapping on version 5.0 and higher

Fig. 7: (Partially displayed) IO capability mapping for authen-
tication stage 1

shown in Fig. 7, the validation depends on IO capabilities of
the pairing initiator and responder. Specifically, when either
the initiator or responder is a NoInputNoOutput device, Just
Works shall be launched due to the automatic confirmation.
In Bluetooth version 4.2 or lower, there is no mandated
guideline for the confirmation popup, so most implementations
automatically confirm the pairing without any user confirma-
tion when working as the initiator. Whereas, when they are
working as the responder, most implementations ask for users’
confirmation through a notification to prevent silent pairing by
Just Works associations. In version 5.0 or higher, displaying
a confirmation popup is mandated on DisplayYesNo devices.
However, the confirmation in every version only asks if users
would accept the pairing or not, thus it is difficult for users
to determine whether the pairing is actually being performed
between legitimate devices.

Consequently, A can establish the connection and perform
pairing with M. During the Just Works pairing, M will accept
the pairing automatically without any user confirmation in
case of version 4.2 or lower. For version 5.0 or higher, M
will require user confirmation for the pairing. Nonetheless, the
victim user will highly likely accept the confirmation since:
(1) the pairing was intended by the victim user, (2) popup
is immediately displayed after the intended pairing initiation,
and (3) there is no way to determine whether the pairing is
actually conducted between C and M.

VI. IMPLEMENTATION & EVALUATION

In this section, we describe how to implement link key
extraction and page blocking attacks, and demonstrate their
efficacy with real-world implementation.

[./include/bt_target.h] 

@@ -464,7 +464,7 @@ 
#ifndef BTA_DM_COD 
-#define BTA_DM_COD {0x5A, 0x02, 0x0C} 
+#define BTA_DM_COD {0x3c, 0x04, 0x04} 
 #endif 

Fig. 8: Snippet for COD modification

[./stack/btu/btu_hcif.c] 

@@ -226,7 +227,7 @@ void btu_hcif_process_event(…) 
             btu_hcif_pin_code_request_evt (p); 
             break; 
         case HCI_LINK_KEY_REQUEST_EVT: 
-            btu_hcif_link_key_request_evt (p); 
+//          btu_hcif_link_key_request_evt (p); 
             break; 

Fig. 9: Snippet for ignoring HCI Link Key Request event

A. Experiment Setup

We use a Nexus 5x Android device as A in this evaluation.
In order to install our attack implementation on it, we need
to alter the host stack library (bluedroid) and BDADDR files.
However, because they are stored in read-only file systems,
we need to first remount the Android system partition. Re-
mounting the system partition can be accomplished by flashing
locally built boot.img to the device. To generate and flash
a locally built image, we execute the following steps using
Android open-source android-6.0.1 r8 [25] as the base code:

1) Flash an MMB29P Google factory image to Nexus 5x to
avoid any boot failure caused by the mismatch between
the OS version and locally built boot.img,

2) Download and build android-6.0.1 r8 source code as
user-debug mode,

3) Unlock the OEM locking menu in Nexus 5x’s developer
options to enable flashing boot.img,

4) Launch the Android bootloader and flash locally built
boot.img to the device, and

5) Lock the OEM locking state using the bootloader com-
mand ‘fastboot oem locking’, and then reboot the An-
droid OS.

After flashing locally built boot.img to the device, we can
get Android superuser privilege and then remount the system
partition to writable mode. The host stack library (bluedroid)
and BDADDR files can then be altered in the Nexus 5x.
for spoofing a device, we need to acquire the attributes of
the target device and write them to the Nexus 5x, such as
BDADDR and Class Of Device (COD). For the BDADDR,
Nexus 5x uses a persistent ‘/persist/bdaddr.txt’ file to store
the local BDADDR information in ASCII string format. Thus,
we can simply change local BDADDR by modifying it.
Likewise, the COD of Nexus 5x can be easily changed by
simply modifying ‘system/bt/in-clude/bt target.h’, which is a
definition file of the host stack library, for the settings of the
local Bluetooth system. Fig. 8 shows the process of changing
COD from mobile device type (0x5A020C) to hands-free
device type (0x3c0404). By building and pushing the host
stack library ‘bluetooth.default.so’ into ‘/system/lib/hw/’, we
can alter the host stack in the Nexus 5x.
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B. Attack Implementation

1) Link Key Extraction Attack: We conduct the attack in
two different environments. First, we implement the attack on
various Android devices and leverage HCI dump to extract
link keys from them. Second, we implement the attack on
Windows 10 and Linux ubuntu 20.04 and extract HCI data
from the physical interface of HCI, specifically via USB
sniffing. The attacks are implemented based on the attack
procedure given in Section IV-C. To allow A to discon-
nect the link at the beginning of LMP authentication (step
5), we modify the host stack as shown in Fig. 9; calling
function btu hcif link key request evt() required to process
HCI Link Key Request event is skipped, disconnecting the
link due to timeout. Specifically, when C initiates the LMP
authentication, HCI Link Key Request events are delivered
from the controllers to the hosts on both C and A. At that time,
our attack code makes A wait indeterminately, and thereby
link would be disconnected by the timeout of the session,
while the host in C replies with a corresponding link key to
its controller. Therefore, the target link key would be logged
by HCI dump in C and the connection will be disconnected
without authentication failure which may cause the expiration
of the existing link key on C.

Link key extraction via HCI dump. We use Nexus 5x
running Android 8, LG V50 and Galaxy S8 running Android
9, Pixel 2 XL, LG VELVET and Galaxy s21 running Android
11 as the role of C, Nexus 5x running Android 6 as the role
of A, and LG VELVET as the role of M. Since they are
running Android, all testing devices in C provide the ‘Enable
Bluetooth HCI snoop log’ menu which allows recording of
the Bluetooth HCI dump log in the background. However,
the recorded logs are stored in an inaccessible folder such as
‘data/misc/bluedroid/logs.’ Thus, instead of directly accessing
the location, we leveraged an Android developer option, ‘bug
report’ [22]. Because the bug report allows users to extract the
HCI dump logs, we could pull the recorded HCI dump logs
from C devices without any obstacle. From the logs, we could
confirm that all of C left their link keys associated with M in
the HCI dump logs, and could extract them successfully.

After extracting the link keys, we verified the validity of
the extracted link keys through the following steps:

1) Change BDADDR of A to that of C,
2) Install fake bonding information, including the extracted

link key for M on A,
3) Turn off and then turn on Bluetooth on A, and
4) Establish a Bluetooth tethering connection between A

and M, and check whether following LMP authentica-
tion succeeds with the fake bonding information—they
do not start a new pairing procedure if the key is correct.

To install fake bonding information, we modify the de-
vice management file ‘/data/misc/bluedroid/bt config.conf’
in Nexus 5x. The fake bonding information includes the
BDADDR of M, extracted link key, and a list of profile
services supported in M. Fig. 10 shows the fake bonding
information we added to bt config.conf, where the link key

[48:90:xx:xxx:xx:xx] 
Name = VELVET 
… 
Service = 00001115-0000-1000-8000-00805f9b34fb 00001116-
0000-1000-8000-00805f9b34fb 
LinkKey = 71a70981f30d6af9e20adee8aafe3264 

Fig. 10: Fake bonding information for M

‘71a70981f3...’ is an example of extracted bonded key from
the HCI of C. The service is the list of universally unique
identifiers (UUID) that are supported in the corresponding
device M; 0x00001115 and 0x00001116 are the UUIDs of
Bluetooth tethering (PAN profile). Since the roles of both PAN
server and client are supported in the Android platform, we
leverage the PAN profile to make a profile connection and
therefore trigger LMP authentication subsequently in step 5.
During the authentication, if the link key is incorrect, the LMP
authentication will fail and a new pairing procedure must be
initiated; otherwise, the LMP authentication will succeed and
the profile connection will be established. Thus, by check-
ing whether the PAN connection is successfully established
without any additional pairing procedure, we can validate the
correctness of extracted link key.

Link key extraction via USB sniff. We test two Bluetooth
systems as C running Windows 10 on two PCs. One system
consists of CSR harmony host stack and QSENN CSR V4.0
(a USB type Bluetooth controller), and another one consists of
Microsoft Bluetooth Driver host stack [26] and QSENN CSR
V4.0. Thus, the physical interfaces of HCI of both systems
are USB.

The attack procedure is the same as the first experiment,
except that we extract HCI data by sniffing the physical
interface of HCI (which is USB) using ‘Free USB Analyzer’
[16] rather than a HCI dump log. When sniffing, the raw
data of USB traffic is captured in a binary stream. We thus
develop a converter in C that converts the binary stream
into a string of hex codes in ASCII format [27]. From the
converted data, we found that the USB dump comprises lots
of HCI and NULL data. However, as the converted data is in
ASCII format, we can simply find the hex data corresponding
to the HCI Link Key Request Reply HCI command. For
example, since the command always starts with ‘0b 04 16’
where the first two bytes (0x0b04) indicate the opcode of
HCI Link Key Request Reply and the rest one byte (0x16)
is the length value of its payload, we can extract the target link
key by searching ‘0b 04 16’ in the converted data as Fig. 11a
shows. In the figure, we can see the link key follows six bytes
(indicating the address of the peer device) after ‘0b 04 16’,
which is ‘0xc4f16e949f...89c324’ in big-endian byte order.

To validate the correctness of the link key extracted from
USB sniffing, we compared the link key extracted by USB
sniffing on C and that logged by HCI dump in M. For
example, as Fig. 11a and 11b show, we can check the link
key from USB sniff on C and that from HCI dump on M
are the same, thereby we can confirm the link key is correctly
extracted.

8



OPCODE | LENGTH Link Key 

(a) Link key in USB sniff from C

(b) Corresponding link key from M

Fig. 11: Link keys in HCI data from USB sniff and HCI dump

Additionally, we also examine Linux ubuntu 20.04 to im-
plement the link key extraction attack other than Windows
OS. As a result, we find that Bluetooth bonding information
is installed in ‘/var/lib/bluetooth/[MAC Address of device]’
folder in Linux. After investigating the folder, we confirm the
information file includes the link key of the corresponding
device. Moreover, it is also straightforward to implement the
link key extraction attack in Linux OS by leveraging both USB
sniff and HCI dump log, because there are USB sniffing solu-
tions as well as the bluez-hcidump package. However, running
USB sniffing and bluez-hcidump, and accessing the bonding
information file in Linux require the superuser privilege. Thus,
the practicality of link key extraction in Linux depends on the
attacker’s affordable privilege.

2) Page Blocking Attack: Unlike the link key extraction
attack, it is no longer possible to demonstrate the feasibility of
page blocking attack only by investigating the user interface
information because we cannot confirm whether the subse-
quent Just Works pairing is caused by our attack, or initiated
by M by accident. Thus, we now analyze the HCI dump log
generated in our experiment.

Fig. 12a and Fig. 12b show examples of HCI dump logs
captured from M during an ordinary pairing and a pairing
under page blocking attack, respectively. During the normal
pairing (Fig. 12a), the host of M first attempts to establish a
connection with C via HCI Create Connection, and executes
pairing by HCI Authentication Requested, which is the first
HCI message for pairing. Then, the controller of M requests a
stored link key by delivering HCI Link Key Request event to
the host. However, as M does not have bonded link key with C
yet, the host replies HCI Link Key Request Negative Reply,
which implies the absence of the link key. On receipt of it,
the controller finally initiates a pairing procedure.

On the other hand, under the page blocking attack, there
should be a preceding connection request event on M,
HCI Connection Request, which is an upstream event from
the controller to notify the host that a page request has been

(a) HCI dump for normal pairing

(b) HCI dump for pairing under page blocking attack

Fig. 12: HCI dump logs for normal pairing and pairing under
page blocking attack

[./stack/btu/btu_hcif.c] 

@@ -165,6 +165,7 @@ void btu_hcif_process_event (…) 
             btu_hcif_extended_inquiry_result_evt (p); 
             break; 
         case HCI_CONNECTION_COMP_EVT: 
+            usleep(10000000); 
             btu_hcif_connection_comp_evt (p); 
             break; 

Fig. 13: Proof of concept code for PLOC

received from A. Then, the host accepts the connection re-
quest (HCI Accept Connection Request command), thereby
a Bluetooth connection between A and M is established.
After the connection establishment, a pairing procedure is
initiated with HCI Authentication Requested command in
the same manner as the normal pairing. When it is under
page blocking attack, M should be the pairing initiator
(HCI Authentication Requested command) and the connec-
tion responder (HCI Connection Request event) simultane-
ously. Therefore, we can confirm whether our attack is cor-
rectly deployed by checking if the HCI dump log is recorded
in the same flow as shown in Fig. 12b during the experiment.

For the attack validation, we utilize two Nexus 5x devices
running Android 6 as A and C, and mount the attack against
diverse mobile systems M such as Nexus 5x running Android
8, LG V50 and Galaxy S8 running Android 9, Pixel 2 XL, LG
VELVET and Galaxy s21 running Android 11, and iPhone Xs
running iOS 14.4.2.

To launch the attack, we first let A establish a PLOC
connection with M. To make both of them stay connected
without processing the host layer connection, we make A
postpone the handling of the HCI event sent from the con-
troller, thus A does not process the next steps for the host
layer connection. Update of Bluetooth connection state begins
when the host receives an HCI Connection Complete event
from the controller. In Nexus 5x, ‘btu hcif process event()’,
a callback function for HCI events in bluedroid, processes
HCI Connection Complete events. Thus, we implement the
PLOC condition in A by making the host postpone the
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OS Host stack Device SU privilege

Android 8 Bluedroid Nexus 5x N

Android 9 Bluedroid LG V50 N

Android 9 Bluedroid Galaxy S8 N

Android 11 Bluedroid Pixel 2 XL N

Android 11 Bluedroid LG VELVET N

Android 11 Bluedroid Galaxy s21 N

Windows 10 Microsoft
Bluetooth Driver QSENN CSR V4.0 N

Windows 10 CSR harmony QSENN CSR V4.0 N

Ubuntu 20.04 BlueZ QSENN CSR V4.0 Y

TABLE I: List of tested devices that are vulnerable to link key
extraction attack

handling of the event in btu hcif process event().
In a page blocking attack, the PLOC state shall be held

until a pairing procedure is initiated by M theoretically. In
practice, it may require a bit complex code implementation
in the library because of timing synchronization as well as
exception handling issues. For example, the host should stop
the postponement when a pairing procedure is initiated by
M and handle other HCI commands and events that occur
during its PLOC state. It also requires the prevention of link
drop, which may be caused by connection timed-out. However,
it can be solved by exchanging some dummy data, such
as SDP query. Our experiment assumed that M initiates a
pairing procedure in 10 seconds after establishing the PLOC
connection for simplicity. Thus, we do not have to care the
aforementioned exceptions and simplify the implementation
code in the experiment. Fig. 13 shows our proof of con-
cept (PoC) implementation that makes the host stay in a
PLOC state for a fixed duration (10 seconds) before calling
btu hcif connection comp evt(). After the duration, C will
exit from the PLOC state; and if M initiates a pairing as
we assumed, it carries out a pairing procedure.

With the PoC code, we evaluate our page blocking attack
following the attack procedure in Section V against the mobile
devices M, and after the pairing, we check whether the HCI
dump log recorded during the test is the same as Fig. 12b.

C. Evaluation Results

1) Results for Link Key Extraction Attack: The experiment
of HCI dump on Android devices with versions 8, 9, and
11 confirms that the extracted link keys are the same as
the existing keys shared between C and M, and the LMP
authentication succeeded, demonstrating they are all vulnera-
ble to our link key extraction attack. Additionally, according
to the experiment of USB sniff, we also confirm that the
tested PC systems (one with CSR harmony and QSENN CSR
V4.0, and the other with Microsoft Bluetooth Driver host
stack and QSENN CSR V4.0), are all vulnerable to link
key extraction attack. The complete list of tested devices
vulnerable to the link extraction attack is given in Table
I, where the rightmost column means whether the attacker
requires a superuser privilege.

Device Success rate without
page blocking

Success rate with
page blocking

iPhone Xs (iOS 14.4.2) 52% 100%

Nexus 5x (Android 8) 52% 100%

LG V50 (Android 9) 57% 100%

Galaxy S8 (Android 9) 42% 100%

Pixel 2 XL (Android 11) 60% 100%

LG VELVET (Android 11) 60% 100%

Galaxy s21 (Android 11) 51% 100%

TABLE II: Success rates of MITM connection establishment

2) Results for Page Blocking Attack: According to our
experiment with each mobile device, we observed that all
of the HCI dump logs captured in M are the same as
Fig. 12b (for iPhone, we analyzed dump log from A instead
of M since it does not provide HCI dump), which implies
the pairing is conducted between M and A (rather than
C). Therefore, we confirm that our attack succeeded, and all
of the mobile devices we tested are vulnerable to our page
blocking attack. The detailed experiment results showing the
comparative success rates of establishing MITM connections
with/without page blocking attack are given in Table II. For the
normal case without page blocking, we establish connections
for each device 100 times, and calculate the success rate. As
a result, we observed 42∼60% of success rate, implying the
establishment of MITM connections with the target devices
is quite random. Whereas, under our page blocking attack
where A becomes a connection initiator, we observed 100%
of success rate, implying page blocking attack allows the
establishment of MITM connections entirely as the attacker’s
intention.

VII. MITIGATIONS

A. Link Key Extraction Attack

The root cause of vulnerability to the link key extraction
attack is that the link key is transferred via HCI as plaintext,
and HCI data can easily be leaked via HCI dump or hardware
interface (e.g., USB) that typical users can easily access.

The first mitigation is to filter out link keys from the HCI
dump log. The solution can be implemented by enabling the
HCI dump module to monitor HCI headers; if the monitored
HCI message includes a message related to link keys, the dump
module logs only HCI header, not its payload. For example,
in Fig. 3, the HCI packet of HCI Link Key Request Reply
command in RADIX is ‘01 0b 04 16 96 55 46 6d ...’, where the
first byte (0x01) indicates that the packet is an HCI command,
and the next three bytes (0x0b0416) are the HCI header
composed of operation code (0x0b04) and payload length
(0x016 = 22 bytes) as described in Section VI-B1. Thus, when
HCI dump meets an HCI packet that starts with 0x010b0416,
it may omit to record the payload into its dump log by logging
only the first four bytes of the header or replace the link key
with a random value.

Another mitigation is to encrypt the payload of HCI packets
related to link keys. An attacker may extract HCI data from
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UART physical line, or by sniffing USB data, which can break
the first mitigation. If the HCI payload is encrypted, link keys
can be secured even if such physical attacks extract the HCI
data. However, encrypting the payload of HCI packets may
require major updates or revision of current specifications
to include such encryption and key exchange functionalities
between the host and the controller.

B. Page Blocking Attack

According to GAP, A should initiate the pairing and LMP
authentication if any subsequent connecting services request
security mechanisms such as authentication, authorization, and
encryption; otherwise, they can be skipped. For example, A
is allowed to connect to SDP service in M without LMP
authentication, because SDP service does not require the
enforcement of security mechanisms. For this reason, it is
difficult to predict whether any pairing will occur during a
session in practice. Thus, the specification allows either a
connection initiator (A) or a responder (M) to be a pairing
initiator in the middle of the session. By leveraging this,
the page blocking attack allows A to become a connection
initiator, and M to become a pairing initiator. From the
user’s point of view, it is indistinguishable between normal
pairing and pairing under a page blocking attack since they are
processed the same on the user interface. The other case where
A and M play the opposite roles can normally occur as well,
thus simply checking each role of the pairing initiator and the
connection initiator cannot correctly detect our page blocking
attack. Therefore, one effective mitigation strategy is to check
the roles of the pairing initiator and connection initiator and
to check whether the IO capability of the connection initiator
is NoInputNoOutput. If it is the case, we need to make sure
the victim drops the pairing or re-initiates the pairing again in
another safer mode.

VIII. RELATED WORK

Antonioli et al. [8] introduced an attack on key agree-
ment protocol of Bluetooth, called KNOB attack. It makes
victims agree on a key with one byte of entropy. In order
to implement the attack, the authors reversed a firmware of
BCM4339 Bluetooth chipset and installed their customized
attack operations in the controller. Antonioli et al. [7] also
introduced another attack called BIAS that exploits one-way
authentication vulnerability of Secure Simple Pairing, and per-
form downgrade attack on secure authentication procedure for
Secure Connection. BIAS attack also requires a modification
of controller for the purpose of installing customized LMP
operations. For general users, such reversing and modifica-
tion procedures of controllers would be impediments to the
achievement of the attacks in practice. Contrarily, our attacks
just require to implement attack operations above the controller
layer, therefore, our attacks are more practical attacks.

Seri et al. [5] introduced security vulnerability of Bluetooth
implementations, called BlueBorne, in diverse operating sys-
tems such as Android, iOS, and Windows. Its attack vectors
allow an attacker to silently create unauthenticated BR/EDR

connections and install malicious codes on the victim devices.
One precondition required for mounting BlueBorne attack is
to only activate Bluetooth in the victim device. Our link
key extraction attack also silently works against a victim
device, but manual access to the corresponding paired device
is required.

For MITM attacks, Sun et al. [6] introduced a vulnerability
that allows an MITM attack against the passkey entry SSP
association mode. Sharmila et al. [24], Hypponen et al. [2],
Haataja et al. [1] presented MITM attacks that downgrade
SSP to Just Works association mode. Melamed et al. [28]
introduced another MITM attack on Bluetooth connections
between a Mobile App and a Bluetooth Peripheral device.
Zhang et al. [29] demonstrated that MITM attacks are possible
due to the lack of detailed programming guideline for a Secure
Connections Only (SCO) mode in the specification. In our
study, we focused on how to ensure the establishment of
MITM connections by the attacker, and subsequently execute
SSP downgrade attack, which the previous MITM attacks
simply assumed as a precondition for their attacks.

IX. CONCLUSION

In this paper, we present two novel attacks on the authen-
tication of Bluetooth BR/EDR, which are link key extraction
and page blocking attacks. The link extraction attack exploits a
vulnerability where link keys are logged into an HCI dump file
in plaintext and can be easily extracted in practice. Once a link
key is extracted, the attacker can continuously leverage it to
eavesdrop on Bluetooth communications protected by the link
key and establish other impersonated connections, breaking the
LMP authentication of bonded devices. Page blocking attack
aims to control the victim’s connection such that it is forced
to be established with the attacker’s device as his intention in
a deterministic manner, which is practically difficult to control
due to the unpredictability of arbitrary session establishments
in practice. The page blocking attack exploits the laxity of
the specification - the connection initiator does not have
to be a pairing initiator. That is, if a Bluetooth connection
is established by the attacker and the victim then triggers
a pairing procedure, the attacker can establish a malicious
connection and make it paired in Just Works association model
initiated by the victim, breaking SSP authentication of non-
bonded devices. Since our attacks are standard-compliant and
can be delivered above the controller layer without firmware
modification, they can be deployed without much difficulty
in practice, demonstrating our attacks can pose real threats to
Bluetooth security.
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