
N-Tube: Formally Verified Secure Bandwidth
Reservation in Path-Aware Internet Architectures

Thilo Weghorn∗
Swisscom

thilo.weghorn@swisscom.com

Si Liu∗
ETH Zurich

si.liu@inf.ethz.ch

Christoph Sprenger
ETH Zurich

sprenger@inf.ethz.ch

Adrian Perrig
ETH Zurich

adrian.perrig@inf.ethz.ch

David Basin
ETH Zurich

basin@inf.ethz.ch

Abstract—We present N-Tube, a novel, provably secure, inter-
domain bandwidth reservation algorithm that runs on a network
architecture supporting path-based forwarding. N-Tube reserves
global end-to-end bandwidth along network paths in a distributed,
neighbor-based, and tube-fair way. It guarantees that benign
bandwidth demands are granted available allocations that are
immutable, stable, lower-bounded, and fair, even during adversarial
demand bursts.

We formalize N-Tube and powerful adversaries as a labeled
transition system, and inductively prove its safety and security
properties. We also apply statistical model checking to validate
our proofs and perform an additional quantitative assessment of
N-Tube, providing strong guarantees for protection against DDoS
attacks. We are not aware of any other complex networked system
designs that have been subjected to a comparable analysis of both
their qualitative properties (such as correctness and security) and
their quantitative properties (such as performance).

I. INTRODUCTION

Providing useful guarantees during DDoS attacks remains
an open problem. The increasing sophistication of attacks has
not yet been countered by progress in scalable, cost-effective
defenses. Sophisticated attacks do not target the victim directly,
but just a few critical network links carrying the victim’s traffic.
For example, in Crossfire, a botnet sends low-volume flows to
public servers that are chosen to flood critical links required for
the victim’s traffic [1]. Similarly, in Coremelt, an adversary sets
up traffic flows among pairs of bots that it controls in a way
that floods critical links [2]. In these strongest known attacks,
an attacker with limited resources can effectively attack critical
links and degrade connectivity for large Internet regions [3].
Current techniques cannot defend against such attacks since
the congestion hotspots are outside the victims’ control.

DDoS protection can be realized by an effective quality of
service (QoS) scheme that provides hard bandwidth guarantees
in the face of sophisticated adversaries. Since best-effort
delivery and over-provisioned network bandwidth enable good
performance in the average case, offering QoS guarantees
requires fair resource allocation even when bandwidth becomes
scarce [4]. Previous QoS architectures, such as IntServ [5],
DiffServ [6], and RSVP [7] were designed for the Internet with
trusted network participants, not for adversarial scenarios. It
remains an open research problem how to allocate bandwidth

∗Joint first authors. The main part of this work was done while Thilo
Weghorn was at ETH Zurich.

in malicious contexts such that legitimate hosts obtain useful
bandwidth guarantees.

A core challenge is that current link-flooding attacks can
be caused by a huge number of low-volume flows originating
from colluding legitimate-looking bots, e.g., as seen in the
Hidden Cobra DDoS Botnet Infrastructure [8]. Therefore,
standard fairness notions that QoS solutions try to achieve,
such as per source [9], per destination [10], per flow [11],
per computation [12], and per class [13], are insufficient in
such settings and result in unfair bandwidth allocations. These
fairness notions suffer from the “tragedy of the commons” [14],
whereby the incentive of rational agents to increase their share
of a commonly available resource leads to infinitesimally
small shares for less aggressive, honest agents. In particular,
in today’s Internet, congestion-control-based fairness is the
most commonly used per-flow fairness notion, which allows
adversarial agents to request arbitrarily many flows and thereby
obtain a disproportional amount of bandwidth compared to
honest agents [15]. Moreover, current QoS architectures lack
packet authentication, which is required to monitor and enforce
the allocated bandwidth in the presence of malicious agents.

Secure Bandwidth Allocation. From the discussion above,
we extract the following two main requirements for secure
bandwidth allocation. First, we need a suitable notion of fairness
for adversarial settings, and second, we seek to provide a
minimal bandwidth guarantee to honest agents, even in the
presence of excessive adversarial demands. Moreover, given
the complexity of bandwidth allocation algorithms and the
unpredictability of adversarial behaviors, we provide the formal
specification and verification of their desired properties. There
is currently no proposal satisfying these requirements.

In contrast to the current Internet, new Internet architectures
supporting path-based forwarding provide the prerequisites to
achieve these requirements. Instead of using frequently updated
forwarding tables, as in today’s Internet, they leverage path-
based forwarding where the paths taken by data packets stay
fixed and correspond to the reserved paths. This simplifies rea-
soning about resource allocation. SCION [16], NEBULA [17],
Pathlets [18], and NIRA [19] are prominent examples of
such architectures, where the first already sees real-world
deployment [20], [21]. Moreover, SCION and ICING [22]
(which is part of the NEBULA architecture) already include
packet authentication, which is needed for monitoring and

enforcing the correct use of allocated bandwidth.

N-Tube Algorithm. We present N-Tube, a new Neighbor-based,
Tube-fair bandwidth reservation algorithm, designed to achieve
the above requirements. N-Tube introduces a novel notion of
allocation fairness called bounded tube fairness. N-Tube is
designed for networks that support path-based forwarding and
prevents link congestion attacks, including the strongest known
attacks like Coremelt and Crossfire. It is thus also robust against
standard link-flooding attacks, including amplification attacks.
To allocate bandwidth on a path, each on-path autonomous
system (AS) computes and allocates bandwidth locally while
accounting for other reservations.

N-Tube builds on two key ideas. First, to always enable the
allocation of some (non-zero) bandwidth, N-Tube only uses a
fixed fraction of the available bandwidth, saving the rest for
future reservation requests. By guaranteeing that the reserved
bandwidth stays unchanged until expiry, N-Tube also enables
a predictable stabilization period for the bandwidth allocations
during times of stable bandwidth demands.

Second, with bounded tube fairness, each AS’s aggregated
bandwidth demands are first bounded by the available band-
width, and then split proportionally among its immediate
network neighbors. Hence, if a malicious AS (outside the
honest path) tries to congest a link, the first honest AS
between the attacker and targeted link limits the adversarial
demands, thereby preventing it from obtaining a disproportional
share of bandwidth on that link. Consequently, N-Tube also
guarantees any honest source AS a lower bound on the
allocated bandwidth, independently of the desired destination.

Verification Approach. Inter-domain bandwidth reservation
is, in general, a difficult problem with complex bandwidth
allocation dynamics especially for operation in adversarial
environments. This necessitates the verification of any pro-
posed bandwidth reservation algorithm to validate its intended
properties, in particular to establish both qualitative correctness
and security guarantees as well as quantitative guarantees about
the system’s bandwidth allocation dynamics. The verification of
N-Tube’s qualitative and quantitative properties is particularly
challenging for several reasons: its desired properties must
hold in the presence of a powerful adversary and for arbitrary
network topologies. Moreover, the model involves unbounded
state information and the verification requires non-linear arith-
metical reasoning about bandwidth allocation. These features
are notoriously hard to handle for automated verification tools.

We tackle this problem by using a combination of math-
ematical proofs for the qualitative properties and statistical
verification and estimation for the quantitative properties. For
qualitative guarantees, we verify N-Tube’s correctness and
security by: (i) formalizing the algorithm, together with the
network environment and attackers, as a labeled transition
system (LTS), (ii) specifying the safety and security properties
as predicates over LTS executions, and (iii) proving by
induction using careful pencil-and-paper proofs that the formal
model satisfies these properties.

For quantitative guarantees, we analyze N-Tube’s stabil-

ity and fairness properties using statistical model checking
(SMC) [23]. SMC has been successfully used to analyze large-
scale distributed systems and has demonstrated its predictive
power when used in early design stages, i.e., its estimations
are consistent with implementation-based evaluations under
realistic deployment [24], [25]. SMC samples and analyzes
system executions until a given confidence level is reached. We
transform our LTS model into a probabilistic rewrite theory
for the SMC-based analysis of N-Tube’s quantitative properties
using the Maude ecosystem [26]. Unlike in implementation-
based evaluations, this allows us to explore the large parameter
space, to consider various (malicious) scenarios, and to obtain
statistics with a desired confidence level and error margin. With
our SMC analysis, we also obtain additional confidence in our
inductive proofs of N-Tube’s qualitative properties.

In networking, formal methods have been applied to verify
qualitative and quantitative properties of routing protocols and
DoS protection mechanisms. We will discuss this and additional
related work in Section VII. However, we are not aware of
any prior work that formally models and verifies a bandwidth
reservation system, neither in benign nor in adversarial settings.
The full formal definitions and proofs, as well as the source
code of our development, are available online [27].
Main Contributions. We provide: (i) the first principled
solution to the global inter-domain bandwidth allocation
problem that offers stable, lower-bounded, and fair bandwidth
allocation in adversarial settings (Sections III and IV); (ii)
the formalization of N-Tube, a strong attacker model, and
all its safety and security properties, as well as inductive
proofs establishing these properties (Sections IV-E and V);
(iii) the automated statistical verification and estimation of
N-Tube’s behaviors, both to validate our proofs and to provide
quantitative guarantees and assess N-Tube’s resistance to
attacks in various malicious scenarios (Section VI).

II. PRELIMINARIES

A. Design Goal and Properties
Our goal is to design a provably secure bandwidth reservation

architecture that provides hard, worst-case bandwidth guaran-
tees to source ASes for reaching their destination ASes. A
key component of such a QoS architecture is a bandwidth
reservation mechanism that allocates bandwidth according
to the demands of source ASes and guarantees a minimum
bandwidth allocation even under heavy congestion or flooding
attacks. Thus, N-Tube should satisfy the following properties:

G1 Availability: Any successful reservation request can
reserve bandwidth, in spite of network congestion.

G2 Immutability: The allocated bandwidth of any existing
reservation stays fixed until it expires.

G3 Stability: In periods of steady and constant demand, the
bandwidth allocation in the entire network stabilizes in
a predictable period of time.

G4 Minimum Bandwidth Guarantee: After the network
stabilizes, there is a lower bound on the allocated band-
width, i.e., a minimal bandwidth guarantee even with
high external demands such as link-flooding attacks.

G5 Bounded Tube Fairness: Bandwidth allocation is distri-
buted proportionally to the requested demands, however,
adjusted to the maximally available bandwidth.

Additional requirements ensure that N-Tube is efficient and
practical from an operational perspective, see [27, Appendix A].

B. Model and Assumptions

Network Model. We model the network as a connected graph
with weighted, directed edges. Nodes in the graph represent the
ASes’ network interfaces and directed edges denote physical
links between these interfaces. Each link starts at an egress
interface of an AS, called an egress link of the AS, and ends
at an ingress interface of another AS, called an ingress link
of that AS. Each edge has a weight that corresponds to the
link’s capacity. Using interfaces instead of multiple edges
between ASes provides a simple graph, instead of an equivalent
multigraph, which is closer to N-Tube’s specification. Intra-AS
links are not modeled but are assumed to provide sufficient
capacity. Given this network structure, we make some additional
assumptions.

N1 We assume an inter-domain control plane that implements
a path discovery protocol, enabling each AS to obtain
multiple loop-free paths to reach a destination AS (see,
for instance, [16, Chapter 7]).

These paths are expressed at the granularity of interfaces
between the ASes.

N2 We assume there are mechanisms to quickly detect link
and node failures, and provide alternative paths.

For instance, by frequently running the path discovery
protocol, we can ensure a timely provision of alternative
paths. Modern architectures like SCION support simultaneous
communication over multiple paths, hence providing inherent
fault tolerance. Based on assumption N2, we consider failure
detection and handling as orthogonal to the bandwidth
reservation algorithm itself. For more details, see Appendix A.

N3 We assume that clocks are loosely, globally synchronized,
i.e., with a time discrepancy between ASes on the order
of 100 ms, in contrast to reservation times on the order
of minutes.

Since clock synchronization is several orders of magnitude
more precise than reservation times, we will approximate these
synchronized clocks by a global clock in our model.
Attacker Model. We call an AS honest if it follows the protocol,
and compromised or malicious otherwise. We will describe
malicious ASes’ capabilities below. For a given legitimate
reservation request, we distinguish off-path and on-path ASes.

A1 Any off-path AS may be compromised. Compromised
ASes can collude (e.g., as part of a botnet) and attempt
to allocate excessive amounts of bandwidth in order to
exhaust the available bandwidth.

There is no constraint on the distribution of compromised ASes
in the network. Compromised ASes may attempt to request
excessive bandwidth through multiple reservations over one or
more paths, thus preempting other ASes from obtaining a fair
share of the available bandwidth.

A2 Compromised off-path ASes can (i) observe all reserva-
tion requests sent to them, (ii) change any unauthenticated
fields in such reservation messages, and (iii) inject such
modified messages into neighboring links.

This means that attackers cannot defeat the cryptography
used to realize message authentication. Hence, attackers can at
best replay legitimate reservation requests, possibly modifying
their unprotected fields, but they cannot craft new ones for
ASes they do not control, e.g., by spoofing a signed message
without an appropriate private key.

A3 All on-path ASes are honest.
Honest ASes are expected to refrain from allocating excessive
bandwidth due to the associated costs. We cannot allow com-
promised on-path ASes, as they could insert bogus information
in reservation requests, making it impossible to achieve our
desired properties, in particular (G1) and (G4). Moreover, they
could execute DoS attacks by ignoring reservation requests.

Our modeling is at the granularity of ASes and excludes
end hosts within ASes. In particular, we consider the case of
malicious end hosts within off-path ASes to be subsumed by
the stronger case where the entire respective AS is malicious.
Excessive requests or data traffic by malicious end hosts within
honest on-path ASes can easily be filtered using separate
mechanisms.
Monitoring and Enforcement of Reservations. To prevent
link flooding attacks, both on the data plane and on the control
plane, the N-Tube bandwidth reservation algorithm must run
alongside flow-policing mechanisms that effectively detect and
block overuse of allocated bandwidth (see, e.g., [28]). On the
data plane, we must enforce that bandwidth reservations exist
for all traffic and that allocated bandwidth is not overused.

E1 We assume that all data plane traffic has a bandwidth
reservation, and that an effective flow-policing mech-
anism is in place to prevent the overuse of allocated
bandwidth by malicious ASes.

The flooding of the bandwidth reservation algorithm itself
with reservation requests (which are part of the control plane)
can easily be prevented as follows.

E2 We assume that honest ASes limit the frequency of per-
AS reservation requests.

Using this mechanism, excessive requests from malicious
hosts would not even leave honest ASes and would otherwise
be limited by the first honest AS on the path.

Since all traffic must have a valid reservation, N-Tube, by
virtue of its properties (G1)–(G5), is capable of preventing
link flooding attacks including Coremelt and Crossfire, when
run alongside an effective enforcement mechanism satisfying
assumptions (E1) and (E2). We will further explain how this
is achieved in Section III-E.

III. N-TUBE OVERVIEW

Our N-Tube algorithm enables ASes to reserve bandwidth
on network paths by reserving bandwidth on each inter-domain
link on the path. A reservation consists of a path, an expiration
time, and a bandwidth amount. The reservation is valid for

𝑫

𝑪

𝑨

𝑩
𝐀𝐒𝟑

𝐀𝐒𝟏
𝑨

𝐀𝐒𝟐
𝑩

𝑪

𝑫

𝑪

𝑩 𝑬
𝑨

𝑫 1

2

3

4

𝑺𝒐𝒖𝒓𝒄𝒆

𝑫𝒆𝒔𝒕𝒊𝒏𝒂𝒕𝒊𝒐𝒏

Demand: 60 Gbps
Exp.Time: 15:50:45
Path: [(E,AS1,C), (B,AS2,A), (C,AS3,D)]

𝑬

37 Gbps

60 Gbps

45 Gbps

Figure 1: The process of making a reservation

a limited time period after which it must be renewed. This
allows ASes to probe the network for congestion, and to adjust
their reservation paths and demands.

To reserve bandwidth, the source AS chooses loop-free paths
to the destination AS (obtained from the control plane, see
Section II-B), an amount of bandwidth and an expiration time,
combines them in a reservation message, and authenticates it,
e.g., with RPKI [29]. Figure 1 illustrates the reservation process.
The source AS1 sends a reservation message demanding 60
Gbps valid until 15:50:45 on the path given by the list
of ASes and their corresponding ingress and egress interfaces
[(E,AS1,C),(B,AS2,A),(C,AS3,D)]. On the way to AS3, the
reservation message accumulates the amount of bandwidth each
AS on the path can allocate on its egress link associated to
the path: 37 Gbps, 60 Gbps, and 45 Gbps, respectively.
On the return path, each AS allocates the minimum of the
accumulated bandwidths, i.e., 37 Gbps.

N-Tube has two user-specific parameters. First, N-Tube
enforces an upper bound, maxT ∈N, on how long the expiration
time can be set into the future. This forces ASes to update
their reservations regularly, roughly every 5 minutes. Second,
N-Tube only reserves a fixed portion δ (0 < δ < 1) of each
link’s total capacity, called the adjusted capacity. For any
new reservation request, N-Tube initially allocates at most the
portion δ of the remaining free capacity, and thereby keeps the
rest of the link’s capacity available for other new reservations.

A. Bounded Tube Fairness (G5)

The main challenge for a resource allocation algorithm is
to treat all reservations fairly, and to provide a lower-bounded
bandwidth allocation for honest ASes, even when adversaries
try to congest a link by demanding excessive bandwidth.

To provide fair bandwidth allocation, N-Tube bounds exces-
sive demands by the links’ capacities, and shares the resulting
demands proportionally. This is illustrated in Figure 2 by the
bandwidth allocation computation at AS3 in the above example:

1) AS3 factors the demands converging at a given egress in-
terface by each ingress interface. These factored demands
are called tubes, as we visualize them this way.

2) AS3 bounds the accumulated demand of each tube by its
ingress and egress links’ adjusted capacities, which we
call their bounded tube demands.

𝑫

𝑪

𝑨

𝑩

200 Gbps

100 Gbps

150 Gbps

125 Gbps

120/(20+80+60)*20=3/4*20=15
120 /(20+80+60)* 80=3/4*80=60
120 /(20+80+60)* 60=3/4*60=45

{

Demand: 20 Gbps
Allocated: 15 Gbps

Demand: 60 Gbps
Allocated: 45 Gbps

Demand: 80 Gbps
Allocated: 60 Gbps

𝐀𝐒𝟑

16
0

Gb
ps

100 Gbps

80 Gbps

120 Gbps

Figure 2: Bandwidth allocation computation at AS3 distributes
the egress link’s (adjusted) bandwidth capacity D proportionally
to three ingress demands.

3) AS3 proportionally shares the egress link’s adjusted
capacity between its bounded tube demands.

AS3 has three interfaces A, B, and C with ingress link capacities
100 Gbps, 200 Gbps, and 125 Gbps, and an interface D
with an egress link capacity of 150 Gbps, respectively. The
link’s adjusted capacities are obtained by multiplying each
link’s capacity with δ = 0.8 in this case, and are indicated
by the dotted lines. The three demands of 20 Gbps, 80
Gbps, and 60 Gbps from interfaces A, B, and C are factored
into three tubes, and the adjusted capacity of 120 Gbps at
interface D is proportionally split among them into 15 Gbps
for A, 60 Gbps for B, and 45 Gbps for C, respectively. For
example, in case of C this is computed as follows: 45 Gbps
= 60 Gbps / (20+80+60 Gbps) · 0.8 · 150 Gbps

B. Minimum Bandwidth Guarantee (G4)

By bounding the accumulated demands of tubes in the second
step of the bandwidth allocation computation, we guarantee
that each tube obtains a fair share of the egress link’s capacity.
Whenever we must reduce a tube, we say it has excessive
demands, and we proportionally reduce all demands inside it.

We illustrate how N-Tube computes bandwidth allocations
in the presence of adversaries with three examples. We assume
that all ASes on the given path are honest, and any AS off
this path may be adversarial. The goal of the adversaries is
to reduce as much as possible the allocated bandwidth for the
honest ASes between interface C and interface D. Hence, we
allow adversaries to demand an arbitrary amount of bandwidth
to subsequently congest the egress link at interface D. We then
show how the bandwidth allocation computation still provides
a minimum bandwidth guarantee.
Limit demands on an ingress link by its adjusted capacity:
In the Figure 3 example, two adversarial ASes demand in
total 400 Gbps (150 Gbps and 250 Gbps, respectively)
of bandwidth through interface B to D. N-Tube bounds these
demands by the ingress link’s adjusted capacity at interface B
of 160 Gbps. Hence, D’s adjusted capacity of 120 Gbps
is split proportionally between 20 Gbps from A, 60 Gbps
from C, and 160 Gbps, instead of 400 Gbps, from B.

120/(20+160+60)*20=1/2*20=10
120/(20+160+60)*160=1/2*160=80
120/(20+160+60)*60=1/2*60=30

𝑪

𝑨

𝑩

200

100

15
0

12
5AS1 AS2

Demand: 20 Gbps
Adj. Dem: 20 Gbps
Allocated: 10 Gbps

Demand: 60 Gbps
Adj. Dem: 60 Gbps
Allocated: 30 Gbps

Demand: 400 Gbps
Adj. Dem: 160 Gbps
Allocated: 80 Gbps

𝐀𝐒𝟑
16

0
Gb

ps

100 Gbps

80 Gbps

120 Gbps

𝑫

AS3

Figure 3: Limit demands on the ingress interface.

Limit each AS’s demands by the egress link’s capacity: In
Figure 4, an adversarial AS demands in total 200 Gbps to
interface D: 80 Gbps and 120 Gbps through interfaces A
and B, respectively. However, since its combined demand of
200 Gbps exceeds the egress link’s capacity, N-Tube reduces
both demands proportionally by a scaling factor. The scaling
factor is the ratio of the egress link’s adjusted capacity to the
total adjusted demand of the adversarial AS, i.e., 120/200
= 0.6. This results in the reduced demands of 48 Gbps
(= 0.6 · 80 Gbps) and 72 Gbps (= 0.6 · 120 Gbps)
from interfaces A and B, respectively. Note that, in this case,
each AS must keep per-source AS state, i.e., how much
bandwidth each source AS has reserved through this AS. This
is feasible since the number of ASes in a network is much
smaller than the number of flows. Hence, D’s adjusted capacity
of 120 Gbps is split proportionally between 60 Gbps from
interface C, and the reduced demands of 48 Gbps and 72
Gbps, from interfaces A and B. The computed allocations are
therefore 40 Gbps, 32 Gbps, and 48 Gbps, respectively.

120/(120+60)*120/(120+80)*80=2/3*3/5*80=2/3*=32
120/(120+60)*120/(120+80)*120=2/3*3/5*120=2/3*72=48
120/(120+60)*60=2/3*60=40

𝑪

𝑨

𝑩

200

100

15
0

12
5AS1 AS2

Demand: 80 Gbps
Red. Dem: 48 Gbps
Allocated: 32 Gbps

Demand: 60 Gbps
Allocated: 40 Gbps

Demand: 120 Gbps
Red. Dem: 72 Gbps
Allocated: 48 Gbps

𝐀𝐒𝟑

16
0

Gb
ps

100 Gbps

80 Gbps

120 Gbps

𝑫

AS3

Figure 4: Limit demands on the egress interface.

Worst case, minimum bandwidth guarantees: In Figure 5,
all off-path ASes are adversarial, demanding as much as
they can on all the ingress links, i.e., a maximum of 80
Gbps on interface A and 160 Gbps (40 Gbps and 120
Gbps, respectively) on interface B. This represents a worst-
case attack: even when more adversarial ASes are present,
their bandwidth demands will be adjusted, and thus limited
as described in the two previous examples. The interface D’s
adjusted capacity of 120 Gbps is split proportionally between

the bounded demands of 80 Gbps from A and 160 Gbps
from B, and benign demand of 60 Gbps from C. Hence, this
benign demand cannot be reduced to less than 24 Gbps by
any amount of external demands. This provides the minimum
bandwidth guarantee for the honest reservation at AS3.

120/(80+160+60)*80=2/5*80=32
120/(80+160+60)*160=2/5*120=64
120/(80+160+60)*60=2/5*60=24

!

"

#

200

100

150

125AS1 AS2

AS3

Demand: 80 Gbps
Allocated: 32 Gbps

Demand: 60 Gbps
Allocated: 24 Gbps

Demand: 160 Gbps
Allocated: 64 Gbps

$%&

16
0

Gb
ps

100 Gbps

80 Gbps
120 Gbps

'

Figure 5: Worst-case minimum bandwidth guarantee.

Global lower bound: By applying the idea from the previous
example, we can provide a local lower bound llb3 for the
proportion of D’s adjusted link capacity that can be allocated
to the benign demand. In the worst case, all tubes have
excessive demands at interface D. Then llb3 is given as the
ratio of the benign demand of 60 Gbps and the accumulated
adjusted capacities of all ingress links, i.e., llb3 = 0.17 ≈
60 Gbps/(100+160+80 Gbps). Likewise, we can com-
pute llb1 and llb2 with respect to AS1 and AS2’s ingress links’
capacities. Note that these local lower bounds do not depends
on the adversarial demands.

The request ratio reqRatio0 at the source AS1 is defined
as the ratio of the benign demand of 60 Gbps and the total
demand of reservations starting at interface E of AS1 (see
Figure 1). The global lower bound glb for the bandwidth that
can be allocated to the honest demand is derived as

glb = reqRatio0 · llb1 · llb2 · llb3 ·120 Gbps.

Note that glb only depends on the request ratio at the (honest)
source and the capacities of the on-path ASes’ ingress links.
The request ratio is bounded by the number of reservations the
source AS1 starts at its interface E, i.e., under its own control,
and is not influenced by (malicious) reservations (see [27,
Appendix C] for details). This is, intuitively, why N-Tube’s
bandwidth allocation computation provides (G4). Furthermore,
the computation splits the adjusted link’s capacity propor-
tionally between the non-excessive demands. This illustrates,
informally, that N-Tube provides (G5) for each link.

C. Stability (G3)

N-Tube’s upper bound maxT on the expiration time forces
ASes to renew their reservations regularly. This allows N-Tube
to stabilize the allocations in a predictable time period stabT
of constant demands after a burst in demands. The time period
stabT needed to stabilize demands can be shown to be the

product of maxT and the length of the longest reserved path
p̂ in the network, i.e.,

stabT = length(p̂) ·maxT.

Intuitively, the bandwidth computation at the first AS only
depends on requested demand at that AS and the constant
bandwidth allocations are then successively propagated to
all ASes on the path at each renewal of the reservation.
This provides an informal argument that N-Tube achieves the
stability property (G3).

We will show that, after the entire network stabilizes,
N-Tube’s bandwidth allocations also satisfy bounded tube
fairness (G5).

D. Immutability (G2) and Availability (G1)

By reserving only a fraction δ of the available bandwidth,
N-Tube can always provide a positive (but possibly small)
amount of bandwidth for a new reservation. This ensures
availability (G1). Unused bandwidth capacities can be used
for best-effort traffic. N-Tube does not change established
reservations until they either expire or are explicitly deleted
by the source (see Section IV). This yields immutability (G2).

E. Preventing Link Flooding Attacks

Fairness notions like per-source or per-destination fairness
would lead to bandwidth slices of size O(1/N) in the worst
case, where N denotes the number of end hosts (in the billions),
i.e., in today’s Internet N ∼ 1010. Even worse, in today’s
Internet, per-flow fairness allows adversarial hosts to request
arbitrarily many flows which squeezes bandwidth slices of
honest hosts even further. Specific examples of such an attack
are Coremelt [2] and Crossfire [1]. In Coremelt, M bots can
reduce bandwidth slices to O(1/(M · P)) by contacting P
destination servers. In Crossfire, attacks can reduce bandwidth
to O(1/M2), where modern botnets contain millions of infected
end hosts, i.e., M ∼ 107.

In the context of N-Tube, however, end-hosts are restricted
to the bandwidth slices that their edge AS reserves for them.
Hence, in attacks like Coremelt and Crossfire, infected end-
hosts flooding single Internet links with data traffic are detected
by the enforcement mechanism, as described in Section II.B,
and are blocked at their edge AS or the next honest neighboring
AS. This renders these two attacks ineffective.

A related adaptation of link flooding attacks like Coremelt
and Crossfire to the context of N-Tube are colluding mali-
cious ASes that demand excessive amounts of bandwidth to
maximally congest a single link in the network. However, this
is prevented by the virtue of properties (G1-G5), providing
minimum bandwidth guarantees to honest ASes as described in
Section III-B. In the worst case, when thousands of malicious
ASes, i.e., n∼ 104, collude to ask for excessive demands on
an honest path in the network, bandwidth slices are reduced
to O(1/n). Note that this bound can be further improved
when honest source ASes reserve the whole path instead of an
intermediate segment (see [27, Appendix C] for details).

In another adaptation of these attacks, malicious ASes flood
the control plane with reservation requests hindering honest
ASes from making their reservations. However, this can be
easily prevented as described in assumption E2 in Section II-B
and is therefore not considered in this work.

IV. ALGORITHM DETAILS

In this section, we first introduce formal preliminaries and
then define the network model, messages, reservation maps, and
N-Tube’s message processing. We then specify the bandwidth
allocation computation and its local properties. Finally, we
present our LTS formalization of N-Tube. For full model details,
see [27, Appendix D].

A. Notation

Let 1 = {⊥} denote the unit set, B = {TRUE, FALSE} the
booleans, N the natural numbers, and R+

0 the non-negative real
numbers. For a≤ b, open and closed intervals are denoted by
]a;b[and [a;b].

Given two sets A and B, we denote the function space with
domain A and co-domain B by A→ B, their product by A×B,
and their disjoint sum by A+B. We define partial functions
A ⇀ B = A→ B⊥ with B⊥ = B+1, the support of a partial
function g by supp(g) = {a ∈ A | g(a) 6= ⊥}, and its range
by rng(g) = {b ∈ B | ∃a ∈ A. g(a) = b}. We denote partial
functions with finite support by A ⇀fin B and the undefined
function with empty support by /0. The updated function
f (x 7→ y) is defined by f (x 7→ y)(x) = y and f (x 7→ y)(x′) =
f (x′) for all x′ 6= x. A record type is a product type with named
projections, e.g., point = L x ∈ N;y ∈ N M with elements like
p= L x = 1;y= 2 M and fields p.x and p.y. The term pL x := 3 M
denotes the updated point L x = 3;y = 2 M. The inductive set of
lists over A, denoted by [A], is constructed from the empty list
nil and the operation a#l, which prepends an element a ∈ A
to a list l ∈ [A]. We write, e.g., [1,2,3]1 for the list 1#2#3#nil,
and l[n] to retrieve the nth element of the list l, counting from
0. For a set A we write P(A) for its power set, Pfin (A) for the
set of its finite subsets, and |A| for its cardinality.

The functions min and max respectively yield the minimum
and maximum element of a non-empty finite set of numbers,
and +∞ and 0 for the empty set. We extend them to tuples, lists,
and records of numbers (by taking the set of their components),
and to partial functions with finite support and numerical co-
domain (by taking the range).

B. Network and Messages

Network. We model the network as a weighted, directed graph
(N,E,cap), for which we give a simplified definition:
• The nodes N are given by the set V× I, where V is a finite

set of vertices (ASes), and I provides a set of identifiers
for interfaces inside of each AS.

• The finite set of directed edges E ⊆ N×N represents the
physical links between ASes. Given a link ((u,e),(v, i)) ∈
E, we call e its egress interface at AS u and i its ingress

1Note the syntactic difference between the closed interval [1;3], the pair
(1,3), and the two-element list [1,3].

s

d

u v
w

z

FWD

FWD
CMP

CMP

TRN

UPT
UPT

BWD
FIN

CRT

m = (id = 22; idx = 5; ptr = 4; first = 2; last = 4;
path = 𝐬𝐆𝐃, 𝐮𝐀𝐄 , 𝐯𝐅𝐂, 𝐰𝐂

𝐄, 𝐳𝐀𝐂 , 𝐝𝐁𝐇 ;
minBW = 10 GB/s; maxBW = 50 GB/s;
expT = 16:45:30;
accBW = 𝐚𝐯𝐁𝐖 = 𝟓𝟓; 𝐢𝐝𝐁𝐖 = 𝟒𝟓 , 𝐚𝐯𝐁𝐖 = 𝟑𝟐; 𝐢𝐝𝐁𝐖 = 𝟔𝟎)

𝑫𝑮

𝑨 𝑬
𝑭 𝑪

𝑪
𝑬

𝑨 𝑪 𝑩𝑯

⟧

last

first

src(m)

cur(m)

Figure 6: The message m is processed along p by the events
described in Section IV-E2.

interface at AS v, respectively. We assume that at any AS
interface there is either exactly one ingress and one egress
link or no link at all.

• The capacity of each link is given by the non-negative
real-valued function cap : E → R+

0 . Since a link l =
((u,e),(v, i)) is uniquely defined by (u,e) (and (v, i)), we
identify cap(l) with cap(u,e) (and cap(v, i)).

We define the type of paths P as lists of records with ingress
interface inI, AS identifier as, and egress interface egI:

P =
[
L inI ∈ I;as ∈V ;egI ∈ I M

]
.

Given a network, we call a path p ∈P valid, if (i) it is non-
empty, (ii) each edge corresponding to p’s ingress and egress
interfaces is an inter-AS link, i.e., it starts and ends in distinct
ASes, and (iii) its set of links is connected and directed, i.e.,
the edges connect the ASes in p, and they all point in the same
direction, and (iv) it is loop-free, i.e., each AS occurs at most
once on the path.

In what follows, we denote the elements of sets V and I
with lowercase letters: for V we use the letters s, x, v, and z,
for ingress interfaces i and i′, and for egress interfaces e and
e′. We also write the ingress interface as subscripts and the
egress interface as superscripts to the AS identifier, e.g., xe

i .
Messages. There are two types of messages: reservation and
deletion messages. The message fields identify the reservation,
state how the message should be routed through the network,
how much bandwidth should be reserved, and until when
the reservation should be valid. We introduce the fields of a
reservation message m in Figure 6:

• The source s ∈ V of the path (see below) can choose
any reservation ID id ∈ N (= 22). The pair (s,22) of
source identifier and reservation ID uniquely determines
a reservation in the network. Furthermore, the source
provides an index idx (= 5) indicating which version of
the reservation the messages refers to. Version indices are
used to update existing reservations (explained later).

• The field path ∈P (= p) provides the path, and the field
ptr ∈ N (= 4) provides the pointer to the AS (p[4].as =
z) where the message is currently processed. The fields
first ∈N (= 2) and last ∈N (= 4) refer to the first and last
AS on p, respectively.

• The minimum minBW ∈R+
0 (= 10 GB/sec) and maximum

bandwidth maxBW ∈R+
0 (= 50 GB/sec) state the range of

bandwidth the source AS would like to reserve. Hereby,
maxBW states the source’s demand in the reservation
request. In case the source’s demand cannot be provided
on p, minBW states the minimal amount of bandwidth the
source is willing to accept as a reservation.

• The expiration time expT ∈N (= 16:45:30) indicates when
the reservation expires and must be deleted by the ASes
on the path p.

• The list of bandwidth values accBW ∈ [L avBW, idBW ∈
R+

0 M] indicates the available and ideal bandwidth the
previous ASes (v and w in the example) were able to
provide, as explained in Section IV-D.

The functions src, first, cur, and sgmt on valid messages extract
from m.path the source AS, the first AS, the current AS with
its ingress and egress interfaces, and the set of ASes between
first and last (including the endpoints), respectively. In the
example of Figure 6 src(m) = s, first(m) = v, cur(m) = zC

A, and
sgmt(m) = {v,w,z}. In a deletion message, the fields first, last,
minBW, maxBW, expT , and accBW are omitted.

The type of messages M = MR +MD is the disjoint sum
of reservation messages MR and deletion messages MD. A
message m is valid, if m.path is a valid path, and for its pointers
it holds that 0 ≤ ptr, first, last ≤ length(m.path) and first <
last. The bandwidth range must be a non-empty interval, i.e., 0
≤ m.minBW ≤ m.maxBW and m.maxBW > 0, and thus only
non-zero bandwidth allocations are allowed.

C. Message Processing

Reservation Maps. Each AS maintains its own reservation map
where all currently valid reservations with a path traversing
this AS are stored. A reservation map is a partial function that
maps a source and a reservation ID to a record containing the
following fields: the reservation’s path, the pointers ptr, first
and last, and a version map vrs. For example, in the reservation
map resMz of AS z, the entry rs corresponding to message m
from Figure 6 is

resMz(s,22) =
L path = p;ptr = 4;first = 2; last = 4;vrs = verM M.

N-Tube allows source ASes to flexibly update their reservations
multiple times before they expire, and therefore stores different
versions of each reservation in the version map vrs.

A version map is a partial function that maps each reservation
index to a record containing the following fields: the minimal
bandwidth minBW , the maximal bandwidth maxBW , the ideal
bandwidth idBW computed by the previous AS on p, the
expiration time expT given by m, and the reserved bandwidth

resBW determined by N-Tube. We call the reservation’s entries
in the version map its versions, e.g., for m

verM(5) = L minBW = 10 GB/s;maxBW = 50 GB/s;
idBW = 60 GB/s;resBW = 32 GB/s;
expT = 16:45:30 M.

A version vr is currently valid at time t, written cvalid(vr, t),
if it is successful, i.e., vr.minBW ≤ vr.resBW and not expired,
i.e., vr.expT ≥ t. The reservation’s bandwidth demand and
allocation, demBW and allocBW, are defined as the maximum
of its currently valid versions’ maxBW and resBW , respectively.

demBW(rs, t) = max
vr∈rng(rs.vrs)

{vr.maxBW | cvalid(vr, t)}

allocBW(rs, t) = max
vr∈rng(rs.vrs)

{vr.resBW | cvalid(vr, t)}

The maximum is taken as the source can send traffic using
any existing version of its reservations. In this way, sufficient
bandwidth is guaranteed to be available in the worst case.
Reservation Process. N-Tube processes a reservation message
depending on its direction and position on the path. As shown in
Figure 6, suppose that AS s intends to make a new reservation
id on a path p. It then creates (CRT) a reservation message m
containing p in its path field. The ASes located before first on
p just forward (FWD) the message along p by increasing m’s
ptr field. If m reaches the ASes between first and last, each
AS x computes (CMP) m by:

1) checking that resMx does not contain a reservation at
(s, id), or there is a reservation at (s, id) for the same
path with no valid version map entry at idx,

2) computing how much bandwidth is available at x and
how much x can ideally provide for the reservation (see
Section IV-D for the details of the computation),

3) updating m to a new message m′ by appending the
computed results to accBW and by incrementing ptr,

4) sending m′ to the next AS on the path p, and
5) adding a new version at index idx of the reservation

identified by (s, id) in resMx.
After the last AS z (indicated by pointer last) on the path
has processed m, it returns (TRN) the message m′. During
the backward traversal, each AS on the path extracts how
much bandwidth finBW could be reserved on the entire path
by taking the minimum of maxBW and accBW, i.e., what have
been computed in the forward traversal

finBW(m) = min(m.maxBW,min(m.accBW)) .

Analogously to the forward traversal updates, an AS updates
(UPT) its reservation map according to the same two cases: (i)
the reservation was successful, i.e., m.minBW ≤ finBW, and
each AS on the path updates the reserved bandwidth of the
corresponding version in its reservation map to finBW, or (ii)
there was not enough bandwidth available on the path, i.e.,
m.minBW > finBW, and each AS deletes the corresponding
version from its reservation map. The ASes between first
and source AS s simply send the message backwards (BWD)
without processing it until s finally receives it (FIN).

Renewal and Deletion. If s intends to renew one of its
reservations, it sends a new reservation message m, containing
an updated bandwidth range and expiration time, along the
previous path p. To delete a reservation’s version, a source AS
sends a deletion message along the corresponding path.

D. Fair Bandwidth Allocation

The heart of the N-Tube algorithm is its bandwidth allocation
computation. We assume that a valid reservation message m
was sent by its source AS s and arrives at an AS x lying
between first and last on m’s path at the current time t. First,
N-Tube derives its source s (= src(m)) and its current AS,
ingress, and egress interfaces xe

i (= cur(m)). Given m and
resMx, the bandwidth allocation computation determines:
• the available bandwidth, i.e., how much bandwidth

remains on the link at the egress interface e, and
• the ideal bandwidth, i.e., how much bandwidth is allocated

to s with respect to all active reservations in resMx between
interfaces i and e.

The corresponding functions avail and ideal are defined below.
To simplify notation, we fix the message m and its elements
s, id, x, i, and e, and omit resMx, t, and the parameter δ

as arguments. The functions resSr, resEg, and resIn extract a
reservation’s source AS and the current AS’ egress and ingress
interfaces, respectively. For full details, see [27, Appendix D5].

1) Available Bandwidth Computation: Given the message m,
the function avail computes how much bandwidth is available
on the link at the egress interface e of AS x

avail(e) = δ ·
(

cap(x,e)−∑r′∈rng(resMx):
resEg(r′)=e

allocBW(r′)
)
.

It subtracts the aggregated allocated bandwidth of all currently
valid reservations with egress interface e from the link’s total
capacity cap(x,e), and multiplies the result with the parameter
0 < δ < 1. The factor δ guarantees available bandwidth for
subsequent reservations.

2) Limiting Excessive Demands: To avoid that s reserves
more bandwidth in one request than physically available, N-
Tube limits the bandwidth demand demBW(r) of a reservation
r by the ingress and egress links’ adjusted capacities. The
resulting requested demand of a reservation r is defined by

reqDem(r) = min{δcap(x, i),δcap(x,e),demBW(r)}.

As illustrated in Section III, a source’s aggregated demands
at a given link may exceed the link’s capacity, even if none
of its individual requests does. We now formally define the
notion of a source having excessive demands on a link, and of
an adjusted version of the requested demand, adjReqDem, to
account for such demands.

The egress demand of s on e is defined as the aggregate
over its requested demands with e

egDem(s,e) = ∑r′∈rng(resMx):
resSr(r′)=s
resEg(r′)=e

reqDem(r′).

We analogously define the ingress demand on interface i.

Definition 1 (Excessive Demands). We say an AS s has
excessive demands on the egress link e, if egDem(s,e) >
δcap(x,e). Otherwise, we say s has moderate demands on e.
We call an egress link e congested if egDem(s′,e) > cap(x,e).
Analogous definitions apply to ingress links.

To account for the case where s has excessive demands
on the egress link e, we adjust the requested demand of
a reservation r by multiplying it with the minimum of the
corresponding ingress and egress scaling factors, yielding the
adjusted requested demand:

adjReqDem(r) =

min{inScalFctr(s, i),egScalFctr(s,e)} · reqDem(r, i,e).

with s, i, and e the corresponding source AS, ingress and
egress interface of r, respectively. We compute for source AS
s the egress scaling factor on the egress link e as the source’s
proportion of the total egress demand bounded by the egress
link’s capacity, given by

egScalFctr(s,e) =
min{δcap(x,e),egDem(s,e)}

egDem(s,e)
.

We analogously define the source’s ingress scaling factor.
3) Ideal Bandwidth Computation: Given a message m with

xi
e on its path, the function ideal computes how the adjusted

capacity δ · cap(x,e) of the egress link e is shared in a so-called
bounded tube fair manner among all existing reservations (in
resMx) with the same egress link e:

ideal(s, id, i,e) =

reqRatio(s, id, i,e) · tubeRatio(i,e) ·δ · cap(x,e).

This (1) proportionally splits the egress link’s adjusted capacity
between all ingress links by multiplying it with tubeRatio,
and (2) further splits the result proportionally between all
reservations from i to e by multiplying it with reqRatio.

We define these two ratios in the following.
Tube Ratio: The tube ratio between an ingress interface
i and an egress interface e is computed as the ratio of
the bounded tube demand between i and e, given by
min{cap(x, i), tubeDem(i,e)}, and the aggregated bounded tube
demands at e

tubeRatio(i,e) =
min{δcap(x, i), tubeDem(i,e)}

∑i′∈I min{δcap(x, i′), tubeDem(i′,e)}
.

Taking the minimum with respect to the corresponding ingress
link’s capacity guarantees that its respective portion of the tube
demand compared to the other ingress links’ tube demands
is always bounded. This prevents the reserved bandwidth for
other ingress links from being reduced ad infinitum.

The tube demand between an ingress interface i and an
egress interface e aggregates their adjusted requested demands

tubeDem(i,e) = ∑r′∈rng(resMx):
resIn(r′)=i
resEg(r′)=e

adjReqDem(r′).

Request Ratio: The request ratio of a reservation (s, id)
between i and e is the ratio between its adjusted ideal bandwidth

demand (provided by the predecessor on the reservation’s path)
and the transit demand at i:

reqRatio(s, id, i,e) =
adjIdDem(s, id, i,e)

transitDem(i)
.

The function adjIdDem is defined similarly to adjReqDem but
for the previously computed ideal bandwidth, and transitDem
is the aggregation of all adjIdDem’s at ingress interface i.

E. Formalizing N-Tube

We formalize N-Tube using labeled transition systems, as
this is a widely known model that is well-suited for hand-
written proofs. For our statistical analysis of N-Tube, we will
transform these models into probabilistic rewrite systems and
analyze them using Maude [26] (Section VI).

A labeled transition system (LTS) T= (Σ,Σ0,Λ,∆) consists
of a state space Σ, a set of initial states Σ0 ⊆ Σ, a set of
labels Λ, also called events, and a (labeled) transition relation
∆ ∈ Λ→ P(Σ×Σ). Executions of T are functions of type
E=N→ Σ×Λ such that any π = {(σn,λn)}n∈N ∈ E starts in
an initial state, i.e., σ0 ∈ Σ0, and progresses according to the
transition relation ∆, i.e., for all n ∈ N, (σn,σn+1) ∈ ∆(λn).

To specify concrete models, we often use Λ-indexed families
of guards Gλ : Σ→ B and update functions Uλ : Σ→ Σ. The
induced transition relation is

∆(λ) = {(σ ,σ ′) | Gλ (σ) ∧ σ
′ =Uλ (σ)}.

The relation σ ′ =Uλ (σ) is called the action of the event. For
example, in the domain of banking, an event to withdraw
an amount a of money from an account is specified by
withdraw(a) = {(σ ,σ ′) | σ .bal ≥ a ∧ σ ′.bal = σ .bal−a}. In
this case, any state (record) field f that is not updated is
implicitly left unchanged, e.g., σ ′. f = σ . f .

We fix the environment: a network graph (N,E,cap) as in
Section IV, a partition V = H +M (with H and M the sets of
honest and malicious ASes), and the fraction 0 < δ < 1 of the
link’s adjusted capacity. We model the behaviors of both honest
and malicious ASes (see [27, Appendix D] for full details).

1) States: We define the set of states Σ as the record

Σ = L time ∈ N; buf ∈ Buff ; res ∈ ResMap; kwl ∈ P(M) M.

A state σ ∈ Σ describes a snapshot of the system at a given
point in time, denoted by its time field. We assume discrete time
is loosely synchronized between all ASes, i.e., compared to the
minimal duration of reservations (on the order of minutes), the
discrepancy of time measurements between AS (on the order
of 100 ms) is negligible (cf. Assumption N3).

The field buf of type Buff = V × I → Pfin (M) models
network buffers, where buf (x, i) holds the set of messages
arrived at interface i ∈ I of AS x ∈V . The field res models all
ASes’ reservation maps as presented in Section IV-C. Finally,
the field kwl models the attackers’ knowledge: the set of
messages created, collected, and shared by all malicious ASes.
This models the attackers’ collusion (cf. Assumption A1).

2) Events: The set of events Λ consists of system events
and environment events. System events formalize the N-Tube
algorithm: its message processing events and an internal event
that removes expired reservations in each AS. There are differ-
ent message processing events depending on a message’s type,
its location on the path, and the direction of the path traversal
(cf. Figure 6). This results in seven events describing reservation
message processing, three handling deletion messages, and one
for dropping messages. Three events model the environment: a
time progress (clock tick) event and two events modeling the
attackers’ capabilities. Below, we present the attacker events
and one representative message processing event.

Attacker Events. Malicious ASes can execute two events: (i)
receive a message, partially modify it, and store the resulting
message in the attackers’ knowledge kwl; (ii) send a message
in kwl to any neighbor AS in the network. Recall that kwl
also includes any message in M with a malicious source AS.
We present these two events in turn. The collect event (i) is
defined by

CLT (m,m′ ∈M ,a ∈M, i ∈ I) = {(σ ,σ ′) |
- guards -

m ∈ σ .buf(a, i) ∧ m′ ≈ m ∧
- actions -

σ
′.kwl = σ .kwl∪{m′} }.

Here, an attacker a ∈M receives a message m from his buffer
buf(a, i) at interface i, possibly modifies it, and adds the
resulting message to kwl. The equivalence relation m ≈ m′

expresses that m and m′ coincide except on their mutable
fields ptr and accBW. This prevents off-path attackers from
spoofing reservation requests from other ASes. This event
models Assumption A2 (i-ii). In an N-Tube implementation,
the source AS would sign the immutable fields with its private
key, while the mutable fields would remain unprotected.

In the attack event (ii), an attacker a can send any message
m in kwl to any neighbor AS v by adding m to v’s buffer
buf(v, i). This event models Assumption A2 (iii).

AT K(m ∈M ,a ∈M,v ∈ H, i,e ∈ I, t ∈ N) = {(σ ,σ ′) |
- guards -

m ∈ σ .kwl ∧ ((a,e),(v, i)) ∈ E ∧
- actions -

σ
′.buf = σ .buf((v, i) 7→ σ .buf(v, i)∪{m} }.

These two events model powerful attack capabilities. Ma-
licious ASes can anytime make arbitrary reservation requests
from their own ASes, partially modify observed requests,
replay old messages, and collude through out-of-band channels
to share their knowledge and synchronize attacks. However,
attackers cannot spoof messages from honest ASes, modify
reservations stored in the reservation maps of honest ASes, or
change the system’s global time.

Message Processing Events. Here we show the definition of
the compute event, which is the most representative message
processing event:

CMP(m,m′ ∈MR,v ∈ H, i ∈ I, t ∈ N) = {(σ ,σ ′) |
- guards -

(1) m ∈ σ .buf(v, i) ∧ (2) σ .time = t ∧
(3) PathCheck(m.path) ∧(4) ResMsgCheck(m,σ .time) ∧
(5) ResMapCheck(σ .res,m,v) ∧(6) m.first ≤ m.ptr < m.last ∧
(7) m.path[m.ptr].inI = i ∧(8) m′ = compute(m,σ .res) ∧

- actions -

σ
′.res = save(v,σ .res,m′) ∧

σ
′.buf = forward(v, i,σ .buf,m,m′) .

Upon receiving a reservation message m at interface i (first
guard) at time t (second guard), AS v allocates bandwidth using
the function save (first action), and forwards the modified
reservation message m′ using the function forward (second
action). All unmentioned fields remain unchanged. Guards (3–
5) ensure that m is well-formed and compatible with existing
reservations in v’s reservation map that corresponds to m.
Guard (6) determines whether v is on the path segment, i.e.,
m’s pointer is between first and last. Guard (7) checks if m
traverses the path in the forward direction, i.e., if the arrival
interface i of AS v matches the corresponding ingress interface
given on m’s path field. The last guard models the computation
of the modified message m′, using the function compute to
update of received message m’s accBW field.

compute(m ∈MR,resM ∈ ResMap) =

let newBW = L avBW := avail(m,resM);
idBW := ideal(m,resM) M

in mL accBW := newBW # m.accBW M.

This function determines the available and ideal bandwidths
that AS v can allocate using the functions avail and ideal from
Section IV. The results are appended to m’s accBW field.

V. PROPERTIES

In this section, we first define the notions of valid executions,
successful reservations, and constant demands, which are used
to specify N-Tube’s global properties (G1–G5). For the sake
of readability, we give here a semi-formal versions of these
definitions and we refer the reader to [27, Appendix E] for the
full formal details and proofs.

Definition 2 (Valid Executions). An execution π is valid if
(i) time grows unboundedly on π and (ii) all messages in the
buffers of honest ASes are processed in at most time bufT .

These assumptions are satisfied if all honest ASes run a fair
scheduling algorithm (e.g., round-robin) to prevent message
starvation and messages are dropped in case of buffer overflow.
We will express N-Tube’s properties as predicates over valid
executions π = {(σn,λn)}n∈N.

Properties (G1) and (G2) assume that a successful reservation
has been established by an honest source AS.

Table I: Formalizing global properties (G1–G5).

Property Formula

(G1) Availability: If an honest AS s makes a successful reservation
m at time t, then some non-zero bandwidth will be reserved on its
path until it expires.

∀m ∈MR,s ∈V, t ∈ N,n ∈ N,v ∈ sgmt(m).

Succ(s,m, t) ∧ σn.time ∈]t;m.expT]

⇒ σn.resv(s,m.id).vrs(m.idx).resBW > 0

(G2) Immutability: If an honest AS s makes a successful reservation
m at time t, the reserved bandwidth stays the same for all ASes on
its path until it expires.

∀m ∈MR,s ∈V, t ∈ N,n,n′ ∈ N,v,v′ ∈ sgmt(m).

Succ(s,m, t) ∧ σn.time,σn′ .time ∈]t;m.expT]

⇒ σn.resv(s,m.id).vrs(m.idx).resBW = σn′ .resv′ (s,m.id).vrs(m.idx).resBW

(G3) Stability: If there are constant demands D between t0 and t1,
then all reservations allocate the same amount of bandwidth from
t0 + stabT until t1.

∀D ∈D , t0, t1 ∈ N,n,n′ ∈ N,r,r′ ∈ Res,v ∈ H,m ∈ rng(D) .

Stab(D, t0, t1)∧σn.time,σn′ .time ∈]t0 + stabT; t1]∧
r = σn.resv(src(m),m.id)∧ r′ = σn′ .resv(src(m),m.id)

⇒ allocBW (r,σn.time) = allocBW (r′,σn′ .time)

(G4) Minimum Bandwidth Guarantee: For constant demands D
between t0 and t1 and for any honest AS’s successful reservation,
there is a lower bound on the allocated bandwidth that only depends
on the request ratio on the first link, a factor G depending on the
path’s link capacities, and m.maxBW.

∀D ∈D , t0, t1 ∈ N. Stab(D, t0, t1)

⇒ ∃ñ ∈ N. σñ.time = t0 + stabT

∧ ∀m ∈ rng(D) ,s, f ∈ nodes(m). s = src(m)∧ f = first(m)∧Succ(s,m, t0)

⇒ ∃ G > 0. ∀n > ñ,v ∈ sgmt(m). σn.time ∈]t0 + stabT; t1]

⇒ allocBW(σn.resv(s,m.id),σn.time)≥ G · reqRatio(m,σñ.res f) ·m.maxBW

(G5) Bounded Tube Fairness: For constant demands D between t0
and t1, in the absence of congestion, the bandwidth of egress links
is allocated proportionally between tube demands and, in case where
tube demands exceed their ingress links’ capacities, their tube ratio
is bounded.

∀D ∈D , t0, t1 ∈ N. Stab(D, t0, t1)

⇒ ∃ñ ∈ N. σñ.time = t0 + stabT

∧ ∀m ∈ rng(D) ,v ∈ sgmt(m)∩H, i, i′,e ∈ I,n > ñ.

tubeDemv(i,e) ∈]0;δcap(v, i)]∧ tubeDemv(i′,e) ∈]0;δcap(v, i′)]

⇒ tubeRatiov(i,e)
tubeRatiov(i′,e)

=
tubeDemv(i,e)
tubeDemv(i′,e)

Definition 3 (Successful Reservation). We say an honest
source s ∈ H makes a successful reservation confirmed by
the message m ∈MR at time t, written Succ(s,m, t), if the
following three conditions hold: (i) m’s path only contains
honest ASes; (ii) the source s confirms m at time t with
sufficient bandwidth, i.e., there exist n ∈ N and i ∈ I such that
λn = FIN(m,s, i, t) and finBW(m)≥m.minBW ; and (iii) There
is no deletion event matching the reservation (src(m),m.id)
and version m.idx before m’s expiration time.

For properties (G3–G5) we model “constant bandwidth
demands” as a partial function D∈D with D =V×N⇀fin MR
such that D(s, id) = m implies src(m) = s and m.id = id.
We say that a reservation message m corresponds to D if
(src(m),m.id)∈ supp(D) and m coincides with D(src(m),m.id)
on all fields except ptr, expT , minBW, and accBW. The
stabilization time

stabT = max{length(m.path) | m ∈ rng(D)} ·maxT

is the maximal time that the reservation requests in rng(D)
must be renewed along their paths to reach a stable state.

Definition 4 (Constant Demands). An execution π ∈ E has
constant demands D∈D between t0 and t1≥ t0+stabT , written
Stab(D, t0, t1), if (i) for all (s, id) ∈ supp(D), the source AS s
has successfully made a reservation confirmed by a message
m corresponding to D(s, id) before time t0, and successfully
renews this reservation without any gaps until t1; (ii) any
reservation confirmed by a reservation message m between t0
and t1 corresponds to D; and (iii) there are no deletion events
between t0 and t1 for reservations given by supp(D).

Table I shows our formal specification of properties (G1–
G5) under valid executions. Note that these properties hold for
reservations along honest paths (cf. Assumption A3).

Theorem 1. Our LTS model of N-Tube satisfies properties
(G1–G5).

The inductive proofs are given in [27, Appendix E].

VI. STATISTICAL ANALYSIS OF N-TUBE

Our qualitative analysis of N-Tube by inductive proofs
(Section V) establishes the desired correctness and security
guarantees, but it offers no insight into the actual dynamics of
these guarantees. We therefore additionally conduct quantitative
measurements about these guarantees. In particular, we use
Maude-based simulation and statistical model checking (SMC)
to analyze N-Tube with respect to properties (G1–G5).

Our goal is twofold: (i) to validate our mathematical proofs
via independent machine-checked statistical verification; and (ii)
to explore quantitative aspects of N-Tube in various adversarial
scenarios, with respect to stability, fairness, and resistance
to malicious power, using statistical estimations, which goes
beyond the inductive proofs.

A. Why Maude and SMC?

Quantitative system analysis typically requires an executable
artifact. As rewriting logic [30] is a generic framework for
specifying the semantics of a wide range of computation
models, LTSs can be naturally expressed as rewrite theories in
it, and executed as system modules in Maude [26]. A rewrite
theory consists of an equational theory, specifying the system’s
data types, and a collection of labeled conditional rewrite

rules of the form crl [l] : t => t ′ if cond, where l
is a label. Such a rule specifies a transition from a system
state, represented by the term t, to a new state t ′, provided the
condition cond holds.

The Maude system supports machine-checkable and auto-
mated formal analysis, including simulation and SMC [26], [23].
In particular, compared to conventional emulations, SMC can
verify a property specified, e.g., in a stochastic temporal logic,
up to a statistical confidence level by running Monte-Carlo
simulations of the system model. The expected value v̄ of a
property query belongs to the interval [v̄− β

2 , v̄+
β

2] with (1−α)
statistical confidence, where parameters α and β determine
when an SMC analysis stops performing simulations [23].

The Maude ecosystem has been very successful in analyzing
high-level designs of a wide range of distributed and networked
systems [31], [32], [33], [34], [35], [36]. In particular, Maude-
based validation using SMC provides additional confidence
about claimed statements by analyzing large parameter spaces.
Maude-based SMC performance predictions have also shown
good correspondence with implementation-based evaluations
under realistic deployments [24], [25].

B. Model Transformation

We first express the N-Tube LTS model from Section IV-E
as an equivalent untimed, nondeterministic rewrite theory. For
the statistical analysis, we then transform this rewrite theory
into a timed, purely probabilistic rewrite theory, following the
methodology in [37]. In particular, the transformation assigns
to each message a delay sampled from a continuous probability
distribution, which determines the firing of the rule receiving
the message. The resulting model is free from unquantified
nondeterminism (in that all transitions are associated with
probabilities) and can be simulated by the original model.

The system state of the transformed model consists of a
multiset of objects, including a scheduler object maintaining the
global clock, and messages. An object of class C is represented
as a term <o : C | att1 : val1, . . . ,attn : valn>, with o the object’s
identifier, and val1 to valn the current values of attributes att1
to attn. An incoming message of the form {t, msg} is ready
to be consumed at the global time t, while an outgoing message
of the form [t +d, msg] will be delivered in d time units
after t where the message delay d is sampled from some
continuous probability distribution. Each message msg has
the form to o from o’ : mp, with o, o′, and mp the message
receiver, sender, and payload, respectively. The scheduler object
is specified to advance the global time and to deliver outgoing
messages at the specified times.

We specify N-Tube’s dynamic behaviors in Maude by
translating its events into rewriting rules. Consider the message
processing event CMP in Section IV-E2. The following trans-
formed conditional rule [cmp] specifies that, upon receiving
a reservation message res(M) at global time T (line 2), the
AS O updates its local reservation map accordingly (using the
save function; line 7), and forwards the modified message
(determined by the compute function) to next hop (line 9):
1 crl [cmp] :

2 {T, to O from O’ : res(M)}
3 < G : Table | links : LS, ATS’ >
4 < O : As | resMap : RM, ATS >
5 =>
6 < G : Table | links : LS, ATS’ >
7 < O : As | resMap : save(M,O,RM,LS,AVL,IDL), ATS >
8 [T + lognormal(µ,σ),
9 to next(O,M) from O : compute(M,AVL,IDL)]
10 if (atSrt(M) or onPth(M)) /\ pathCheck(M)
11 /\ resMsgCheck(M,T) /\ resMapCheck(M,RM)
12 /\ AVL := avail(LS,O,RM,T,M)
13 /\ IDL := ideal(LS,O,RM,T,M) .

where the network topology and all links’ capacities are
stored in a global “table” G (lines 3 and 6). The message delay
is probabilistically sampled from the lognormal distribution (to
mimic the real-work network environment [38]), parametric on
the mean µ and standard deviation σ , each time this rule applies
(line 8). The functions avail (line 12), ideal (line 13),
save, and compute, as well as the predicates in the condition
(lines 10 and 11), are defined following Section IV-E. The
variables ATS and ATS’ refer to the rest of attributes that do
not affect the next state.

C. Statistical Analysis

We investigate the following questions about N-Tube using
our statistical analysis:
• Are the statistical verification results consistent with our

hand-written inductive proofs of (G1–G5)?
• How does N-Tube actually perform in worst- and average-

case malicious scenarios with respect to stability and
fairness? In particular, how does it resist increasing attack
power such as total malicious demands?

1) Benchmark: To statistically analyze N-Tube’s properties
we implement three parametric generators: a topology generator
(TG), a path generator (PG), and a workload generator (WG).
We use these to probabilistically generate a different initial
state for each simulation in an SMC analysis. Specifically, TG
generates scale-free Internet topologies with strongly connected
ASes, which is also characteristic of the realistic AS-level
Internet graph in the CAIDA benchmark for Internet data
analysis [39]. Each link between nodes is assigned a bandwidth
probabilistically sampled from an interval. PG then explores the
generated graph, and collects paths from sources to destinations.
WG provides the generated sources, including adversaries, with
reservations, renewals, and deletions on a probabilistic basis,
where each of these three types of requests is parametric in the
algorithm-specific parameters (such as maxBW and expT). See
Appendix B for a complete list of the generators’ 18 parameters
and their default values.

2) Experimental Setup: We employed a cluster of 50 d430
Emulab machines [40], each with two 2.4 GHz 64-bit 8-Core
E5-2630 processors, to parallelize SMC with the PVeStA
tool [41] (part of the Maude ecosystem). We set the statistical
confidence level to 95%, i.e., α = 0.05, and the size parameter
β to 0.01 for all our experiments.

3) Analysis Results: We have subjected the transformed
Maude model to the above generators and PVeStA, and per-
formed three sets of experiments according to our experimental

 0

 40

 80

 120

 160

 200

10 15 20 25 30 35 40 45 50

B
a

n
d

w
id

th
 A

llo
c
a

ti
o

n
 (

G
b

p
s
)

Snapshot (time unit)

Figure 2 Scenario

Cap. D
Alloc A

Alloc C
Alloc B

Dem A
Dem C

Dem B

 0

 100

 200

 300

 400

 500

15 20 25 30 35 40 45 50 55

Snapshot (time unit)

Figure 3 Scenario

Cap. D
Alloc C
Alloc A

Alloc B2
Alloc B1
Dem C
Dem A

Dem B2
Dem B1

 0

 100

 200

 300

10 15 20 25 30 35 40 45 50

B
a

n
d

w
id

th
 A

llo
c
a

ti
o

n
 (

G
b

p
s
)

Snapshot (time unit)

Figure 4 Scenario

Cap. D
Alloc B

Alloc C
Alloc A

Dem B
Dem C

Dem A

 0

 100

 200

 300

15 20 25 30 35 40 45 50 55

Snapshot (time unit)

Figure 5 Scenario

Cap. D
Alloc C
Alloc A

Alloc B2
Alloc B1
Dem C
Dem A

Dem B2
Dem B1

Figure 7: Measuring stability and fairness. Time units are
defined as logical clock ticks in our probabilistic model.

goal with 100 ASes by default. Each simulation or SMC
analysis took up to three hours (in the worst case) to terminate.
Experiment 1: Verifying Properties. In all our SMC analyses,
the probabilities of satisfying N-Tube’s properties (G1–G5)
are 100%. This provides a strong independent validation of our
proofs for the properties, and of the model transformation (from
the LTS model into Maude), via machine-checked analysis.
Experiment 2: Stability & Fairness. We report the simulation
results for the scenarios in Section III. Figure 7 depicts the
bandwidth reservations at interface D and their state, demanded
or allocated, as a function of (simulation) times where we
take “snapshots” of the system state. The allocated bandwidths
adapt over time to self-renewals and other demands. For the
scenarios in Figures 3 and 5, we individually measure the
allocated bandwidth for each of the two demands (B1 and B2)
through interface B. In all scenarios, the allocations in the entire
network converge and stabilize; the total allocations are always
bounded by D’s adjusted capacity (dashed line), and distributed
proportionally to the demands after stabilization as expected
(Section III). Hence, from the quantitative perspective, these
results further demonstrate stability and fairness, in particular
for the worst-case scenarios (Figures 3–5) where attacks are
mounted directly on an honest path.
Experiment 3: Impact of Increasing Malicious Power. To
analyze the influence on bandwidth allocation of increasing
malicious power, we randomly positioned the attackers in
the network (not necessarily neighbors of the targeted path),
and picked a relatively small number of destinations (5
out of 100 ASes) for the reservations so that all demands,
including malicious ones, converge to these destinations. We
then randomly selected one destination and one of its egress
interfaces, and reported the associated aggregate allocations
for the benign sources and attackers, respectively.

Figure 8 (a–c) show the allocation percentage as a function of
attacker capability, represented by total demanded bandwidth,
number of attackers, and number of issued reservations per

 0

 20

 40

 60

 80

 100

0 40 80 120 160 200 240 280 320

%
 o

f
B

a
n

d
w

id
th

 A
llo

c
a

ti
o

n

Total Malicious Demand (Gbps)

(a)

Benign
Malic.

 0

 20

 40

 60

 80

 100

0 2 4 6 8 10 12 14 16

Attackers

(b)

Benign
Malic.

 0

 20

 40

 60

 80

 100

0 1 2 3 4 5 6 7 8 9

%
 o

f
B

a
n

d
w

id
th

 A
llo

c
a

ti
o

n

Reservations per Attacker

(c)

Benign
Malic.

 0

 20

 40

 60

 80

 100

Exp. (a) Exp. (b) Exp. (c)

%
 o

f
M

a
lic

io
u

s
 D

e
m

a
n

d
s

(d)

Before f-line
Immed. after f-line

After stab.

Figure 8: Measuring the impact of increasing malicious power.

attacker, respectively. With increasing malicious power, the
attackers tend to occupy more bandwidth until the entire
allocation stabilizes (starting from 160 Gbps, 10 attackers,
and 7 reservations per attacker, respectively); thereafter their
demands are adjusted, and thus limited by the links’ capacities
and scaling factors. These results further provide quantitative
assessments of N-Tube with varying malicious powers by
exploring the large parameter space.

We also measured the adversaries’ allocated bandwidth
reduction by N-Tube’s “frontline defense”. A frontline defender
is the first honest AS on an attacker reservation’s path that can
mitigate the impact of the attack by limiting the adversary
demands. We divided the timeline into three phases: (i)
before malicious demands reach the frontline defender; (ii)
immediately after those demands break through the frontline;
and (iii) after the network stabilizes.

Figure 8 (d) reports for the experiments (a–c) the percentage
of original malicious demands that was allocated to the
adversaries in each phase. Phase (iii)’s computation is based on
the minimum stabilized “point” (e.g., 160 Gbps in experiment
(a)): The higher the stabilized point is that we consider, the
more reduction there will be. As demonstrated in experiment
(d), N-Tube’s frontline defense plays an important role in
limiting the adversarial demands, e.g., in experiment (a) ∼50%
of the malicious demands can be reduced, which constitute
almost 80% of the total reduction.

VII. RELATED WORK

A. Quality of Service and DDoS Protection

Congestion Control enables end-to-end connections possibly
with multiple paths, to control their path rates to fairly mitigate
congestion. However, this approach is based on per-flow
fairness with complete knowledge of users’ utility functions. In
contrast, we take the stance that new Internet architectures [19],
[16], [18] can handle reservation states efficiently, which allows
them to police misbehaving traffic. As observed by [15], self-
interested and strategic users can skew the overall rate allocation

by opening arbitrarily many connections violating the property
of minimum bandwidth guarantee. Furthermore, stateless algo-
rithms can only reduce bandwidth allocations of misbehaving
flows, but cannot determine aggregated misbehavior (over time
and per AS) and cannot revoke access. Note that these works
do not consider an adversarial setting.
Game-Based Mechanisms consider resource allocation for
maximizing a global objective function as an “inverse game the-
ory” problem [42], [43]. Such mechanisms allow for users that
are self-interested and strategic, and may attempt to manipulate
the system to their advantage by misreporting information
on their utility functions. The VCG type mechanisms [44]
provide sealed bid auctions that incentivize users to reveal their
objective truthfully and can also include sellers of resources.
However, for these mechanisms to allow practical bids, the
class of utility functions is very restricted, e.g., to piecewise
linear [42], which misses realistic attack scenarios. Furthermore,
the main objective of these mechanisms is to increase efficiency,
and not to provide minimal guarantees.
Resource Reservation Systems such as RSVP [7] or RSVP-
TE [45], [46], [47] enable bandwidth reservation along network
paths by setting up reservation state at routers. RSVP uses
soft-state reservations that require periodic updates, and must
be re-established in case a path changes. However, neither do
they offer authentication of reservation requests, nor handle
malicious reservations, nor are their claims formally supported.

SIBRA [48] is a scalable inter-domain bandwidth allocation
architecture for path-based networks. It is based on a dis-
tributed bandwidth reservation algorithm and an enforcement
mechanism monitoring and policing the reservations. SIBRA
is claimed to provide effective QoS guarantees in general and
minimum bandwidth guarantees in particular. However, only a
high-level design is provided without a concrete algorithm or
formal arguments to support the stated claims.

B. Formal Verification of Networking Systems

As we are not aware of any work applying formal verification
to a bandwidth reservation system, we discuss here research
in the broader area of secure networking protocol and DoS
defense verification.
Qualitative Properties. Various works study secure networking
protocols, including packet forwarding protocols [49], [50],
inter-domain routing protocols [51], [52], and routing protocols
for mobile ad-hoc networks [53], [54], [55], [56], [57], [58],
and verify their security properties such as path authorization,
source authentication, path validation, route validity, and loop
freedom. These works analyze qualitative properties using
model checking, theorem proving, or hand-written proofs.
Quantitative Properties. Another critical aspect is the verifica-
tion of a system’s quantitative properties such as performance,
rapid convergence, or the quick recovery from attacks. We focus
on the analysis of DoS protection mechanisms. Meadows’ cost-
based framework [59] enables the (non-probabilistic) extension
of existing protocol models and tools with cost accounting
and comparisons [60]. It has been extended to cover timing

aspects (e.g., slow DoS) and amplification DoS attacks [61],
[33]. Approaches based on probabilistic or statistical model
checking have been applied to analyze SYN flooding attacks on
TCP/IP [62], the adaptive selective verification protocol [63],
[64], and amplification attacks on DNS [65].

VIII. CONCLUSION

We have presented the design of N-Tube, along with the
novel notion of bounded tube fairness. We developed formal
models and verified all its safety and security properties.
Moreover, we have gained: (i) additional confidence about
our hand-written proofs via independent machine-checked
statistical model checking, and (ii) a quantitative assessment
of N-Tube’s resistance to attacks by statistically exploring the
large parameter space and varying malicious scenarios.

N-Tube is the first provably correct inter-domain bandwidth
reservation algorithm and a major step towards a provably
secure QoS scheme that also provides DDoS defense. The
obvious next step is to build an efficient N-Tube implemen-
tation, as well as large-scale deployment by, e.g., proceeding
along the lines proposed in [21]. Preliminary results from
an N-Tube prototype implementation, realized as part of the
Colibri inter-domain bandwidth-reservation infrastructure [66],
have demonstrated N-Tube’s deployability and scalability.

ACKNOWLEDGMENTS

We gratefully acknowledge support for this project from
the WSS Centre for Cyber Trust at ETH Zurich. We would
also like to thank Stephen Shirley, Chris Pappas, Taeho Lee,
Dominik Roos, Markus Legner, and Juan García-Pardo for
their insightful discussions and valuable comments on how to
handle tedious corner cases of the algorithm.

REFERENCES

[1] M. S. Kang, S. B. Lee, and V. D. Gligor, “The Crossfire Attack,” in
IEEE S&P, 2013.

[2] A. Studer and A. Perrig, “The Coremelt attack,” in ESORICS, 2009.
[3] M. S. Kang and V. D. Gligor, “Routing bottlenecks in the internet:

Causes, exploits, and countermeasures,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’14. New York, NY, USA: ACM, 2014, pp. 321–333.
[Online]. Available: http://doi.acm.org/10.1145/2660267.2660299

[4] S. Shalunov and B. Teitelbaum, “Quality of service and denial of
service,” in Proceedings of the ACM SIGCOMM Workshop on Revisiting
IP QoS: What Have We Learned, Why Do We Care?, ser. RIPQoS ’03.
New York, NY, USA: ACM, 2003, pp. 137–140. [Online]. Available:
http://doi.acm.org/10.1145/944592.944600

[5] R. Braden, D. Clark, and S. Shenker, “Integrated Services in
the Internet Architecture: an Overview,” RFC 1633 (Informational),
Internet Engineering Task Force, Jun. 1994. [Online]. Available:
http://www.ietf.org/rfc/rfc1633.txt

[6] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss,
“An Architecture for Differentiated Services,” RFC 2475 (Informational),
Internet Engineering Task Force, Dec. 1998, updated by RFC 3260.
[Online]. Available: http://www.ietf.org/rfc/rfc2475.txt

[7] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala, “RSVP: A
New Resource ReSerVation Protocol,” IEEE Network, 1993.

[8] US-CERT, “Alert (ta17-164a) hidden cobra – north korea’s ddos botnet
infrastructure,” https://www.us-cert.gov/ncas/alerts/TA17-164A, 2017.

[9] J. Nagle, “On Packet Switches With Infinite Storage,” RFC 970,
Internet Engineering Task Force, Dec. 1985. [Online]. Available:
http://www.ietf.org/rfc/rfc970.txt

[10] X. Yang, D. Wetherall, and T. Anderson, “A DoS-limiting network
architecture,” ACM SIGCOMM Comp. Comm. Rev., 2005.

http://doi.acm.org/10.1145/2660267.2660299
http://doi.acm.org/10.1145/944592.944600
http://www.ietf.org/rfc/rfc1633.txt
http://www.ietf.org/rfc/rfc2475.txt
http://www.ietf.org/rfc/rfc970.txt

[11] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a
fair queueing algorithm,” ACM SIGCOMM Comp. Comm. Rev., 1989.

[12] B. Parno, D. Wendlandt, E. Shi, A. Perrig, B. Maggs, and Y.-C.
Hu, “Portcullis: Protecting Connection Setup from Denial-of-Capability
Attacks,” in ACM SIGCOMM, 2007.

[13] J. Babiarz, K. Chan, and F. Baker, “Configuration Guidelines for DiffServ
Service Classes,” IETF RFC 4594.

[14] G. Hardin, “The tragedy of the commons,” Science, 1968.
[15] B. Briscoe, “Flow rate fairness: Dismantling a religion,” SIGCOMM

Comput. Commun. Rev., vol. 37, no. 2, pp. 63–74, Mar. 2007. [Online].
Available: http://doi.acm.org/10.1145/1232919.1232926

[16] A. Perrig, P. Szalachowski, R. M. Reischuk, and L. Chuat, SCION: a
secure internet architecture. Springer, 2017.

[17] T. Anderson, K. Birman, R. M. Broberg, M. Caesar, D. Comer,
C. Cotton, M. J. Freedman, A. Haeberlen, Z. G. Ives, A. Krishnamurthy,
W. H. Lehr, B. T. Loo, D. Mazières, A. Nicolosi, J. M. Smith,
I. Stoica, R. van Renesse, M. Walfish, H. Weatherspoon, and C. S. Yoo,
“The NEBULA future internet architecture,” in The Future Internet -
Future Internet Assembly 2013: Validated Results and New Horizons,
ser. Lecture Notes in Computer Science, A. Galis and A. Gavras,
Eds., vol. 7858. Springer, 2013, pp. 16–26. [Online]. Available:
https://doi.org/10.1007/978-3-642-38082-2_2

[18] P. Godfrey, I. Ganichev, S. Shenker, and I. Stoica, “Pathlet routing,” in
ACM SIGCOMM Comp. Comm. Rev., 2009.

[19] X. Yang, D. Clark, and A. W. Berger, “Nira: A new inter-domain routing
architecture,” IEEE/ACM Transactions on Networking, 2007.

[20] J. de Ruiter and C. Schutijser, “Next-generation internet at terabit
speed: SCION in P4,” in CoNEXT ’21: The 17th International
Conference on emerging Networking EXperiments and Technologies,
Virtual Event, Munich, Germany, December 7 - 10, 2021, G. Carle
and J. Ott, Eds. ACM, 2021, pp. 119–125. [Online]. Available:
https://doi.org/10.1145/3485983.3494839

[21] C. Krähenbühl, S. Tabaeiaghdaei, C. Gloor, J. Kwon, A. Perrig,
D. Hausheer, and D. Roos, “Deployment and scalability of an
inter-domain multi-path routing infrastructure,” in CoNEXT ’21: The
17th International Conference on emerging Networking EXperiments
and Technologies, Virtual Event, Munich, Germany, December 7 - 10,
2021, G. Carle and J. Ott, Eds. ACM, 2021, pp. 126–140. [Online].
Available: https://doi.org/10.1145/3485983.3494862

[22] J. Naous, M. Walfish, A. Nicolosi, D. Mazières, M. Miller, and
A. Seehra, “Verifying and enforcing network paths with ICING,”
in Proceedings of the 2011 Conference on Emerging Networking
Experiments and Technologies, Co-NEXT ’11, Tokyo, Japan, December
6-9, 2011, K. Cho and M. Crovella, Eds. ACM, 2011, p. 30. [Online].
Available: http://doi.acm.org/10.1145/2079296.2079326

[23] K. Sen, M. Viswanathan, and G. Agha, “On statistical model checking
of stochastic systems,” in CAV, ser. LNCS, vol. 3576. Springer, 2005.

[24] R. Bobba, J. Grov, I. Gupta, S. Liu, J. Meseguer, P. C. Ölveczky, and
S. Skeirik, “Survivability: Design, formal modeling, and validation of
cloud storage systems using Maude,” in Assured Cloud Computing.
Wiley-IEEE Computer Society Press, 2018, ch. 2, pp. 10–48.

[25] S. Liu, A. Sandur, J. Meseguer, P. C. Ölveczky, and Q. Wang, “Generating
correct-by-construction distributed implementations from formal Maude
designs,” in NFM’20, ser. LNCS, vol. 12229. Springer, 2020.

[26] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer,
and C. L. Talcott, All About Maude, ser. LNCS. Springer, 2007, vol.
4350.

[27] T. Weghorn, S. Liu, C. Sprenger, A. Perrig, and D. Basin, “N-Tube: Secure
bandwidth reservation in path-aware internet architectures (supplementary
material),” Available online at https://doi.org/10.5281/zenodo.5856305,
2022.

[28] S. Scherrer, C. Wu, Y. Chiang, B. Rothenberger, D. E. Asoni,
A. Sateesan, J. Vliegen, N. Mentens, H. Hsiao, and A. Perrig,
“Low-rate overuse flow tracer (LOFT): an efficient and scalable
algorithm for detecting overuse flows,” in 40th International Symposium
on Reliable Distributed Systems, SRDS 2021, Chicago, IL, USA,
September 20-23, 2021. IEEE, 2021, pp. 265–276. [Online]. Available:
https://doi.org/10.1109/SRDS53918.2021.00034

[29] M. Lepinski and S. Kent, “An Infrastructure to Support Secure Internet
Routing,” RFC 6480 (Informational), Internet Engineering Task Force,
Feb. 2012. [Online]. Available: http://www.ietf.org/rfc/rfc6480.txt

[30] J. Meseguer, “Conditional rewriting logic as a unified model of con-
currency,” Theoretical Computer Science, vol. 96, no. 1, pp. 73–155,
1992.

[31] A. Wang, A. J. T. Gurney, X. Han, J. Cao, B. T. Loo, C. L. Talcott, and
A. Scedrov, “A reduction-based approach towards scaling up formal
analysis of internet configurations,” in 2014 IEEE Conference on
Computer Communications, INFOCOM 2014, Toronto, Canada, April
27 - May 2, 2014. IEEE, 2014, pp. 637–645. [Online]. Available:
https://doi.org/10.1109/INFOCOM.2014.6847989

[32] Q. Wang, P. Datta, W. Yang, S. Liu, A. Bates, and C. A. Gunter, “Charting
the attack surface of trigger-action IoT platforms,” in CCS, L. Cavallaro,
J. Kinder, X. Wang, and J. Katz, Eds. ACM, 2019, pp. 1439–1453.
[Online]. Available: https://doi.org/10.1145/3319535.3345662

[33] A. A. Urquiza, M. A. AlTurki, M. I. Kanovich, T. B. Kirigin, V. Nigam,
A. Scedrov, and C. L. Talcott, “Resource-bounded intruders in denial of
service attacks,” in CSF. IEEE, 2019, pp. 382–396. [Online]. Available:
https://doi.org/10.1109/CSF.2019.00033

[34] S. Liu, P. C. Ölveczky, and J. Meseguer, “Modeling and analyzing
mobile ad hoc networks in Real-Time Maude,” J. Log. Algebraic
Methods Program., vol. 85, no. 1, pp. 34–66, 2016. [Online]. Available:
https://doi.org/10.1016/j.jlamp.2015.05.002

[35] S. Liu, P. C. Ölveczky, Q. Wang, I. Gupta, and J. Meseguer, “Read
atomic transactions with prevention of lost updates: ROLA and its formal
analysis,” Formal Asp. Comput., vol. 31, no. 5, pp. 503–540, 2019.

[36] S. Liu, “All in one: Design, verification, and implementation of SNOW-
optimal read atomic transactions,” ACM Trans. Softw. Eng. Methodol.,
2022. To appear.

[37] G. A. Agha, J. Meseguer, and K. Sen, “PMaude: Rewrite-based
specification language for probabilistic object systems,” Electr. Notes
Theor. Comput. Sci., vol. 153, no. 2, 2006.

[38] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in IMC’10. ACM, 2010, pp. 267–280.

[39] CAIDA, “Topology research,” https://www.caida.org/research/topology,
2021.

[40] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An integrated experimental
environment for distributed systems and networks,” in OSDI. USENIX
Association, 2002.

[41] M. AlTurki and J. Meseguer, “PVeStA: A parallel statistical model
checking and quantitative analysis tool,” in CALCO, ser. LNCS, vol.
6859. Springer, 2011, pp. 386–392.

[42] R. Jain and J. Walrand, “An efficient nash-implementation mechanism for
network resource allocation,” Automatica, vol. 46, no. 8, pp. 1276–1283,
2010.

[43] R. Johari and J. N. Tsitsiklis, “Efficiency of scalar-parameterized
mechanisms,” Operations Research, vol. 57, no. 4, pp. 823–839, 2009.

[44] W. Vickrey, “Counterspeculation, auctions, and competitive sealed
tenders,” The Journal of finance, vol. 16, no. 1, pp. 8–37, 1961.

[45] K. Shiomoto and A. Farrel, “Procedures for Dynamically Signaled
Hierarchical Label Switched Paths,” RFC 6107 (Proposed Standard),
Internet Engineering Task Force, Feb. 2011. [Online]. Available:
http://www.ietf.org/rfc/rfc6107.txt

[46] K. Kompella and Y. Rekhter, “Signalling Unnumbered Links in Resource
ReSerVation Protocol - Traffic Engineering (RSVP-TE),” RFC 3477
(Proposed Standard), Internet Engineering Task Force, Jan. 2003, updated
by RFC 6107. [Online]. Available: http://www.ietf.org/rfc/rfc3477.txt

[47] L. Berger, “Generalized Multi-Protocol Label Switching (GMPLS)
Signaling Resource ReserVation Protocol-Traffic Engineering (RSVP-TE)
Extensions,” RFC 3473 (Proposed Standard), Internet Engineering Task
Force, Jan. 2003, updated by RFCs 4003, 4201, 4420, 4783, 4874,
4873, 4974, 5063, 5151, 5420, 6002, 6003, 6780. [Online]. Available:
http://www.ietf.org/rfc/rfc3473.txt

[48] C. Basescu, R. M. Reischuk, P. Szalachowski, A. Perrig, Y. Zhang, H.-C.
Hsiao, A. Kubota, and J. Urakawa, “Sibra: Scalable internet bandwidth
reservation architecture,” arXiv preprint arXiv:1510.02696, 2015.

[49] F. Zhang, L. Jia, C. Basescu, T. H. Kim, Y. Hu, and A. Perrig,
“Mechanized network origin and path authenticity proofs,” in Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications
Security, Scottsdale, AZ, USA, November 3-7, 2014, G. Ahn, M. Yung,
and N. Li, Eds. ACM, 2014, pp. 346–357. [Online]. Available:
http://doi.acm.org/10.1145/2660267.2660349

[50] T. Klenze, C. Sprenger, and D. A. Basin, “Formal verification
of secure forwarding protocols,” in 34th IEEE Computer Security
Foundations Symposium, CSF 2021, Dubrovnik, Croatia, June 21-
25, 2021. IEEE, 2021, pp. 1–16. [Online]. Available: https:
//doi.org/10.1109/CSF51468.2021.00018

http://doi.acm.org/10.1145/1232919.1232926
https://doi.org/10.1007/978-3-642-38082-2_2
https://doi.org/10.1145/3485983.3494839
https://doi.org/10.1145/3485983.3494862
http://doi.acm.org/10.1145/2079296.2079326
https://doi.org/10.5281/zenodo.5856305
https://doi.org/10.1109/SRDS53918.2021.00034
http://www.ietf.org/rfc/rfc6480.txt
https://doi.org/10.1109/INFOCOM.2014.6847989
https://doi.org/10.1145/3319535.3345662
https://doi.org/10.1109/CSF.2019.00033
https://doi.org/10.1016/j.jlamp.2015.05.002
http://www.ietf.org/rfc/rfc6107.txt
http://www.ietf.org/rfc/rfc3477.txt
http://www.ietf.org/rfc/rfc3473.txt
http://doi.acm.org/10.1145/2660267.2660349
https://doi.org/10.1109/CSF51468.2021.00018
https://doi.org/10.1109/CSF51468.2021.00018

[51] C. Chen, L. Jia, B. T. Loo, and W. Zhou, “Reduction-based security
analysis of internet routing protocols,” in 20th IEEE International
Conference on Network Protocols, ICNP 2012, Austin, TX, USA, October
30 - Nov. 2, 2012. IEEE Computer Society, 2012, pp. 1–6. [Online].
Available: http://dx.doi.org/10.1109/ICNP.2012.6459941

[52] C. Chen, L. Jia, H. Xu, C. Luo, W. Zhou, and B. T. Loo, “A
program logic for verifying secure routing protocols,” Logical Methods
in Computer Science, vol. 11, no. 4, 2015. [Online]. Available:
http://dx.doi.org/10.2168/LMCS-11(4:19)2015

[53] S. Nanz and C. Hankin, “Formal security analysis for ad-hoc networks,”
Electr. Notes Theor. Comput. Sci., vol. 142, pp. 195–213, 2006. [Online].
Available: http://dx.doi.org/10.1016/j.entcs.2004.10.029

[54] D. Benetti, M. Merro, and L. Viganò, “Model checking ad hoc network
routing protocols: ARAN vs. endaira,” in 8th IEEE International
Conference on Software Engineering and Formal Methods, SEFM
2010, Pisa, Italy, 13-18 September 2010, J. L. Fiadeiro, S. Gnesi,
and A. Maggiolo-Schettini, Eds. IEEE Computer Society, 2010, pp.
191–202. [Online]. Available: http://dx.doi.org/10.1109/SEFM.2010.24

[55] M. Arnaud, V. Cortier, and S. Delaune, “Deciding security for
protocols with recursive tests,” in Automated Deduction - CADE-23
- 23rd International Conference on Automated Deduction, Wroclaw,
Poland, July 31 - August 5, 2011. Proceedings, ser. Lecture Notes
in Computer Science, N. Bjørner and V. Sofronie-Stokkermans,
Eds., vol. 6803. Springer, 2011, pp. 49–63. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-22438-6_6

[56] V. Cortier, J. Degrieck, and S. Delaune, “Analysing routing protocols:
Four nodes topologies are sufficient,” in Principles of Security and
Trust - First International Conference, POST 2012, Held as Part of
the European Joint Conferences on Theory and Practice of Software,
ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012, Proceedings,
ser. Lecture Notes in Computer Science, P. Degano and J. D. Guttman,
Eds., vol. 7215. Springer, 2012, pp. 30–50. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-28641-4_3

[57] R. Chrétien and S. Delaune, “Formal analysis of privacy for routing
protocols in mobile ad hoc networks,” in Principles of Security
and Trust - Second International Conference, POST 2013, Held as
Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings,
ser. Lecture Notes in Computer Science, D. A. Basin and J. C.
Mitchell, Eds., vol. 7796. Springer, 2013, pp. 1–20. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-36830-1_1

[58] M. Arnaud, V. Cortier, and S. Delaune, “Modeling and verifying ad hoc
routing protocols,” Inf. Comput., vol. 238, pp. 30–67, 2014. [Online].
Available: http://dx.doi.org/10.1016/j.ic.2014.07.004

[59] C. A. Meadows, “A cost-based framework for analysis of denial of
service networks,” Journal of Computer Security, vol. 9, no. 1/2, pp.
143–164, 2001. [Online]. Available: http://content.iospress.com/articles/
journal-of-computer-security/jcs143

[60] B. Groza and M. Minea, “Formal modelling and automatic detection of
resource exhaustion attacks,” in Proceedings of the 6th ACM Symposium
on Information, Computer and Communications Security, ASIACCS
2011, Hong Kong, China, March 22-24, 2011, B. S. N. Cheung, L. C. K.
Hui, R. S. Sandhu, and D. S. Wong, Eds. ACM, 2011, pp. 326–333.
[Online]. Available: https://doi.org/10.1145/1966913.1966955

[61] R. Shankesi, M. AlTurki, R. Sasse, C. A. Gunter, and J. Meseguer,
“Model-checking dos amplification for voip session initiation,” in
Computer Security - ESORICS 2009, 14th European Symposium on
Research in Computer Security, Saint-Malo, France, September 21-23,
2009. Proceedings, ser. Lecture Notes in Computer Science, M. Backes
and P. Ning, Eds., vol. 5789. Springer, 2009, pp. 390–405. [Online].
Available: https://doi.org/10.1007/978-3-642-04444-1_24

[62] G. Agha, M. Greenwald, C. A. Gunter, S. Khanna, J. Meseguer, K. Sen,
and P. Thati, “Formal modeling and analysis of dos using probabilistic
rewrite theories,” in International Workshop on Foundations of Computer
Security (FCS ’05), 2005.

[63] M. AlTurki, J. Meseguer, and C. A. Gunter, “Probabilistic modeling
and analysis of dos protection for the ASV protocol,” Electron. Notes
Theor. Comput. Sci., vol. 234, pp. 3–18, 2009. [Online]. Available:
https://doi.org/10.1016/j.entcs.2009.02.069

[64] Y. G. Dantas, V. Nigam, and I. E. Fonseca, “A selective defense for
application layer ddos attacks,” in IEEE Joint Intelligence and Security
Informatics Conference, JISIC 2014, The Hague, The Netherlands,
24-26 September, 2014. IEEE, 2014, pp. 75–82. [Online]. Available:
https://doi.org/10.1109/JISIC.2014.21

[65] T. Deshpande, P. Katsaros, S. Basagiannis, and S. A. Smolka,
“Formal analysis of the DNS bandwidth amplification attack and its
countermeasures using probabilistic model checking,” in 13th IEEE
International Symposium on High-Assurance Systems Engineering,
HASE 2011, Boca Raton, FL, USA, November 10-12, 2011, T. M.
Khoshgoftaar, Ed. IEEE Computer Society, 2011, pp. 360–367.
[Online]. Available: https://doi.org/10.1109/HASE.2011.57

[66] G. Giuliari, D. Roos, M. Wyss, J. Á. García-Pardo, M. Legner, and
A. Perrig, “Colibri: a cooperative lightweight inter-domain bandwidth-
reservation infrastructure,” in CoNEXT ’21: The 17th International
Conference on emerging Networking EXperiments and Technologies,
Virtual Event, Munich, Germany, December 7 - 10, 2021, G. Carle
and J. Ott, Eds. ACM, 2021, pp. 104–118. [Online]. Available:
https://doi.org/10.1145/3485983.3494871

APPENDIX

A. Handling Node and Link Failures
In practice, source ASes can use the N-Tube algorithm to

detect link failures and non-responsive nodes. In case the
source AS does not receive a return message to one of its
reservation requests, it can successively probe prefixes of
that reservation’s path by sending corresponding reservation
requests with very low bandwidth demands. Depending which
of these requests succeed, the source AS can identify which
of the ASes on the path are not responding and by assumption
N2 in Section II-B can quickly choose an alternative path to
circumvent the affected ASes.

We model link failures and non-responsive nodes using the
drop event (DRP) where messages in buffers can be dropped
any time, which simulates link or buffer failures. Note that
properties (G1-G5) are not violated by such failures, as they are
safety properties. However, we do not explicitly model node
failures, where the node’s reservation map becomes inconsistent.
In our events, reservation maps are are persistent and updated
atomically according to the N-Tube algorithm.

B. Parameters for Statistical Analysis
Table II lists all parameters used in the statistical analysis

of N-Tube as described Section VI together with their default
values, which the three generators use to generate the topologies,
paths, and workloads (including reservations, renewals, and
deletions).

Table II: Generators Parameters

Parameters Default Value
benign ASes 90

malicious ASes 10
sources 20

intermediate ASes 75
destinations 5

adjusted capacity δ 0.8
minBW [0,50]
maxBW [50,250]
maxT 20

reservation frequency 10
renewal frequency 2
deletion frequency 50
snapshot frequency 5

reservations per source 5
paths per source-dest pair 5

segment length 5
link capacity [100,300]

message delay lognormal: µ = 0.0, σ = 1.0

http://dx.doi.org/10.1109/ICNP.2012.6459941
http://dx.doi.org/10.2168/LMCS-11(4:19)2015
http://dx.doi.org/10.1016/j.entcs.2004.10.029
http://dx.doi.org/10.1109/SEFM.2010.24
http://dx.doi.org/10.1007/978-3-642-22438-6_6
http://dx.doi.org/10.1007/978-3-642-28641-4_3
http://dx.doi.org/10.1007/978-3-642-36830-1_1
http://dx.doi.org/10.1016/j.ic.2014.07.004
http://content.iospress.com/articles/journal-of-computer-security/jcs143
http://content.iospress.com/articles/journal-of-computer-security/jcs143
https://doi.org/10.1145/1966913.1966955
https://doi.org/10.1007/978-3-642-04444-1_24
https://doi.org/10.1016/j.entcs.2009.02.069
https://doi.org/10.1109/JISIC.2014.21
https://doi.org/10.1109/HASE.2011.57
https://doi.org/10.1145/3485983.3494871

	Introduction
	Preliminaries
	Design Goal and Properties
	Model and Assumptions

	N-Tube Overview
	Bounded Tube Fairness (G5)
	Minimum Bandwidth Guarantee (G4)
	Stability (G3)
	Immutability (G2) and Availability (G1)
	Preventing Link Flooding Attacks

	Algorithm Details
	Notation
	Network and Messages
	Message Processing
	Fair Bandwidth Allocation
	Available Bandwidth Computation
	Limiting Excessive Demands
	Ideal Bandwidth Computation

	Formalizing N-Tube
	States
	Events

	Properties
	Statistical Analysis of N-Tube
	Why Maude and SMC?
	Model Transformation
	Statistical Analysis
	Benchmark
	Experimental Setup
	Analysis Results

	Related Work
	Quality of Service and DDoS Protection
	Formal Verification of Networking Systems

	Conclusion
	References
	Appendix
	Handling Node and Link Failures
	Parameters for Statistical Analysis

