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Abstract

Network-layer capabilities offer strong protection
against link flooding by authorizing individual flows with
unforgeable credentials (i.e., capabilities). However, the
capability-setup channel is vulnerable to flooding attacks
that prevent legitimate clients from acquiring capabilities;
i.e., in Denial of Capability (DoC) attacks. Based on
the observation that the distribution of attack sources in
the current Internet is highly non-uniform, we provide
a router-level scheme that confines the effects of DoC
attacks to specified locales or neighborhoods (e.g., one or
more administrative domains of the Internet). Our scheme
provides precise access guarantees for capability schemes,
even in the face of flooding attacks. The effectiveness of
our scheme is evaluated by ns2 simulations under different
attack scenarios.

1. Introduction

Current service-flooding attacks rely on a large number
of compromised machines that are organized as a “bot” net-
work. Typical defense mechanisms that attempt to provide
service-access guarantees despite such attacks assume ab-
sence of flooding in the underlying network links. Yet, a
large-scale attack (e.g., a “botnet” with millions of “bots”)
can flood any chosen link in the Internet. In particular, de-
fense mechanisms deployed at links near or at a network
edge (e.g., Firewalls, IDSs) can be easily overwhelmed by
such attacks. Worse yet, legitimate-looking attack packets
can evade most of traditional techniques for handling ad-
dress spoofing attacks at the network layer (e.g., IP trace-
backs [13, 15], ingress filtering [8]).

Capability-based solutions, whereby distinct packet
flows are separately authorized through capabilities ob-
tained before flow initiation [3, 20, 21], provide congested
routers with an effective way to prioritize legitimate flows
and filter out unwanted traffic. Though promising, these so-
lutions are still vulnerable to flooding attacks targeting the
capability-setup channel, known as the Denial of Capability
(DoC) attacks [4]. These attacks are possible because the
initial capability-request packets are treated as best-effort
packets, as opposed to the subsequent high-priority packets

that carry capabilities. If DoC attacks cannot be countered,
flow authorization via network-layer capabilities becomes
impossible, and all access guarantees become meaningless
at congested routers.

Previous solutions that attempt to protect capability re-
quests from flooding attacks (e.g., mechanisms based on ag-
gregate request rates [21] or on proof of work [12]), though
useful, are insufficient to provide dependable link-access
guarantees for legitimate capability requests. For example,
a fair-queueing mechanism, which fairly allocates buffer
space to flow aggregates based on a router’s confidence in
precise identification of traffic origin [21], fails to provide
any guarantee of link-access (viz., Section 7.1). Mecha-
nisms based on proof of work (e.g., Portcullis [12]) pro-
vide only weak access guarantees during flooding attacks
as they are (at best linearly) dependent on the number of
global attack sources; e.g., a large number of bots could
still flood a chosen link despite such guarantees. These pre-
vious schemes achieve relatively weak guarantees because
they assume that attack sources are uniformly distributed in
the network.

We observe, however, that malicious hosts, or bots are
clustered: some domains include sufficiently strong security
mechanisms that enable them to counter or deter contamina-
tion; others are easily contaminated by bots. 1 Non-uniform
distribution of attack sources actually enables us to achieve
stronger guarantees. To be meaningful, these guarantees
have to be independent of the number of attack sources (i.e.,
the size of a global botnet). In the worst case, they can
only depend on attack sources in defined locales or neigh-
borhoods (e.g., an administrative domain or a set of domains
in the Internet). As a consequence, competing requests for
a capability to a congested link that originate outside a con-
taminated locale should be unaffected, or only minimally
affected, by a flooding attack, and should receive strong ac-
cess guarantees. In contrast, initial capability requests origi-
nating from bot-contaminated locales should receive weaker
access guarantees, namely guarantees that depend only on
the number of bots in the contaminated locale (but not on
all bots of a multi-domain attack network). In short, our no-

1Non-uniform distribution of attack sources is evident in a variety of
worm propagation models [5,16], evolutionary features of previous worms
such as CodeRed I/II, Nimda and Slammer.



tion of dependable access to a flooded link provides differen-
tial guarantees for the capability setup channel. Differential
access guarantees are desirable because they provide incen-
tives for employing host security measures within admin-
istrative domains that prevent botnet (and other malware)
contamination. In exchange, uncontaminated domains re-
ceive precise guarantees of link access for the capability
setup channel, which support meaningful network-link and,
ultimately, service-access guarantees.

Our scheme relies on three basic mechanisms. First, we
define a new path identification mechanism that provides an
unforgeable domain identifier to individual packets, and en-
ables remote routers to identify a packet’s domain of origin.
Second, we define a dynamic virtual queueing mechanism
that guarantees a minimum number of router buffer slots to
domains originating flows through a router, which in effect,
guarantees link access to those domains. Finally, we employ
a path aggregation mechanism that optimizes router band-
width allocation for legitimate capability requests based on
domain contamination.

2. Background and Related Work

Lack of source address authenticity in the Internet Proto-
col (IP) enables attackers to forge the source addresses, and
hence complicates/prevents address-based accounting dur-
ing link flooding attacks. As a way to add authenticity to
individual packets, capability solutions [3,20,21] have been
proposed. Generally, a network-layer capability protocol re-
quires a handshake between a client and a server, and dur-
ing that phase, routers on the forwarding path collectively
issue a connection capability; i.e., a series of router capabil-
ities on the path. A router’s capability, which is generated
by hashing the source and destination IP address with the
router’s secret key, is cryptographically secure against forg-
eries since the router key is unavailable to an adversary.

However, the capability request protocol is still vulnera-
ble to flooding (DoC) attacks [4]. That is, flooding with ca-
pability requests, which cannot be prioritized, successfully
denies a legitimate access to a congested link. Portcullis [12]
proposes a puzzle-based mechanism that provides a guaran-
teed link access during a flooding (DoC) attack. Though
useful, the guarantee is linearly dependent on the number
of bots, which can be substantial (e.g., the size of a bot-
net easily exceeds 1 million bots [1]). Alternatively, TVA’s
implementation of fair queueing on incoming traffic paths
(i.e., hierarchical fair queueing) [21], which equally assigns
queues to directly connected links and splits the queues re-
cursively for distant links, places legitimate accesses of re-
mote domains at a significant disadvantage since it provides
fair service to the same level of queues (i.e., sub-queues split
from a queue). More sophisticated application-layer solu-
tions (e.g., CAPTCHA [18]) that attempt to distinguish be-
tween human- and machine-initiated traffic to prevent flood-

ing attacks are impractical at the network-link level.
Attempts to block suspicious traffic upstream of a con-

gested router by installing filters close to, or at, the domains
originating attacks could protect legitimate flows that are in-
dependent of attacks. To be effective, cooperative filtering
would require incentives that scale with the number of par-
ticipating domains – a tall order since it depends on the at-
tack itself. Furthermore, with only local information (the
traffic rate of incoming links), a router cannot easily iden-
tify the links (or upstream links) that are responsible for the
congestion; and even if such information is available, an ad-
versary can launch a timed attack where different groups of
zombies/bots issue targeted requests by exploiting the time
delay required for installing and releasing filters at upstream
routers (e.g., on-off and rolling attacks).

3. Design Overview
In this section, we present an overview of our defense

scheme by describing the basic mechanisms.

3.1. Threat

The main threat we deal with in this work is a link
flooding attack on the capability-setup channel, where at-
tack sources collaboratively exhaust the link bandwidth al-
located for connection establishment. We assume that both
hosts and routers can be compromised and send/forward at-
tack traffic. Compromised hosts are able to both flood a tar-
get link with capability request packets and disturb the path
identification mechanism at a remote router by manipulat-
ing the header reserved for that purpose (viz., Section 4.1).
Compromised routers can disturb path identification by ei-
ther forwarding packets that contain false path-markings or
adding invalid path-markings to the packets they forward.

3.2. Path Identification

In this work, we consider routers that mark packets
with path information. These path-markings create an un-
spoofable origin identifier because they cannot be controlled
by end-hosts.2 In addition, path-markings enable remote
routers to construct a traffic tree. The domain connectiv-
ity revealed in the traffic tree helps identify the distribution
of attack sources in specified locales to which bandwidth
allocation will be restricted (viz., Section 6).

The basic concept of route construction is similar to that
of previous schemes [19,21], yet we use a packet’s AS (Au-
tonomous System) path as a domain identifier for several
reasons. First, a packet’s AS path, which is primarily de-
termined by the number of AS hops (AS path length) to the
destination in the inter-domain routing protocol (e.g., BGP-
4), is more stable than the routing path within an AS that

2IP source routing may allow a client to select a path to a destination.
However, strict and loose source routing are usually blocked at routers to
avoid the associated processing overhead.
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Figure 1: Path Identifier. R′4 is the egress router of AS4 and R3, R2, R1

are the ingress routers of AS3, AS2, AS1 respectively. R′4 writes the path-
identifer to the packet heading to server S in AS1, and ingress routers on
the path validate the markings. Cj is the capability issued by Rj . Each
ingress router can validate the shaded part of the markings.

may frequently change during flooding attacks due to link
state changes (e.g., link failure). We use the AS path of a
packet as a persistent domain identifier. Second, a packet’s
AS path can be constructed by the egress router of the source
domain since the router contains the AS path information
of destination addresses in its routing table. This source-
constructible domain identifier eliminates deployment is-
sues that plagued previous path-marking schemes especially
in the Internet core, and hence enables independent adop-
tion of the marking scheme at the Internet border (e.g.,
provider/stub domains). We envision that prioritizing re-
quests originating from path-marking domains would en-
courage early adoption of the marking scheme.

We define a packet’s AS path to its destination as the
path-identifier of the packet, and present it in the order of
markings: from the origin to the destination. Thus, as il-
lustrated in Fig. 1, the path-identifier seen at a congested
router in AS1 is {AS4, AS3, AS2, AS1}. We implement
this path-identifier in a shim header so that only upgraded
routers interpret it. Throughout this paper, we denote the
path-identifier whose markings start with ASi by Si and the
BGP speaker of ASi by Ri. In Section 4, we present a mech-
anism that protects path-identifiers from potential attacks.

3.3. Link Access Guarantees

In defending against DoC attacks, our goal is to pro-
vide precise guarantees of link access to capability requests,
where the guarantees are provided in a domain basis to con-
fine the effects of attacks within the domains from which
they originate. This goal is achieved by a new fair queueing
mechanism, and the guarantees provided by the queueing
mechanism are optimized to favor the requests from uncon-
taminated domains via a path aggregation mechanism.

3.3.1 Fair Queueing Revisited
The choice of a fair queueing scheme for link-access guar-
antees is intended to maximize service on the legitimate ca-
pability requests. Fair queueing schemes, if they can assign
separate queues to individual path-identifiers, could provide
fair bandwidth to the path-identifiers without link under-
utilization (which could occur whenever strict bandwidth
reservation is made to individual path-identifiers). However,

when the spatio-temporal dynamics of domains contributing
to congestion (e.g., time-varying patterns of domain traffic)
are considered, such queue assignment in a limited buffer
is a challenging problem. For example, for a fixed buffer
size, under-provisioning of the number of queues in a spe-
cific time period may fail to provide link-access guarantees
to path-identifiers due to potential queue collisions among
different path-identifiers. In contrast, over-provisioning of
it would decrease the length of individual queues, hence
weaken the guarantees (viz., Section 5). Thus, we aim to de-
sign a fair queueing scheme that assigns a unique queue to
each path-identifier and adjusts the individual queue lengths
to fit the buffer size for link-access guarantees and their en-
hancement – a desired goal.

While a variety of traditional fair queueing schemes fo-
cus on the bandwidth fairness of flows in different queues
that contain various sizes of packets, the Stochastic Fair
Queueing (SFQ) scheme [11] offers queue length fairness
via a buffer stealing mechanism, whereby a packet that finds
a full buffer on its arrival would steal a buffer-slot from the
longest queue. We note that the fixed size capability request
packet would eliminate the intrinsic bandwidth unfairness of
SFQ in the presence of different packet sizes [14]. Based on
the buffer-stealing idea, we improve SFQ in two respects.
First, we avoid queue collisions among path-identifiers that
are allowed but fairly distributed via stochastic queue as-
signment in SFQ. Second, we make queue management op-
erations (e.g., queue assignment and buffer-slot preemption)
scalable and efficient to easily adapt our scheme to diverse
operating environments (e.g., link capacity, the number of
required queues). Those improvements are made via a dy-
namic virtual queueing mechanism presented in Section 5.

3.3.2 Path Aggregation
As more domains are contaminated by attack sources, link-
access guarantees provided by our queueing scheme become
weak as both available link bandwidth and buffer-slots to
each path-identifier decrease. This undesirable dependency
of guarantees on attack dispersion is unavoidable as long as
all path-identifiers are equally treated. Protecting requests
of uncontaminated domains essentially needs a differential
treatment of path-identifiers based on the proportion of le-
gitimate requests they deliver. Though the legitimacy of in-
dividual capability requests cannot be validated, the propor-
tion of legitimate requests in a set of requests can be esti-
mated by a couple of flow conformance tests, which consist
of (1) a test on bandwidth conformance that represents the
aggressiveness of requests and (2) a test on protocol confor-
mance that indicates the legitimacy of authorized flows in
various respects (viz., Section 6.1).

Conformance tests performed on each path-identifier
enables differential assignment of bandwidth to path-
identifiers that maximizes service to legitimate requests at
the flooded link. Yet, in the presence of a large number



of attack domains, such assignment cannot easily be made,
nor can it tolerate imprecise measurement of domain con-
tamination. Instead, we aggregate the path-identifiers of a
highly contaminated locale and assign a new path-identifier
to them. This, in effect, limits both available bandwidth and
buffer space for those path-identifiers. We define this path
aggregation problem as a constrained optimization problem
and provide an efficient solution in Section 6.3.

4. Path Identification
In this section, we start with the basic path identifica-

tion mechanism, and then enhance the mechanism with ad-
ditional security features.

The basic path identification mechanism works as fol-
lows. When the egress router of a domain (i.e., the BGP
speaker) forwards a packet that originates from its domain,
it writes the path-identifier (i.e., the AS path to the destina-
tion) in the packet’s header. AS ingress routers of the packet
forwarding path validate the authenticity of a fraction of this
path-identifier starting with the upstream AS that forwarded
the packet and ending with the destination AS as shown in
Fig. 1. Whenever AS ingress routers receive a non-marked
packet, they write their own path-markings: the AS path
from their upstream AS to the destination AS.

As remote domains can validate only a part of path-
markings, attack sources in unprotected (non-marking) do-
mains may spoof path-identifiers unless the marking scheme
(which includes the verification function) is sufficiently
deployed. Even under wide deployment of the marking
scheme, the authenticity of path-identifiers verified at a do-
main cannot be delegated to the downstream domains with-
out a strong trust relationship established between those do-
mains. This makes any manipulation of path-identifiers by
compromised routers undetectable at remote routers. To
protect path-identifiers from potential attacks (e.g., spoofing
and replay attacks), we present a secure path identification
mechanism below.

4.1. Unspoofable path-identifier

We first introduce potential attacks that disturb path-
identification at remote routers and present our defense
mechanism against those attacks.

Let {ASn, . . . , AS2, AS1} be the path-identifier seen
at the congested router, and let ∗ and # be any valid
and forged sequence of markings respectively. Then, both
compromised sources in unprotected domains and com-
promised routers in ASk can forge a path-identifier as
{#, ASi, ∗, AS1}, if the domains up to ASi are unprotected.

In principle, a router can authenticate its path-markings
by adding a digital signature to the path-markings. However,
adding a digital signature in every packet would impose sig-
nificant computational overhead for both its generation and
verification. Moreover, a per-packet signature, if employed,
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Figure 2: Path-identifier Authentication. ¬ Path-identifier written at the
packet’s origin (AS4) can be validated at any domain (AS2, AS1) in the
presence of a non-marking domain(s) (AS3) on the packet’s forwarding
path. ­ If the origin AS does not participate in path-marking, the first par-
ticipant (AS2) writes its markings and adds the incoming AS number (AS3)
to distinguish the packets it forwards from the ones originating from it. ®
An invalid ASN-OAN pair (denoted by #) can be detected and filtered.

could be exploited by attackers to exhaust routers’ compu-
tational resources (e.g., by flooding small-size packets). In-
stead, we present an efficient path-identifier authentication
mechanism, where each domain pre-distributes its domain-
authenticator and uses it to authenticate its path-markings.
One fundamental assumption for implementing this mecha-
nism is that any protected AS has a public-private key pair
certified by a trusted certificate authority (e.g., ICANN).

4.1.1 Authenticator Distribution
When a BGP speaker advertises an address prefix that be-
longs to its domain, the BGP speaker adds an origin authen-
tication number (OAN), which is unique in its domain and
is digitally signed with the domain’s private-key, to its route
advertisement. All BGP routers that receive this route ad-
vertisement validate the OAN with the origin’s public-key
and hold the authenticated ASN (AS Number)-OAN pair
for later path-identifier authentication. Since the number of
ASN-OAN pairs is at most 65,5353, the space requirement
for this validation is bounded, i.e., 262KB for 4-Byte OANs.

4.1.2 Origin Authentication
The BGP speaker of a packet’s domain of origin writes its
ASN-OAN pair followed by the AS path to the destination in
the path-identifier header. Fig. 2 illustrates the cases for ori-
gin authentication under different deployment scenarios of
the marking scheme. Whenever no path-identifier is present
in a packet, the ingress router of a marking AS constructs
path-markings with its own ASN-OAN pair (viz., ­ in Fig.
2). On receiving path-identifiers constructed as such, the
ingress routers of downstream domains validate the origin’s
OAN and the partial AS path as discussed above.4 Thus, in-
valid path-markings can be identified even in the presence of

3As of 2010, the number of advertised ASNs is about 30,000 out of
65,535 (16-bit) possible ASNs [2]

4For path validation, routers need to keep AS path information (from
next hop to the destination AS) in their forwarding table (i.e., FIB). How-
ever, this would not require much space since the average number of ASes
a packet traverses from its origin to destination is four.



consecutive non-marking ASes on the paths and be filtered
on the way to, or at the destination AS.

Meanwhile, a compromised router in ASi can still forge
two types of valid path-identifiers such as {ASi,OAN k

i , ∗}
and {#, ASi,OAN k

i , ∗}. However, their effects can be lim-
ited to at most those of two path-identifiers by discarding the
non-authenticated prefixes of path-identifiers.

4.2. Preventing Replay Attacks

Under partial deployment of our path-marking scheme,
attack sources in unprotected domains may forge path-
identifiers ending with authenticated ASN-OAN pairs (since
ASN-OAN pairs are not confidential to end-hosts) and use
them in flooding a target link. Such replay attacks would
significantly affect the requests of protected domains.

Path-marking routers counter replay attacks via fast OAN
renewals, which are efficiently implemented using a re-
verse hash chain [12]. Let OAN0

i be the initial OAN of
ASi. ASi constructs a hash chain of OANs by repeat-
edly hashing OAN0

i with a cryptographic hash function (i.e.,
OANk

i = Hash(OANk−1
i ||ASi||k − 1) for 1 6 k 6 M ),

and distributes OANM
i when advertising a route. We en-

gage ASi and k − 1 in generating OAN to produce dis-
tinct OAN sequences for different ASes and initial OANs
respectively. A BGP speaker uses OANk

i during a prede-
fined interval; and changes it to OANk−1

i in the next in-
terval. Hence, without breaking the hash function, an at-
tacker cannot construct the valid sequence of OANk

i s to be
used. A (ingress) router can authenticate OANk

i by comput-
ing Hash(OANk

i ||ASi||k) and comparing it with OANk+1
i .

This OAN authentication is performed only once for every
OAN renewal. Once OANk

i is used, OANk+1
i is invalidated.

Note that if the OAN renewal period is less than the time
required for replaying OANs, replay attacks will be effec-
tively prevented. The length of a OAN hash chain (M) is
determined in consideration of the OAN renewal period to
avoid frequent OAN distribution. For example, if a 20-bit
sequence number (M≈ 1 million) and 500ms OAN renewal
period are used, a domain needs to advertise its OAN once
in every six days. We also note that routers in different do-
mains need not be time-synchronized as an OAN carries its
sequence number that is specific to the domain.

5. Dynamic Virtual Queueing
In this section, we describe a dynamic virtual queueing

mechanism for link-access guarantees on path-identifiers.
Our dynamic virtual queueing mechanism is designed to
assign a separate queue to active path-identifiers and pro-
vide queue length fairness to the path-identifiers in a min-
max manner. For these purposes, a router manages vir-
tual queues rather than physically separate queues, that are
distinguished by the path-identifier (Si), its count at time
t (NSi(t)) and packet location (memory address) (ASi) in

the buffer; i.e., (Si, NSi(t), ASi). Given these tuples and
the buffer size LQ, queue-length fairness on path-identifiers
(minmaxSi∈S NSi

(t) for
∑

Si∈S NSi
(t) = LQ) can be

described by the following buffer-slot preemption policy.
If a packet finds the buffer full on its arrival, it preempts
a buffer-slot from the longest virtual queue. If the ar-
rived packet belongs to the longest virtual queue, or its pre-
emption produces another longest virtual queue, it would
be dropped. This preemption policy ensures guaranteed
buffer-slots to each path-identifier if the number of buffered
path-identifiers is bounded. We assume that the number of
buffered path-identifiers can be statistically or determinis-
tically bounded by |S|max at a router (i.e., the minimum
bandwidth to a legitimate path-identifier can be determined).

5.1. Implementing Buffer-slot Preemption

For efficient and scalable accounting of virtual queue
lengths, we use a new Counting Bloom Filter (CBF) that
holds the number of buffer-slots occupied by path-identifiers
and provides lookup, add and remove operations in O(1)
time (a modified version of CBF [6]). CBF consists of m
counter arrays of size 2b (a1, a2, . . . , am) and m hash func-
tions of b-bit output (H1,H2, . . . ,Hm), where ai is asso-
ciated with Hi. For an input to CBF, each hash function
maps its output to the corresponding array position; e.g.,
ai[Hi(S1)] corresponds to the input S1 for 1 6 i 6 m.

Path-identifier accounting in CBF works as follows. All
array values are initialized to zero. When a packet is added
to the buffer, its path-identifier is fed into CBF. Then, CBF
locates m array positions for the path-identifier, and in-
creases the corresponding array values. The same applies
to a packet removal from the buffer, yet the counter val-
ues are decreased. In this scheme, the limited hash out-
put size (i.e., 2b) could cause hash-output collisions among
path-identifiers. Such collisions would make corresponding
array values increased by multiple path-identifiers, hence
corrupted. However, unless all of the array values associ-
ated with Si are corrupted, we can compute the count of
buffered Si’s by taking the minimum of the array values;
i.e., min{a1[H1(Si)], a2[H2(Si)], ..., am[Hm(Si)]}. Since
the probability that all m array values of a path-identifier are
corrupted is (1 − (1 − (1/2b))|S|)m for |S| buffered path-
identifiers [7], we can make the probability negligible by
increasing the array size (2b) or the number of arrays (m).

Path-identifiers that occupy more buffer slots than the
guaranteed amount (i.e., bLQ

|S| c) should be kept track of for
possible preemption. To this end, a router maintains a ta-
ble, named Path-Identifier Record (PIR), that holds over-
buffered path-identifiers, their counts and corresponding
packet locations. In PIR, a path-identifier is stored as the
concatenation of m hash outputs of it, defined as “path-
signature.” This enables fast buffer-slot preemption because
the preempted packet’s path-signature would directly locate



array values that need to be decreased in CBF.

5.2. Probabilistic Guarantees

If the packet arrivals of path-identifier Si are modeled as
a Poisson process and k buffer-slots are allocated to Si, the
probabilistic lower bound of Si’s link access (denoted by
G(|S|, k, Si)) is provided as follows.

G(|S|, k, Si) = (5.1)
{ ∑k−1

j=0

(kρSi
)j

j!
e−kρSi ρSi

< 1

1
ρSi

(1− GL)(1−∑∞
j=k

(kρSi
)j

j!
e−kρSi

( j
k−1

)Gk−1
L ) ρSi

> 1

where λSi
is the request rate of Si, ρSi

= λSi
|S|

CR
is the band-

width utilization of Si, and GL =
∑k−1

j=0
(kρSi

)j

j! e−kρSi .
We justify the Poisson arrival model of capability re-

quests with two reasons: (1) during the short interval that the
guarantees are defined (i.e., the maximum queueing delay
of a router ∆Q), the capability requests by different clients
can be assumed independent; and (2) a single capability can
be used for multiple correlated sessions that need to be es-
tablished for most Web applications. Under this model, if
ρSi < 1, an arrival of Si is guaranteed to be serviced if less
than k arrivals of Si has occurred in ∆Q. If ρSi > 1, an
arrival of Si is guaranteed to be serviced only if its queue
length is less than k. Thus, Eq. (5.1) can be easily proved.
The probabilistic guarantee of Si’s link-access is provided
by setting |S| = |S|max and k = b LQ

|S|max
c.

5.3. Resource Requirements
5.3.1 Request Packet Buffer
A large buffer (LQ) for capability request packets is prefer-
able since it would not only improve the guarantees (viz.,
Eq. (5.1)) but also handle the requests from spontaneously
created, short-lived paths. However, the size of the buffer
should be bounded in consideration of the maximum al-
lowed queueing delay to avoid unnecessary retries at flow
sources. For example, if we assume 0.25 second maxi-
mum queueing delay and 128B5 request packet size, for a
2.5 Gbps link 6, a router requires 4.0 MB buffer (when 5%
of link bandwidth is allocated for capability requests [21]),
and with which it can provide 8 guaranteed buffer slots up
to 3.75K path-identifiers.

5.3.2 Path-Identifier Accounting
The memory requirement for CBF is determined by a tar-
get false-positive ratio. The false positive ratio of a CBF

is determined by
(
1− (1− 1

2b )|S|
)m ≈

(
1− e−

|S|
2b

)m

=(
1− e−

LQ

k·2b

)m

since LQ = k · |S|. Hence, for a desired

5We reserve 88B shim header: 40B for path-identifiers (up to 10 AS
markings), 8B for an origin authenticator and 40B for 5 capabilities.

62.5Gbps (OC–48) links are widely used for ISP’s backbone links.

false positive ratio, the size of each counter array in CBF,
which is same as the size of hash output (2b), is linear with
the buffer size (i.e., Θ(LQ)). For example, a CBF with 8
hash functions of 14-bit outputs would require 8× 214 (hash
outputs) ×28 (counter) = 131KB memory space while pro-
ducing a reasonably low false positive ratio (3.07× 10−4%)
in the presence of 3.75K path-identifiers.

PIR holds the path-identifiers whose count exceeds bLQ

|S| c
for possible preemption. Hence, the memory requirement
is bounded by LQ/(k + 1)× (16B (path-signature) + 4B
(address pointer)) (e.g., 60KB for the above example), since
the number of path-signatures in PIR has its maximum when
all path-identifiers have k + 1 packets in the buffer. Hence,
the memory requirement for both CBF and PIR is Θ(LQ).

6. Path Aggregation

In this section, we first describe a mechanism for estimat-
ing the proportion of legitimate requests of individual path-
identifiers, and then, a path-identifier aggregation mecha-
nism that maximizes the goodput ratio, defined as the pro-
portion of legitimate requests in all serviced requests, at a
congested link. Aggregating path-identifiers produces an
optimal traffic tree to which applying our queueing mech-
anism maximizes goodput ratio at the congested link.

6.1. Goodput Estimation

In absence of any other useful information regarding the
origin of attack sources and the path-identifiers assigned to
them, the request rate of path-identifier Si (λSi ) can be used
as a unique measure for estimating the goodput ratio of Si.
We define the bandwidth conformance of path-identifier Si

as min{1, CR

λSi
|S|max

} to represent how the request rate of
Si conforms to the assigned bandwidth to it, and denote it
by EBRi

, i.e., EBRi
= min{1, CR

λSi
|S|max

} (recall that Si is as-
signed to all packets originating from Ri).

Additionally, we estimate domain contamination more
accurately by identifying the following attack flows.

Unauthorized flows: A capability issued by a router dur-
ing the connection establishment phase of a flow must be
used at least once for actual data transmission unless it is
denied afterward by application services, firewalls or IDSs.
Thus, the proportion of unused capabilities could effectively
measure domain contamination as it reflects the strong flow
authorization results applied at the network ends.

High-rate flows: Flows that send high-rate traffic using
valid capabilities would exhibit high packet-drop rates as in-
dicated in [10]. Hence, if a router implements per-domain
bandwidth control,7 high-rate attack flows within a domain
can be identified by capability drop rates.

7Flows in different domains could exhibit different drop rates due to
different RTTs.



High-fanout sources: If sources are allowed to establish
an unlimited number of connections with other destinations
through the congested link, they can deplete link’s band-
width with a large number of legitimate-looking flows [17].
This insidious attack will be prevented if a router limits the
number of per-source capabilities as follows.

Let Cfs,d
be the capability for a flow fs,d between a

source s and a destination d. Cfs,d
consists of two parts,

namely Cfs,d
= C0

fs,d
||C1

fs,d
. Here, Ck

fs,d
is defined as:

C0
fs,d

= Hash(IPs, IPd, K1
R)

C1
fs,d

= Hash(IPs, f(IPd), K2
R)

where IPs and IPd are the source and destination IP ad-
dresses, K0

R and K1
R are the router’s secret keys, and f(·) is a

function whose output is randomly uniform on [0, nmax-1].
C0

fs,d
provides identifier authenticity to flows [20, 21],

and C1
fs,d

restricts the number of per-source capabilities to
nmax by taking f(IPd) as a hash input. If C1

fs,d
is used

for estimating flow bandwidth, flows of high-fanout sources
would be identified as high-rate flows.

The above attack-flow identification measures help esti-
mate the proportion of legitimate flows in flows carrying Si,
which we define as the protocol conformance of Si and de-
note by EPRi

.
Based on the bandwidth and protocol conformances, the

conformance estimate ERi of Si, representing the estimate
of Si’s goodput ratio, is defined as:

ERi = e
− γ·λSi

|S|max

CR (EBRi
− EPRi

) + EPRi

ERi(tj) = (1− α)ERi + αERi(tj−1)

where γ and α are the weighting coefficients.
The conformance estimate of Si is the weighted aver-

age of the bandwidth conformance and the protocol con-
formance, where the weighting factor exponentially favors
the protocol conformance as sufficient requests have been
made.8 We determine ERi at time tj by taking the moving
average of ERis, and update it once in every aggregation pe-
riod (∆agg); i.e., tj − tj−1 = ∆agg .

6.2. Aggregation Problem

For path aggregation, the congested router R0 builds the
traffic tree TR0 using the path identifiers carried in the ac-
tive flows and decomposes it as a legitimate tree T LR0

and an
attack tree T AR0

. T LR0
is constructed with legitimate path-

identifiers that have higher conformance estimates than a
certain threshold (Eth), and T AR0

is constructed with the other
(non-legitimate) path-identifers. Then, the router constructs
a new traffic tree T ′R0

by merging those two trees at the root

8An insufficient number of requests from a domain could bias the do-
main’s protocol conformance; e.g., unexpected packet drops of a low-rate
path-identifier would result in a very low protocol conformance.

(i.e., the disjoint union of T LR0
and T AR0

). Path aggregation
is performed on this new traffic tree T ′R0

, so that legitimate
paths would never be aggregated with attack paths.

The congested router starts path aggregation from neigh-
boring domains (i.e., domains with longest suffix-matching
path-identifiers) to localize attack effects, and proceeds with
aggregation until a desired number of path reductions are
made (viz., Eq. (6.1)). Aggregation is performed with
respect to the conformance estimates of paths since link-
access guarantees should not be biased by the request rates
of paths. Hence, if the number of access-guaranteed path-
identifiers is |S|max, the path aggregation problem is to con-
struct an optimal tree which has |S|max distinct paths and to
which providing link-access guarantees maximizes goodput
ratio at the congested link. This can be defined as a con-
strained optimization problem below.

Let R be the set of all nodes in T ′R0
, and Ri be the set of

leaf nodes of a subtree rooted at Ri ∈ T ′R0
(i.e., TRi). Then,

the optimization problem is defined as:

max O(T ′R0) =
∑

Ri∈R

1

|Ri|
∑

Rj∈Ri

ERj (6.1)

subject to
∑

Ri∈R
IRi 6 |S|max and

⊔
Ri∈R

Ri = R0

where IRi equals 1, if paths are aggregated at Ri, and 0,
otherwise. For a non-aggregated path, IRi is 1 at the leaf
node. Since

∑
Si∈S IRi is the number of path identifiers

seen at R0, it should be bounded by |S|max.
In the above equation, aggregation at Ri decreases the

total conformance estimate by |Ri|−1
|Ri|

∑
Rj∈Ri

ERj . We
define this value as the aggregation cost and denote it by
CA(Ri); i.e., CA(Ri) = |Ri|−1

|Ri|
∑

Rj∈Ri
ERj . Hence, a set

of nodes at which aggregating path-identifiers produces the
minimum (total) aggregation cost, would be a solution to the
above problem.

We note that, if the set of aggregating nodes (routers)
are fixed, the optimization problem of Eq. (6.1) is the
same as the 0-1 knapsack problem9 which is known to be
NP-complete. In Eq. (6.1), however, the set of aggregat-
ing nodes and the relative aggregation cost of a leaf node
( |Ri|−1
|Ri| ERj , Rj ∈ Ri) vary as aggregation proceeds to the

root. This means the 0-1 knapsack problem should be solved
repeatedly as the set of aggregating nodes is redefined. We
present an efficient algorithm for this problem below.

6.3. Aggregation Algorithm

Whenever aggregation is necessary (i.e., |S| > |S|max),
aggregation is performed as summarized in Algorithm 1.
Let O be the solution set and C be the candidate set. Ini-
tially, O is empty and C has all intermediate (i.e., non-leaf)

9 CA(Ri)
|Ri| can be considered as the unit value of an element, |Ri| as

the size of an element, and |S| − |S|max as the knapsack size in the 0-1
knapsack problem.
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Figure 3: Topology used in simulation.
Legend: “d” is the number of sibling nodes and “h” is the tree height.

nodes in T ′R0
as its elements. Then, the algorithm works

in a greedy fashion: for each iteration, the node that causes
the lowest cost-decrease to C is added to O, and this con-
tinues until the constraint on the number of path identifiers
in Eq. (6.1) is satisfied. Though Algorithm 1 is a greedy
approximation algorithm, it ensures that the total cost of the
candidate set decreases minimally at each iteration. As a
consequence, its approximation error from the optimal ag-
gregation cost is bounded by the number of incoming links
of the last added node to O. Due to space limitation, the
proof of this is not included, but can be found in [9].

Algorithm 1 Aggregation
1: Set O = ∅ and C = {Ri|Ri ∈ T ′R0 −R0}.
2: Move the lowest aggregation cost node in C to O.
3: Ri ∈ C replaces the current solution set if it satisfies the fol-

lowing replacement conditions:

• CA(Ri) <
∑

Rj∈O CA(Rj)

• CA(Ri) > maxRj∈O CA(Rj)

4: Repeat steps 2 and 3 until the constraint on the number of
path-identifiers (in Eq. (6.1)) is satisfied.

7. Simulation Results

In this section, we present our ns2 simulation results
for various attack scenarios to evaluate our design. Net-
work topologies for simulations are configured to capture
the worst case effect of different attacks and to ascertain how
well our design goals are satisfied. The balanced tree shown
in Fig. 3 is used for simulations that evaluate the access
guarantees and the effectiveness of aggregation. The unbal-
anced tree is used to show that our scheme effectively pro-
vides access guarantees to domains independently of their
location on a routing path. We assign 5% of link capacity
to the capability request channel as in [21]. In most sim-
ulations, the total request rate of legitimate sources is set
close to the link capacity of request channel (i.e., ρSi ≈ 1
for legitimate domains) to accurately capture the effects of
attacks. Requests are randomly placed during the specified
simulation interval to approximate Poisson arrivals.

We compare our simulation results with those of TVA
[21], which protects capability requests using a hierarchical
fair-queueing algorithm.

7.1. Link-Access Guarantees

To evaluate the local effect of flooding attacks in our
scheme, we use a 27-path balanced tree, where 30 legitimate
sources are attached to each leaf node, and attack sources are
increased at a leaf node. In this simulation, we set the num-
ber of access-guaranteed paths (|S|max) to 27 and the buffer
size to that of 108 packets so that 4 buffer-slots are guaran-
teed to each path. Each source randomly starts 100 different
sessions (which is equivalent to 100 times more sources)
between 0 and 10 seconds. This source configuration is
used for entire simulations. We also run simulations with
a TVA [21] router configured to have 1000 queues of length
4 (as TVA requires distinct queues for individual sources in
the current implementation) for comparative evaluation.

As Fig. 4 shows, the request drop ratios of legitimate
paths are stable over the wide range of attack strengths with
both our scheme and TVA. That is, both schemes effectively
localize flooding attacks when compared with the no de-
fense case. Note that a per-client defense would have the
same result as that of no defense when bots are used to
flood the link. Yet, our scheme outperforms TVA with a
much smaller buffer (108 vs. 4000 buffer-slots). This is be-
cause our scheme dynamically adjusts virtual-queue lengths
in a min-max manner, which in effect allows more than the
guaranteed buffer-slots to path-identifiers unless their bursts
are synchronized (in which case, only the guaranteed buffer-
slots hold).

To illustrate the robustness of the guarantees that our
scheme provides, we configure an extreme adversarial sce-
nario where 60 paths of a 64-path balanced tree (i.e., h = 3
and d = 4 in Fig. 3) send a large number of requests, and ob-
serve the service ratio of the remaining 4 paths. Fig. 5 shows
the probabilistic guarantee (G(|S|, k, Si), viz., Eq. (5.1)),
the stationary service probability (P (|S|, k, Si))10, and the
simulation result (Pr(|S|, k,SL)) for the set of legitimate
path-identifiers SL, under specified bandwidth utilizations
– the ratio of request rate to an allocated bandwidth. Even
under this extreme attack scenario, the service ratio of legit-
imate paths is close to the theoretical stationary packet ser-
vice probability, which is much higher than the probabilistic
guarantees, as illustrated in the figure.

Next, we show that link-access guarantees provided by
our scheme are independent of attack location. For this sim-
ulation, we use a 40-path unbalanced tree shown in Fig. 3.
We attach 30 legitimate sources to each leaf node, and 200

10For k guaranteed buffer-slots, the stationary packet service probability

of Si is determined by P (|S|, k, Si) = 1− ρk
Si

(1−ρSi
)

1−ρk+1
Si

. This is derived

from the blocking probability of a M/M/1/k queueing system.
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Figure 6: Request drop ratio of legitimate paths
with respect to attack location in the unbalanced
tree. TVA(k) represents the result of TVA with
queue-length k.

attack sources to each of eight attack nodes; four of these
nodes are placed at different locations for each simulation
and the remaining four nodes are placed at the farthest lo-
cation from the flooded link. In this scenario, we simulate
the queue implementation for G(34, 8, Si), G(64, 4, Si) and
G(64, 8, Si), and those for the corresponding 4 and 8-slot
queues in a TVA router (i.e., 4000 and 8000 total buffer-
slots respectively). Fig. 6 shows the request drop ratios of
legitimate paths, where the horizontal axis represents the in-
dex of attack location (viz., unbalanced tree in Fig. 3). With
our scheme, the request drop ratios are uniform over differ-
ent attack locations. This means our scheme provides almost
same protection against flooding attacks regardless of the at-
tackers’ location. In contrast, TVA’s performance is highly
dependent upon attackers’ location since TVA assigns more
buffer space to nearby domains (viz., Section 2).

7.2. Aggregation Effect

Path-identifier aggregation, which optimizes domain
bandwidth allocation when attack sources are widely dis-
persed across domains, occurs whenever the number of ac-
tive paths (|S|) becomes greater than the number of access-
guaranteed paths (|S|max). In Fig. 6, the result of the queue
implementation for G(34, 8, Si) illustrates the effectiveness
of aggregation. As aggregation increases bandwidth allo-
cation to legitimate paths by a factor of |S|−|S|max

|S|max
(i.e.,

6/34 ≈ 17.6% in that simulation), the request drop ra-
tio of those paths decreases 76.8% (from 6.43% to 1.49%)
when compared with that of the queue implementation for
G(64, 4, Si) (under which no path aggregation occurs). This
is far below the stationary drop probability of legitimate
paths (i.e., 1 − P (|S|, 8, Si) ≈ 5.32%) which would result
when physically separate queues are assigned to those paths.

We also evaluate the effectiveness of the protocol con-
formance measure in aggregating attack paths. For this, we
configure a 64-path balanced tree such that the same number
of nodes are attached to leaf nodes to make the request rates
of all paths identical. Then, we set |S|max to 34 (which lim-
its the number of attack path-identifiers by at most two) and
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Figure 7: Aggregation by protocol conformance: The request service ratio
of legitimate paths increases as the fraction of bots becomes higher.

increase the fraction of attack sources whose capability re-
quests are denied at the destination host, from 10 to 100% in
half of the leaf nodes. Note that the bandwidth conformance
measure alone cannot distinguish attack paths from legiti-
mate ones when the same request rates occur in all paths.

As Fig. 7 shows, aggregation is more precisely per-
formed on attack paths (which leads to higher service ratios
of legitimate paths) as the fraction of attack sources in con-
taminated domains grows. When domains are lightly con-
taminated (i.e., the fraction of attack sources is less than
40% in this simulation), legitimate paths can be aggregated.
This is because aggregating attack paths near the attack tar-
get (i.e., multi-level aggregation of those attack paths) pro-
duces a higher aggregation cost than aggregating legitimate
paths near their origins. Relatively high cost of multi-level
aggregation also causes high service-ratio variation to legit-
imate paths, as a result of imprecise distinction between le-
gitimate and attack paths.

7.3. Rolling Attacks

Another simulation we performed is that of the “rolling
attacks”, whereby attack sources change their location to ex-
ploit delays in the response time of any defense mechanism.
For this simulation, we attach 16 attack nodes at 4 differ-
ent locations in the unbalanced tree (i.e., at node 1,2,9 and
10) of Fig. 3 and place 200 attack sources in each attack
node. We configure a rolling attack such that attack sources
attached to node 1 and 10 flood the target for 10 seconds
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and the other attack sources for the next 10 seconds with a
20-second period.

In Fig. 8, we illustrate the time variation of goodput ra-
tio (viz., Section 6) at the congested link averaged over 10
runs. The goodput ratio is very low at the beginning of the
simulation, since attack requests go through the target link
before being preempted by legitimate ones. However, as
buffer-preemption occurs (as soon as the buffer is filled) and
aggregation starts (around t = 2), the goodput ratio rises
sharply. Changing attack location significantly decreases the
goodput ratio as the number of attack path-identifiers at the
congested router increases four times (i.e., from 2 aggre-
gated path-identifiers to 8 path-identifiers). However, these
effects disappear whenever a new aggregation decision is
made on the switched attack paths in ∆agg (which is set to
20·RTT ≈ 2 seconds in this simulation).

8. Concluding Remark

In this paper, we present a defense scheme against
link flooding attacks targeting connection setups in capa-
bility systems. Our design of a new authenticated path-
identification mechanism provides individual packets with
unforgeable domain identifiers to which link-access guar-
antees are provided at remote routers. Guarantees of link
access, defined as the probabilistic lower bounds of link ac-
cess, are provided in a domain basis and they are provided
differentially based on domain contaminations. Simulation
results show the effectiveness of our design: link-access
guarantees that are independent of global attack sources and
their location, and resilience against attack dispersion via
differential guarantees. Differential link-access guarantees
would provide positive incentives to administrative domains
that employ strong security measures against malware con-
tamination.
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