
Looking for Diamonds in the Desert — Extending Automatic Protocol
Generation to Three-Party Authentication and Key Agreement Protocols�

Adrian Perrig
perrig@cs.berkeley.edu

Dawn Song
dawnsong@cs.berkeley.edu

Computer Science Department
University of California, Berkeley

Abstract

In this paper, we describe our new results in developing
and extending Automatic Protocol Generation (APG), an
approach to automatically generate security protocols. We
explore two-party mutual authentication and key agreement
protocols, with a trusted third party (TTP) which shares a
symmetric key with each of the two principals. During the
process, we experienced the challenge of a gigantic protocol
space (even after we limit the protocol complexity and size,
and after constraining message format and sending order,
we estimate the state space at 1012 protocols!). Facing this
challenge, we develop more powerful reduction techniques
for the protocol generator. We also develop new pruning
theorems and probabilistic methods of picking goal order-
ings for the protocol screener, Athena, which greatly im-
prove the efficiency and worst-case performance of Athena.

In our first experiment, APG found new protocols for
two-party mutual authentication with a TTP using symmet-
ric keys. In our second experiment, APG also found new
protocols for three different sets of security properties for
two-party authentication and key agreement. Our new list
of security properties for key agreement also uncovered an
undocumented deficiency in the Yahalom protocol.

�We gratefully acknowledge support for this research from several US
government agencies. This research was suported in part by the Defense
Advanced Research Projects Agency under DARPA contract N6601-99-
28913 (under supervision of the Space and Naval Warfare Systems Center
San Diego), by the National Science foundation under grant FD99-79852,
and by the United States Postal Service under grant USPS 1025 90-98-C-
3513. Views and conclusions contained in this document are those of the
authors and do not necessarily represent the official opinion or policies,
either expressed or implied of the US government or any of its agencies,
DARPA, NSF, USPS.

1 Introduction

1.1 Motivation for Automatic Protocol Genera-
tion

The current process of designing a security protocol is
usually ad-hoc and involves little formalism and mechanical
assistance. Such a design process is not only slow but also
error-prone. Evidence shows that even when security pro-
tocols are designed with care and examined intensely (even
over time of years), they can still be fundamentally flawed.
A classic example is the Needham-Schroeder public-key
mutual authentication protocol [NS78], in which Gavin
Lowe discovered a flaw 18 years later [Low96]. Due to the
lack of formalism and mechanical assistance, manually de-
signed protocols often contain undocumented assumptions
and hence can lead to implementation errors. Further, sim-
ply because a manual design process cannot search a large
number of candidates, it may not find the optimal protocol
for the given system requirements.

Hence, it is desirable to explore a different approach,
automatic protocol generation (APG for short). With
APG, the protocol designer specifies the desired security
requirements, such as authentication and secrecy, and sys-
tem specification, e.g., symmetric or asymmetric encryp-
tion/decryption, low bandwidth. A protocol generator then
generates candidate security protocols which satisfy the
system requirements. In the final step, a protocol screener
analyzes the candidate protocols, discards the flawed pro-
tocols, and outputs the correct protocols that satisfy the de-
sired security properties.

The approach of APG is fully automatic and provides
high confidence and high quality of protocols. Since the
input specifications are written in a well-defined specifica-
tion language and the APG is fully automatic, there are no
hidden assumptions. The protocol screener has a power-
ful engine which can automatically generate a proof of cor-

1

rectness if a protocol is correct, or a counterexample oth-
erwise. The user-defined system requirements includes a
metric function which specifies the cost or overhead of a
protocol. APG tries to generate correct protocols with min-
imal cost with respect to a metric function hence suits the
system requirements the best.

1.2 Results in this Paper

In this paper, we describe our new results in develop-
ing and extending Automatic Protocol Generation (APG)
to explore two-party mutual authentication and key agree-
ment protocols with TTP using symmetric keys. During
the process, we experienced the challenge of a gigantic pro-
tocol space (even after we limit the protocol complexity
and size, and after constraining message format and send-
ing order, we estimate the protocol space at 1012 proto-
cols!). Facing this challenge, we develop powerful reduc-
tion techniques for the protocol generator. We also develop
new pruning theorems and probabilistic methods of pick-
ing goal orderings for the protocol screener, Athena, which
greatly increase the efficiency and worst-case performance
of Athena. In our first experiment, APG found new pro-
tocols for two-party mutual authentication with TTP using
symmetric keys. In our second experiment, APG also found
new protocols for three different sets of security properties
for two-party authentication and key agreement in the same
setting. Our new list of security properties for key agree-
ment also discovered an undocumented deficiency in the
Yahalom protocol [CJ97]. In fact, APG found protocols
which have the same cost as the Yahalom but stronger se-
curity properties. APG also found protocols which have the
same security properties as Yahalom but with a smaller cost.

The remainder of this paper is organized as follows. In
Section 2 we briefly review the main concepts and meth-
ods of automated protocol generation. Section 3 describes
the reduction techniques for the protocol generator. We de-
scribe improvements to the protocol screener Athena in Sec-
tion 4. Section 5 describes our new results in automatically
generate two-party mutual authentication protocols, where
both parties share a symmetric key with a trusted third party.
In the same setting we also analyze protocols for key agree-
ment, which provide key secrecy, freshness, and key confir-
mation.

2 APG Overview

The approach of Automatic Protocol Generation (APG)
was firstly introduced by Perrig and Song [PS00]. As shown
in Figure 1, APG consists of three stages. First, the protocol
designer enters the security requirements and system speci-
fication into the protocol generator (PG). Second, based on
the system specification, PG generates candidate protocols

along with verification conditions (VC) for each protocol.
Finally, the protocol screener (PS) verifies all VC’s of each
protocol. If all VC’s of a protocol are correct, PS outputs it
as a correct protocol. In the remainder of this Section, we
explain each of these components in more detail.

Metric
Function

Initial
Setup

System Specification

Security
Requirements

Protocol
Generator

Candidate
Protocols

Protocol
Screener

Optimal
Protocols

Figure 1. APG overview

2.1 Specification of System Requirements and Se-
curity Properties

The system requirements are specified as a metric func-
tion and a specification of the initial setup. The initial sys-
tem configuration defines which cryptographic primitives
are available to the principals and what keys each principal
possesses. For example, in a PKI environment, all proto-
col parties know their own private key and the public keys
of the other principals, whereas in a symmetric-key environ-
ment the principals have shared secret keys. Hybrid systems
are also possible.

The metric function corresponds to the cost or overhead
of the protocol. An example for metric design is to make the
metric correspond to the time overhead of the protocol. In
a system such as a smart-card, encryption can be fast while
the bandwidth between the card and the card reader may be
low, in which case the metric function specifies a low cost
for encryption, whereas the cost of sending and receiving
messages is high.

The metric function is required to monotonically in-
crease as the protocol complexity increases. This require-
ment is necessary during the protocol generation phase,
where all the protocols up to a maximum cost threshold are
generated.

The metric function defines an ordering among the pro-
tocols generated. The screener analyzes the protocols in the
order of increasing cost,1 hence the first correct protocol has
a minimal cost-value with respect to the metric function.
Given a specification of security properties and system re-
quirements, we say that a protocol is optimal if it has the
lowest cost-value with respect to the metric function among
protocols that satisfy the security properties and the system
requirements.

The security properties are specified using predicates in
a logic. Later in the paper, we describe in more detail how

1All protocols are sorted after the generation step, since the generation
might not generate them in strictly increasing order

2

Message ::= Atomic j Encrypted j Concatenated

Atomic ::= Principalname j Nonce j Key

Encrypted ::= (Message;Key)

Key ::= PublicKey j PrivateKey j SymmetricKey

Concatenated ::=Message List

Figure 2. Message grammar

Concat

A B Encr

Concat Kb

A B

Figure 3. An example message tree

APG specifies properties such as authentication, key agree-
ment, and key secrecy.

2.2 Protocol Representation

A protocol defines a sequence of actions of the partici-
pating parties. The actions include sending and receiving
messages. We call each sending and receiving of a message
one round of the protocol and the first message as the first
round of the protocol. Messages are defined by the grammar
shown in Figure 2. The grammar can be easily extended if
needed.

Each message can be represented as a tree with the
atomic messages as leaves and operations as intermedi-
ate nodes. Figure 3 shows an example for the message:
A;B; fA;BgKB . We define the depth of a message as the
depth of the tree representing that message. For example, in
Figure 3 the depth of the message tree is 4.

2.3 The Protocol Generator

The purpose of the protocol generator is to generate can-
didate protocols that satisfy the specified system specifica-
tion and to generate VCs according to the security require-
ments. Intuitively, the protocol space is infinite. Hence, we

need a way to limit the number of candidate protocols gen-
erated while not omitting any potential optimal protocols.

Our primary method to solve this problem is to use iter-
ative deepening, a standard search technique [RN95]. In
each iteration, we set a cost threshold of protocols. We
then search through the protocol space to generate all the
protocols below the given cost threshold. After sorting the
protocols, the protocol screener tests them in the order of
increasing cost. If one protocol satisfies the desired prop-
erties, it is minimal with respect to the cost metric and the
generation process stops. Otherwise, we increase the cost
threshold and generate more protocols.

2.4 Protocol Screener

The automatic protocol screener needs to be sound and
efficient. Given a candidate protocol, the protocol screener
has to be able to examine the protocol and tell whether it is
correct or not. Since the protocol generator generates thou-
sands of candidate protocols, the protocol screener needs to
be highly efficient to find the optimal protocol in a reason-
able amount of time.

We use Athena [Son99], a recently introduced auto-
matic checker for security protocol analysis, as the proto-
col screener. Athena has the ability to analyze protocol ex-
ecutions with any arbitrary protocol configuration. When
Athena terminates, it either provides a proof that a protocol
satisfies its specified property under any arbitrary protocol
configuration if it is the case, or it generates a counterex-
ample if the property does not hold. To be efficient, Athena
also exploits many state space reduction techniques which
highly reduces the state space.

3 Protocol Generation

The protocol generation for two-party authentication and
key agreement protocols with TTP is particularly challeng-
ing, due to the vast protocol space. Our estimate shows that
the space of protocols we search is on the order of 1012,
(see Appendix D for details on this estimate). Our protocol
generator generates and analyzes 10000 protocols per sec-
ond, which would take over three years to explore the entire
space. Clearly, we need to apply powerful protocol space
reduction techniques to make APG practical.

In this section, we first introduce some notions about
reductions and then describe some specific reduction tech-
niques we use in the protocol generator.

3.1 Notions

Early-pruning / late-pruning reduction. An early-
pruning reduction prunes a protocol after inspecting only
its initial rounds, i.e. the first and second round. On the

3

contrary, late-pruning reductions remove protocols after in-
spection of almost all the rounds. Clearly, early-pruning re-
ductions are much more efficient since they prune the state-
space exploration at an early stage.

Minimal correct protocol / decorated protocol. A min-
imal correct protocol is a correct protocol, which becomes
flawed as soon as any message component is removed. An
decorated protocol is derived from a minimal correct proto-
col by adding message terms to the protocol, such that the
resulting protocol is still correct. It is desirable to prune
the decorated protocols in the protocol generation process,
since we are only interested in minimal correct protocols.

Lossless / quasi-lossless / lossy reduction. A protocol-
space reduction technique is lossless if it does not prune
any correct protocols. A quasi-lossless reduction may prune
some decorated protocols, but never prune minimal correct
protocols. A lossy reduction may also lose optimal pro-
tocols. From our experience, the quasi-lossless reductions
are often early-pruning reductions and more aggressive than
lossless reductions, which is very effective in limiting the
search space. Ideally, we would like to use only lossless
and quasi-lossless reductions.

3.2 Reduction Techniques

The reduction techniques consist of simple syntactical
restriction rules and more sophisticated pruning algorithms.
We assume that messages are well-typed. Namely, we
do not consider type flaws. Furthermore, during proto-
col generation process, we do not consider permutations
of message components of a concatenated message. In
other words, two concatenated messages will be considered
equivalent if they only differ in the ordering of their com-
ponents. This highly reduces the protocol space although
it is a lossy reduction. In Section 5 we show that this re-
duction does lose the optimal protocol in one of our exper-
iments and we also show our method to fix this problem.
For convenience, we use A to denote the initiator, B for the
responder and S for TTP in the rest of this section.

Syntactical restriction rules

The following is some of the syntactical restriction rules
we use in the protocol generator. We believe most of the
syntactical restriction rules are quasi-lossless although we
do not prove it here.

1. Sending-order restrictions. These rules prevent impos-
sible sending orders, such as A ! B;S ! A;S !

B;A! B. Such a sending sequence makes no sense,
since S cannot know that A wants to initiate a proto-
col with B. Because the following rules ensure a sane
sending order, it is intuitive to see that these reductions
are lossless.

� A always starts. B and S can only start sending if
they have received a message.

� Each principal must send and receive at least one
message in the protocol.

� No principal sends two messages consecutively
to the same receiver without receiving any mes-
sage in between.

2. Message-level restrictions. Since the following reduc-
tions operate on the message level, they prune mes-
sages in each round and are therefore early-pruning re-
ductions.

� In any concatenated message, there are no redun-
dant message components, i.e., NA; NA.

� No long-term initial keys are sent in a message.

� Never use nested encryptions which use the same
key twice consecutively, i.e. no ffXgKAgKA :

� No useless encryptions. For example, don’t send
an encrypted message which only contains prin-
cipal names.

3. Protocol-level restrictions. These reductions operate
on the entire protocol and therefore fall into the cate-
gory of late-pruning reductions.

� Check that both parties receive the session key
during the protocol in the case of key agreement.

� Nonce-flow requirements for freshness. If a prin-
cipal wants to authenticate another principal or
check the freshness of a session key, it has to gen-
erate a nonce and receives it back as a different
form.

� The final message in a protocol should not con-
tain any part which the recipient cannot decrypt.

Early-pruning by simple impersonation attack

A good strategy to speed up the APG process is to sub-
ject each protocol to a simple and efficient analysis, which
filters out a large number of trivially flawed protocols. Pre-
viously, PG uses an impersonation attack to rule out a ma-
jority of protocols failed the authentication property. This
attack tests whether an adversaryM , who eavesdrops all the
messages, can generate the same messages as a legal princi-
pal P , in which case M can impersonate P . In our previous
experiments, PS (Athena) analyzes 10 protocols per second,
but PG can perform a simple impersonation attack to prune
protocols at 10000 per second. Although this technique was
already efficient, it was a late-pruning reduction. Because
of the gigantic protocol space we faced in the new experi-
ments, we improved this reduction to be early-pruning by

4

using the following observation: a principal can only save
itself from an impersonation attack by sending a message
which its impersonator cannot generate. Therefore, if the
number of principals which can be impersonated is larger
than the number of rounds remaining, we can prune the cur-
rent message. In the case of three-party and four-round au-
thentication protocols, this reduction already starts pruning
messages in the second round, and is therefore much more
efficient than before.

4 Improvements on Athena

4.1 Overview of Athena

Athena is developed by Dawn Song [Son99, SBP00]. It
uses the Strand Space Model (SSM) [THG98] to represent
protocol executions. Athena uses a logic suitable for SSM
to express various security properties, such as authentica-
tion, secrecy, and key agreement. It uses an automatic pro-
cedure for evaluating well-formed formulas in this logic.
If the evaluation procedure terminates, it generates either a
proof or a counterexample, depending on the validity of the
formula.

Intuitively, the automatic procedure is an efficient ex-
haustive search for all possible protocol executions that
satisfy certain constraints. Athena uses a special state
structure, semi-bundle, to represent sets of protocol execu-
tions efficiently. When the search procedure terminates, it
reaches a finite set of leaf-states which correspond to the
possibly infinite set of all protocol executions satisfying
given constraints. Hence, Athena can reason about security
properties of a protocol in an arbitrary configuration and
with unbounded number of concurrent runs by simply ana-
lyzing the finite set of leaf states.

In the rest of this section, we describe some new im-
provements on Athena which enables it to analyze thou-
sands of the synthesized protocols.

4.2 New Pruning-theorems

Athena exploits several state space reduction techniques
to reduce the state space that needs to be explored. Be-
sides backward search and symbolic representation with
SSM, it also has the advantage that it can systematically
incorporate results from theorem proving through pruning-
theorems. Pruning-theorems are statements about whether
a state is a contradictory state. A state is a contradicotory
state if no bundle can contain it, and hence, can be pruned
from the search tree immediately. Pruning-theorems can be
either specific to a particular protocol, or general theorems
that are not restricted to any concrete example. In the latter
case they can be proven once and for all and included in the
core of the tool.

In [GT00], Guttman and Thayer introduce the notion of
transforming / transformed edges and the theorems of au-
thentication tests. The authentication theorems are effective
as pruning-theorems to reduce the state space, although it
has the limitation that it cannot allow certain terms to be
encrypted (more specifically, the second clause of defini-
tion 4.2). In our experience of APG for three-party key
agreement protocols, most of the generated protocols vio-
late this condition. Hence, we extend the concept of au-
thentication tests and prove some new theorems without the
original limitation. These theorems play an important role
in speeding up the analysis of the large number of the syn-
thetic three-party key agreement protocols. We describe the
new pruning-theorems in the following. Please refer to Ap-
pendix A for more details on SSM and Appendix C for the
proofs of the new theorems.

Definition 4.1. The edge n1)+ n2 is a transformed edge
for a 2 A if n1 is positive, n2 is negative, a @ term(n1);

and there is a new component t2 of n2 such that a @ t2.
Symmetrically, n1)+ n2 is a transforming edge for

a 2 A if n1 is negative, n2 is positive, a @ term(n1); and
there is a new component t2 of n2 such that a @ t2: (As
Definition 2.4 in [GT00]).

Definition 4.2. t = fjhjgK is a test component for a in n

if:

1. a @ t and t is a component of n;

2. If t is a proper subterm of a component of n 0, then n0

is not regular, for every n0 2 �:

As Definition 2.5 in [GT00].

Definition 4.3. We define a relationship a �K m, iff. a is
an atomic message, andm = ftgK ; where a is a component
of t.

Proposition 4.1. Every non-empty subset of the nodes in a
bundle C has �C-minimal members. (As Proposition A.6
in [GT00].)

Lemma 4.2. Let C be a normal bundle with n)+ n0 in C:
If a uniquely originates from n, and in term(n); a is only
in subterm t1 @ n and a �K t1, and a @ n0; t1 6@ n0:

Then there exists a transforming edge m)+ m0 for a and
t1 @ m; and there is a new subterm t2 @ m0; a @ t2 and
t1 6@ t2:

Moreover, if K�1
62 P; then there exists a transforming

edge as described above which lies on a regular strand.

The proof sketch is in Appendix C.

Lemma 4.3. Let C be a bundle with n)+ n0 2 C: If a
uniquely originates from n, and in term(n0); a�K t1 and
t1 @ n0; t1 6@ n: Then there exists a transforming edge
m)+ m0; where t1 @ m0; t1 6@ m; a @ m:

5

Moreover, if K 62 P; then there exists a transforming
edge as described above which lies on a regular strand.

The proof sketch is in Appendix C.

Lemma 4.4. LetC be a bundle with a negative noden 2 C:
If in term(n); a �K t1 and t1 @ n;K 62 P: Then there
exists a positive regular node m 2 C; where t1 @ m:

The proof is similar to the previous.

4.3 Probabilistic methods for picking goal order-
ings

In Athena, the search procedure is based on goals and
goal-bindings. Intuitively, goals are the received messages.
For any goal, there has to be a sender who sends the goal the
first time. Goal-binding is to bind to the goal to its earliest
sender. If a state contains a goal which cannot be bound, the
state is a contradictory state and is pruned from the search.
Otherwise, after the goal-binding of a goal, a set of next-
states will be generated. Every state has a set of goals. The-
oretically, the search procedure can choose the goals with
any arbitrary ordering. An optimized ordering, however,
would lead to a much smaller state space because it can
prune many contradictory states at an early stage, while a
poor goal ordering can result in a very large state space or
even non-termination. Athena has some built-in heuristics
on how to choose the goal orderings. For example, mes-
sages which are encrypted with a secret key have a higher
ranking than others. These heuristics work well in general.
But in the process of checking the synthesized protocols, the
heuristics can perform poorly on some uncommon cases. In
order to prevent the worst-case performance on the heuris-
tics, we apply probabilistic methods for picking the goal
orderings. Basically, the search procedure uses the ranking
from the heuristics to assign the probability of picking each
goal in a state. This alleviates the worst-case performance
on the heuristics. It is worth to point out that probabilistic
methods are used in artificial intelligence for searching of
plans, but seldom used in theorem proving for searching of
proofs.

5 Automatic generation of protocols for two-
party authentication and key agreement
with TTP using symmetric keys

In this section, we first introduce how to specify secu-
rity properties in Athena. Then we describe our results in
automatic generation of protocols for two-party authentica-
tion with TTP. Finally we show our findings in automatic
generation of protocols for two-party authentication and key
agreement with TTP.

For convenience, we use A to represent an arbitrary le-
gitimate initiator, B for an arbitrary legitimate responder, S
for the legitimate TTP, I for the intruder, Na for the nonce
generated by A, Nb for the nonce generated by B, KAS

for the symmetric key between A and S, KBS for the sym-
metric key between B and S, and Kab for the session key
generated by S. The experiments are done on a Pentium III
PC with 256M of memory. All the experiments have the
same metric functions: all the atomic operations have the
same unit cost. Figure 4 shows the GUI of APG we used in
the experiments.

5.1 Specification of security properties

Athena uses a logic on strand space model to specify se-
curity properties. It contains nodes, strands and bundles
as literals, noted as n; s; c respectively, and atomic propo-
sition s 2 c: Well-formed formulae (wffs) are composed
from atomic propositional formulae with the usual connec-
tives and quantifiers over the bundle variables. Please refer
to Appendix B for more details.

We use the notation Resp(~x) to represent the responder
strand with the parameter list ~x; and Init(~x) to represent the
initiator strand in the paper. For example, the formula

8C:Resp[A;B; S;Na; Nb;Kab] 2 C =)

Init [A;B; S;Na; Nb;Kab] 2 C

means that for any bundle C, if strand Resp with the
binding A;B; S;Na; Nb; Kab is in C, then the strand Init

with the same binding must also be in C:

5.2 Authentication with TTP using symmetric
keys

The specification of the authentication properties are as
follows:

If A completes the protocol run with B in a session with
Na and Nb, then there must be a unique responder protocol
run with the same binding of parameters. The same holds
for B also.

1.

8C:Init [A;B; S;Na; Nb] 2 C =)

Resp[A;B; S;Na; Nb] 2 C

The uniqueness of the protocol run ofB is achieved by
the freshness of Nb generated in the protocol run.

2.

8C:Resp[A;B; S;Na; Nb] 2 C =)

Init [A;B; S;Na; Nb;] 2 C

The uniqueness of the protocol run of A is achieved by
the freshness of Na generated in the protocol run.

6

Figure 4. APG GUI

After analyzing 140; 275 protocols, the protocol genera-
tor output 473 candidate protocols. Using less than 10 min-
utes, Athena found two optimal protocols:

1.

A! B : NA; A

B ! S : fNA; NB; AgKBS ; B

S ! A : fNA;NB ; A;BgKAS
A! B : NB

2.

A! B : NA; A

B ! S : fNA; NB; A;BgKBS ; B

S ! A : fNA;NB ; BgKAS
A! B : NB

Interestingly, APG missed the following real optimal proto-
col:

A! B : NA; A

B ! S : fA;NA; NBgKBS ; B

S ! A : fNA; NB; BgKAS
A! B : NB

The reason is because APG ignores the permutation of
components in a concatenated message. So APG generated
the following protocol instead and Athena pruned it because
it is flawed.

A! B : NA; A

B ! S : fNA;NB ; AgKBS ; B

S ! A : fNA; NB; BgKAS
A! B : NB

Obviously, the reduction on ignoring the permutation of
components in a concatenated message is a lossy reduction.
But it is such a powerful reduction that we cannot remove
it. Hence, we add a new rule to APG to solve this problem.
Basically, the protocol generator would detect when the pro-
tocol contains two messages with the same format. When

this occurs, the protocol generator will change the order of
the concatenated components in one of the two messages to
make it a different format and output a new protocol. After
this fix, APG was able to find the real optimal protocol.

5.3 Authentication and key agreement with TTP
using symmetric keys

The security properties for key agreement is much more
complex, including key freshness, key confirmation and key
secrecy. We first give a complete list of the specifications of
different security properties. We then describe the optimal
protocols found by APG with different sets of desired secu-
rity properties.

Our list of formal specifications of the security properties
are more complete than the ones in [SM95]. For example,
we distinguish between weak key freshness and strong key
freshness, while [SM95] does not consider the strong key
freshness. In fact, the Yahalom protocol [CJ97] has been
proven to have key freshness property by [DNL99]. But
actually Athena proved that Yahalom only has the weak key
freshness, not the strong key freshness property.

5.3.1 Specification of security properties

1. Authentication between the initiator and the responder

If A completes the protocol run with B in a session
withNa andNb, then there must be a unique responder
protocol run with the same binding of parameters. The

7

same holds for B also.

8C:Init [A;B; S;Na; Nb; �] 2 C =)

Resp[A;B; S;Na; Nb; �] 2 C

The uniqueness of the protocol run ofB is achieved by
the freshness of Nb generated in the protocol run.

8C:Resp[A;B; S;Na; Nb; �] 2 C =)

Init [A;B; S;Na; Nb; �] 2 C

The uniqueness of the protocol run ofA is achieved by
the freshness of Na generated in the protocol run.

2. Weak key freshness with server authentication

IfA completes a protocol run and accepts a session key
Kab in a session withB and nonceNa, then there must
be a unique protocol run of server S with Kab for the
session between A and B with nonce Na. The same
holds for B also.

8C:Init [A;B; S;Na; �;Kab] 2 C =)

Srv [A;B; S;Na; �;Kab] 2 C

8C:Resp[A;B; S; �; Nb;Kab] 2 C =)

Srv [A;B; S; �; Nb;Kab] 2 C

The uniqueness of the protocol run of S is achieved by
the freshness of Kab generated in the protocol run.

3. Strong key freshness with server authentication

If A completes a protocol run and accepts a session
key Kab in a session with I and nonce Na, then there
must be a unique protocol run of server S with Kab for
the session betweenA and I with nonceNa. The same
holds for B also.

8C:Init [A; I; S;Na; �;Kab] 2 C =)

Srv [A; I; S;Na; �;Kab] 2 C

8C:Resp[I; B; S; �; Nb;Kab] 2 C =)

Srv [I; B; S; �; Nb;Kab] 2 C

The uniqueness of the protocol run of S is achieved by
the freshness of Kab generated in the protocol run.

This property is stronger than the weak key freshness
property, because in this property even when A (or B)
is having a session with I , I cannot trick A (or B) to
accept a key that is not freshly generated by S for the
session.

4. Weak key confirmation between the initiator and the
responder

IfA completes the protocol run and accepts the session
key Kab with B in a session with Na, then there must

be a responder protocol run with the same binding of
parameters. The same holds for B also.

8C:Init [A;B; S;Na; �;Kab] 2 C =)

Resp[A;B; S;Na; �;Kab] 2 C

8C:Resp[A;B; S; �; Nb;Kab] 2 C =)

Init [A;B; S; �; Nb;Kab] 2 C

5. Strong key confirmation between the initiator and the
responder

IfA completes the protocol run and accepts the session
key Kab with B in a session with Na; Nb, then there
must be a unique responder protocol run with the same
binding of parameters. The same holds for B also.

8C:Init [A;B; S;Na; Nb;Kab] 2 C =)

Resp[A;B; S;Na; Nb;Kab] 2 C

The uniqueness of the protocol run ofB is achieved by
the freshness of Nb generated in the protocol run.

8C:Resp[A;B; S;Na; Nb;Kab] 2 C =)

Init [A;B; S;Na; Nb;Kab] 2 C

The uniqueness of the protocol run of A is achieved by
the freshness of Na generated in the protocol run.

6. Key secrecy

IfA completes the protocol run and accepts the session
key Kab with B, then the intruder cannot learn Kab:

The same holds for B also.

8C:Init [A;B; S;Na; Nb;Kab] 2 C =) :F [Kab] 2 C

8C:Resp[A;B; S;Na; Nb;Kab] 2 C =) :F [Kab] 2 C

where F [Kab] is an attacker strand with Kab as its
term, meaning that the attacker can get Kab in clear-
text.

5.3.2 New protocols

We did experiments using APG to find optimal protocols
which satisfy three different sets of the security properties
as shown in Table 1. The protocol generator output more
than 11; 000 candidate protocols. Athena took less than
two hours to analyze them. We list our findings as follows.
Property-set 1 is the strongest among the three. Protocol-set
S1 has a higher cost than S2 and S3 while S2 and S3 have
the same costs. Interestingly, Yahalom protocol, shown in
Figure 5, has the same costs as protocol-set S1 but only
achieves the same security properties as protocol-set S2. In
fact, the Yahalom protocol was generated by the protocol
generator but Athena found a counterexample of the strong

8

Yahalom : A! B : NA; A

B ! S : fNA;NB ; AgKBS ; B

S ! A : fSKAB ; AgKBS ; fSKAB;NA; NB; BgKAS

A! B : fSKAB ; AgKBS ; fNBgSKAB

Figure 5. Yahalom Protocol [CJ97]

key freshness property in Yahalom. The counterexample
simply shows that if B is a responder in a protocol run with
the intruder I as the initiator, I can easily make B to accept
an old key as the “fresh “ session key generated by S. In
some applications, if the session key is also used for some
other purposes, e.g. the hash of the session key is used as
a transaction ID (of course, such a usage of session keys
might not be recommended at the first place), the strong
key freshness could be important.

� Protocol-Set S1 satisfies the first set of the security
properties:

1.

A! B : NA; A

B ! S : fNA;NB ; AgKBS ; B

S ! A : fSKAB;NBgKBS ; fSKAB ;NA; NB ; BgKAS
A! B : fSKAB;NBgKBS ; fNBgSKAB

2.

A! B : NA; A

B ! S : fNA;NB ; AgKBS ; B

S ! A : fSKAB;NBgKBS ; fSKAB ;NA; NB ; BgKAS
A! B : fSKAB;NBgKBS ; ffSKAB;NBgKBSgSKAB

Note that APG considers the two protocols have the
same cost because in the last message in the second
protocol, fSKAB; NBgKBS is just a bit string that A
received fromS and therefore it is equivalent cost-wise
with NB in the last message of the first protocol from
A’s point of view.

� Protocol-Set S2 satisfies the second set of the security
properties:

1.

A! B : NA; A

B ! S : fNA;NB ; AgKBS ; B

S ! A : fSKABgKBS ; fSKAB;NA; NB; BgKAS
A! B : fNBgSKAB ; fSKABgKBS

2.

A! B : NA; A

B ! S : fNA;NB ; AgKBS ; B

S ! A : fSKAB;NA;NB ; B; fSKABgKBSgKAS
A! B : fNBgSKAB ; fSKABgKBS

� Protocol-Set S3 satisfies the third set of the security
properties:

A! B : NA; A

B ! S : fNA; NB; AgKBS ; B

S ! A : fSKAB; NBgKBS ; fSKAB; NA;NB ; BgKAS
A! B : NB ; fSKAB; NBgKBS

6 Conclusion

As the protocol complexity increases, the protocol space
grows exponentially. To analyze complex authentication
and key-agreement protocols with three parties and four
rounds, we needed to add aggressive state reduction tech-
niques to the protocol generator. The increased number of
protocols also put a heavy burden on Athena, our proto-
col screener. We also extended Athena with new pruning
theorems and a probabilistic method to pick goal orderings
which improves the overall efficiency and worst-case per-
formance of Athena.

It is clear that the task of APG is increasingly difficult as
we attack more complex protocols. The reward, however, is
to find novel and highly efficient protocols with new prop-
erties. Especially in the second experiment we did, APG
found different optimal protocols for three different sets of
security properties. The difference in these protocols are
so subtle that it is difficult for a person to invent them for
each different security property. This nicely illustrates the
necessity and usefulness of APG.

Acknowledgements

We would like to thank Joshua Guttman and Javier
Thayer for introducing the authentication test theorems to
us. We would also like to thank Doug Tygar and George
Necula for his encouragement and advice on this work.

References

[CGP99] Edmund Clarke, Orna Grumberg, and Doron
Peled. Model Checking. MIT Press, 1999.

[CJ97] J. Clark and J. Jacob. A survey
of authentication protocol literature.
http://www.cs.york.ac.uk/˜jac/papers/drareview.ps.gz,
1997. Version 1.0.

[DNL99] Ben Donovan, Paul Norris, and Gavin Lowe.
Analyzing a library of security protocols using
casper and fdr. In Workshop on Formal Methods
and Security Protocols, 1999.

[DY89] D. Dolev and A. Yao. On the security of public
key protocols. IEEE Transactions on Information
Theory, 29(2):198–208, March 1989.

[GT00] Joshua D. Guttman and F. Javier Thayer. Au-
thentication tests. In To appear in Security and
Privacy Symposium’00, 2000.

[Low96] G. Lowe. Breaking and fixing the Needham-
Schroeder public-key protocol using FDR. In

9

A auth B B auth A Weak key
freshness
(A&B)

Strong key
freshness
(A&B)

Weak key conf (A
to B)

Key secrecy Optimal pro-
tocols

1 X X X X X X S1
2 X X X X X S2
3 X X X X X S3

Table 1. Three sets of security properties

Tools and Algorithms for the Construction and
Analysis of Systems, volume 1055 of Lecture
Notes in Computer Science, pages 147–166.
Springer-Verlag, 1996.

[Low97] G. Lowe. A hierarchy of authentication specifi-
cations. In Proceedings of the 1997 IEEE Com-
puter Society Symposium on Research in Security
and Privacy, pages 31–43, 1997.

[Mea95] C. Meadows. Formal verification of crypto-
graphic protocols: A survey. In Advances in
Cryptology - Asiacrypt ’94, volume 917 of Lec-
ture Notes in Computer Science, pages 133–150.
Springer-Verlag, 1995.

[NS78] R. Needham and M. Schroeder. Using encryption
for authentication in large networks of comput-
ers. Communications of the ACM, 21(12):993–
999, 1978.

[PS00] Adrian Perrig and Dawn Song. A first step to-
wards the automatic generation of security proto-
cols. In Network and Distributed System Security
Symposium, February 2000.

[RN95] Stuart Russell and Peter Norvig. Artificial Intelli-
gence: A Modern Approach. Prentice Hall Series
in Artificial Intelligence, 1995.

[SBP00] Dawn Song, Sergey Berezin, and Adrian Perrig.
Athena, a new efficient automatic checker for se-
curity protocols. Submitted to Journal of Com-
puter Security, 2000.

[SM95] Paul Syverson and Catherine Meadows. For-
mal requirements for key distribution protocols.
In Advances in Cryptology – EUROCRYPT ’94,
Lecture Notes in Computer Science, volume 950,
1995.

[Son99] Dawn Song. Athena: An automatic checker for
security protocol analysis. In Proceedings of the
12th Computer Science Foundation Workshop,
1999.

[THG98] F.Javier Thayer, Jonathan C. Herzog, and
Joshua D. Guttman. Strand spaces: Why is a se-
curity protocol correct? In Proceedings of 1998
IEEE Symposium on Security and Privacy, 1998.

[WL93] T. Y. C. Woo and S. S. Lam. A semantic model
for authentication protocols. In Proceedings of
the IEEE Symposium on Research in Security
and Privacy, 1993.

A The strand space model

Actions. The set of actions Act that principals can take
during an execution of a protocol include external actions
such as send and receive, and user-defined internal actions
such as debit, credit, etc.. In the rest of the paper, we will
only use send and receive for simplicity.

Events. An event is a pair haction, argui, where action
is in Act, and argu is in (A) and is the argument of the ac-
tion. For simplicity, we denote hsend, ai and hreceive, ai
respectively as signed terms h+ai andh�ai. We represent
the set of finite sequences of signed terms as (�A)�.

Strands and Strand Spaces. A protocol defines the se-
quence of events for each role of the participant. A strand
represents a sequence of actions of an instance of a role.

A strand space is a set � with a trace mapping tr: � !
(�A)�.

1. A node is a pair hs; ii, with s 2 � and i an integer
satisfying 1 � i � length(tr(s)). We say n = hs; ii

belongs to the strand s, denoted as n 2 s. Clearly,
every node belongs to a unique strand. The set of nodes
is denoted by N .

2. If n = hs; ii 2 N , then index(n) = i and strand(n) =
s. If (tr(s))i = h�ai, where � is one of the symbols
+;�, then term(n) = a.

3. If n1; n2 2 N , then n1 ! n2 means that term(n1) =

+a and term(n2) = �a. This represents that n1 sends
a message a and n2 receives the message.

4. If n1; n2 2 N , then n1) n2 means that n1; n2 occur
in the same strand with index(n2) = index(n1) + 1.
This represents an event n1 followed immediately by
n2 in the same strand.

10

5. A term t originates from a noden 2 N iff sign(n)= +;
t v term(n); and whenever n0 precedes n on the same
strand, t 6v term(n0).

6. A term t uniquely-originates from node n iff t origi-
nates on a unique n 2 N . Nonces and other freshly
generated terms are usually uniquely-originated.

We will also use N to refer to the directed graph (N;E)

whose vertices are nodes and E = (! [)) is the set of
edges that combines both types of relations n1 ! n2 and
n1) n2.

Bundles. A bundle represents the protocol execution un-
der some configuration.

A bundle C = (NC ; E) is a subgraph of N , where E �
(! [)) is the set of the edges and NC � N is the set
of nodes incident with the edges in E, and the following
properties hold:

� C is non-empty and finite;

� If n1 2 C and sign(n1) = �, then there is a unique n2
such that n2 ! n1 2 C;

� If n1 2 C and n2) n1, then n2) n1 2 C;

� C is acyclic.

We say a strand s 2 C if for every node n 2 s, n 2 C.
Causal Precedence. Let S be a strand space, nodes

n1,n2 2 S. Define n1 �S n2 iff there is a sequence of zero
or more edges of type! and) leading from n1 to n2 in S.
The relation �S expresses a causal precedence.

Lemma A.1. Suppose C is a bundle, then �C is a partial
order, i.e. a reflexive, antisymmetric, transitive relation. Ev-
ery non-empty subset of the nodes in C has �C-minimal
members.

The proof of this lemma can be found in [THG98].

B The logic

B.1 Syntax

The syntax of terms consists of strand constants
(s; s1; : : :) and bundle variables (C; : : :). A strand constant
may represent a partial strand, and in particular, a single
node can be considered as a strand constant.

Propositional formulas are defined as follows:

� s 2 C is an (atomic) propositional formula;

� :f1 and f1 ^ f2 are propositional formulas if f1 and
f2 are propositional formulas.

Finally, well-formed formulas (wffs) are:

� f , :F1, F1 ^ F2;

� 8C: f , where f is a propositional formula, which
doesn’t contain any other variable than C.

Here f is a propositional formula, F1 and F2 are wffs, and
C is a bundle variable.

Notice, that in a wff 8C: f , the formula f needs to be
propositional, and cannot contain any other variables than
C. In addition, we allow only negative occurrences of
atomic formulas in f that reference penetrator strands. An
occurrence of an atomic formula � in f is called negative if
� appears under the scope of odd number of negations. We
also use the obvious abbreviations:

f1 _ f2 � :(:f1 ^ :f2)

f1 =) f2 � :f1 _ f2
f1 () f2 � (f1 =) f2) ^ (f2 =) f1)

9C:f � :8C::f

B.2 Semantics

Let the set of nodes be N . For a given protocol p, de-
fine the set of all strands for this protocol (both regular and
penetrator ones) as �p; its execution traces form a set of
bundles Dp. A model Mp for a given protocol p is a tu-
ple Mp = (N ; �p; Dp; I), where I is the interpreta-
tion of strand constants and bundle variables. We write
M 0 = M [I(C) c] for some bundle c to denote a new
model M 0 which is identical to M except that I 0(C) = c.
The semantics of formulas in our logic is the following:

� I(s) 2 �p and I(C) 2 Dp are a strand and a bundle
respectively, that are assigned to the constant s and the
variable C by the interpretation I.

� M j= s 2 C iff I(s) 2 I(C).

� If f is a propositional formula or a wff, then M j= :f
iff M 6j= f .

� If f1 and f2 are propositional formulas or wffs, then
M j= f1 ^ f2 iff M j= f1 and M j= f2.

� M j= 8C:f iff 8c 2 Dp:M [I(C) c] j= f .

B.3 Specify security properties in the logic

Our logic can express a variety of security properties,
including ones for authentication, secrecy, and electronic
commerce. In this paper we mainly focus on the authenti-
cation and secrecy. We use similar ways for representing
security properties as in [THG98], however, we formulate
them using well-formed formulas in our logic.

11

Authentication.

Gavin Lowe [Low97] proposed agreement properties for
authentication protocols. A protocol guarantees an agree-
ment property for a participant B (e.g. acting as a respon-
der) for a certain vector of parameters ~x, if each time the
principal B completes a run of the protocol as a responder
using ~x, supposedly with A, then there is a unique run of
the protocol with the principal A initiating a session with
the same parameters ~x, supposedly with B.

A weaker non-injective agreement does not ensure
uniqueness, but requires only that each time a principal B
completes a run of the protocol as responder using ~x, sup-
posedly with A, then there is a run of the protocol with the
principal A as the initiator using ~x, supposedly with B.

The non-injective agreement property can be specified in
our logic as:

8C:Resp(~x) 2 C =) Init(~x) 2 C;

where Resp(~x) and Init(~x) are the responder and the ini-
tiator strands instantiated with parameters ~x. For example,
in the NSL protocol, the non-injective agreement property
can be specified as

8C:Resp[A;B;Na; Nb] 2 C =) Init [A;B;Na; Nb] 2 C:

Here ~x = [A;B;Na; Nb]. Because of the freshness of the
nonces generated in the protocol run, usually the agree-
ment property can be proven after the non-injective agree-
ment property is proven, with the argument that there can-
not be two strands Init(~x) 2 C since the nonces in Init(~x)

are uniquely originated from only one strand. Namely, in
the NSL protocol Na is uniquely-originated in the strand
Init [A;B;Na; Nb].

Secrecy.

A value v is secret in a strand setW if for every bundle C
that containsW there is no way for the intruder to receive
v in cleartext; that is, the strand F[v] does not appear in any
C:

8C:W � C =) :F[v] 2 C:

For example, when W contains only a single responder
strand Resp(~x), we can specify the secrecy property as:

8C: fResp(~x)g � C =) :F[v] 2 C:

C Proofs of Pruning Theorems

Lemma C.1. Let C be a normal bundle with n)+ n0 in
C: If a uniquely originates from n, and in term(n); a is
only in subterm t1 @ n and a�K t1, and a @ n0; t1 6@ n0:

Then there exists a transforming edge m)+ m0 for a and

t1 @ m; and there is a new subterm t2 @ m0; a @ t2 and
t1 6@ t2:

Moreover, if K�1 62 P; then there exists a transforming
edge as described above which lies on a regular strand.

Proof sketch. Consider the set of nodes � in C as the set
of nodes satisfying the following property: for each node
ni 2 �; a @ ni; t1 6@ ni: Because n0 2 �; � is not empty.
By Proposition 4.1, there is at least a �-minimal member,
denoted as n0: Because n 62 �; n 6= n0:

Because a uniquely originates from n; there must exist
an edge n00)

+ n0 in C and a @ n00: Thus, n00 62 �: There-
fore, t1 @ n00: By definitions, n00)

+ n0 is a transforming
edge for a.

Now we need to prove that if K�1 62 P; then n00)
+ n0

lies on a regular strand.
Suppose otherwise: Then n00)

+ n0 lies either on a D-
or and E-strand. First, suppose n00)

+ n0 lies on a D-
strand, then the key edge of this D-strand cannot be K �1

because we have assumed that K�1
62 P: Suppose n00 =

fjhjgK0 ; K 0 6= K�1: So t1 @ h; which contradicts that
t1 6@ n0: So n00)

+ n0 cannot lie on a D-strand.
Second, suppose that n00)

+ n0 lies on an E-strand, then
n0 = fjh

0jgK00 : So t1 6@ h0;which contradicts that t1 @ n00:

So n00)
+ n0 cannot lie on an E-strand. strand.

Hence, n00)
+ n0 lies on a regular strand.

Lemma C.2. Let C be a bundle with n)+ n0 2 C: If
a uniquely originates from n, and in term(n0); a �K t1
and t1 @ n0; t1 6@ n: Then there exists a transforming edge
m)+ m0; where t1 @ m0; t1 6@ m; a @ m:

Moreover, if K 62 P; then there exists a transforming
edge as described above which lies on a regular strand.

Proof sketch. Define the set of nodes � in C as the set of
nodes containing t1 as a subterm: for each node ni 2

�; t1 @ ni: Because n0 2 �; � is not empty. By Propo-
sition 4.1, there is at least a�-minimal member, denoted as
n0: Because n 62 �; n 6= n0:

Because a uniquely originates from n; there must exist
an edge n00)

+ n0 in C and a @ n00: Because n00 62 �;

t1 6@ n00: By definitions, n00)
+ n0 is a transforming edge

for a.
Now we need to prove that if K 62 P; then n 0

0)
+ n0

lies on a regular strand.
Suppose otherwise: Then n00)

+ n0 lies either on a D-
or and E-strand. First, suppose n00)

+ n0 lies on a D-
strand, then n00 = fjhjgK0 : So t1 @ h; which contradicts
that t1 6@ n00: So n00)

+ n0 cannot lie on a D-strand.
Second, suppose that n00)

+ n0 lies on an E-strand, then
n0 = fjh0jgK00 ; K 00 6= K: So t1 @ h0; which contradicts
that t1 6@ n00: So n00)

+ n0 cannot lie on an E-strand.
Hence, n00)

+ n0 lies on a regular strand.

12

D Estimate of the size of the protocol space

This estimate is based on the average number of mes-
sages that a principal can generate in a given round of the
protocol. We observed that in a four-round three-party au-
thentication and key agreement protocol (both A and B

share a secret key with S), A generates over 100 different
messages to B, which in turn generates 500 distinct mes-
sages on average and forwards them to S. Since S has two
encryption keys, the number of messages it can generate
is much higher and the average is 30000. In the final round
bothA andB can generate around 500 messages. The prod-
uct of these average number of messages is on the order of
1012. We validated this estimate with a different message
flow (i.e. A ! S ! B ! A) and we reached the same
conclusion. We would like to point out that we made these
measurements during a protocol generation run which we
used to generate the candidate protocols for our study. The
maximum protocol cost was limited to 19 and the message
depth was limited to 4. The above estimate therefore ap-
proximates the size of the searched space.

13

