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Abstract—We present N-Tube, a novel, provably secure, inter-
domain bandwidth reservation algorithm that runs on a network
architecture supporting path-based forwarding. N-Tube reserves
global end-to-end bandwidth along network paths in a distributed,
neighbor-based, and tube-fair way. It guarantees that benign
bandwidth demands are granted available allocations that are
immutable, stable, lower-bounded, and fair, even during adversarial
demand bursts.

We formalize N-Tube and powerful adversaries as a labeled
transition system, and inductively prove its safety and security
properties. We also apply statistical model checking to validate
our proofs and perform an additional quantitative assessment of
N-Tube, providing strong guarantees for protection against DDoS
attacks. We are not aware of any other complex networked system
designs that have been subjected to a comparable analysis of both
their qualitative properties (such as correctness and security) and
their quantitative properties (such as performance).

NOTE. This is the full-version technical report accompanying
our CSF 2022 paper.

I. INTRODUCTION

Providing useful guarantees during DDoS attacks remains
an open problem. The increasing sophistication of attacks has
not yet been countered by progress in scalable, cost-effective
defenses. Sophisticated attacks do not target the victim directly,
but just a few critical network links carrying the victim’s traffic.
For example, in Crossfire, a botnet sends low-volume flows to
public servers that are chosen to flood critical links required for
the victim’s traffic [1]. Similarly, in Coremelt, an adversary sets
up traffic flows among pairs of bots that it controls in a way
that floods critical links [2]. In these strongest known attacks,
an attacker with limited resources can effectively attack critical
links and degrade connectivity for large Internet regions [3].
Current techniques cannot defend against such attacks since
the congestion hotspots are outside the victims’ control.

DDoS protection can be realized by an effective quality of
service (QoS) scheme that provides hard bandwidth guarantees
in the face of sophisticated adversaries. Since best-effort
delivery and over-provisioned network bandwidth enable good
performance in the average case, offering QoS guarantees
requires fair resource allocation even when bandwidth becomes
scarce [4]. Previous QoS architectures, such as IntServ [5],
DiffServ [6], and RSVP [7] were designed for the Internet with
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trusted network participants, not for adversarial scenarios. It
remains an open research problem how to allocate bandwidth
in malicious contexts such that legitimate hosts obtain useful
bandwidth guarantees.

A core challenge is that current link-flooding attacks can
be caused by a huge number of low-volume flows originating
from colluding legitimate-looking bots, e.g., as seen in the
Hidden Cobra DDoS Botnet Infrastructure [8]. Therefore,
standard fairness notions that QoS solutions try to achieve,
such as per source [9], per destination [10], per flow [11],
per computation [12], and per class [13], are insufficient in
such settings and result in unfair bandwidth allocations. These
fairness notions suffer from the “tragedy of the commons” [14],
whereby the incentive of rational agents to increase their share
of a commonly available resource leads to infinitesimally
small shares for less aggressive, honest agents. In particular,
in today’s Internet, congestion-control-based fairness is the
most commonly used per-flow fairness notion, which allows
adversarial agents to request arbitrarily many flows and thereby
obtain a disproportional amount of bandwidth compared to
honest agents [15]. Moreover, current QoS architectures lack
packet authentication, which is required to monitor and enforce
the allocated bandwidth in the presence of malicious agents.

Secure Bandwidth Allocation. From the discussion above,
we extract the following two main requirements for secure
bandwidth allocation. First, we need a suitable notion of fairness
for adversarial settings, and second, we seek to provide a
minimal bandwidth guarantee to honest agents, even in the
presence of excessive adversarial demands. Moreover, given
the complexity of bandwidth allocation algorithms and the
unpredictability of adversarial behaviors, we provide the formal
specification and verification of their desired properties. There
is currently no proposal satisfying these requirements.

In contrast to the current Internet, new Internet architectures
supporting path-based forwarding provide the prerequisites to
achieve these requirements. Instead of using frequently updated
forwarding tables, as in today’s Internet, they leverage path-
based forwarding where the paths taken by data packets stay
fixed and correspond to the reserved paths. This simplifies rea-
soning about resource allocation. SCION [16], NEBULA [17],
Pathlets [18], and NIRA [19] are prominent examples of
such architectures, where the first already sees real-world
deployment [20], [21]. Moreover, SCION and ICING [22]
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(which is part of the NEBULA architecture) already include
packet authentication, which is needed for monitoring and
enforcing the correct use of allocated bandwidth.

N-Tube Algorithm. We present N-Tube, a new Neighbor-based,
Tube-fair bandwidth reservation algorithm, designed to achieve
the above requirements. N-Tube introduces a novel notion of
allocation fairness called bounded tube fairness. N-Tube is
designed for networks that support path-based forwarding and
prevents link congestion attacks, including the strongest known
attacks like Coremelt and Crossfire. It is thus also robust against
standard link-flooding attacks, including amplification attacks.
To allocate bandwidth on a path, each on-path autonomous
system (AS) computes and allocates bandwidth locally while
accounting for other reservations.

N-Tube builds on two key ideas. First, to always enable the
allocation of some (non-zero) bandwidth, N-Tube only uses a
fixed fraction of the available bandwidth, saving the rest for
future reservation requests. By guaranteeing that the reserved
bandwidth stays unchanged until expiry, N-Tube also enables
a predictable stabilization period for the bandwidth allocations
during times of stable bandwidth demands.

Second, with bounded tube fairness, each AS’s aggregated
bandwidth demands are first bounded by the available band-
width, and then split proportionally among its immediate
network neighbors. Hence, if a malicious AS (outside the
honest path) tries to congest a link, the first honest AS
between the attacker and targeted link limits the adversarial
demands, thereby preventing it from obtaining a disproportional
share of bandwidth on that link. Consequently, N-Tube also
guarantees any honest source AS a lower bound on the
allocated bandwidth, independently of the desired destination.

Verification Approach. Inter-domain bandwidth reservation
is, in general, a difficult problem with complex bandwidth
allocation dynamics especially for operation in adversarial
environments. This necessitates the verification of any pro-
posed bandwidth reservation algorithm to validate its intended
properties, in particular to establish both qualitative correctness
and security guarantees as well as quantitative guarantees about
the system’s bandwidth allocation dynamics. The verification of
N-Tube’s qualitative and quantitative properties is particularly
challenging for several reasons: its desired properties must
hold in the presence of a powerful adversary and for arbitrary
network topologies. Moreover, the model involves unbounded
state information and the verification requires non-linear arith-
metical reasoning about bandwidth allocation. These features
are notoriously hard to handle for automated verification tools.

We tackle this problem by using a combination of math-
ematical proofs for the qualitative properties and statistical
verification and estimation for the quantitative properties. For
qualitative guarantees, we verify N-Tube’s correctness and
security by: (i) formalizing the algorithm, together with the
network environment and attackers, as a labeled transition
system (LTS), (ii) specifying the safety and security properties
as predicates over LTS executions, and (iii) proving by
induction using careful pencil-and-paper proofs that the formal

model satisfies these properties.
For quantitative guarantees, we analyze N-Tube’s stabil-

ity and fairness properties using statistical model checking
(SMC) [23]. SMC has been successfully used to analyze large-
scale distributed systems and has demonstrated its predictive
power when used in early design stages, i.e., its estimations
are consistent with implementation-based evaluations under
realistic deployment [24], [25]. SMC samples and analyzes
system executions until a given confidence level is reached. We
transform our LTS model into a probabilistic rewrite theory
for the SMC-based analysis of N-Tube’s quantitative properties
using the Maude ecosystem [26]. Unlike in implementation-
based evaluations, this allows us to explore the large parameter
space, to consider various (malicious) scenarios, and to obtain
statistics with a desired confidence level and error margin. With
our SMC analysis, we also obtain additional confidence in our
inductive proofs of N-Tube’s qualitative properties.

In networking, formal methods have been applied to verify
qualitative and quantitative properties of routing protocols
and DoS protection mechanisms. We will discuss this and
additional related work in Section VII. However, we are not
aware of any prior work that formally models and verifies
a bandwidth reservation system, neither in benign nor in
adversarial settings. This report and the source code of our
development are available online [27].
Main Contributions. We provide: (i) the first principled
solution to the global inter-domain bandwidth allocation
problem that offers stable, lower-bounded, and fair bandwidth
allocation in adversarial settings (Sections III and IV); (ii)
the formalization of N-Tube, a strong attacker model, and
all its safety and security properties, as well as inductive
proofs establishing these properties (Sections IV-E and V);
(iii) the automated statistical verification and estimation of
N-Tube’s behaviors, both to validate our proofs and to provide
quantitative guarantees and assess N-Tube’s resistance to
attacks in various malicious scenarios (Section VI).

II. PRELIMINARIES

A. Design Goal and Properties

Our goal is to design a provably secure bandwidth reservation
architecture that provides hard, worst-case bandwidth guaran-
tees to source ASes for reaching their destination ASes. A
key component of such a QoS architecture is a bandwidth
reservation mechanism that allocates bandwidth according
to the demands of source ASes and guarantees a minimum
bandwidth allocation even under heavy congestion or flooding
attacks. Thus, N-Tube should satisfy the following properties:

G1 Availability: Any successful reservation request can
reserve bandwidth, in spite of network congestion.

G2 Immutability: The allocated bandwidth of any existing
reservation stays fixed until it expires.

G3 Stability: In periods of steady and constant demand, the
bandwidth allocation in the entire network stabilizes in
a predictable period of time.
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G4 Minimum Bandwidth Guarantee: After the network
stabilizes, there is a lower bound on the allocated band-
width, i.e., a minimal bandwidth guarantee even with
high external demands such as link-flooding attacks.

G5 Bounded Tube Fairness: Bandwidth allocation is distri-
buted proportionally to the requested demands, however,
adjusted to the maximally available bandwidth.

Additional requirements ensure that N-Tube is efficient and
practical from an operational perspective, see Appendix A.

B. Model and Assumptions

Network Model. We model the network as a connected graph
with weighted, directed edges. Nodes in the graph represent the
ASes’ network interfaces and directed edges denote physical
links between these interfaces. Each link starts at an egress
interface of an AS, called an egress link of the AS, and ends
at an ingress interface of another AS, called an ingress link
of that AS. Each edge has a weight that corresponds to the
link’s capacity. Using interfaces instead of multiple edges
between ASes provides a simple graph, instead of an equivalent
multigraph, which is closer to N-Tube’s specification. Intra-AS
links are not modeled but are assumed to provide sufficient
capacity. Given this network structure, we make some additional
assumptions.

N1 We assume an inter-domain control plane that implements
a path discovery protocol, enabling each AS to obtain
multiple loop-free paths to reach a destination AS (see,
for instance, [16, Chapter 7]).

These paths are expressed at the granularity of interfaces
between the ASes.

N2 We assume there are mechanisms to quickly detect link
and node failures, and provide alternative paths.

For instance, by frequently running the path discovery
protocol, we can ensure a timely provision of alternative
paths. Modern architectures like SCION support simultaneous
communication over multiple paths, hence providing inherent
fault tolerance. Based on assumption N2, we consider failure
detection and handling as orthogonal to the bandwidth
reservation algorithm itself. For more details, see Appendix B.

N3 We assume that clocks are loosely, globally synchronized,
i.e., with a time discrepancy between ASes on the order
of 100 ms, in contrast to reservation times on the order
of minutes.

Since clock synchronization is several orders of magnitude
more precise than reservation times, we will approximate these
synchronized clocks by a global clock in our model.
Attacker Model. We call an AS honest if it follows the protocol,
and compromised or malicious otherwise. We will describe
malicious ASes’ capabilities below. For a given legitimate
reservation request, we distinguish off-path and on-path ASes.

A1 Any off-path AS may be compromised. Compromised
ASes can collude (e.g., as part of a botnet) and attempt
to allocate excessive amounts of bandwidth in order to
exhaust the available bandwidth.

There is no constraint on the distribution of compromised ASes
in the network. Compromised ASes may attempt to request
excessive bandwidth through multiple reservations over one or
more paths, thus preempting other ASes from obtaining a fair
share of the available bandwidth.

A2 Compromised off-path ASes can (i) observe all reserva-
tion requests sent to them, (ii) change any unauthenticated
fields in such reservation messages, and (iii) inject such
modified messages into neighboring links.

This means that attackers cannot defeat the cryptography
used to realize message authentication. Hence, attackers can at
best replay legitimate reservation requests, possibly modifying
their unprotected fields, but they cannot craft new ones for
ASes they do not control, e.g., by spoofing a signed message
without an appropriate private key.

A3 All on-path ASes are honest.
Honest ASes are expected to refrain from allocating excessive
bandwidth due to the associated costs. We cannot allow com-
promised on-path ASes, as they could insert bogus information
in reservation requests, making it impossible to achieve our
desired properties, in particular (G1) and (G4). Moreover, they
could execute DoS attacks by ignoring reservation requests.

Our modeling is at the granularity of ASes and excludes
end hosts within ASes. In particular, we consider the case of
malicious end hosts within off-path ASes to be subsumed by
the stronger case where the entire respective AS is malicious.
Excessive requests or data traffic by malicious end hosts within
honest on-path ASes can easily be filtered using separate
mechanisms.
Monitoring and Enforcement of Reservations. To prevent
link flooding attacks, both on the data plane and on the control
plane, the N-Tube bandwidth reservation algorithm must run
alongside flow-policing mechanisms that effectively detect and
block overuse of allocated bandwidth (see, e.g., [28]). On the
data plane, we must enforce that bandwidth reservations exist
for all traffic and that allocated bandwidth is not overused.

E1 We assume that all data plane traffic has a bandwidth
reservation, and that an effective flow-policing mech-
anism is in place to prevent the overuse of allocated
bandwidth by malicious ASes.

The flooding of the bandwidth reservation algorithm itself
with reservation requests (which are part of the control plane)
can easily be prevented as follows.

E2 We assume that honest ASes limit the frequency of per-
AS reservation requests.

Using this mechanism, excessive requests from malicious
hosts would not even leave honest ASes and would otherwise
be limited by the first honest AS on the path.

Since all traffic must have a valid reservation, N-Tube, by
virtue of its properties (G1)–(G5), is capable of preventing
link flooding attacks including Coremelt and Crossfire, when
run alongside an effective enforcement mechanism satisfying
assumptions (E1) and (E2). We will further explain how this
is achieved in Section III-E.
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Figure 1: The process of making a reservation

III. N-TUBE OVERVIEW

Our N-Tube algorithm enables ASes to reserve bandwidth
on network paths by reserving bandwidth on each inter-domain
link on the path. A reservation consists of a path, an expiration
time, and a bandwidth amount. The reservation is valid for
a limited time period after which it must be renewed. This
allows ASes to probe the network for congestion, and to adjust
their reservation paths and demands.

To reserve bandwidth, the source AS chooses loop-free paths
to the destination AS (obtained from the control plane, see
Section II-B), an amount of bandwidth and an expiration time,
combines them in a reservation message, and authenticates it,
e.g., with RPKI [29]. Figure 1 illustrates the reservation process.
The source AS1 sends a reservation message demanding 60
Gbps valid until 15:50:45 on the path given by the list
of ASes and their corresponding ingress and egress interfaces
[(E,AS1,C),(B,AS2,A),(C,AS3,D)]. On the way to AS3, the
reservation message accumulates the amount of bandwidth each
AS on the path can allocate on its egress link associated to
the path: 37 Gbps, 60 Gbps, and 45 Gbps, respectively.
On the return path, each AS allocates the minimum of the
accumulated bandwidths, i.e., 37 Gbps.

N-Tube has two user-specific parameters. First, N-Tube
enforces an upper bound, maxT ∈N, on how long the expiration
time can be set into the future. This forces ASes to update
their reservations regularly, roughly every 5 minutes. Second,
N-Tube only reserves a fixed portion δ (0 < δ < 1) of each
link’s total capacity, called the adjusted capacity. For any
new reservation request, N-Tube initially allocates at most the
portion δ of the remaining free capacity, and thereby keeps the
rest of the link’s capacity available for other new reservations.

A. Bounded Tube Fairness (G5)

The main challenge for a resource allocation algorithm is
to treat all reservations fairly, and to provide a lower-bounded
bandwidth allocation for honest ASes, even when adversaries
try to congest a link by demanding excessive bandwidth.

To provide fair bandwidth allocation, N-Tube bounds exces-
sive demands by the links’ capacities, and shares the resulting
demands proportionally. This is illustrated in Figure 2 by the
bandwidth allocation computation at AS3 in the above example:

𝑫
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100 Gbps

150 Gbps

125 Gbps

120/(20+80+60)*20=3/4*20=15
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120 /(20+80+60)* 60=3/4*60=45
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Demand:   20 Gbps
Allocated: 15 Gbps

Demand:   60 Gbps
Allocated: 45 Gbps

Demand:   80 Gbps
Allocated: 60 Gbps

𝐀𝐒𝟑

16
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ps
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Figure 2: Bandwidth allocation computation at AS3 distributes
the egress link’s (adjusted) bandwidth capacity D proportionally
to three ingress demands.

1) AS3 factors the demands converging at a given egress in-
terface by each ingress interface. These factored demands
are called tubes, as we visualize them this way.

2) AS3 bounds the accumulated demand of each tube by its
ingress and egress links’ adjusted capacities, which we
call their bounded tube demands.

3) AS3 proportionally shares the egress link’s adjusted
capacity between its bounded tube demands.

AS3 has three interfaces A, B, and C with ingress link capacities
100 Gbps, 200 Gbps, and 125 Gbps, and an interface D
with an egress link capacity of 150 Gbps, respectively. The
link’s adjusted capacities are obtained by multiplying each
link’s capacity with δ = 0.8 in this case, and are indicated
by the dotted lines. The three demands of 20 Gbps, 80
Gbps, and 60 Gbps from interfaces A, B, and C are factored
into three tubes, and the adjusted capacity of 120 Gbps at
interface D is proportionally split among them into 15 Gbps
for A, 60 Gbps for B, and 45 Gbps for C, respectively. For
example, in case of C this is computed as follows: 45 Gbps
= 60 Gbps / (20+80+60 Gbps) · 0.8 · 150 Gbps

B. Minimum Bandwidth Guarantee (G4)

By bounding the accumulated demands of tubes in the second
step of the bandwidth allocation computation, we guarantee
that each tube obtains a fair share of the egress link’s capacity.
Whenever we must reduce a tube, we say it has excessive
demands, and we proportionally reduce all demands inside it.

We illustrate how N-Tube computes bandwidth allocations
in the presence of adversaries with three examples. We assume
that all ASes on the given path are honest, and any AS off
this path may be adversarial. The goal of the adversaries is
to reduce as much as possible the allocated bandwidth for the
honest ASes between interface C and interface D. Hence, we
allow adversaries to demand an arbitrary amount of bandwidth
to subsequently congest the egress link at interface D. We then
show how the bandwidth allocation computation still provides
a minimum bandwidth guarantee.
Limit demands on an ingress link by its adjusted capacity:
In the Figure 3 example, two adversarial ASes demand in
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total 400 Gbps (150 Gbps and 250 Gbps, respectively)
of bandwidth through interface B to D. N-Tube bounds these
demands by the ingress link’s adjusted capacity at interface B
of 160 Gbps. Hence, D’s adjusted capacity of 120 Gbps
is split proportionally between 20 Gbps from A, 60 Gbps
from C, and 160 Gbps, instead of 400 Gbps, from B.

120/(20+160+60)*20=1/2*20=10
120/(20+160+60)*160=1/2*160=80
120/(20+160+60)*60=1/2*60=30
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5AS1 AS2

Demand:   20 Gbps
Adj. Dem: 20 Gbps
Allocated: 10 Gbps
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Adj. Dem: 60 Gbps
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Demand:   400 Gbps
Adj. Dem: 160 Gbps
Allocated:   80 Gbps
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𝑫

AS3

Figure 3: Limit demands on the ingress interface.

Limit each AS’s demands by the egress link’s capacity: In
Figure 4, an adversarial AS demands in total 200 Gbps to
interface D: 80 Gbps and 120 Gbps through interfaces A
and B, respectively. However, since its combined demand of
200 Gbps exceeds the egress link’s capacity, N-Tube reduces
both demands proportionally by a scaling factor. The scaling
factor is the ratio of the egress link’s adjusted capacity to the
total adjusted demand of the adversarial AS, i.e., 120/200
= 0.6. This results in the reduced demands of 48 Gbps
(= 0.6 · 80 Gbps) and 72 Gbps (= 0.6 · 120 Gbps)
from interfaces A and B, respectively. Note that, in this case,
each AS must keep per-source AS state, i.e., how much
bandwidth each source AS has reserved through this AS. This
is feasible since the number of ASes in a network is much
smaller than the number of flows. Hence, D’s adjusted capacity
of 120 Gbps is split proportionally between 60 Gbps from
interface C, and the reduced demands of 48 Gbps and 72
Gbps, from interfaces A and B. The computed allocations are
therefore 40 Gbps, 32 Gbps, and 48 Gbps, respectively.

120/(120+60)*120/(120+80)*80=2/3*3/5*80=2/3*=32
120/(120+60)*120/(120+80)*120=2/3*3/5*120=2/3*72=48
120/(120+60)*60=2/3*60=40
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Figure 4: Limit demands on the egress interface.

Worst case, minimum bandwidth guarantees: In Figure 5,
all off-path ASes are adversarial, demanding as much as
they can on all the ingress links, i.e., a maximum of 80

Gbps on interface A and 160 Gbps (40 Gbps and 120
Gbps, respectively) on interface B. This represents a worst-
case attack: even when more adversarial ASes are present,
their bandwidth demands will be adjusted, and thus limited
as described in the two previous examples. The interface D’s
adjusted capacity of 120 Gbps is split proportionally between
the bounded demands of 80 Gbps from A and 160 Gbps
from B, and benign demand of 60 Gbps from C. Hence, this
benign demand cannot be reduced to less than 24 Gbps by
any amount of external demands. This provides the minimum
bandwidth guarantee for the honest reservation at AS3.

120/(80+160+60)*80=2/5*80=32
120/(80+160+60)*160=2/5*120=64
120/(80+160+60)*60=2/5*60=24
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Figure 5: Worst-case minimum bandwidth guarantee.

Global lower bound: By applying the idea from the previous
example, we can provide a local lower bound llb3 for the
proportion of D’s adjusted link capacity that can be allocated
to the benign demand. In the worst case, all tubes have
excessive demands at interface D. Then llb3 is given as the
ratio of the benign demand of 60 Gbps and the accumulated
adjusted capacities of all ingress links, i.e., llb3 = 0.17 ≈
60 Gbps/(100+160+80 Gbps). Likewise, we can com-
pute llb1 and llb2 with respect to AS1 and AS2’s ingress links’
capacities. Note that these local lower bounds do not depends
on the adversarial demands.

The request ratio reqRatio0 at the source AS1 is defined
as the ratio of the benign demand of 60 Gbps and the total
demand of reservations starting at interface E of AS1 (see
Figure 1). The global lower bound glb for the bandwidth that
can be allocated to the honest demand is derived as

glb = reqRatio0 · llb1 · llb2 · llb3 ·120 Gbps.

Note that glb only depends on the request ratio at the (honest)
source and the capacities of the on-path ASes’ ingress links.
The request ratio is bounded by the number of reservations
the source AS1 starts at its interface E, i.e., under its own
control, and is not influenced by (malicious) reservations
(see Appendix C for details). This is, intuitively, why N-Tube’s
bandwidth allocation computation provides (G4). Furthermore,
the computation splits the adjusted link’s capacity propor-
tionally between the non-excessive demands. This illustrates,
informally, that N-Tube provides (G5) for each link.

C. Stability (G3)
N-Tube’s upper bound maxT on the expiration time forces

ASes to renew their reservations regularly. This allows N-Tube
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to stabilize the allocations in a predictable time period stabT
of constant demands after a burst in demands. The time period
stabT needed to stabilize demands can be shown to be the
product of maxT and the length of the longest reserved path
p̂ in the network, i.e.,

stabT = length(p̂) ·maxT.

Intuitively, the bandwidth computation at the first AS only
depends on requested demand at that AS and the constant
bandwidth allocations are then successively propagated to
all ASes on the path at each renewal of the reservation.
This provides an informal argument that N-Tube achieves the
stability property (G3).

We will show that, after the entire network stabilizes,
N-Tube’s bandwidth allocations also satisfy bounded tube
fairness (G5).

D. Immutability (G2) and Availability (G1)

By reserving only a fraction δ of the available bandwidth,
N-Tube can always provide a positive (but possibly small)
amount of bandwidth for a new reservation. This ensures
availability (G1). Unused bandwidth capacities can be used
for best-effort traffic. N-Tube does not change established
reservations until they either expire or are explicitly deleted
by the source (see Section IV). This yields immutability (G2).

E. Preventing Link Flooding Attacks

Fairness notions like per-source or per-destination fairness
would lead to bandwidth slices of size O(1/N) in the worst
case, where N denotes the number of end hosts (in the billions),
i.e., in today’s Internet N ∼ 1010. Even worse, in today’s
Internet, per-flow fairness allows adversarial hosts to request
arbitrarily many flows which squeezes bandwidth slices of
honest hosts even further. Specific examples of such an attack
are Coremelt [2] and Crossfire [1]. In Coremelt, M bots can
reduce bandwidth slices to O(1/(M · P)) by contacting P
destination servers. In Crossfire, attacks can reduce bandwidth
to O(1/M2), where modern botnets contain millions of infected
end hosts, i.e., M ∼ 107.

In the context of N-Tube, however, end-hosts are restricted
to the bandwidth slices that their edge AS reserves for them.
Hence, in attacks like Coremelt and Crossfire, infected end-
hosts flooding single Internet links with data traffic are detected
by the enforcement mechanism, as described in Section II.B,
and are blocked at their edge AS or the next honest neighboring
AS. This renders these two attacks ineffective.

A related adaptation of link flooding attacks like Coremelt
and Crossfire to the context of N-Tube are colluding mali-
cious ASes that demand excessive amounts of bandwidth to
maximally congest a single link in the network. However, this
is prevented by the virtue of properties (G1-G5), providing
minimum bandwidth guarantees to honest ASes as described in
Section III-B. In the worst case, when thousands of malicious
ASes, i.e., n∼ 104, collude to ask for excessive demands on
an honest path in the network, bandwidth slices are reduced
to O(1/n). Note that this bound can be further improved

when honest source ASes reserve the whole path instead of an
intermediate segment (see Appendix C for details).

In another adaptation of these attacks, malicious ASes flood
the control plane with reservation requests hindering honest
ASes from making their reservations. However, this can be
easily prevented as described in assumption E2 in Section II-B
and is therefore not considered in this work.

IV. ALGORITHM DETAILS

In this section, we first introduce formal preliminaries and
then define the network model, messages, reservation maps, and
N-Tube’s message processing. We then specify the bandwidth
allocation computation and its local properties. Finally, we
present our LTS formalization of N-Tube. For full model details,
see Appendix D.

A. Notation

Let 1 = {⊥} denote the unit set, B = {TRUE, FALSE} the
booleans, N the natural numbers, and R+

0 the non-negative real
numbers. For a≤ b, open and closed intervals are denoted by
]a;b[ and [a;b].

Given two sets A and B, we denote the function space with
domain A and co-domain B by A→ B, their product by A×B,
and their disjoint sum by A+B. We define partial functions
A ⇀ B = A→ B⊥ with B⊥ = B+1, the support of a partial
function g by supp(g) = {a ∈ A | g(a) 6= ⊥}, and its range
by rng(g) = {b ∈ B | ∃a ∈ A. g(a) = b}. We denote partial
functions with finite support by A ⇀fin B and the undefined
function with empty support by /0. The updated function
f (x 7→ y) is defined by f (x 7→ y)(x) = y and f (x 7→ y)(x′) =
f (x′) for all x′ 6= x. A record type is a product type with named
projections, e.g., point = L x ∈ N;y ∈ N M with elements like
p= L x = 1;y= 2 M and fields p.x and p.y. The term pL x := 3 M
denotes the updated point L x = 3;y = 2 M. The inductive set of
lists over A, denoted by [A], is constructed from the empty list
nil and the operation a#l, which prepends an element a ∈ A
to a list l ∈ [A]. We write, e.g., [1,2,3]1 for the list 1#2#3#nil,
and l[n] to retrieve the nth element of the list l, counting from
0. For a set A we write P(A) for its power set, Pfin (A) for the
set of its finite subsets, and |A| for its cardinality.

The functions min and max respectively yield the minimum
and maximum element of a non-empty finite set of numbers,
and +∞ and 0 for the empty set. We extend them to tuples, lists,
and records of numbers (by taking the set of their components),
and to partial functions with finite support and numerical co-
domain (by taking the range).

B. Network and Messages

Network. We model the network as a weighted, directed graph
(N,E,cap), for which we give a simplified definition:
• The nodes N are given by the set V× I, where V is a finite

set of vertices (ASes), and I provides a set of identifiers
for interfaces inside of each AS.

1Note the syntactic difference between the closed interval [1;3], the pair
(1,3), and the two-element list [1,3].
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Figure 6: The message m is processed along p by the events
described in Section IV-E2.

• The finite set of directed edges E ⊆ N×N represents the
physical links between ASes. Given a link ((u,e),(v, i)) ∈
E, we call e its egress interface at AS u and i its ingress
interface at AS v, respectively. We assume that at any AS
interface there is either exactly one ingress and one egress
link or no link at all.

• The capacity of each link is given by the non-negative
real-valued function cap : E → R+

0 . Since a link l =
((u,e),(v, i)) is uniquely defined by (u,e) (and (v, i)), we
identify cap(l) with cap(u,e) (and cap(v, i)).

We define the type of paths P as lists of records with ingress
interface inI, AS identifier as, and egress interface egI:

P =
[
L inI ∈ I;as ∈V ;egI ∈ I M

]
.

Given a network, we call a path p ∈P valid, if (i) it is non-
empty, (ii) each edge corresponding to p’s ingress and egress
interfaces is an inter-AS link, i.e., it starts and ends in distinct
ASes, and (iii) its set of links is connected and directed, i.e.,
the edges connect the ASes in p, and they all point in the same
direction, and (iv) it is loop-free, i.e., each AS occurs at most
once on the path.

In what follows, we denote the elements of sets V and I
with lowercase letters: for V we use the letters s, x, v, and z,
for ingress interfaces i and i′, and for egress interfaces e and
e′. We also write the ingress interface as subscripts and the
egress interface as superscripts to the AS identifier, e.g., xe

i .
Messages. There are two types of messages: reservation and
deletion messages. The message fields identify the reservation,
state how the message should be routed through the network,
how much bandwidth should be reserved, and until when
the reservation should be valid. We introduce the fields of a
reservation message m in Figure 6:
• The source s ∈ V of the path (see below) can choose

any reservation ID id ∈ N (= 22). The pair (s,22) of
source identifier and reservation ID uniquely determines
a reservation in the network. Furthermore, the source
provides an index idx (= 5) indicating which version of

the reservation the messages refers to. Version indices are
used to update existing reservations (explained later).

• The field path ∈P (= p) provides the path, and the field
ptr ∈ N (= 4) provides the pointer to the AS (p[4].as =
z) where the message is currently processed. The fields
first ∈N (= 2) and last ∈N (= 4) refer to the first and last
AS on p, respectively.

• The minimum minBW ∈R+
0 (= 10 GB/sec) and maximum

bandwidth maxBW ∈R+
0 (= 50 GB/sec) state the range of

bandwidth the source AS would like to reserve. Hereby,
maxBW states the source’s demand in the reservation
request. In case the source’s demand cannot be provided
on p, minBW states the minimal amount of bandwidth the
source is willing to accept as a reservation.

• The expiration time expT ∈N (= 16:45:30) indicates when
the reservation expires and must be deleted by the ASes
on the path p.

• The list of bandwidth values accBW ∈ [L avBW, idBW ∈
R+

0 M] indicates the available and ideal bandwidth the
previous ASes (v and w in the example) were able to
provide, as explained in Section IV-D.

The functions src, first, cur, and sgmt on valid messages extract
from m.path the source AS, the first AS, the current AS with
its ingress and egress interfaces, and the set of ASes between
first and last (including the endpoints), respectively. In the
example of Figure 6 src(m) = s, first(m) = v, cur(m) = zC

A, and
sgmt(m) = {v,w,z}. In a deletion message, the fields first, last,
minBW, maxBW, expT , and accBW are omitted.

The type of messages M = MR +MD is the disjoint sum
of reservation messages MR and deletion messages MD. A
message m is valid, if m.path is a valid path, and for its pointers
it holds that 0 ≤ ptr, first, last ≤ length(m.path) and first <
last. The bandwidth range must be a non-empty interval, i.e., 0
≤ m.minBW ≤ m.maxBW and m.maxBW > 0, and thus only
non-zero bandwidth allocations are allowed.

C. Message Processing

Reservation Maps. Each AS maintains its own reservation map
where all currently valid reservations with a path traversing
this AS are stored. A reservation map is a partial function that
maps a source and a reservation ID to a record containing the
following fields: the reservation’s path, the pointers ptr, first
and last, and a version map vrs. For example, in the reservation
map resMz of AS z, the entry rs corresponding to message m
from Figure 6 is

resMz(s,22) =
L path = p;ptr = 4;first = 2; last = 4;vrs = verM M.

N-Tube allows source ASes to flexibly update their reservations
multiple times before they expire, and therefore stores different
versions of each reservation in the version map vrs.

A version map is a partial function that maps each reservation
index to a record containing the following fields: the minimal
bandwidth minBW , the maximal bandwidth maxBW , the ideal
bandwidth idBW computed by the previous AS on p, the
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expiration time expT given by m, and the reserved bandwidth
resBW determined by N-Tube. We call the reservation’s entries
in the version map its versions, e.g., for m

verM(5) = L minBW = 10 GB/s;maxBW = 50 GB/s;
idBW = 60 GB/s;resBW = 32 GB/s;
expT = 16:45:30 M.

A version vr is currently valid at time t, written cvalid(vr, t),
if it is successful, i.e., vr.minBW ≤ vr.resBW and not expired,
i.e., vr.expT ≥ t. The reservation’s bandwidth demand and
allocation, demBW and allocBW, are defined as the maximum
of its currently valid versions’ maxBW and resBW , respectively.

demBW(rs, t) = max
vr∈rng(rs.vrs)

{vr.maxBW | cvalid(vr, t)}

allocBW(rs, t) = max
vr∈rng(rs.vrs)

{vr.resBW | cvalid(vr, t)}

The maximum is taken as the source can send traffic using
any existing version of its reservations. In this way, sufficient
bandwidth is guaranteed to be available in the worst case.
Reservation Process. N-Tube processes a reservation message
depending on its direction and position on the path. As shown in
Figure 6, suppose that AS s intends to make a new reservation
id on a path p. It then creates (CRT) a reservation message m
containing p in its path field. The ASes located before first on
p just forward (FWD) the message along p by increasing m’s
ptr field. If m reaches the ASes between first and last, each
AS x computes (CMP) m by:

1) checking that resMx does not contain a reservation at
(s, id), or there is a reservation at (s, id) for the same
path with no valid version map entry at idx,

2) computing how much bandwidth is available at x and
how much x can ideally provide for the reservation (see
Section IV-D for the details of the computation),

3) updating m to a new message m′ by appending the
computed results to accBW and by incrementing ptr,

4) sending m′ to the next AS on the path p, and
5) adding a new version at index idx of the reservation

identified by (s, id) in resMx.
After the last AS z (indicated by pointer last) on the path
has processed m, it returns (TRN) the message m′. During
the backward traversal, each AS on the path extracts how
much bandwidth finBW could be reserved on the entire path
by taking the minimum of maxBW and accBW, i.e., what have
been computed in the forward traversal

finBW(m) = min(m.maxBW,min(m.accBW)) .

Analogously to the forward traversal updates, an AS updates
(UPT) its reservation map according to the same two cases: (i)
the reservation was successful, i.e., m.minBW ≤ finBW, and
each AS on the path updates the reserved bandwidth of the
corresponding version in its reservation map to finBW, or (ii)
there was not enough bandwidth available on the path, i.e.,
m.minBW > finBW, and each AS deletes the corresponding
version from its reservation map. The ASes between first

and source AS s simply send the message backwards (BWD)
without processing it until s finally receives it (FIN).
Renewal and Deletion. If s intends to renew one of its
reservations, it sends a new reservation message m, containing
an updated bandwidth range and expiration time, along the
previous path p. To delete a reservation’s version, a source AS
sends a deletion message along the corresponding path.

D. Fair Bandwidth Allocation
The heart of the N-Tube algorithm is its bandwidth allocation

computation. We assume that a valid reservation message m
was sent by its source AS s and arrives at an AS x lying
between first and last on m’s path at the current time t. First,
N-Tube derives its source s (= src(m)) and its current AS,
ingress, and egress interfaces xe

i (= cur(m)). Given m and
resMx, the bandwidth allocation computation determines:
• the available bandwidth, i.e., how much bandwidth

remains on the link at the egress interface e, and
• the ideal bandwidth, i.e., how much bandwidth is allocated

to s with respect to all active reservations in resMx between
interfaces i and e.

The corresponding functions avail and ideal are defined below.
To simplify notation, we fix the message m and its elements
s, id, x, i, and e, and omit resMx, t, and the parameter δ

as arguments. The functions resSr, resEg, and resIn extract a
reservation’s source AS and the current AS’ egress and ingress
interfaces, respectively. For full details, see Appendix D5.

1) Available Bandwidth Computation: Given the message m,
the function avail computes how much bandwidth is available
on the link at the egress interface e of AS x

avail(e) = δ ·
(

cap(x,e)−∑r′∈rng(resMx):
resEg(r′)=e

allocBW(r′)
)
.

It subtracts the aggregated allocated bandwidth of all currently
valid reservations with egress interface e from the link’s total
capacity cap(x,e), and multiplies the result with the parameter
0 < δ < 1. The factor δ guarantees available bandwidth for
subsequent reservations.

2) Limiting Excessive Demands: To avoid that s reserves
more bandwidth in one request than physically available, N-
Tube limits the bandwidth demand demBW(r) of a reservation
r by the ingress and egress links’ adjusted capacities. The
resulting requested demand of a reservation r is defined by

reqDem(r) = min{δcap(x, i),δcap(x,e),demBW(r)}.

As illustrated in Section III, a source’s aggregated demands
at a given link may exceed the link’s capacity, even if none
of its individual requests does. We now formally define the
notion of a source having excessive demands on a link, and of
an adjusted version of the requested demand, adjReqDem, to
account for such demands.

The egress demand of s on e is defined as the aggregate
over its requested demands with e

egDem(s,e) = ∑r′∈rng(resMx):
resSr(r′)=s
resEg(r′)=e

reqDem(r′).
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We analogously define the ingress demand on interface i.

Definition 1 (Excessive Demands). We say an AS s has
excessive demands on the egress link e, if egDem(s,e) >
δcap(x,e). Otherwise, we say s has moderate demands on e.
We call an egress link e congested if egDem(s′,e) > cap(x,e).
Analogous definitions apply to ingress links.

To account for the case where s has excessive demands
on the egress link e, we adjust the requested demand of
a reservation r by multiplying it with the minimum of the
corresponding ingress and egress scaling factors, yielding the
adjusted requested demand:

adjReqDem(r) =

min{inScalFctr(s, i),egScalFctr(s,e)} · reqDem(r, i,e).

with s, i, and e the corresponding source AS, ingress and
egress interface of r, respectively. We compute for source AS
s the egress scaling factor on the egress link e as the source’s
proportion of the total egress demand bounded by the egress
link’s capacity, given by

egScalFctr(s,e) =
min{δcap(x,e),egDem(s,e)}

egDem(s,e)
.

We analogously define the source’s ingress scaling factor.
3) Ideal Bandwidth Computation: Given a message m with

xi
e on its path, the function ideal computes how the adjusted

capacity δ · cap(x,e) of the egress link e is shared in a so-called
bounded tube fair manner among all existing reservations (in
resMx) with the same egress link e:

ideal(s, id, i,e) =

reqRatio(s, id, i,e) · tubeRatio(i,e) ·δ · cap(x,e).

This (1) proportionally splits the egress link’s adjusted capacity
between all ingress links by multiplying it with tubeRatio,
and (2) further splits the result proportionally between all
reservations from i to e by multiplying it with reqRatio.

We define these two ratios in the following.
Tube Ratio: The tube ratio between an ingress interface
i and an egress interface e is computed as the ratio of
the bounded tube demand between i and e, given by
min{cap(x, i), tubeDem(i,e)}, and the aggregated bounded tube
demands at e

tubeRatio(i,e) =
min{δcap(x, i), tubeDem(i,e)}

∑i′∈I min{δcap(x, i′), tubeDem(i′,e)}
.

Taking the minimum with respect to the corresponding ingress
link’s capacity guarantees that its respective portion of the tube
demand compared to the other ingress links’ tube demands
is always bounded. This prevents the reserved bandwidth for
other ingress links from being reduced ad infinitum.

The tube demand between an ingress interface i and an
egress interface e aggregates their adjusted requested demands

tubeDem(i,e) = ∑r′∈rng(resMx):
resIn(r′)=i
resEg(r′)=e

adjReqDem(r′).

Request Ratio: The request ratio of a reservation (s, id)
between i and e is the ratio between its adjusted ideal bandwidth
demand (provided by the predecessor on the reservation’s path)
and the transit demand at i:

reqRatio(s, id, i,e) =
adjIdDem(s, id, i,e)

transitDem(i)
.

The function adjIdDem is defined similarly to adjReqDem but
for the previously computed ideal bandwidth, and transitDem
is the aggregation of all adjIdDem’s at ingress interface i.

E. Formalizing N-Tube

We formalize N-Tube using labeled transition systems, as
this is a widely known model that is well-suited for hand-
written proofs. For our statistical analysis of N-Tube, we will
transform these models into probabilistic rewrite systems and
analyze them using Maude [26] (Section VI).

A labeled transition system (LTS) T= (Σ,Σ0,Λ,∆) consists
of a state space Σ, a set of initial states Σ0 ⊆ Σ, a set of
labels Λ, also called events, and a (labeled) transition relation
∆ ∈ Λ→ P(Σ×Σ). Executions of T are functions of type
E=N→ Σ×Λ such that any π = {(σn,λn)}n∈N ∈ E starts in
an initial state, i.e., σ0 ∈ Σ0, and progresses according to the
transition relation ∆, i.e., for all n ∈ N, (σn,σn+1) ∈ ∆(λn).

To specify concrete models, we often use Λ-indexed families
of guards Gλ : Σ→ B and update functions Uλ : Σ→ Σ. The
induced transition relation is

∆(λ ) = {(σ ,σ ′) | Gλ (σ) ∧ σ
′ =Uλ (σ)}.

The relation σ ′ =Uλ (σ) is called the action of the event. For
example, in the domain of banking, an event to withdraw
an amount a of money from an account is specified by
withdraw(a) = {(σ ,σ ′) | σ .bal ≥ a ∧ σ ′.bal = σ .bal−a}. In
this case, any state (record) field f that is not updated is
implicitly left unchanged, e.g., σ ′. f = σ . f .

We fix the environment: a network graph (N,E,cap) as in
Section IV, a partition V = H +M (with H and M the sets
of honest and malicious ASes), and the fraction 0 < δ < 1 of
the link’s adjusted capacity. We model the behaviors of both
honest and malicious ASes (see Appendix D for full details).

1) States: We define the set of states Σ as the record

Σ = L time ∈ N; buf ∈ Buff ; res ∈ ResMap; kwl ∈ P(M ) M.

A state σ ∈ Σ describes a snapshot of the system at a given
point in time, denoted by its time field. We assume discrete time
is loosely synchronized between all ASes, i.e., compared to the
minimal duration of reservations (on the order of minutes), the
discrepancy of time measurements between AS (on the order
of 100 ms) is negligible (cf. Assumption N3).

The field buf of type Buff = V × I → Pfin (M ) models
network buffers, where buf (x, i) holds the set of messages
arrived at interface i ∈ I of AS x ∈V . The field res models all
ASes’ reservation maps as presented in Section IV-C. Finally,
the field kwl models the attackers’ knowledge: the set of
messages created, collected, and shared by all malicious ASes.
This models the attackers’ collusion (cf. Assumption A1).
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2) Events: The set of events Λ consists of system events
and environment events. System events formalize the N-Tube
algorithm: its message processing events and an internal event
that removes expired reservations in each AS. There are differ-
ent message processing events depending on a message’s type,
its location on the path, and the direction of the path traversal
(cf. Figure 6). This results in seven events describing reservation
message processing, three handling deletion messages, and one
for dropping messages. Three events model the environment: a
time progress (clock tick) event and two events modeling the
attackers’ capabilities. Below, we present the attacker events
and one representative message processing event.

Attacker Events. Malicious ASes can execute two events: (i)
receive a message, partially modify it, and store the resulting
message in the attackers’ knowledge kwl; (ii) send a message
in kwl to any neighbor AS in the network. Recall that kwl
also includes any message in M with a malicious source AS.
We present these two events in turn. The collect event (i) is
defined by

CLT (m,m′ ∈M ,a ∈M, i ∈ I) = {(σ ,σ ′) |
- guards -

m ∈ σ .buf(a, i) ∧ m′ ≈ m ∧
- actions -

σ
′.kwl = σ .kwl∪{m′} }.

Here, an attacker a ∈M receives a message m from his buffer
buf(a, i) at interface i, possibly modifies it, and adds the
resulting message to kwl. The equivalence relation m ≈ m′

expresses that m and m′ coincide except on their mutable
fields ptr and accBW. This prevents off-path attackers from
spoofing reservation requests from other ASes. This event
models Assumption A2 (i-ii). In an N-Tube implementation,
the source AS would sign the immutable fields with its private
key, while the mutable fields would remain unprotected.

In the attack event (ii), an attacker a can send any message
m in kwl to any neighbor AS v by adding m to v’s buffer
buf(v, i). This event models Assumption A2 (iii).

AT K(m ∈M ,a ∈M,v ∈ H, i,e ∈ I, t ∈ N) = {(σ ,σ ′) |
- guards -

m ∈ σ .kwl ∧ ((a,e),(v, i)) ∈ E ∧
- actions -

σ
′.buf = σ .buf((v, i) 7→ σ .buf(v, i)∪{m} }.

These two events model powerful attack capabilities. Ma-
licious ASes can anytime make arbitrary reservation requests
from their own ASes, partially modify observed requests,
replay old messages, and collude through out-of-band channels
to share their knowledge and synchronize attacks. However,
attackers cannot spoof messages from honest ASes, modify
reservations stored in the reservation maps of honest ASes, or
change the system’s global time.

Message Processing Events. Here we show the definition of
the compute event, which is the most representative message
processing event:

CMP(m,m′ ∈MR,v ∈ H, i ∈ I, t ∈ N) = {(σ ,σ ′) |
- guards -

(1) m ∈ σ .buf(v, i) ∧ (2) σ .time = t ∧
(3) PathCheck(m.path) ∧(4) ResMsgCheck(m,σ .time) ∧
(5) ResMapCheck(σ .res,m,v) ∧(6) m.first ≤ m.ptr < m.last ∧
(7) m.path[m.ptr].inI = i ∧(8) m′ = compute(m,σ .res) ∧

- actions -

σ
′.res = save(v,σ .res,m′) ∧

σ
′.buf = forward(v, i,σ .buf,m,m′) .

Upon receiving a reservation message m at interface i (first
guard) at time t (second guard), AS v allocates bandwidth using
the function save (first action), and forwards the modified
reservation message m′ using the function forward (second
action). All unmentioned fields remain unchanged. Guards (3–
5) ensure that m is well-formed and compatible with existing
reservations in v’s reservation map that corresponds to m.
Guard (6) determines whether v is on the path segment, i.e.,
m’s pointer is between first and last. Guard (7) checks if m
traverses the path in the forward direction, i.e., if the arrival
interface i of AS v matches the corresponding ingress interface
given on m’s path field. The last guard models the computation
of the modified message m′, using the function compute to
update of received message m’s accBW field.

compute(m ∈MR,resM ∈ ResMap) =

let newBW = L avBW := avail(m,resM);
idBW := ideal(m,resM) M

in mL accBW := newBW # m.accBW M.

This function determines the available and ideal bandwidths
that AS v can allocate using the functions avail and ideal from
Section IV. The results are appended to m’s accBW field.

V. PROPERTIES

In this section, we first define the notions of valid executions,
successful reservations, and constant demands, which are used
to specify N-Tube’s global properties (G1–G5). For the sake
of readability, we give here a semi-formal versions of these
definitions and we refer the reader to Appendix E for the full
formal details and proofs.

Definition 2 (Valid Executions). An execution π is valid if
(i) time grows unboundedly on π and (ii) all messages in the
buffers of honest ASes are processed in at most time bufT .

These assumptions are satisfied if all honest ASes run a fair
scheduling algorithm (e.g., round-robin) to prevent message
starvation and messages are dropped in case of buffer overflow.
We will express N-Tube’s properties as predicates over valid
executions π = {(σn,λn)}n∈N.

Properties (G1) and (G2) assume that a successful reservation
has been established by an honest source AS.
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Table I: Formalizing global properties (G1–G5).

Property Formula

(G1) Availability: If an honest AS s makes a successful reservation
m at time t, then some non-zero bandwidth will be reserved on its
path until it expires.

∀m ∈MR,s ∈V, t ∈ N,n ∈ N,v ∈ sgmt(m).

Succ(s,m, t) ∧ σn.time ∈ ]t;m.expT]

⇒ σn.resv(s,m.id).vrs(m.idx).resBW > 0

(G2) Immutability: If an honest AS s makes a successful reservation
m at time t, the reserved bandwidth stays the same for all ASes on
its path until it expires.

∀m ∈MR,s ∈V, t ∈ N,n,n′ ∈ N,v,v′ ∈ sgmt(m).

Succ(s,m, t) ∧ σn.time,σn′ .time ∈ ]t;m.expT]

⇒ σn.resv(s,m.id).vrs(m.idx).resBW = σn′ .resv′ (s,m.id).vrs(m.idx).resBW

(G3) Stability: If there are constant demands D between t0 and t1,
then all reservations allocate the same amount of bandwidth from
t0 + stabT until t1.

∀D ∈D , t0, t1 ∈ N,n,n′ ∈ N,r,r′ ∈ Res,v ∈ H,m ∈ rng(D) .

Stab(D, t0, t1)∧σn.time,σn′ .time ∈ ]t0 + stabT; t1]∧
r = σn.resv(src(m),m.id)∧ r′ = σn′ .resv(src(m),m.id)

⇒ allocBW (r,σn.time) = allocBW (r′,σn′ .time)

(G4) Minimum Bandwidth Guarantee: For constant demands D
between t0 and t1 and for any honest AS’s successful reservation,
there is a lower bound on the allocated bandwidth that only depends
on the request ratio on the first link, a factor G depending on the
path’s link capacities, and m.maxBW.

∀D ∈D , t0, t1 ∈ N. Stab(D, t0, t1)

⇒ ∃ñ ∈ N. σñ.time = t0 + stabT

∧ ∀m ∈ rng(D) ,s, f ∈ nodes(m). s = src(m)∧ f = first(m)∧Succ(s,m, t0)

⇒ ∃ G > 0. ∀n > ñ,v ∈ sgmt(m). σn.time ∈ ]t0 + stabT; t1]

⇒ allocBW(σn.resv(s,m.id),σn.time)≥ G · reqRatio(m,σñ.res f ) ·m.maxBW

(G5) Bounded Tube Fairness: For constant demands D between t0
and t1, in the absence of congestion, the bandwidth of egress links
is allocated proportionally between tube demands and, in case where
tube demands exceed their ingress links’ capacities, their tube ratio
is bounded.

∀D ∈D , t0, t1 ∈ N. Stab(D, t0, t1)

⇒ ∃ñ ∈ N. σñ.time = t0 + stabT

∧ ∀m ∈ rng(D) ,v ∈ sgmt(m)∩H, i, i′,e ∈ I,n > ñ.

tubeDemv(i,e) ∈ ]0;δcap(v, i)]∧ tubeDemv(i′,e) ∈ ]0;δcap(v, i′)]

⇒ tubeRatiov(i,e)
tubeRatiov(i′,e)

=
tubeDemv(i,e)
tubeDemv(i′,e)

Definition 3 (Successful Reservation). We say an honest
source s ∈ H makes a successful reservation confirmed by
the message m ∈MR at time t, written Succ(s,m, t), if the
following three conditions hold: (i) m’s path only contains
honest ASes; (ii) the source s confirms m at time t with
sufficient bandwidth, i.e., there exist n ∈ N and i ∈ I such that
λn = FIN(m,s, i, t) and finBW(m)≥m.minBW ; and (iii) There
is no deletion event matching the reservation (src(m),m.id)
and version m.idx before m’s expiration time.

For properties (G3–G5) we model “constant bandwidth
demands” as a partial function D∈D with D =V×N⇀fin MR
such that D(s, id) = m implies src(m) = s and m.id = id.
We say that a reservation message m corresponds to D if
(src(m),m.id)∈ supp(D) and m coincides with D(src(m),m.id)
on all fields except ptr, expT , minBW, and accBW. The
stabilization time

stabT = max{length(m.path) | m ∈ rng(D)} ·maxT

is the maximal time that the reservation requests in rng(D)
must be renewed along their paths to reach a stable state.

Definition 4 (Constant Demands). An execution π ∈ E has
constant demands D∈D between t0 and t1≥ t0+stabT , written
Stab(D, t0, t1), if (i) for all (s, id) ∈ supp(D), the source AS s
has successfully made a reservation confirmed by a message
m corresponding to D(s, id) before time t0, and successfully
renews this reservation without any gaps until t1; (ii) any
reservation confirmed by a reservation message m between t0
and t1 corresponds to D; and (iii) there are no deletion events
between t0 and t1 for reservations given by supp(D).

Table I shows our formal specification of properties (G1–
G5) under valid executions. Note that these properties hold for
reservations along honest paths (cf. Assumption A3).

Theorem 1. Our LTS model of N-Tube satisfies properties
(G1–G5).

The inductive proofs are given in Appendix E.

VI. STATISTICAL ANALYSIS OF N-TUBE

Our qualitative analysis of N-Tube by inductive proofs
(Section V) establishes the desired correctness and security
guarantees, but it offers no insight into the actual dynamics of
these guarantees. We therefore additionally conduct quantitative
measurements about these guarantees. In particular, we use
Maude-based simulation and statistical model checking (SMC)
to analyze N-Tube with respect to properties (G1–G5).

Our goal is twofold: (i) to validate our mathematical proofs
via independent machine-checked statistical verification; and (ii)
to explore quantitative aspects of N-Tube in various adversarial
scenarios, with respect to stability, fairness, and resistance
to malicious power, using statistical estimations, which goes
beyond the inductive proofs.

A. Why Maude and SMC?

Quantitative system analysis typically requires an executable
artifact. As rewriting logic [30] is a generic framework for
specifying the semantics of a wide range of computation
models, LTSs can be naturally expressed as rewrite theories in
it, and executed as system modules in Maude [26]. A rewrite
theory consists of an equational theory, specifying the system’s
data types, and a collection of labeled conditional rewrite
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rules of the form crl [l] : t => t ′ if cond, where l
is a label. Such a rule specifies a transition from a system
state, represented by the term t, to a new state t ′, provided the
condition cond holds.

The Maude system supports machine-checkable and auto-
mated formal analysis, including simulation and SMC [26], [23].
In particular, compared to conventional emulations, SMC can
verify a property specified, e.g., in a stochastic temporal logic,
up to a statistical confidence level by running Monte-Carlo
simulations of the system model. The expected value v̄ of a
property query belongs to the interval [v̄− β

2 , v̄+
β

2 ] with (1−α)
statistical confidence, where parameters α and β determine
when an SMC analysis stops performing simulations [23].

The Maude ecosystem has been very successful in analyzing
high-level designs of a wide range of distributed and networked
systems [31], [32], [33], [34], [35], [36]. In particular, Maude-
based validation using SMC provides additional confidence
about claimed statements by analyzing large parameter spaces.
Maude-based SMC performance predictions have also shown
good correspondence with implementation-based evaluations
under realistic deployments [24], [25].

B. Model Transformation

We first express the N-Tube LTS model from Section IV-E
as an equivalent untimed, nondeterministic rewrite theory. For
the statistical analysis, we then transform this rewrite theory
into a timed, purely probabilistic rewrite theory, following the
methodology in [37]. In particular, the transformation assigns
to each message a delay sampled from a continuous probability
distribution, which determines the firing of the rule receiving
the message. The resulting model is free from unquantified
nondeterminism (in that all transitions are associated with
probabilities) and can be simulated by the original model.

The system state of the transformed model consists of a
multiset of objects, including a scheduler object maintaining the
global clock, and messages. An object of class C is represented
as a term <o : C | att1 : val1, . . . ,attn : valn>, with o the object’s
identifier, and val1 to valn the current values of attributes att1
to attn. An incoming message of the form {t, msg} is ready
to be consumed at the global time t, while an outgoing message
of the form [t +d, msg] will be delivered in d time units
after t where the message delay d is sampled from some
continuous probability distribution. Each message msg has
the form to o from o’ : mp, with o, o′, and mp the message
receiver, sender, and payload, respectively. The scheduler object
is specified to advance the global time and to deliver outgoing
messages at the specified times.

We specify N-Tube’s dynamic behaviors in Maude by
translating its events into rewriting rules. Consider the message
processing event CMP in Section IV-E2. The following trans-
formed conditional rule [cmp] specifies that, upon receiving
a reservation message res(M) at global time T (line 2), the
AS O updates its local reservation map accordingly (using the
save function; line 7), and forwards the modified message
(determined by the compute function) to next hop (line 9):
1 crl [cmp] :

2 {T, to O from O’ : res(M)}
3 < G : Table | links : LS, ATS’ >
4 < O : As | resMap : RM, ATS >
5 =>
6 < G : Table | links : LS, ATS’ >
7 < O : As | resMap : save(M,O,RM,LS,AVL,IDL), ATS >
8 [T + lognormal(µ,σ),
9 to next(O,M) from O : compute(M,AVL,IDL)]
10 if (atSrt(M) or onPth(M)) /\ pathCheck(M)
11 /\ resMsgCheck(M,T) /\ resMapCheck(M,RM)
12 /\ AVL := avail(LS,O,RM,T,M)
13 /\ IDL := ideal(LS,O,RM,T,M) .

where the network topology and all links’ capacities are
stored in a global “table” G (lines 3 and 6). The message delay
is probabilistically sampled from the lognormal distribution (to
mimic the real-work network environment [38]), parametric on
the mean µ and standard deviation σ , each time this rule applies
(line 8). The functions avail (line 12), ideal (line 13),
save, and compute, as well as the predicates in the condition
(lines 10 and 11), are defined following Section IV-E. The
variables ATS and ATS’ refer to the rest of attributes that do
not affect the next state.

C. Statistical Analysis

We investigate the following questions about N-Tube using
our statistical analysis:
• Are the statistical verification results consistent with our

hand-written inductive proofs of (G1–G5)?
• How does N-Tube actually perform in worst- and average-

case malicious scenarios with respect to stability and
fairness? In particular, how does it resist increasing attack
power such as total malicious demands?

1) Benchmark: To statistically analyze N-Tube’s properties
we implement three parametric generators: a topology generator
(TG), a path generator (PG), and a workload generator (WG).
We use these to probabilistically generate a different initial
state for each simulation in an SMC analysis. Specifically, TG
generates scale-free Internet topologies with strongly connected
ASes, which is also characteristic of the realistic AS-level
Internet graph in the CAIDA benchmark for Internet data
analysis [39]. Each link between nodes is assigned a bandwidth
probabilistically sampled from an interval. PG then explores the
generated graph, and collects paths from sources to destinations.
WG provides the generated sources, including adversaries, with
reservations, renewals, and deletions on a probabilistic basis,
where each of these three types of requests is parametric in the
algorithm-specific parameters (such as maxBW and expT). See
Appendix F for a complete list of the generators’ 18 parameters
and their default values.

2) Experimental Setup: We employed a cluster of 50 d430
Emulab machines [40], each with two 2.4 GHz 64-bit 8-Core
E5-2630 processors, to parallelize SMC with the PVeStA
tool [41] (part of the Maude ecosystem). We set the statistical
confidence level to 95%, i.e., α = 0.05, and the size parameter
β to 0.01 for all our experiments.

3) Analysis Results: We have subjected the transformed
Maude model to the above generators and PVeStA, and per-
formed three sets of experiments according to our experimental
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Figure 7: Measuring stability and fairness. Time units are
defined as logical clock ticks in our probabilistic model.

goal with 100 ASes by default. Each simulation or SMC
analysis took up to three hours (in the worst case) to terminate.
Experiment 1: Verifying Properties. In all our SMC analyses,
the probabilities of satisfying N-Tube’s properties (G1–G5)
are 100%. This provides a strong independent validation of our
proofs for the properties, and of the model transformation (from
the LTS model into Maude), via machine-checked analysis.
Experiment 2: Stability & Fairness. We report the simulation
results for the scenarios in Section III. Figure 7 depicts the
bandwidth reservations at interface D and their state, demanded
or allocated, as a function of (simulation) times where we
take “snapshots” of the system state. The allocated bandwidths
adapt over time to self-renewals and other demands. For the
scenarios in Figures 3 and 5, we individually measure the
allocated bandwidth for each of the two demands (B1 and B2)
through interface B. In all scenarios, the allocations in the entire
network converge and stabilize; the total allocations are always
bounded by D’s adjusted capacity (dashed line), and distributed
proportionally to the demands after stabilization as expected
(Section III). Hence, from the quantitative perspective, these
results further demonstrate stability and fairness, in particular
for the worst-case scenarios (Figures 3–5) where attacks are
mounted directly on an honest path.
Experiment 3: Impact of Increasing Malicious Power. To
analyze the influence on bandwidth allocation of increasing
malicious power, we randomly positioned the attackers in
the network (not necessarily neighbors of the targeted path),
and picked a relatively small number of destinations (5
out of 100 ASes) for the reservations so that all demands,
including malicious ones, converge to these destinations. We
then randomly selected one destination and one of its egress
interfaces, and reported the associated aggregate allocations
for the benign sources and attackers, respectively.

Figure 8 (a–c) show the allocation percentage as a function of
attacker capability, represented by total demanded bandwidth,
number of attackers, and number of issued reservations per
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Figure 8: Measuring the impact of increasing malicious power.

attacker, respectively. With increasing malicious power, the
attackers tend to occupy more bandwidth until the entire
allocation stabilizes (starting from 160 Gbps, 10 attackers,
and 7 reservations per attacker, respectively); thereafter their
demands are adjusted, and thus limited by the links’ capacities
and scaling factors. These results further provide quantitative
assessments of N-Tube with varying malicious powers by
exploring the large parameter space.

We also measured the adversaries’ allocated bandwidth
reduction by N-Tube’s “frontline defense”. A frontline defender
is the first honest AS on an attacker reservation’s path that can
mitigate the impact of the attack by limiting the adversary
demands. We divided the timeline into three phases: (i)
before malicious demands reach the frontline defender; (ii)
immediately after those demands break through the frontline;
and (iii) after the network stabilizes.

Figure 8 (d) reports for the experiments (a–c) the percentage
of original malicious demands that was allocated to the
adversaries in each phase. Phase (iii)’s computation is based on
the minimum stabilized “point” (e.g., 160 Gbps in experiment
(a)): The higher the stabilized point is that we consider, the
more reduction there will be. As demonstrated in experiment
(d), N-Tube’s frontline defense plays an important role in
limiting the adversarial demands, e.g., in experiment (a) ∼50%
of the malicious demands can be reduced, which constitute
almost 80% of the total reduction.

VII. RELATED WORK

A. Quality of Service and DDoS Protection

Congestion Control enables end-to-end connections possibly
with multiple paths, to control their path rates to fairly mitigate
congestion. However, this approach is based on per-flow
fairness with complete knowledge of users’ utility functions. In
contrast, we take the stance that new Internet architectures [19],
[16], [18] can handle reservation states efficiently, which allows
them to police misbehaving traffic. As observed by [15], self-
interested and strategic users can skew the overall rate allocation
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by opening arbitrarily many connections violating the property
of minimum bandwidth guarantee. Furthermore, stateless algo-
rithms can only reduce bandwidth allocations of misbehaving
flows, but cannot determine aggregated misbehavior (over time
and per AS) and cannot revoke access. Note that these works
do not consider an adversarial setting.
Game-Based Mechanisms consider resource allocation for
maximizing a global objective function as an “inverse game the-
ory” problem [42], [43]. Such mechanisms allow for users that
are self-interested and strategic, and may attempt to manipulate
the system to their advantage by misreporting information
on their utility functions. The VCG type mechanisms [44]
provide sealed bid auctions that incentivize users to reveal their
objective truthfully and can also include sellers of resources.
However, for these mechanisms to allow practical bids, the
class of utility functions is very restricted, e.g., to piecewise
linear [42], which misses realistic attack scenarios. Furthermore,
the main objective of these mechanisms is to increase efficiency,
and not to provide minimal guarantees.
Resource Reservation Systems such as RSVP [7] or RSVP-
TE [45], [46], [47] enable bandwidth reservation along network
paths by setting up reservation state at routers. RSVP uses
soft-state reservations that require periodic updates, and must
be re-established in case a path changes. However, neither do
they offer authentication of reservation requests, nor handle
malicious reservations, nor are their claims formally supported.

SIBRA [48] is a scalable inter-domain bandwidth allocation
architecture for path-based networks. It is based on a dis-
tributed bandwidth reservation algorithm and an enforcement
mechanism monitoring and policing the reservations. SIBRA
is claimed to provide effective QoS guarantees in general and
minimum bandwidth guarantees in particular. However, only a
high-level design is provided without a concrete algorithm or
formal arguments to support the stated claims.

B. Formal Verification of Networking Systems

As we are not aware of any work applying formal verification
to a bandwidth reservation system, we discuss here research
in the broader area of secure networking protocol and DoS
defense verification.
Qualitative Properties. Various works study secure networking
protocols, including packet forwarding protocols [49], [50],
inter-domain routing protocols [51], [52], and routing protocols
for mobile ad-hoc networks [53], [54], [55], [56], [57], [58],
and verify their security properties such as path authorization,
source authentication, path validation, route validity, and loop
freedom. These works analyze qualitative properties using
model checking, theorem proving, or hand-written proofs.
Quantitative Properties. Another critical aspect is the verifica-
tion of a system’s quantitative properties such as performance,
rapid convergence, or the quick recovery from attacks. We focus
on the analysis of DoS protection mechanisms. Meadows’ cost-
based framework [59] enables the (non-probabilistic) extension
of existing protocol models and tools with cost accounting
and comparisons [60]. It has been extended to cover timing

aspects (e.g., slow DoS) and amplification DoS attacks [61],
[33]. Approaches based on probabilistic or statistical model
checking have been applied to analyze SYN flooding attacks on
TCP/IP [62], the adaptive selective verification protocol [63],
[64], and amplification attacks on DNS [65].

VIII. CONCLUSION

We have presented the design of N-Tube, along with the
novel notion of bounded tube fairness. We developed formal
models and verified all its safety and security properties.
Moreover, we have gained: (i) additional confidence about
our hand-written proofs via independent machine-checked
statistical model checking, and (ii) a quantitative assessment
of N-Tube’s resistance to attacks by statistically exploring the
large parameter space and varying malicious scenarios.

N-Tube is the first provably correct inter-domain bandwidth
reservation algorithm and a major step towards a provably
secure QoS scheme that also provides DDoS defense. The
obvious next step is to build an efficient N-Tube implemen-
tation, as well as large-scale deployment by, e.g., proceeding
along the lines proposed in [21]. Preliminary results from
an N-Tube prototype implementation, realized as part of the
Colibri inter-domain bandwidth-reservation infrastructure [66],
have demonstrated N-Tube’s deployability and scalability.
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APPENDIX

A. Additional Requirements

We also account for the following additional requirements:
1) N-Tube should be efficient in computing bandwidth

allocations by using only local information of the
network, i.e., based on the demands of neighbor ASes;

2) N-Tube should minimize its communication complexity
by requiring only one round-trip per reservation request;

3) N-Tube should be scalable by reducing AS adminis-
trators’ configuration efforts. In particular, bandwidth
allocations should be computed automatically;

4) N-Tube should additionally allow administrators to spec-
ify bandwidth restrictions between adjacent ASes to
adjust minimum bandwidth guarantees; and

5) N-Tube should provide ASes with flexibility by allowing
them to reserve segments of paths, and to update and
delete reservations.

B. Handling Node and Link Failures

In practice, source ASes can use the N-Tube algorithm to
detect link failures and non-responsive nodes. In case the
source AS does not receive a return message to one of its
reservation requests, it can successively probe prefixes of
that reservation’s path by sending corresponding reservation
requests with very low bandwidth demands. Depending which
of these requests succeed, the source AS can identify which
of the ASes on the path are not responding and by assumption
N2 in Section II-B can quickly choose an alternative path to
circumvent the affected ASes.

We model link failures and non-responsive nodes using the
drop event (DRP) where messages in buffers can be dropped
any time, which simulates link or buffer failures. Note that
properties (G1-G5) are not violated by such failures, as they are
safety properties. However, we do not explicitly model node
failures, where the node’s reservation map becomes inconsistent.
In our events, reservation maps are are persistent and updated
atomically according to the N-Tube algorithm.

C. Additional Intuition for Minimal Bandwidth Guarantee

To compute the request ratio reqRatio0, we currently describe
the simplest way, to take the ratio of the benign demand of
60 Gbps and all adjusted demands starting from interface E.
In Appendix D5 we explain in detail how we divide demands
on a link into two segments:
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1) The starting segment contains all reservations that start
at this link and their adjusted demands are accumulated
in starting demands, startDem; and

2) The transit segment contains all reservations that traverse
this link and their adjusted demands are accumulated in
transit demands transDem.

Each of the two segments gets allocated a fixed proportion
of the link’s capacity. In Appendix D5, we assume that this
is exactly half the bandwidth, but this can be adapted as
an additional parameter of N-Tube. By separating these two
different kinds of demands into fixed bandwidth segments, we
can guarantee that exceeding demands in one segment do not
block out the allocations of the demands in the other segment.
By providing a fixed proportion of the link’s capacity for the
transit segment and with the explanation in Section 3 we can
provide a lower bound for the transit demands.

Note that there is still the possibility that a large number of
(possibly malicious) ASes request excessive demands starting
at a given link and therefore reduce the allocated bandwidth
for benign demands in the starting segment. This is due to the
fact that the request ratio reqRatio of a request is computed as
the ratio of the requested demand and accumulated adjusted
demands given by startDem. Since the demands are adjusted
and therefore upper-bounded by the links’ capacities, the crucial
factor is the number of requests starting at a given link.

A simple solution to avoid this reduction of benign demands
is that each AS allows only a fixed number of other, e.g.,
trusted, ASes to start a reservation at its links. However, this
would break property (G1) for non-trusted ASes.

Alternatively, similarly as above, we can further split the
starting segment into two sub-segments with a fixed portion
of the segment’s capacity:

(1.1) the source segment contains the local requests from the
AS owning that link, i.e., the source AS of these requests,
and

(1.2) the external segment contains the telescoping requests
from external ASes that start their reservations at this
link.

For each of these sub-segments, the request ratio of a reser-
vation is computed as the ratio of the requested demand
and the respective accumulated adjusted demands in this
segment. Hence, as before between transit and starting demands,
excessive demands in one of these two sub-segments cannot
squeeze the allocated bandwidth in the other sub-segment.

The lower bound for the request ratio in the source segment is
determined as the ratio of the requested demand and the starting
segment’s capacity multiplied by the number of reservations
made by the source AS, which is exactly known to that AS. A
worst case lower bound can be given, e.g., if every end-hosts
in the source AS has excessive demands on the given link.
Assuming n end-hosts and the starting link’s capacity cE the
example in Section III, a lower bound for reqRatio0 can be
given by the ratio of the benign demands and the number
of end hosts multiplied by the starting link’s capacity, i.e.,
reqRatio0 ≥ 60 Gbps / (n · cE).

Possible excessive telescoping requests from external (pos-
sibly malicious) ASes starting at the link are isolated in the
external segment, for which no fixed lower bound guarantees
can be given.

In summary, for local reservation requests by honest ASes
along a path starting from one of their own links, there is a
lower bound for the requested ratio. Together with the local
lower bounds at each AS on the path, we can provide a global
lower bound glb for the whole path as described in Section III.

D. Model Details

1) Network and Environment: The network is modeled as
a directed, labeled multi-graph. We provide a more refined
model using arcs A and two corresponding functions src and
tgt to define a network:

Definition 5. Given three finite sets V , A, and I. We define a
network η ∈N as a record with

N = L ases =V ; links = A; intf = I;
sft, tgt ∈ A→V × I;cap ∈ A→ R+

0 M

with the following components:
• V is a finite set of vertices, called ASes.
• The nodes of the graph are given by the set V × I.
• Hereby, the finite set I provides a global set of identifiers,

which are used for interfaces inside of each AS.
• The finite set of arcs A is called links being the domain

for the following functions:
– The weight/label of each link is given by the function

cap : A→ R+
0 , the capacity function.

– A link can start from exactly one interface of an AS
given by the injective function sft : A→V × I and

– ends in at exactly one interface of another AS given
by the injective function tgt : A→V × I.

• To guarantee that G is a valid network graph the following
constraints must hold:

– No internal links

∀u,v ∈V, i, j ∈ I,a ∈ A :
sft(a) = (u, i)∧ tgt(a) = (v, j)⇒ u 6= v

– Inverse links

∀u,v ∈V, i, j ∈ I,a ∈ A.

sft(a) = (u, i)∧ tgt(a) = (v, j)

⇒∃a′ ∈ A. sft(a′) = (v, j)∧ tgt(a′) = (u, i)

Definition 6. The set environment Γ is defined as

Γ = L η ∈N ;δ ∈]0;1[;maxT,bufT ∈ R+
0 M.

An environment γ ∈ Γ contains the network graph η , the
N-Tube parameters δ , to adjust link capacities, maxT , limiting
the maximum time a version of a reservation can be valid, and
bufT , limiting the maximum time a message stays in a buffer
until it is processed.
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2) Paths: For any p ∈P it has to hold that it
• contains at at least one link, i.e., length(p)≥ 1
• is directed and consistent with the network

∀k ∈N,u,v ∈V, i,e, i′,e′ ∈ I.

0≤ k ≤ length(p)−1 ∧ p[k] = ue
i ∧ p[k+1] = ve′

i′

⇒ ∃a ∈ A. src(a) = (u,e) ∧ tgt(a) = (v, i′)

• is loop-free

∀k,k′ ∈ N,u,v ∈V, i,e, i′,e′ ∈ I.

k < k′ ≤ length(p) ∧ p[k] = ue
i ∧ p[k′] = ve′

i′ ⇒ u 6= v

The set of ASes on a path p are defined by

nodes(p) := {v ∈V | ∃k ∈ N. p[k].as = v}

In this work we only consider the set of valid paths P and
ignore the underlying network η .

3) Messages: As described before messages M are defined
as either deletion messages or reservation messages

M = MD +MR

together with injections delM : MD→M and resM : MR→
M .

For a valid message m the following must hold:
1) Valid path, i.e., m.path ∈P
2) Valid path counter

m.ptr ≤ length(m.path)

3) Valid pointers

m.first < m.last ≤ length(m.path)

4) Valid current bandwidth

length(m.accBW) = max(0,m.ptr−m.first)

5) Valid bandwidth range

m.minBW ≤ m.maxBW ∧ 0 < m.maxBW

The function src : M → V extracts the source AS from a
message’s path.

src(m) = m.path[0].as

The function cur : M → L inI ∈ I;as ∈V ;egI ∈ I M extracts the
current AS together with the corresponding ingress and egress
interface from a message m.

cur(m) = m.path[m.ptr]

The function nodes : M → P(V ) extracts the AS between on
the path field of a message,

nodes(m) = {v ∈V | ∃k ∈ [0; length(m.path)]. v = m.path[k].as}.

The function sgmt : MR→ P(V ) extracts the AS between first
and last of a reservation message,

sgmt(m) = {v ∈V | ∃k ∈ [m.first;m.last]. v = m.path[k].as}.

Given two messages m,m′ ∈M We say m corresponds to m′

(and reversely) if they refer to the same version of a reservation

m∼ m′ :⇔
src(m) = src(m′) ∧ m.id = m′.id ∧ m.idx = m′.idx

Given two reservation messages m,m′ ∈MR. We say m is
equivalent to m′ (and reversely) if all fields except of their ptr
and accBW coincide

m≈ m′ :⇔
m.id = m′.id ∧
m.idx = m′.idx ∧
m.path = m′.path ∧
m.first = m′.first ∧
m.last = m′.last ∧
m.minBW = m′.minBW ∧
m.maxBW = m′.maxBW ∧
m.expT = m′.expT

Note that the relations ≈ ⊆ MR×MR and ∼ ⊆ M ×M are
equivalence relations.

4) Reservation Maps: We model the reservation maps in
the network as a partial function of type

ResMap =V ×V ×N⇀fin Res.

A partial function res ∈ ResMap stores for each AS x its
reservations res(x,s, id), given by the corresponding pair of
reservation identifiers (s, id). Note that, compared to the
previous section, we combine all reservation maps resMx into
a global one, but continue using the indexed notation. Each
reservation is given by a record of type

Res = L path ∈P; ptr,first, last ∈ N; vrs ∈ VrsMap M,

containing a version map of the partial function type

VrsMap = N⇀fin L minBW,maxBW, idBW,resBW ∈ R+
0 ;

expT ∈ N M.
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A valid reservation map has to be consistent regarding their
reservations in the following sense:

∀v,s ∈V, id,k,st,en ∈ N, p ∈P,vers ∈ VrsMap

σ .res(v,s, id) = L p,k,st,en,vers M ∧
p[k].as = v ∧ p ∈P ∧ s = p[0].as ∧
st ≤ k ≤ en≤ length(p) ∧
∀idx ∈ N,min,max, idl,res ∈ R+

0 ,expT ∈ N.
vers(idx) = L min,max, idl,res,expT M
min≤ res≤ max ∧ 0 < max

and it must hold that the reserved bandwidth for any egress
link does not exceed the link’s capacity, i.e.,

∀v ∈V,e ∈ I, t ∈ N.
∑r∈rng(σ .resv):

resEg(r)=e
allocBW(r.vrs, t)≤ cap(v,e).

The functions resSr : Res→ V , resEg : Res→ I and resIn :
Res→ I extract the corresponding reservation’s source AS and
egress and ingress interface.

resSr(r) = r.path[0].as

resEg(r) = r.path[r.ptr].egI

resIn(r) = r.path[r.ptr].inI

The function sgmt : Res→ P(V ) ASes on the path segment of
a reservation are given by the following function:

sgmt(r) = {v ∈V | ∃k ∈ [r.first;r.last]. v = r.path[k].as}.

Given a reservation r ∈ Res and a reservation message m∈MR.
We say r corresponds to m if holds

r ∝ m : ⇔
m.maxBW = r.maxBW ∧
m.path = r.path ∧
m.first = r.first ∧
m.last = r.last

5) Bandwidth Allocation Computation: Available Band-
width Computation The function avail computes for message
m how much bandwidth is available on the egress link at
interface e of AS v as follows. First, resM′ is obtained
from resM by removing the reservation corresponding to m.
Second, resM′v is obtained by extracting the reservations that go
through AS v. Finally, avail subtracts the aggregated allocated
bandwidth of all currently valid reservations with the same
egress interface e from the link’s total capacity cap(x,e) and
multiplies the result by the parameter δ to obtain the remaining
bandwidth. Multiplying with 0 < δ < 1 guarantees that some

bandwidth is always available for subsequent reservation
requests.

avail(m,resM,δ , t) =

let
L i,v,e M = cur(m)

resM′ = resM ((v,src(m),m.id) 7→ ⊥)
resM′v = filter(resM′,v)

in

δ ·
(

cap(v,e)−∑r∈rng(resM′v):
resEg(r)=e

allocBW(r.vrs, t)
)

Given an AS v and a reservation resM the function filter
restricts resM to the reservations that go through v.

filter(resM,v) =

λ (s′, id′).

let r = resM(v,s′, id′)

in
(
if r.first ≤ r.ptr ≤ r.last then resM(v,s′, id′) else ⊥

)
Given the current time t, a currently valid version vrs is not
expired, i.e., vrs.expT ≥ t, and successful, i.e., vrs.minBW
≤ vrs.resBW. The reservation’s bandwidth allocation are
computed by the function allocBW and is defined as the
maximum of its currently valid versions’ resBW .2

allocBW(vrsM, t) =

max
vrs∈

rng(vrsM)

{vrs.resBW | vrs.minBW ≤ vrs.resBW ∧ vrs.expT ≥ t}

The maximum is taken, since the source can send traffic using
any existing version of its reservations. Hence, this computation
guarantees that, in the worst-case, enough bandwidth is
available.
Ideal Bandwidth Computation Given a message m, the
function ideal computes how the adjusted capacity δ · cap(v,e)
of the egress link e of AS v is shared in a so-called bounded
tube-fair manner among all the existing reservations at AS
v with the same egress link e. First, resM′ is obtained from
resM by removing all existing versions and adding a new
version corresponding to m. Removing previous versions of the
reservation guarantees that the result of the ideal computation
is not influenced by versions that are still valid and therefore
simulates the ideal state where only versions of the reservation
exist which correspond to m. Second, resM′v is obtained by
extracting the reservations that go through AS v. Finally, ideal
first proportionally splits the egress link’s adjusted capacity
between each ingress link by multiplying with tubeRatio,
partitions the result between reservations starting and traversing
the ingress link i by multiplying with linkRatio, and splits
the result proportionally between all remaining reservations
requests by multiplying with reqRatio.

2Note that max /0 = 0.
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ideal(m,resM,δ , t) =

let
L i,v,e M = cur(m)

vrs′ = L minBW := m.minBW;
maxBW := m.maxBW;
idBW := min(δcap(v, i),m.maxBW,preIdBW(m)) ;
resBW := m.minBW;
expT := m.expT M

vrsM′ = /0
(
m.idx 7→ vrs′

)
res′ = L path := m.path;

ptr := m.ptr;
first := m.first;
last := m.last;
vrs := vrsM′ M

resM′ = resM
(
(v,src(m),m.id) 7→ res′

)
resM′v = filter(resM′,v)

tubeRatio = tubeRatio(v, i,e,resM′v, t)

if (m.first < m.ptr)

then reqRatio = reqRatiotransit(v,src(m),m.id, i,resM′v, t)

linkRatio = linkRatiotransit(v, i,resM′v, t)

else reqRatio = reqRatiostart(v,src(m),m.id, i,resM′v, t)

linkRatio = linkRatiostart(v, i,resM′v, t)

in
min(δcap(v, i),m.maxBW,

reqRatio · linkRatio · tubeRatio ·δ · cap(v,e)).

Tube Ratio: The tube ratio between an ingress interface
i and an egress interface e is computed as the ratio of
the bounded tube demand between i and e, given by
min{δcap(v, i), tubeDem(i,e)}, and the aggregated bounded
tube demands at e.

tubeRatio(v, i,e,resM, t) =
min{δcap(v, i), tubeDem(v, i,e,resM, t)}

∑i′∈I min{δcap(v, i′), tubeDem(v, i′,e,resM, t)}
.

Taking the minimum with respect to the corresponding ingress
link’s capacity guarantees that its respective portion of tube
demand compared to the other ingress links’ tube demands is
always bounded. This prevents that the bandwidth reserved for
other ingress links will be reduced ad infinitum.

The tube demand between an ingress interface i and an
egress interface e aggregates their adjusted requested demands

tubeDem(v, i,e,resM, t) =

∑r∈rng(resM):
resIn(r)=i
resEg(r)=e

adjReqDem(v,r, i,e,resM, t).

A source can demand more than the ingress and egress links’
capacities allow. To account for that, the adjusted requested
demand of a reservation r is derived from its requested demand,
by multiplying the latter with the minimum of two scaling
factors

adjReqDem(v,r,resM, t) =

let
s = resSr(r)

i = resIn(r)

e = resEg(r)

in
min{inScalFctr(v,s, i,resM, t),egScalFctr(v,s,e,resM, t)}

· reqDem(v,r, i,e, t).

Analogously to the allocated bandwidth allocBW in avail, the
requested demand of a reservation r is the maximum of its
demanded bandwidth demBW

reqDem(v,r, i,e, t) =

min{δcap(v, i),δcap(v,e),demBW(r.vrs, t)}.

Note that, the requested demand is bounded by the ingress
and egress links’ capacities. This avoids that s reserves more
bandwidth in one request than physically possible, i.e., this
guarantees that

reqDem(v,r, i,e, t)≤min{δcap(v, i),δcap(v,e)}.

Analogously to the allocated bandwidth allocBW in avail, the
requested demand of a reservation r is the maximum of its
demanded bandwidth demBW .

demBW(vrsM, t) =

max
vrs∈

rng(vrsM)

{vrs.maxBW | vrs.minBW ≤ vrs.resBW ∧ vrs.expT ≥ t}

The maximum is taken, since the source can send traffic using
any existing version of its reservations. Hence, this computation
guarantees that, in the worst-case, enough bandwidth is
available.

However, it is possible that s demands less than the capacity
of an ingress (or egress) link in each of its requests, but
the aggregate of all its demands might still exceed the link’s
capacity. To adjust the requested demands, we multiply them
with the minimum of the corresponding ingress and the egress
scaling factor. We compute the egress scaling factor on the
egress link at e for s as the source’s proportion of the total
egress demand bounded by the egress link’s capacity, given by
the function

egScalFctr(v,s,e,resM, t) =
min(δcap(v,e),egDem(v,s,e,resM, t))

egDem(v,s,e,resM, t)
.
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Analogously, we define the ingress scaling factor on the egress
link at e for s

inScalFctr(v,s, i,resM, t) =
min(δcap(v, i), inDem(v,s, i,resM, t))

inDem(v,s, i,resM, t)
.

The egress demand of s on e is defined as the aggregate over
its requested demands with egress interface e,

egDem(v,s,e,resM, t) =

∑r′∈rng(resM):
resSr(r′)=s
resEg(r′)=e

reqDem(v,r′,resIn(r′),e, t).

Analogously, we compute the source’s ingress scaling factor
on the ingress interface i,

inDem(v,s, i,resM, t) =

∑r′∈rng(resM):
resSr(r′)=s
resIn(r′)=i

reqDem(v,r′, i,resEg(r′), t).

Link Ratio: If v is a transit AS on m’s path, i.e., m.first
< m.ptr (≤ m.last), then the link ratio between an ingress
interface i and an egress interface e is computed as the ratio
of the bounded transit demand between i and e, given by
min{cap(v, i), transitDem(i,e)}, and the sum of bounded start
and bounded transit demand

linkRatiotransit(v, i,resM, t) =

let
stDem = startDem(v, i,resM, t)

trDem = transitDem(v, i,resM, t)

in
min{δcap(v, i), trDem}

min{δcap(v, i),stDem}+min{δcap(v, i), trDem}
.

If v is the first AS on m’s path, i.e., m.first = m.ptr, then the
link ratio between an ingress interface i and an egress interface
e is computed analogously with startDem in the nominator
instead of transitDem

linkRatiostart(v, i,resM, t) =

let
stDem = startDem(v, i,resM, t)

trDem = transitDem(v, i,resM, t)

in
min{δcap(v, i),stDem}

min{δcap(v, i),stDem}+min{δcap(v, i), trDem}
.

Taking the minimum with respect to ingress link’s capacity guar-
antees that its respective portion for transit demand compared
to demands of reservations starting at i is always bounded. This
prevents that the bandwidth allocated for traversing reservations
can be reduced ad infinitum by excessive reservations starting
at link i and vice-versa. Here the transit demand at an ingress

interface i is the sum of the previous adjusted ideal bandwidth
demands of traversing reservations,

transitDem(v, i,resM, t) =

∑r∈rng(resM):
resIn(r)=i

r.first<r.ptr

adjIdDem(v,r,resM, t).

Analogously, the startDem at an ingress interface i is the sum
of the previous adjusted ideal bandwidth demands of starting
reservations,

startDem(v, i,resM, t) =

∑r∈rng(resM):
resIn(r)=i

r.first=r.ptr

adjIdDem(v,r,resM, t).

The (previous) adjusted ideal bandwidth demand of a reserva-
tion r is similarly defined to adjReqDem, the adjusted requested
demand, with the egress scaling factors of the corresponding
source AS and egress link

adjIdDem(v,r,resM, t) =

let
s = resSr(r)

i = resIn(r)

e = resEg(r)

in
egScalFctr(v,s,e,resM, t) ·
min{δcap(v, i),δcap(v,e), idBW(r.vrs, t)}.

Note, that we omit the ingress scaling factor inScalFctr, since
the previous AS has already applied its egress scaling factor
egScalFctr.

The previous ideal bandwidth allocation of a reservation’s
version map is similarly defined to the allocated bandwidth by
maximizing over the field idBW instead of resBW.

idBW(vrsM, t) =

max
vrs∈

rng(vrsM)

{vrs.idBW | vrs.minBW ≤ vrs.resBW ∧ vrs.expT ≥ t}.

Request Ratio: If v is a transit AS on m’s path, i.e., m.first
< m.ptr (≤ m.last), then the request ratio of a reservation
identified by (s, id) at ingress interface i is the ratio between
its adjusted ideal bandwidth allocation (provided by the
predecessor on the reservation’s path) and the transit demand
at interface i

reqRatiotransit(v,s, id, i,resM, t) =
adjIdDem(v,resM(v,s, id),resM, t)

transitDem(v, i,resM, t)
.

Similarly, in case v is the first AS on m’s path, i.e., m.first =
m.ptr, we define the request ratio by

reqRatiostart(v,s, id, i,resM, t) =
adjIdDem(v,resM(v,s, id),resM, t)

startDem(v, i,resM, t)
.
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6) State space: We define the set of states Σ as the record

Σ = L time ∈ N; buf ∈ Buff ; res ∈ ResMap; kwl ∈ P(M ) M.

A state σ ∈ Σ describes a snapshot of the system at a given
point in time, given by its time field. In our model, we assume
discrete time, which is loosely synchronized between all ASes,
i.e., compared to the minimal duration of reservations (on
the order of minutes), the discrepancy of time measurements
between AS (on the order of seconds) is negligible.

The field buf of type Buff = V × I → Pfin (M ) models
network buffers, where buf (x, i) holds the set of messages
arrived at interface i ∈ I of AS x ∈ V . The field res models
all ASes’ reservation maps as presented in Section IV-C and
formally defined in Appendix D4. Finally, the field kwl models
the attackers’ knowledge: the set of messages created, collected,
and shared by malicious ASes.

The initial states Σ0 = {σ0} are given by the single state

σ0 = L time := 0;buf := /0;res := /0;kwl := kwl0 M,

where time starts at 0, the buffers and reservation map
are initially empty, and the attackers’ initial knowledge
kwl0 = {m ∈M | src(m) ∈M} consists of all messages with a
malicious source AS.

7) Events: There are 14 events in our model. In contrast
to the rest of the events, the first event TCK and the second
event RST are not triggered by a message arrival, but model
time progress and expiration of reservations, respectively.

In case the arrived message is a reservation message the
following six events can be triggered.

The event FWD describes how the message is forwarded
along the path until it reaches the AS where the N-Tube
algorithm starts reserving bandwidth. The event CMP continues
from there and describes how the bandwidth allocation is
computed by N-Tube, how the results are added to the message
and how the updated message is then forwarded until the end.
The event TRN finishes the N-Tube computation at the last AS
of the reservation and sends the updated message backwards
along the path.

The event UPT describes how the reservations are updated in
the reservation maps of each AS between the end and including
the start of path on the trip back. The event BWD sends the
message backward along the path and the event FIN finally
drops the message at the source.

In case the arrived message is a deletion message two events
are triggered. In the event RMV all ASes forward the deletion
message along the path and delete the corresponding version of
the reservation from their reservation maps. The event DST is
triggered at the destination of the path and instead of forwarding
the message it drops it.

At any arrival of an reservation or deletion messages the
event DRP can be triggered that just drops the message without
any interaction with the N-Tube algorithm. Furthermore, we
define two attack events ATK and CLT as described previously.

Tick event: This is the only event that models the progress
of time in the system by increasing the state’s time-field to
progress in time to its successor state.

TCK(t ∈ N) = {(σ ,σ ′) |
- guards -

σ .time = t ∧
- actions -

σ
′.time = σ .time+1 }

Reset event: This event models the removal of expired or
unsuccessful reservations. Given by the event’s parameters
a reservation at an honest AS v and identified by source s,
id, and idx, this event can trigger non-deterministically for
the corresponding reservation. Its first guard is satisfied if the
reservation has been expired before the current time of the
system. Its second is satisfied is satisfied if less bandwidth was
reserved than the source AS asked for.

RST(v ∈ H,s ∈V, id, idx ∈ N) = {(σ ,σ ′) |
- guards -

( σ .res(v,s, id).vrs(idx).expT < σ .time ∨
σ .res(v,s, id).vrs(idx).resBW

< σ .res(v,s, id).vrs(idx).minBW ) ∧
- actions -

σ
′.res = delRes(v,s, id, idx,σ .res) }

The function delRes removes the version idx of the reservation
identified by (s, id) from v’s reservation map:

delRes(v,s ∈V, id, idx ∈ N,res ∈ ResMap) =

let
delVrs := res(v,s, id).vrs(idx 7→ ⊥)

in
res((v,s, id) 7→ L vrs := delVrs M)

8) Event Guards: For message creation and message pro-
cessing events a set of checks are executed, given in as event
guards. In the following the predicates for these guards are
presented:

PathCheck : P → B checks the validity of the path m.path,
i.e. if the path is loop-free:

PathCheck(p ∈P) =

∀k,k′ ∈ N,u,v ∈V, i,e, i′,e′ ∈ I.

k < k′ ≤ length(p) ∧ p[k] = ue
i ∧ p[k′] = ve′

i′ ⇒ u 6= v

Loc : M → B checks at which part the of the path m.path
the AS v arrived. There are five instantiations of this predicate:

atSrc(m ∈M ) =

m.ptr = 0
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onWay(m ∈M ) =

0 < m.ptr < m.first

atSrt(m ∈M ) =

m.ptr = m.first

onPth(m ∈M ) =

m.first < m.ptr < m.last

atEnd(m ∈M ) =

m.ptr = m.last

Note that by assumption (D) all these are disjoint predicates,
i.e. non of their conjunctions is satisfiable.

Dir : V × I×MR → B checks at which border router the
message m arrived compared to the provided path m.path and
if the length of the accBW field fits the position of v on the
path:

isFwd(v ∈V, i ∈ I,m ∈MR) =

m.path[m.ptr].as = v ∧
m.path[m.ptr].inI = i ∧
length(m.accBW) = max(0,m.ptr−m.first)

isBwd(v ∈V, i ∈ I,m ∈MR) =

m.path[m.ptr].as = v ∧
m.path[m.ptr].outI = i ∧
length(m.accBW) = m.last−m.first

isWrg(v ∈V, i ∈ I,m ∈MR) =

¬(isFwd(v, i,m)∨ isBwd(v, i,m))

Rsvd : ResMap×V ×MR×N→B checks if there is already
a valid version of the reservation corresponding to the arrived
reservation message in the reservation map. The predicate
isRsvd defines a valid version of a reservation r, i.e., successful
and not expired.

isRsvd(res,v,m, t) =

∃r ∈ Res. r = res(v,src(m),m.id) ∧
¬(0) r 6=⊥ ∧
¬(5) r.vrs 6= /0 ∧
¬(6) r.vrs(m.idx) 6=⊥ ∧
(9) r.vrs(m.idx).expT ≥ t ∧
¬(10) r.vrs(m.idx).resBW ≥ r.vrs(m.idx).minBW

The predicate isMrkd defines a marked version of a reservation
r to indicate that a version of the reservation with the
corresponding index m.idx has been made before.

isMrkd(res,v,m, t) =

∃r ∈ Res. r = res(v,src(m),m.id) ∧
¬(0) r 6=⊥ ∧
¬(5) r.vrs 6= /0 ∧
¬(6) r.vrs(m.idx) 6=⊥ ∧
(9) r.vrs(m.idx).expT ≥ t ∧
(10′) r.vrs(m.idx).resBW =⊥

The predicate notRsvd indicates that no version of the reserva-
tion r exists yet or that one has existed but was unsuccessful
or has been expired.

notRsvd(res,v,m, t) =

∃r ∈ Res. r = res(v,src(m),m.id) ∧
( (0) r =⊥ ∨
(5) r.vrs = /0 ∨
(6) r.vrs(m.idx) =⊥ ∨
¬(9) r.vrs(m.idx).expT < t ∨
¬(10) r.vrs(m.idx).resBW < r.vrs(m.idx).minBW )

It holds that all three event are mutual exclusive and cover all
cases:

Lemma 1.

isMrkd∧ isRsvd⇔ FALSE

¬(isMrkd∨ isRsvd)⇔ notRsvd

ResMsgCheck : MR×N×N→ B is checked only if m is a
reservation message as follows:

ResMsgCheck(m ∈MR, t,maxT ∈ N) =
m.expT−maxT ≤ t < m.expT ∧
m.minBW ≤ m.maxBW ∧
0 < m.maxBW ∧
m.first < m.last ≤ length(m.path)

ResMapCheck : ResMap×V ×MR→ B compares the path,
and the pointers ptr, first and last of a message m with the
corresponding reservation in res of v at the entry m.id as
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follows:

ResMapCheck(res,v,m) =

∃r ∈ Res. r = res(v,src(m),m.id) ∧
(0) r =⊥ ∨
(¬(0) r 6=⊥ ∧
(1) r.path = m.path ∧
(2) r.ptr = m.ptr ∧
(3) r.first = m.first ∧
(4) r.last = m.last ∧
((5) r.vrs = /0 ∨
¬(5) r.vrs 6= /0 ∧
¬(6) r.vrs(m.idx) 6=⊥ ∧
(7) r.vrs(m.idx).minBW = m.minBW ∧
(8) r.vrs(m.idx).minBW = m.maxBW ∧
(9) r.vrs(m.idx).expT = m.expT ) )

After the message processing events on the back traversal of
the path it holds that (1) the reservation message was valid
and (2) there has been a corresponding reservation, i.e.,

ResMapCheck(res,v,m)∧ isRsvd(res,v,m, t)

This can be summarized in the property:

isStrongRsvd(res,v,m, t) =

r =res(v,src(m),m.id) ∧
¬(0) r 6=⊥ ∧
(1) r.path = m.path ∧
(2) r.ptr = m.ptr ∧
(3) r.first = m.first ∧
(4) r.last = m.last ∧
¬(5) r.vrs 6= /0
¬(6) r.vrs(m.idx) 6=⊥ ∧
(7) r.vrs(m.idx).minBW = m.minBW ∧
(8) r.vrs(m.idx).maxBW = m.maxBW ∧
(9) r.vrs(m.idx).expT ≥ t

The following Lemma shows that the predicate isStrongRsvd
is equivalent to ResMapCheck(res,v,m) together with
isRsvd(res,v,m, t):

Lemma 2.

ResMapCheck(res,v,m)∧ isRsvd(res,v,m, t)

⇔ isStrongRsvd(res,v,m, t)

ResMapCheckD : ResMap×V ×MD→ B is the analogous
predicate for deletion messages which only keeps checks (1−

4), since for a deletion message m does not contain the fields
minBW , maxBW , and expT .

ResMapCheck(res,v,m) =

∃r ∈ Res. r = res(v,src(m),m.id) ∧
(0) r =⊥ ∨
(¬(0) r 6=⊥ ∧
(1) r.path = m.path ∧
(2) r.ptr = m.ptr ∧
(3) r.first = m.first ∧
(4) r.last = m.last )

9) Message-Creation: The two message creation events
describe how honest ASes create reservation and deletion
messages correctly. The creation of reservation messages is
defined as follows:

CRTR(γ ∈ Γ,m ∈MR,v ∈ H, i ∈ I, t ∈ N)
= {(σ ,σ ′) |

- guards -

σtime = t ∧
PathCheck(m.path) ∧
ResMsgCheck(m,σ .time,γ.maxT) ∧
ResMapCheck(σ .res,m,v) ∧
atSrc(resMsg(m)) ∧
isFwd(v, i,m) ∧
¬isMrkd(σ .res,v,resMsg(m),σ .time) ∧
- actions -

σ
′.buf = σ .buf((v, i) 7→ σ .buf(v, i)∪{m}) ∧

σ
′.res = mark(v,σ .res,m) }

AS v creates a valid reservation message m at time t and adds
it to the buffer of the ingress interface i. To avoid that it creates
a further reservation messages with the same identifiers src(m),
m.id, and m.idx, the source marks the corresponding version
of the reservation in its reservation map when creating m. The
guard ¬isMrkd together with the function mark guarantee that

24



no duplicates are created as long as m is not expired.

mark(v ∈V,resM ∈ ResMap,m ∈MR) :=
let
vrs′ := L minBW := m′.minBW;

maxBW := m′.maxBW;
idBW :=⊥;
resBW :=⊥;
expT := m′.expT M

vrsM′ := resM(v,src(m),m′.id).vrs
(
m′.idx 7→ vrs′

)
res′ := L path := m′.path;

ptr := m′.ptr;
first := m′.first;
last := m′.last;
vrs := vrsM′ M

in
resM

(
(v,src(m),m′.id) 7→ res′

)

The creation of deletion messages is similarly defined, but less
guards are sufficient:

CRTD(γ ∈ Γ,m ∈MD,v ∈ H, i ∈ I, t ∈ N)
= {(σ ,σ ′) |

- guards -

σtime = t ∧
PathCheck(m.path) ∧
atSrc(delMsg(m)) ∧
isFwd(v, i,delMsg(m)) ∧
- actions -

σ
′.buf = σ .buf((v, i) 7→ σ .buf(v, i)∪{m}) } ∧

σ
′.res = mark(v,σ .res,m) }

Note that we do check if there is a corresponding reservation
in v’s reservation map.

10) Reservation Message Arrival Events: These events are
triggered by a reservation message arrival and are given by the

following event template RES:

RES(γ ∈ Γ,m,m′ ∈MR,v ∈V, i ∈ I, t ∈ N,
Loc ∈M → B,
Dir ∈V × I×MR→ B,
Rsvd ∈ ResMap×V ×MR×N→ B,
updMsg ∈MR×ResMap×]0;1[×N→MR,

updBuf ∈V × I×Buff ×M ×M → Buff ,

updRes ∈V ×ResMap×MR→ ResMap)

= {(σ ,σ ′) |
- guards -

m ∈ σ .bu f (v, i) ∧
σ .time = t ∧
PathCheck(m.path) ∧
ResMsgCheck(m,σ .time,γ.maxT) ∧
ResMapCheck(σ .res,m,v) ∧
Loc(resMsg(m)) ∧
Dir(v, i,m) ∧
Rsvd(σ .res,v,m,σ .time) ∧
m′ = updMsg(m,σ .res,γ.delta,σ .time) ∧
- actions -

σ
′.buf = updBuf (v, i,σ .buf,resMsg(m),resMsg(m′)) ∧

σ
′.res = updRes(v,σ .res,m′) }

This event-template should be understood as follows:
• A reservation message m arrives at AS v at interface i

at time σ .time to be processed, i.e., m ∈ σ .buf(v, i) and
σ .time = t.

• The predicates PathCheck and ResMsgCheck ensure that
the path m.path and the m are well-formed. The predicate
ResMapCheck ensures that the arriving reservation mes-
sage m fits an already existing reservation with ID m.id
in v’s reservation map.

• The function updMsg given as a parameter creates a new
reservation message m′ from the arrived message m. Here
the N-Tube computation is executed and the pointer m.ptr
is updated depending on the location and the direction of
the message on the path.

• The predicates Loc, Dir, and Rsvd indicate at which part of
the path m.path the message is arrived, at which interface
it arrived and if there is already an existing reservation
for m.id and m.idx in v’s reservation map.

• Using the function updBuf the processed message m′ is
either sent to the next AS on the path given by m.path.
or is dropped after it returned to the source.

• The function updRes saves the reservation given by m′

in v’s reservation map between m.first and m.last on the
path, and marks it otherwise.

Forward event: This event is triggered by the arrival of a
reservation message m at interface i of AS v at time σ .time at
the source (but not at the start) or on the way to the start of the
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reservation and there is no valid reservation in v’s reservation
map yet. Using the event template RES it is instantiated as
follows:

FWD(γ,m,m′,v, i, t) =

RES(γ,m,m′,v, i, t,

atSrc∧¬atSrt)∨onWay, isFwd,notRsvd,

nothing, forward,mark)

where the parameter updMsg is instantiated by the function
nothing

nothing(m ∈MR,res ∈ ResMap,δ ∈]0;1[, t ∈ N) = m.

The parameter updBuf is instantiated by the function forward
which models the sending of the processed message m′ forward
along the path by removing the received message m from v’s
buffer at interface i and adding m′′ to buffer i′′ of the next AS
v′′.

forward(v ∈V, i ∈ I,buf ∈ Buff ,m ∈M ,m′ ∈M ) =

let
m′′ = m′L ptr := ptr+1 M
L i′′,v′′,e′′ M = cur(m′′)

in

buf
(
(v, i) 7→ buf (v, i)\{m}
(v′′, i′′) 7→ buf (v′′, i′′)∪{m′′}

)
The parameter updRes is instantiated by the function save,

which writes a new entry derived from the information given
by message m in v’s reservation map at entry (src(m),m.id).

save(v ∈V,resM ∈ ResMap,m′ ∈MR) =

let
L i,v,e M = cur(m)

finBW = min(m′.accBW)

vrs′ = L minBW := m′.minBW;
maxBW := m′.maxBW;

idBW := min
(
δcap(v, i),m′.maxBW,preIdBW(m′)

)
;

resBW := finBW;
expT := m′.expT M

vrsM′ = resM(v,src(m′),m′.id).vrs
(
m′.idx 7→ vrs′

)
res′ = L path := m′.path;

ptr := m′.ptr;
first := m′.first;
last := m′.last;
vrs := vrsM′ M

in
resM

(
(v,src(m′),m′.id) 7→ res′

)
.

The function preIdBW extracts the ideal bandwidth computed
by the previous AS from m′.accBW. In case there the message

is at the first node, i.e., m′.ptr = m′.first, then the function
returns m′.maxBW.

preIdBW(m ∈MR) =

if 0≤ m.ptr−m.first−1
then m.accBW[m.ptr−m.first−1].idBW

else m.maxBW

Note that finBW is less or equal to m′.maxBW and δcap(v, i),
since m′.accBW contains the ideal bandwidth computed at AS
v. However, the entries in m′.accBW could exceed m′.maxBW
and δcap(v, i), if the previous AS is malicious.

Computation event: This event is triggered by the arrival of
a reservation message m at interface i of the start AS v at time
σ .time at the start and on the path (but not at the end) before
the end of the reservation and if there is no valid reservation
in v’s reservation map yet. Using the event template RES it is
instantiated as follows:

CMP(γ,m,m′,v, i, t) =

RES(γ,m,m′,v, i, t,

(atSrt∧¬atEnd)∨onPth, isFwd,notRsvd,

compute, forward,save)

where the function compute executes the N-Tube computations
avail and ideal at v and adds them to m’s field accBW:

compute(m ∈MR,res ∈ ResMap,δ ∈]0;1[, t ∈ N) =
let
newBW = L avBW := avail(m,res,δ , t);

idBW := ideal(m,res,δ , t) M
in
mL accBW = newBW # m.accBW M.

The parameter updRes is initiated by the function save as
defined above. Note that there is no N-Tube computation
necessary since m′ contains the values of the avail and ideal
computation due to the function compute.

Turn event: This event is triggered by the arrival of a message
m at interface i of AS v at time σ .time at the end (but not the
source) of the reservation and if there is no valid reservation
in v’s reservation map yet. Using the event template RES it is
instantiated as follows:

TRN(γ,m,m′,v, i, t) =

RES(γ,m,m′,v, i, t,

atEnd∧¬atSrc, isFwd,notRsvd,

compute,backward,save)

The parameter updBuf is initiated with the function backward
which does the same as the function forward except sending
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m in the opposite direction along the path.

backward(v ∈V, i ∈ I,buf ∈ Buff ,m ∈M ,m′ ∈M ) =

let
m′′ = m′L ptr := ptr−1 M
L i′′,v′′,e′′ M = cur(m′′)

in

buf
(
(v, i) 7→ buf (v, i)\{m}
(v′′, i′′) 7→ buf (v′′, i′′)∪{m′′}

)

Update event: This event is triggered by the arrival of a
reservation message m at interface i of an AS v on the path or
at the start (but not at the source) of the reservation at time
σ .time, i.e. the message traverses the path backwards. Using
the event template RES it is instantiated as follows:

UPT(γ,m,m′,v, i, t) =

RES(γ,m,m′,v, i, t,

onPth∨ (atSrt∧¬atSrc), isBwd, isRsvd∨ isMrkd,

nothing,backward,update)

The parameter updRes is instantiated by the function update,
which updates the entry derived from the information given by
message m′ in v’s reservation map at entry (src(m′),m′.id).

update(v ∈V,resM ∈ ResMap,m′ ∈MR) =

let
finBW = min

(
m′.accBW

)
res′ = resM

(
(v,src(m′),m′.id)

)
vrsM′ = res′.vrs

vrs′ = vrsM′(m′.idx)

resBW ′′ = min
(
vrs′.resBW,finBW

)
vrs′′ = vrs′L resBW := resBW ′′ M
vrsM′′ = vrsM′

(
m′.idx 7→ vrs′′

)
res′′ = res′L vrs := vrsM′′ M

in
resM

(
(v,src(m′),m′.id) 7→ res′′

)
.

The field resBW is updated with the minimum of m′.accBW.
Note, that resBW ′ is limited by the previously computed resBW
since there might be a malicious AS on the path which changed
the values in accBW exceeding the links’ capacities or maxBW.
In contrast to save it is not guaranteed by the function compute
that the last value in accBW is computed by the current AS.

Backward event: This event is triggered by the arrival of a
reservation message m at interface i of an AS v on the way
back between start and source at time σ .time. Using the event

template RES it is instantiated3

BWD(γ,m,m′,v, i, t) =

RES(γ,m,m′,v, i, t,

onWay, isBwd, isRsvd∨ isMrkd,

nothing,backward,update).

Finish event: This event is triggered by the arrival of a
reservation message m at interface i of the source (but not
at the end) AS v of the path at time σ .time, i.e., the message
completes its round-trip, the source updates its reservation map
res with the final result and drops the message. Using the event
template RES it is instantiated by

FIN(γ,m,m′,v, i, t) =

RES(γ,m,m′,v, i, t,

atSrc∧¬atEnd, isBwd, isRsvd∨ isMrkd,

nothing,drop,update).

The parameter updBuf is instantiated by the function drop

drop(v ∈V, i ∈ I,buf ∈ Buff ,m,m′ ∈M ) =

buf ((v, i) 7→ buf (v, i)\{m}) .

One event: This event is triggered if the reservation message
m only reserves at the source AS, i.e., m.first = m.last = 0, at
interface i at time σ .time. The message completes its round-
trip at the source, which computes the bandwidth, updates its
reservation map res with the computed result, and drops the
message. Using the event template RES it is instantiated by

ONE(γ,m,m′,v, i, t) =

RES(γ,m,m′,v, i, t,

atSrc∧atEnd, isFwd, isMrkd,

compute,drop,save).

3Note, that if the reservation’s field resBW is undefined it holds

resBW ′ = min(vrs′.resBW,m′.accBW) = min(m′.accBW)
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11) Deletion Events: The two events triggered by a arrival of
a deletion message are given by the following event template:

DEL(m,m′ ∈MD,v ∈V, i ∈ I, t ∈ N,
Loc : M → B,
updBuf : V × I×Buff ×M ×M → Buff

= {(σ ,σ ′) |
- guards -

m ∈ σ .buf(v, i) ∧
σ .time = t ∧
PathCheck(m.path) ∧
ResMapCheckD(m,v,σ .res) ∧
Loc(delMsg(m)) ∧
m.path[m.ptr].as = v ∧
m.path[m.ptr].inI = i ∧
m′ = mL ptr := ptr+1 M ∧
- actions -

σ
′.buf = updBuf (v, i,σ .buf,delMsg(m),delMsg(m′)) ∧

σ
′.res = remove(v,σ .res,m) }

The function remove overwrites an entry given by a message
m in the reservation map res of AS v

remove(v ∈V,res ∈ ResMap,m ∈MD) =

let
delVrs = res(v,src(m),m.id).vrs(m.idx 7→ ⊥)

in
res((v,src(m),m.id) 7→ L vrs := delVrs M)

Note that the following parts were changed compared to the
reservation message arrival template RES:

• Environment γ is not needed, since there is no N-Tube
computation in deletion events.

• Predicate Dir instantiated is replaced with the first two
conjuncts of predicate isFwd, since deletion messages
only travels the path forward once and the accBW field
is not needed in deletion messages.

• Predicate Rsvd is not needed, since if there is no version
corresponding to m, then function remove does not change
it.

• Function updMsg is replaced by the term of function
forward.

• Function updRes is initiated with the function remove
• Predicate ResMsgCheck is not necessary since it validates

fields of reservation messages that are not part of deletion
messages.

There are two instantiations of the DEL event template:

Remove event: This event is triggered by the arrival of a
deletion message m at interface i of AS v which is the source

or on the path (but not the destination) at time σ .time. Using
the event template DEL it is instantiated by

RMV(m,m′,v, i, t) =

DEL(m,m′,v, i, t,prePth, forward)

with the path predicate onPth : M → B

prePth(m ∈M ) =

m.ptr < length(m.path).

Destination event: This event is triggered by the arrival of a
deletion message m at interface i of the destination AS v of
the path at time σ .time. Using the event template DEL it is
instantiated by

DST(m,m′,v, i, t) =

DEL(m,m′,v, i, t,atDst,drop).

with the path predicate atDst : M → B

atDst(m ∈M ) =

m.ptr = length(m.path)

12) Drop Events: This event is triggered by the arrival of a
deletion or reservation message m at interface i of the source
AS v of the path at time σ .time

DRP(m ∈M ,v ∈V, i ∈ I, t ∈ N) = {(σ ,σ ′) |
- guards -

m ∈ σ .bu f (v, i) ∧
σ .time = t ∧
- actions -

σ
′.buf = σ .buf( (v, i) 7→ σ .buf(v, i)\{m} ) }

13) Attacker Events: Malicious ASes can execute two events:
(i) receive a message, partially modify it, and store the resulting
message in the attackers’ knowledge kwl, and (ii) send a
message in kwl to any neighbor AS in the network. Recall that
kwl also includes any message in M with a malicious source
AS. We now discuss these two events in more detail.
Collect event: In the event CLT , an attacker a ∈M receives
a message m from his buffer buf(a, i) at interface i, possibly
modifies its mutable fields ptr and accBW (but not the other
fields), and adds the resulting message to kwl.

CLT (m,m′ ∈M ,a ∈M, i ∈ I) = {(σ ,σ ′) |
- guards -

m ∈ σ .buf(a, i) ∧ m′ ≈ m ∧
- actions -

σ
′.kwl = σ .kwl∪{m′} }.

Here, the equivalence relation m ≈ m′ expresses that m and
m′ coincide except on their mutable fields. This models our
assumption that, in an N-Tube implementation, the source
AS signs the immutable fields with its private key, while the
mutable fields remain unprotected.
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Attack event: In the event AT K, an attacker a can send any
message m in kwl to any neighbor AS v by adding m to v’s
buffers buf(v, i)

AT K(m ∈M ,a ∈M,v ∈ H, i,e ∈ I, t ∈ N) = {(σ ,σ ′) |
- guards -

m ∈ σ .kwl ∧ ((a,e),(v, i)) ∈ E ∧
- actions -

σ
′.buf = σ .buf((v, i) 7→ σ .buf(v, i)∪{m} }.

These two events model powerful attack capabilities. Mali-
cious ASes can attack anytime, make arbitrary reservation
requests from their own ASes, partially modify observed
requests, replay old messages, and collude by communicating
through out-of-band channels to share their knowledge and
synchronize attacks. However, attackers cannot spoof messages
from honest ASes, modify reservations stored in the reservation
maps of honest ASes, or change the system’s global time.
Strong attack event: The attack events are given as described
above. However, when Theorem 2, we assume a stronger
attacker model by weakening the guards of the AT K event

AT K(m ∈M ,v ∈V, i ∈ I) = {(σ ,σ ′) |
- guards -

m ∈ σ .kwl ∧
- actions -

σ
′.buf = σ .buf((v, i) 7→ σ .buf(v, i)∪{m}) }.

In the previously defined AT K event we restrict by the
additional guard ((a,e),(v, i)) ∈ E that v has to be honest
and connected with a link to a malicious AS a ∈ M. Note,
however, proving properties with this stronger attacker model
does imply these properties also for the weaker one.

14) Valid Executions: Monotonicity Given the transition
relation ∆ defined in Section IV-E for any execution π ∈ E is
the property of time-monotonicity, i.e.,

Lemma 3.

∀n, ñ ∈ N. n≤ ñ⇒ σn.time≤ σñ.time

Proof. It’s sufficient to show:

∀n ∈ N. σn.time≤ σn+1.time

Given n ∈ N. By case distinction on λn:
• TCK(t̃): By the event’s action it holds σn+1.time =

σn.time+1 > σn.time.
• All other event’s actions keep the time unchanged, i.e.,

σn.time = σn+1.time.

Time-progress The global time infinitely progresses, i.e.,

∀t ∈ N ∃n ∈ N. σn.time≥ t, (TP)

more well-known as the property of zeno-freeness.

This is reasonable to assume, since it is equivalent to the
assumption that in a realistic execution there are only finitely
many ATK and CRT events at any given point in time

∀t ∈ N ∃B ∈ N.
|{n ∈ N | λn.time = t ∧λn.event = AT K}| ≤ B ∧
|{n ∈ N | λn.time = t ∧λn.event =CRT}| ≤ B.

Message-Progress: All messages in the buffers of honest ASes
are processed in at most time bufT

∀n ∈ N,v ∈ H, i ∈ I,m ∈ σn.buf(v, i).

∃ñ > n. m 6∈ σñ.buf(v, i) ∧ σñ.time−σn.time≤ bufT.
(MP)

Distinct-Pointers: W.l.o.g., we assume that all messages m
their field first is positive which is given as Assumption DP

∀n ∈ N,v ∈V, i ∈ I,m ∈M .

m ∈ σn.buf(v, i)⇒ 0 < m.first (DP)

Note that we assumed m.first < m.last. Adding this assumption
does not change any of the properties we prove but avoids
considering additional corner-cases.

Definition (Valid Executions). An execution π ∈E is valid if it
satisfies time progress (TP), message progress (MP), and (DP)
properties.

This is satisfied if (i) all honest ASes run a fair scheduling
algorithm (e.g., Round-Robin) to prevent message starvation,
and (ii) messages are dropped in case of buffer overflow.

We will show that the global properties (G1–G5) of the
N-Tube algorithm hold for all valid executions.

E. Properties and Proofs

In this section, we define and prove the N-Tube’s properties.
1) Successful Reservations and Constant Demands: Proper-

ties (G1) and (G2) assume that a successful reservation has
been established by an honest source AS and properties (G3–
G5) assume constant demands. We define these two notions
in the following.
Successful Reservation We say an honest source s ∈H makes
a successful reservation confirmed by the message m ∈MR at
time t if the following three conditions hold:

• Honest Path: m’s path only contains honest ASes.

nodes(m)⊆ H. (HP)

• Confirmation: s confirms m at time t with sufficient
bandwidth

∃n ∈ N, i ∈ I. λn = FIN(m,s, i, t) ∧ finBW(m)≥ m.minBW.
(CF)
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• No deletion: There is no deletion event matching the
reservation (src(m),m.id) and version m.idx before m
expires

∀n̂,nc ∈ N, v̂ ∈V, î, i ∈ I, m̂ ∈MD,mc ∈MR, t̂, tc ∈ N.
λnc =CRTR(mc,s, i, tc)∧mc ≈ m ∧
σn̂.time ∈ ]tc;m.expT] ∧(

λn̂ = RMV (v̂, î, m̂, t̂) ∨ λn̂ = DST (v̂, î, m̂, t̂)
)

⇒ mc 6∼ m̂. (nDE)

Constant Demands We model “constant bandwidth demands”
using a function

D : V ×N⇀fin MR

such that D(s, id) = m implies src(m) = s and m.id = id, and
D(s, id).minBW = 0.

We say that a reservation message m corresponds to D if
(src(m),m.id)∈ supp(D) and m coincides with D(src(m),m.id)
on all fields except ptr, expT , and accBW.

m ` D : ⇔
D(src(m),m.id).path = m.path ∧
D(src(m),m.id).first = m.first ∧
D(src(m),m.id).last = m.last ∧
D(src(m),m.id).minBW = m.minBW ∧
D(src(m),m.id).maxBW = m.maxBW

We say that a reservation r identified by (s, id) corresponds to
D at time t if (s, id) ∈ supp(D) and r coincides with D(s, id)
on all fields except ptr, expT , for all its versions and accBW .

r, t ` D : ⇔
(s, id) ∈ supp(D) ∧
D(s, id).path = r.path ∧
D(s, id).first = r.first ∧
D(s, id).last = r.last ∧
∀idx ∈ N.

r.vrs(idx) =⊥ ∨
r.vrs(idx).expT < t ∨
D(s, id).minBW = r.vrs(idx).minBW ∧
D(s, id).maxBW = r.vrs(idx).maxBW )

We say that a state σ corresponds to D, written σ ` D, if, for
all honest ASes v ∈ H, the all reservations in resv correspond
to D at time σ .time, i.e.,

∀v ∈ H,r ∈ rng(σ .resv) . r, σ.time ` D

For the rest of this section we fix two time points t0, t1 ∈ N
such that t1− t0 ≥ 2maxT . We say an execution π ∈ E has
constant demands D between t0 and t1 if

• Successful Requests: for all (s, id) ∈ supp(D) the source
AS s has successfully made a reservation confirmed by a
message m corresponding to D(s, id) before time t0

∀m ∈ rng(D) ,evt ∈ {CMP,T RN,UPT},v ∈ sgmt(m).

∃ñ ∈ N, m̃, m̃′ ∈MR, ĩ ∈ I, t̃ ∈ N.
σñ.time≤ t0 ∧ m̃ ` D ∧
λñ = evt(m̃, m̃′,v, ĩ, t̃) ∧ m̃.expT > t0,

• Successful Renewal: and successfully renews this reser-
vation without any gaps until t1,

∀ñ ∈ N,evt ∈ {CMP,T RN,UPT}. σñ.time ∈ [t0, t1]⇒
∀m̃, m̃′ ∈MR, ṽ ∈ H, ĩ ∈ I, t̃ ∈ N.
λñ = evt(m̃, m̃′, ṽ, ĩ, t̃) ∧ m̃ ` D ⇒
∃n̂ ∈ N, m̂, m̂′ ∈MR, ṽ ∈ sgmt(m̂), î ∈ I, t̂ ∈ N.
σn̂.time ∈ [t̃, m̃.expT] ∧
λn̂ = evt(m̂, m̂′, v̂, î, t̂)∧ m̂.expT > m̃.expT.

• Constant Demands: any reservation confirmed by a
reservation message m between t0 and t1, corresponds
to D

∀ñ ∈ N,evt ∈ {CMP,T RN,UPT}. σñ.time ∈ [t0, t1]⇒
∀m̃, m̃′ ∈MR, ĩ ∈ I, t̃ ∈ N, ṽ ∈ sgmt(m̃).

λñ = evt(m̃, m̃′, ṽ, ĩ, t̃)⇒ m̃ ` D

and similarly for attack events

∀ñ ∈ N. σñ.time ∈ [t0, t1]⇒
∀m̃ ∈MR, ĩ, ẽ ∈ I, t̃ ∈ N, ã ∈M, ṽ ∈ sgmt(m̃).

λñ = AT K(m̃, ã, ṽ, ĩ, ẽ, t̃)

⇒ m̃ ` D ∧ finBW(m̃) = D(src(m̃), m̃.id).maxBW

• No Deletion: there are no deletion events between t0 and
t1 for reservations given by supp(D).

∀ñ ∈ N,evt ∈ {RMV,DST}. σñ.time ∈ [t0, t1]

∀m̃ ∈MD, ṽ ∈ H, ĩ ∈ I, t̃ ∈ N.
λñ = evt(m̃, ṽ, ĩ, t̃)⇒ (src(m̃), m̃.id) 6∈ supp(D)

2) Successful Reservation Theorem:

Theorem 2 (Successful Reservation). If an AS s makes a
successful reservation m and time t, then all ASes on m’s
path added their avail and ideal computations to m.accBW
and reserve finBW(m) until it expires

∀n ∈ N,v ∈V,k ∈ [m.first;m.last].

σn.time ∈ ]t;m.expT] ∧ v = m.path[k].as

⇒ σn.res(v,s,m.id).vrs(m.idx).resBW = finBW(m) ∧
∃ñ < n, m̃ ∈MR. m̃≈ m ∧

m.accBW[k−m.first] = L avBW = avail(m̃,σñ.res);
idBW = ideal(m̃,σñ.res) M.
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Proof. First we prove that

∀n ∈ N,v ∈V,k ∈ [m.first;m.last].

σn.time ∈ ]t;m.expT] ∧ v = m.path[k].as

⇒ σn.res(v,s,m.id).vrs(m.idx).resBW = finBW(m).

Given Assumption CF, we show that the FIN event is preceded
by an BWD event on the previous AS. Given a message
m∈ buf(v, i) with v∈ nodes(m), we can show by induction that
there was corresponding message processing event in the time
interval [m.expT−maxT, t] with a corresponding message m̃

∀v ∈ nodes(m). ∃evt ∈ {CRTR,FWD,CMP,T RN,UPT,BWD}.
∃ñ ∈ N, m̃, m̃′ ∈MR, ĩ ∈ I, t̃ ∈ N.
σñ.time < t ∧λñ = evt(m̃, m̃′,v, ĩ, t̃)∧ m̃≈ m

In the case distinction we need to exclude that the attacker put
m into the buffer by using Lemma 8 which is based on our
Assumption HP.

Next, we show that each of these events is unique for each
successful reservation with message m

∀ñ, n̂ ∈ N,evt ∈ {CRTR,FWD,CMP,T RN,UPT,BWD},
∀m̃, m̃′, m̂, m̂′ ∈MR,v ∈ H, ĩ, î ∈ I, t̃, t̂ ∈ N.
λñ = evt(m̃, m̃′,v, ĩ, t̃)∧λn̂ = evt(m̂, m̂′,v, î, t̂)∧ m̃≈ m̂

⇒ ñ = n̂

and therefore exclude that there was another corresponding
message processing event that changes the reservation done by
m̃.

Using Assumption nDE, we can also exclude that the
reservation gets deleted in the time interval [m.expT−maxT, t].

Thus, for each successful reservation with a message m,
we obtain a list of transitions lm = [λ1, . . . ,λ2·m.last] ordered
by time, where each transition corresponds to the message
unique processing event for m. Given lm we can finally show
by induction on its length

∃ñ < n, m̃ ∈MR. m̃≈ m ∧
m.accBW[k−m.first] = L avBW = avail(m̃,σñ.res);

idBW = ideal(m̃,σñ.res) M.

Consistency The following technical lemma shows that after
a CRTR event with message m the corresponding version is
marked or reserved and remains unchanged until it expires.

Lemma 4 (CRT-isMrkd-until-expiration).

∀n ∈ N,m,m′ ∈MR,v ∈V, i ∈ I, t ∈ N.
λn =CRT (m,v, i, t) ⇒
∀n̂ > n. σn̂.time≤ m.expT⇒
( isMrkd(σn̂.res,v,m,σn̂.time)

∨ isRsvd(σn̂.res,v,m,σn̂.time) ) ∧
ResMapCheck(σn̂.res,v,m)

Proof. Given n ∈ N, m,m′ ∈MR with m, v ∈ V , i ∈ I, t ∈ N
with

λn =CRT (m,v, i, t)

By induction on n̂ > n:
• n̂ = n+1: Using assumption λn =CRT (m,v, i, t) we can

show that

isMrkd(σn+1.res,v,m,σn+1.time)

and
ResMapCheck(σn+1.res,v,m).

Hence, in this case (n̂ = n+1) the claim holds.
• n̂→ n̂+1: By IH it holds

n̂ > n ∧ σn̂.time≤ m.expT⇒
( isMrkd(σn̂.res,v,m,σn̂.time)

∨ isRsvd(σn̂.res,v,m,σn̂.time) ) ∧
ResMapCheck(σn̂.res,v,m)

We need to show:

n̂+1 > n ∧ σn̂+1.time≤ m.expT⇒
( isMrkd(σn̂+1.res,v,m,σn̂+1.time)

∨ isRsvd(σn̂+1.res,v,m,σn̂+1.time) ) ∧
ResMapCheck(σn̂+1.res,v,m)

Assume n̂+1 > n+1 and σn̂+1.time≤ m.expT .
Case distinction by λn̂:

– TCK(t̃): By the event’s guard it holds σn̂.time = t̃.
Two cases:
∗ σn̂.time≥ m.expT: In this case

σn̂+1.time = σn̂.time+1 > m.expT

hence, the premise is not satisfied, i.e. the claim
is true.

∗ σn̂.time < m.expT:
In this case it immediately holds σn̂.time≤m.expT
and we can apply IH and get:

( isMrkd(σn̂.res,v,m,σn̂.time)

∨ isRsvd(σn̂.res,v,m,σn̂.time) ) ∧
ResMapCheck(σn̂.res,v,m)

Since the event’s action does not change the
reservation maps, i.e. σn̂.res = σn̂+1.res, it follows
that

( isMrkd(σn̂+1.res,v,m,σn̂.time)

∨ isRsvd(σn̂+1.res,v,m,σn̂.time) ) ∧
ResMapCheck(σn̂+1.res,v,m)

By (9) of ResMapCheck(σn̂+1.res,v,m) and as-
sumption σn̂+1.time≤ m.expT it follows that

(9′) σn̂+1(v,src(m),m.id).vrs(m.idx).expT

=(9) m.expT ≥ σn̂+1.time
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i.e. isMrkd(σn̂+1.res,v,m,σn̂.time) and therefore
the claim.

– RST (ṽ, s̃, ˜id, ˜idx): The event’s actions do not change
time, i.e. σn̂+1.time = σn̂.time. Together with the
assumptions n̂+ 1 > n+ 1 and σn̂+1.time ≤ m.expT
we get

n̂ > n

σn̂.time≤ m.expT

and can apply IH and get:

(−) ( isMrkd(σn̂.res,v,m,σn̂.time)

∨ isRsvd(σn̂.res,v,m,σn̂.time) ) ∧
ResMapCheck(σn̂.res,v,m)

and applying σn̂+1.time = σn̂.time again gives us:

(+) ( isMrkd(σn̂.res,v,m,σn̂+1.time)

∨ isRsvd(σn̂.res,v,m,σn̂+1.time) ) ∧
ResMapCheck(σn̂.res,v,m)

Regarding the reservation map there are two cases:
∗ v = ṽ∧ src(m) = s̃∧m.id = ˜id∧ ˜idx = m.idx: The

event’s guard only deletes the corresponding ver-
sion of the reservation if holds that

σn̂.res(v,src(m),m.id).vrs(m.idx).expT < σn̂.time

By (9) in (+) ResMapCheck(σn̂.res,v,m) it holds:

(9) res(v,src(m),m.id).vrs(m.idx).expT = m.expT

and by assumption σn̂+1.time≤ m.expT it holds

m.expT ≥ σn̂+1.time = σn̂.time

i.e. a contradiction.
∗ Otherwise : The event’s actions do not affect the

version of the reservation corresponding m, i.e.

σn̂.res(v,src(m),m.id).vrs(m.idx)

= σn̂+1.res(v,src(m),m.id).vrs(m.idx)

and therefore the claim follows by (+).
– CRTR(m̃, ṽ, ĩ, t̃): As in RST it follows (+), hence in

particular

( isMrkd(σn̂.res,v,m,σn̂.time)

∨ isRsvd(σn̂.res,v,m,σn̂.time) ) ∧
ResMapCheck(σn̂.res,v,m)

The following cases:
∗ m̃≈m∧ m̃.ptr = m.ptr∧ ṽ = v: We can show that

isMrkd(σn̂+1.res,v, m̃,σn̂+1.time)

ResMapCheck(σn̂+1.res,v, m̃)

Together with m̃≈m and m̃.ptr = m.ptr it follows
that

isMrkd(σn̂+1.res,v,m,σn̂+1.time)

ResMapCheck(σn̂+1.res,v,m)

∗ (m̃ 6≈m∨m̃.ptr 6= m.ptr)∧ ṽ = v: m̃ 6≈m∨m̃.ptr 6=
m.ptr implies

(a) src(m) 6= src(m̃) ∨
(b) m.id 6= m̃.id ∨
(c) m.idx 6= m̃.idx ∨
(d) m.path 6= m̃.path ∨
(e) m.first 6= m̃.first ∨
(e) m.last 6= m̃.last ∨
(g) m.minBW 6= m̃.minBW ∨
(h) m.maxBW 6= m̃.maxBW ∨
(i) m.expT 6= m̃.expT ∨
( j) m.ptr 6= m̃.ptr

Two cases:
· (a)∨ (b)∨ (c): The event’s action do not affect

the version of the reservation corresponding to
m, i.e.

σn̂.res(v,src(m),m.id).vrs(m.idx)

= σn̂+1.res(v,src(m),m.id).vrs(m.idx)

and the claim follows with (+).
· Otherwise : I.e.

src(m) = src(m̃) ∧
m.id = m̃.id ∧
m.idx = m̃.idx

but at least one of the other cases α in
(d), . . . ,( j) does not hold.
By (+) holds

( isMrkd(σn̂.res,v,m,σn̂.time)

∨ isRsvd(σn̂.res,v,m,σn̂.time) ) ∧
ResMapCheck(σn̂.res,v,m)

hence

r = σn̂.res(v,src(m),m.id) ∧
¬(0) r 6=⊥ ∧
(1) r.path = m.path ∧
(2) r.ptr = m.ptr ∧
(3) r.first = m.first ∧
(4) r.last = m.last ∧
¬(5) r.vrs 6= /0
¬(6) r.vrs(m.idx) 6=⊥ ∧
(7) r.vrs(m.idx).minBW = m.minBW ∧
(8) r.vrs(m.idx).maxBW = m.maxBW ∧
(9) r.vrs(m.idx).expT = m.expT

But this is in contradiction to the event’s guard

ResMapCheck(σn̂.res,v, m̃)
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(using ṽ = v) and the case α that does not hold,
i.e.

σn̂.res(v,src(m),m.id)

= σn̂.res(v,src(m̃), m̃.id) ∧
σn̂.res(v,src(m),m.id).vrs(m.idx)

= σn̂.res(v,src(m̃), m̃.id).vrs(m̃.idx) ∧
σn̂.res(v,src(m),m.id).α = m.α ∧
σn̂.res(v,src(m̃), m̃.id).α = m̃.α ∧
m.α 6= m̃.α

Hence this guard is not satisfied and the event
could not happen.

∗ ṽ 6= v: The event’s actions do not affect version of
the reservation corresponding m, i.e.

σn̂.res(v,src(m),m.id).vrs(m.idx)

= σn̂+1.res(v,src(m),m.id).vrs(m.idx)

and therefore the claim follows by (+).
– CRTD(m̃, ṽ, ĩ, t̃): The event does not affect the global

time and the reservation map, hence the claim follows
by IH.

– FWD(m̃, m̃′, ṽ, ĩ, t̃): As in RST it follows (+), hence
in particular

( isMrkd(σn̂.res,v,m,σn̂.time)

∨ isRsvd(σn̂.res,v,m,σn̂.time) ) ∧
ResMapCheck(σn̂.res,v,m)

The following cases:
∗ m̃≈m∧ m̃.ptr = m.ptr∧ ṽ = v: We can show that

isMrkd(σn̂+1.res,v, m̃,σn̂+1.time)

ResMapCheck(σn̂+1.res,v, m̃)

Together with m̃≈m and m̃.ptr = m.ptr it follows
that

isMrkd(σn̂+1.res,v,m,σn̂+1.time)

ResMapCheck(σn̂+1.res,v,m)

∗ (m̃ 6≈m∨m̃.ptr 6= m.ptr)∧ ṽ = v: m̃ 6≈m∨m̃.ptr 6=
m.ptr implies

(a) src(m) 6= src(m̃) ∨
(b) m.id 6= m̃.id ∨
(c) m.idx 6= m̃.idx ∨
(d) m.path 6= m̃.path ∨
(e) m.first 6= m̃.first ∨
(e) m.last 6= m̃.last ∨
(g) m.minBW 6= m̃.minBW ∨
(h) m.maxBW 6= m̃.maxBW ∨
(i) m.expT 6= m̃.expT ∨
( j) m.ptr 6= m̃.ptr

Two cases:
· (a)∨ (b)∨ (c): The event’s action do not affect

the version of the reservation corresponding to
m, i.e.

σn̂.res(v,src(m),m.id).vrs(m.idx)

= σn̂+1.res(v,src(m),m.id).vrs(m.idx)

and the claim follows with (+).
· Otherwise : I.e.

src(m) = src(m̃) ∧
m.id = m̃.id ∧
m.idx = m̃.idx

but at least one of the other cases α in
(d), . . . ,( j) does not hold.
By (+) holds

( isMrkd(σn̂.res,v,m,σn̂.time)

∨ isRsvd(σn̂.res,v,m,σn̂.time) ) ∧
ResMapCheck(σn̂.res,v,m)

hence

r =σn̂.res(v,src(m),m.id) ∧
¬(0) r 6=⊥ ∧
(1) r.path = m.path ∧
(2) r.ptr = m.ptr ∧
(3) r.first = m.first ∧
(4) r.last = m.last ∧
¬(5) r.vrs 6= /0
¬(6) r.vrs(m.idx) 6=⊥ ∧
(7) r.vrs(m.idx).minBW = m.minBW ∧
(8) r.vrs(m.idx).maxBW = m.maxBW ∧
(9) r.vrs(m.idx).expT = m.expT

But this is in contradiction to the event’s guard

ResMapCheck(σn̂.res,v, m̃)

(using ṽ = v) and the case α that does not hold,
i.e.

σn̂.res(v,src(m),m.id).α = m.α∧
σn̂.res(v,src(m̃), m̃.id).α = m̃.α∧
m.α 6= m̃.α

∗ ṽ 6= v: The event’s actions do not affect version of
the reservation corresponding m, i.e.

σn̂.res(v,src(m),m.id).vrs(m.idx)

= σn̂+1.res(v,src(m),m.id).vrs(m.idx)

and therefore the claim follows by (+).
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– CMP(m̃, m̃′, ṽ, ĩ, t̃): As in FWD with the following
difference in case

m̃≈ m∧ m̃.ptr = m.ptr∧ ṽ = v

We can show that

isRsvd(σn̂+1.res,v, m̃,σn̂+1.time)

ResMapCheck(σn̂+1.res,v, m̃)

instead of

isMrkd(σn̂+1.res,v, m̃,σn̂+1.time)

ResMapCheck(σn̂+1.res,v, m̃)

– T RN(m̃, m̃′, ṽ, ĩ, t̃): As in CMP.
– UPT (m̃, m̃′, ṽ, ĩ, t̃): As in CMP.
– BWD(m̃, m̃′, ṽ, ĩ, t̃): As in CMP.
– FIN(m̃, m̃′, ṽ, ĩ, t̃):
– CLT (m̃, m̃′, ã, ĩ): As in CRTD.
– AT K(m̃, ṽ, ĩ): As in CRTD.
– RMV (m̃, m̃′, ṽ, ĩ, t̃): As in RST it follows (+), hence

in particular

( isMrkd(σn̂.res,v,m,σn̂+1.time)

∨ isRsvd(σn̂.res,v,m,σn̂+1.time) ) ∧
ResMapCheck(σn̂.res,v,m)

Two cases:
∗ m̃∼m∧ ṽ = v: The event’s action remove only sets

the field resBW of the version corresponding to
m̃ (and in this case m) to ⊥, but keeps the other
fields of σn̂.res the same. Hence it holds

isMrkd(σn̂.res,v,m,σn̂+1.time)

⇒ isMrkd(σn̂+1.res,v,m,σn̂+1.time)

isRsvd(σn̂.res,v,m,σn̂+1.time)

⇒ isMrkd(σn̂+1.res,v,m,σn̂+1.time)

ResMapCheck(σn̂.res,v,m)

⇒ ResMapCheck(σn̂+1.res,v,m)

and therefore the claim follows by (+).
∗ Otherwise : The event’s actions do not affect

version of the reservation corresponding m, i.e.

σn̂.res(v,src(m),m.id).vrs(m.idx)

= σn̂+1.res(v,src(m),m.id).vrs(m.idx)

and therefore the claim follows by (+).
– DST (m̃, m̃′, ṽ, ĩ, t̃): As in RMV.
– DRP(m̃, ṽ, ĩ, t̃): As in CRTD.

Existence The following existence lemma shows that to any
FIN-event at time t there was a BWD event before with
an equivalent message m̄ with the same accBW field at the
previous AS v̄ at time t̄.

Lemma 5 (FIN-BWD-inductive-honest).

∀k ∈ N
∀n ∈ N,m,m′ ∈MR,v ∈ H,e ∈ I, t ∈ N.

λn = FIN(m,m′,v,e, t)∧nodes(m)⊆ H∧
0≤ k < m.first ⇒
∃n̄ < n, m̄, m̄′ ∈MR, v̄ ∈ H, ē ∈ I, t̄ ∈ N.

λn̄ = BWD(m̄, m̄′, v̄, ē, t̄) ∧
m≈ m̄′ ∧ m̄′.ptr = k ∧m.accBW = m̄′.accBW

Proof. Induction on k.
• k = 0: Let n ∈ N , m,m′ ∈MR , v ∈ H, e ∈ I, t ∈ N with

λn =FIN(m,m′,v,e, t) and nodes(m)⊆H. (0≤ k<m.first
holds in this case) We can show that

∀n ∈ N,m,m′ ∈MR,v ∈ H,e ∈ I, t ∈ N.
λn = FIN(m,m′,v,e, t)∧nodes(m)⊆ H∧
0≤ k < m.first ⇒
∃! n̄ < n, m̄, m̄′ ∈MR, v̄ ∈ H, ē ∈ I, t̄ ∈ N.

λn̄ = BWD(m̄, m̄′, v̄, ē, t̄) ∧ m = m̄′

From m = m̄′, hence m ≈ m̄′. We can also show that
m.ptr = m̄′.ptr = 0, i.e. k = 0 = m̄′.ptr, and m.accBW =
m̄′.accBW.

• k→ k+1: By IH it holds

∀n ∈ N,m,m′ ∈MR,v ∈ H,e ∈ I, t ∈ N.
λn = FIN(m,m′,v,e, t)∧nodes(m)⊆ H∧
0≤ k < m.first ⇒
∃! n̆ < n, m̆, m̆′ ∈MR, v̆ ∈ H, ĕ ∈ I, t̆ ∈ N.

λn̆ = BWD(m̆, m̆′, v̆, ĕ, t̆) ∧
m≈ m̆′ ∧ m̆′.ptr = k ∧m.accBW = m̆′.accBW

We need to show:

∃! n̄ < n, m̄, m̄′ ∈MR, v̄ ∈ H, ē ∈ I, t̄ ∈ N.
λn̄ = BWD(m̄, m̄′, v̄, ē, t̄) ∧
m≈ m̄′ ∧ m̄′.ptr = k+1 ∧m.accBW = m̄′.accBW

Assume n ∈ N , m,m′ ∈MR , v ∈ H, e ∈ I, t ∈ N with

λn = FIN(m,m′,v,e, t)

nodes(m)⊆ H

0≤ k+1 < m.first.

From 0≤ k+1 < m.first it follows that 0≤ k < m.first.
Hence, by applying IH to k we get:

(∗) ∃n̆ < n, m̆, m̆′ ∈MR, v̆ ∈ H, ĕ ∈ I, t̆ ∈ N.
λn̆ = BWD(m̆, m̆′, v̆, ĕ, t̆) ∧
m≈ m̆′ ∧ m̆′.ptr = k ∧m.accBW = m̆′.accBW

and therefore we have

nodes(m̆) = nodes(m)⊆ H

λn̆ = BWD(m̆, m̆′, v̆, ĕ, t̆)
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We then show that

∃n̂ < n̆, m̂, m̂′ ∈MR, v̂ ∈ H, ê ∈ I, t̂ ∈ N.
λn̂ = BWD(v̂, ê, m̂, m̂′, t̂) ∧
m̆ = m̂′

Setting n̄ := n̂ (i.e. n̄= n̂< n̆< n), m̄ := m̂, m̄′ := m̂, v̄ := v̂,
ē := ê, t̄ := t̂ we get:

∃n̄ < n, m̄, m̄′ ∈MR, v̄ ∈ H, ē ∈ I, t̄ ∈ N.
λn̄ = BWD(m̄, m̄′, v̄, ē, t̄)

By m̄′ := m̂′, m̆ = m̂′ , m̆≈ m̆′, and m≈ m̆′ we get:

m≈ m̆′ ≈ m̆ = m̂′ = m̄′

By m̄′ := m̂′, m̆ = m̂′, m̆.ptr = m̆′.ptr+1 (by BWD event),
and m̆′.ptr = k (by (∗)) we get:

m̄′.ptr = m̂′.ptr = m̆.ptr = m̆′.ptr+1 = k+1

By m̄′ := m̂′, m̆ = m̂′ , m̆.accBW = m̆′.accBW (by BWD
event), and m.accBW = m̆′.accBW (by (∗)) we get:

m.accBW = m̆′.accBW

= m̆.accBW

= m̂′.accBW = m̄′.accBW

Together we get:

m≈ m̄′ ∧ m̄′.ptr = k+1 ∧m.accBW = m̄′.accBW.

Uniqueness Each message processing event with message
m a creates a new version of the reservation corresponding
to m. Using uniqueness lemmata like the following, we can
inductively show that this can only happen at most once,
since otherwise there is a contradiction with Lemma 4 given
before. We provide as representative uniqueness lemma the the
following one for event FIN.

Lemma 6 (FIN-uniqueness).

∀n1,n2 ∈ N,m1,m′1,m2,m′2 ∈MR,v1,v2 ∈V,e1,e2 ∈ I, t1, t2 ∈ N.
λn1 = FIN(m1,m′1,v1,e1, t1) ∧
λn2 = FIN(m2,m′2,v2,e2, t2) ∧
m1 ∼ m2 ∧ v1 = v2 ∧
nodes(m1)⊆ H ∧
n1 < n2 ∧ σn2 .time≤ m1.expT

⇒ n1 = n2

Proof. By m1 ∼m2, m1.ptr = m2.ptr, and m1.path = m2.path
it follows that v := v1 = v2 and e := e1 = e2. Together with
assumption nodes(m1)⊆ H we can establish that

(1) ∃n̄1 < n1, m̄1, m̄′1 ∈MR, v̄1 ∈ H, ē1 ∈ I, t̄1 ∈ N.
λn̄1 = BWD(m̄1, m̄′1, v̄1, ē1, t̄1)∧
m1 = m̄′1 ∧
∀n̂1. n̄1 < n̂1 ≤ n1⇒ m1 ∈ σn̂1 .buf(v,e)

and similarly with m1.path = m2.path and nodes(m2) ⊆ H
follows (2) for n2.

(2) ∃n̄2 < n2, m̄2, m̄′2 ∈MR, v̄2 ∈ H, ē2 ∈ I, t̄2 ∈ N.
λn̄2 = BWD(m̄2, m̄′2, v̄2, ē2, t̄2)∧
m2 = m̄′2 ∧
∀n̂2. n̄2 < n̂2 ≤ n2⇒ m2 ∈ σn̂2 .buf(v,e)

By m1 ∼ m2 and m1 = m̄′1 and m̄′1 ≈ m̄1 (and analogously for
m̄2), it follows that m̄1 ∼ m̄2 Furthermore it follows:

nodes(m̄1) =
BWD(m̄1,m̄′1,...) nodes(m̄′1)

=m1=m̄′1 nodes(m1)⊆ H

and

m̄1.ptr =BWD(m̄1,m̄′1,...) m̄′1.ptr−1

=m1=m̄′1 m1.ptr−1
=m1.ptr=m2.ptr m2.ptr−1

=m2=m̄′2 m̄′2.ptr−1 =BWD(m̄2,m̄′2,...) m̄2.ptr

and

m̄1.path =BWD(m̄1,m̄′1,...) m̄′1.path

=m1=m̄′1 m1.path

=m1.path=m2.path m2.path

=m2=m̄′2 m̄′2.path =BWD(m̄2,m̄′2,...) m̄2.path

Three cases:
• n̄1 < n̄2. Then it holds:

σn̄2 .time≤n̄2<n2 σn2 .time

≤σn2 .time≤m1.expT m1.expT

=m1=m̄′1 m̄′1.expT

=BWD(m̄1,m̄′1,...) m̄1.expT

From this we can show that n̄ := n̄1 = n̄2.
• n̄2 < n̄1: Then it holds:

σn̄1 .time≤n̄1<n1 σn1 .time

≤n1<n2 σn2 .time

≤σn2 .time≤m2.expT m2.expT

=m2=m̄′2 m̄′2.expT

=BWD(m̄2,m̄′2,...) m̄2.expT

With this we can show that

λn̄1 = BWD(m̄1, m̄′1, v̄1, ē1, t̄1)∧
λn̄2 = BWD(m̄2, m̄′2, v̄2, ē2, t̄2)∧
m̄1 ∼ m̄2 ∧ m̄1.ptr = m̄2.ptr ∧ m̄1.path = m̄2.path ∧
nodes(m̄2)⊆ H ∧
n̄2 < n̄1 ∧ σn̄1 .time≤ m̄2.expT

it follows n̄ := n̄1 = n̄2.
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• n̄1 = n̄2: Hence, n̄ := n̄1 = n̄2 holds immediately.
Since π is a function and λn̄1 = λn̄2 and therefore m̄ := m̄1 = m̄2,
m̄′ := m̄′1 = m̄′2, v̄ := v̄1 = v̄2, ē := ē1 = ē2, and t̄ := t̄1 = t̄2. Set
m := m1 = m̄′1 = m̄′2 = m2, n̄ := n̄1 = n̄2 in (2), then we get:

(2′) ∀n̂. n̄ < n̂≤ n2⇒ m ∈ σn̂.buf(v,e)

By assumption λn1 = FIN(m1,m′1,v1,e1, t1) and m := m1 we
get m 6∈ σn1+1.buf(v,e).

By n1 < n2 we get ñ < n1 +1≤ n2. By setting n̂ := n1 +1
in (2′) we get m ∈ σn1+1.buf(v,e), i.e. a contradiction.

Using existence lemmata we can show inductively that
there was an UPT even for any AS on sgmt(m) and using
corresponding uniqueness lemmata we can show that there was
exactly one.

Lemma 7 (FIN-UPT-inductive-honest).

∀k ∈ N
∀n ∈ N,m,m′ ∈MR,v ∈ H,e ∈ I, t ∈ N.

λn = FIN(m,m′,v,e, t)∧nodes(m)⊆ H∧
m.first ≤ k < m.last ⇒
∃! n̄ < n, m̄, m̄′ ∈MR, v̄ ∈ H, ē ∈ I, t̄ ∈ N.

λn̄ =UPT (m̄, m̄′, v̄, ē, t̄) ∧
m≈ m̄′ ∧ m.accBW = m̄′.accBW

Proof. Induction on k.
• k = m.first: Let n ∈ N , m,m′ ∈MR , v ∈ H, e ∈ I, t ∈ N

with λn = FIN(m,m′,v,e, t) and nodes(m)⊆H (m.first≤
k < m.last holds in this case). We can show that

(∗) ∃! ñ < n, m̃, m̄′ ∈MR, ṽ ∈ H, ẽ ∈ I, t̃ ∈ N.
λñ = BWD(m̃, m̃′, ṽ, ẽ, t̃) ∧
m≈ m̃′ ∧ m.accBW = m̃′.accBW

Given

λñ = BWD(m̃, m̃′, ṽ, ẽ, t̃)

nodes(m̃) = nodes(m)⊆ H

we can then show that

∃n̄ < ñ, m̄, m̄′ ∈MR, v̄ ∈ H, ē ∈ I, t̄ ∈ N.
λn̄ =UPT (v̄, ē, m̄, m̄′, t̄) ∧
m̃ = m̄′

By m̃ = m̄′, m̃≈ m̃′ (by BWD event) and m≈ m̃′ (by (∗))
it follows

m≈ m̃′ ≈ m̃ = m̄′

By it follows:

m̄′.ptr = k

By m̃ = m̄′, m̃.accBW = m̃′.accBW (by BWD event) and
m.accBW ≈ m̃′.accBW (by (∗)) it follows

m.accBW = m̃′.accBW = m̃.accBW = m̄′.accBW

• k→ k+1: By IH it holds

∀n ∈ N,m,m′ ∈MR,v ∈ H,e ∈ I, t ∈ N.
λn = FIN(m,m′,v,e, t)∧nodes(m)⊆ H∧
m.first ≤ k < m.last ⇒
∃! n̆ < n, m̆, m̆′ ∈MR, v̆ ∈ H, ĕ ∈ I, t̆ ∈ N.

λn̆ =UPT (m̆, m̆′, v̆, ĕ, t̆) ∧
m≈ m̆′ ∧ m̆′.ptr = k ∧m.accBW = m̆′.accBW

We need to show:

∃! n̄ < n, m̄, m̄′ ∈MR, v̄ ∈ H, ē ∈ I, t̄ ∈ N.
λn̄ =UPT (m̄, m̄′, v̄, ē, t̄) ∧
m≈ m̄′ ∧ m̄′.ptr = k+1 ∧m.accBW = m̄′.accBW

Assume n ∈ N , m,m′ ∈MR , v ∈ H, e ∈ I, t ∈ N with

λn = FIN(m,m′,v,e, t)

nodes(m)⊆ H

m.first ≤ k+1 < m.last.

From m.first ≤ k + 1 < m.last it follows that 0 ≤ k <
m.last.
Hence, by applying IH to k we get:

(∗) ∃n̆ < n, m̆, m̆′ ∈MR, v̆ ∈ H, ĕ ∈ I, t̆ ∈ N.
λn̆ =UPT (m̆, m̆′, v̆, ĕ, t̆) ∧
m≈ m̆′ ∧ m̆′.ptr = k ∧m.accBW = m̆′.accBW

and therefore we have

nodes(m̆) = nodes(m)⊆ H

λn̆ =UPT (m̆, m̆′, v̆, ĕ, t̆).

It then follows that

∃n̂ < n̆, m̂, m̂′ ∈MR, v̂ ∈ H, ê ∈ I, t̂ ∈ N.
λn̂ =UPT (v̂, ê, m̂, m̂′, t̂) ∧
m̆ = m̂′

Setting n̄ := n̂ (i.e. n̄= n̂< n̆< n), m̄ := m̂, m̄′ := m̂, v̄ := v̂,
ē := ê, t̄ := t̂ we get:

∃n̄ < n, m̄, m̄′ ∈MR, v̄ ∈ H, ē ∈ I, t̄ ∈ N.
λn̄ = BWD(m̄, m̄′, v̄, ē, t̄)

By m̄′ := m̂′, m̆ = m̂′ , m̆≈ m̆′, and m≈ m̆′ we get:

m≈ m̆′ ≈ m̆ = m̂′ = m̄′

By m̄′ := m̂′, m̆ = m̂′, m̆.ptr = m̆′.ptr+1 (by UPT event),
and m̆′.ptr = k (by (∗)) we get:

m̄′.ptr = m̂′.ptr = m̆.ptr = m̆′.ptr+1 = k+1

By m̄′ := m̂′, m̆ = m̂′ , m̆.accBW = m̆′.accBW (by UPT
event), and m.accBW = m̆′.accBW (by (∗)) we get:

m.accBW = m̆′.accBW

= m̆.accBW

= m̂′.accBW = m̄′.accBW
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Together we get:

m≈ m̄′ ∧ m̄′.ptr = k+1 ∧m.accBW = m̄′.accBW

We can also show uniqueness, which establishes the lemma.

Attacker Knowledge Given a reservation message m contain-
ing only honest ASes on its path, i.e. nodes(m)⊆ H. Then it
holds that this message can neither be contained in the attacker
knowledge nor in any buffer of an attacker

Lemma 8 (Attacker-knowledge).

∀m ∈MR.

nodes(m)⊆ H ⇒
∀n ∈ N,a ∈M, i ∈ I. m 6∈ σn.kwl ∧ m 6∈ σn.bu f (a, i).

Proof. We show by induction on n ∈ N

∀n ∈ N,a ∈M, i ∈ I,m ∈MR.

nodes(m)⊆ H ⇒
m 6∈ σn.kwl ∧ m 6∈ σn.bu f (a, i)

i.e. the induction hypothesis IH for σn is given by

∀a ∈M, i ∈ I,m ∈MR.

(∗) nodes(m)⊆ H ⇒
(1) m 6∈ σn.kwl ∧
(2) m 6∈ σn.bu f (a, i)

• n = 0: Since by definition of the initial state for any
m ∈ σ0.kwl it holds that src(m) ∈ A this leads to a
contradictions with the assumption nodes(m) ⊆ H, i.e.
(1) holds. By the definition of the initial state that
∀v ∈ V, i ∈ I. σ0.bu f (v, i) = /0, the statement (2) holds
trivially.

• n→ n+1: By case distinction on λn,
– CLT (m̂, m̂′, â, î, t̂): Hence, m̂ ≈ m̂′, m̂ ∈ σn.bu f (â, î),

and â ∈M
1) Assume m ∈ σn+1.kwl = σn.kwl∪{m̂′}. By case

distinction:
∗ m ∈ σn.kwl\{m̂′}: Contradiction to IH (1).
∗ m = m̂′: By guard of CLT it holds that m̂ ∈

σn.bu f (â, î) and m̂ ≈ m̂′. By m = m̂′ and
(∗) follows, that nodes(m̂) = nodes(m)⊆= H,
which is in contradiction to IH (2) applied to
m̂

2) Assume ∃a ∈M, i ∈ I. m ∈ σn+1.bu f (a, i). Due to
the action of CLT it holds that σn+1.bu f (a, i) =
σn.bu f (a, i). This is in contradiction to IH (2)
applied to m.

– RES(m̂, m̂′, v̂, î, t̂): Hence,

(+) σn+1.buf =

σn.buf
(
(v̂, î) 7→ σn.buf (v̂, î)\{m̂}
(v̂′, î′) 7→ σn.buf (v̂′, î′)∪{m̂′}

)

with v̂′ = m̂′.path[m̂′.ptr].as.

1) Assume m ∈ σn+1.kwl = σn.kwl. By the action of
RES, it holds that m ∈ σn+1.kwl = σn.kwl, which
is in contradiction to IH (1) applied to m.

2) Assume ∃a∈M, i∈ I. m∈ σn+1.bu f (a, i) By case
distinction due to (+):

∗ m ∈ σn.bu f (v̂, î) \ {m̂′}: Contradiction to IH
(1).

∗ m = m̂′: By this it follows that a = v̂′, hence,
a ∈ nodes(m̂′). Together with m̂ ≈ m̂′, hence
nodes(m̂) = nodes(m̂′), and (∗) it follows, that

a = v̂′ ∈ nodes(m̂) = nodes(m)⊆= H,

which is in contradiction to IH (2) applied to
m̂

– CRTR(m̂, v̂, î, t̂): Due to the action of CRTR, it holds

(+) σn+1.bu f = σn.bu f
(
(v̂, î) 7→ σn.bu f (v̂, î)∪{m̂}

)
1) Assume m ∈ σn+1.kwl. By the action of CRTR,

it holds that m ∈ σn+1.kwl = σn.kwl, which is in
contradiction to IH (1) applied to m.

2) Assume ∃a∈M, i∈ I. m∈σn+1.bu f (a, i). By case
distinction on (+) it follows:

∗ m ∈ σn.bu f (v̂, î)\{m̂}: By assumption (v̂, î) =
(a, i), which contradicts IH (2) for m.

∗ m = m̂: By this it follows that src(m) = src(m̂).
By the guards of CRTR it follows that src(m̂) =
v̂ and by (+) and assumption it follows that
v̂ = a, hence,

a = src(m̂) = src(m) ∈ nodes(m)⊆ H,

i.e. a contradiction to (∗) for m.

– AT K(m̂, v̂, î, t̂): Due to the action of AT K, it holds

(+) σn+1.bu f = σn.bu f
(
(v̂, î) 7→ σn.bu f (v̂, î)∪{m̂}

)
1) Assume m ∈ σn+1.kwl. By the action of AT K, it

holds that m ∈ σn+1.kwl = σn.kwl, which contra-
dicts IH (1) applied to m.

2) Assume ∃a∈M, i∈ I. m∈ σn+1.buf(a, i). By case
distinction on (+) it follows:

∗ m ∈ σn.buf(v̂, î)\{m̂}: By assumption (v̂, î) =
(a, i), which contradicts IH (2) for m.

∗ m= m̂: By this and the guard of AT K it follows
that m = m̂ ∈ σn.kwl, which is in contradiction
to IH (1) for m.

– other : Both fields bu f and kwl stay unchanged.

3) Stability Theorem:
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Theorem 3 (Stability Theorem). If there are constant demands
D between t0 and t1, then after time t0 + stabT all reservations
allocate the ideal bandwidth until t1, i.e.,

∃ñ ∈ N. σñ.time = t0 + stabT ∧
∀m ∈ rng(D) ,r ∈ Res,n > ñ,v ∈ sgmt(m)∩H.

σn.time ∈ ]t0 + stabT; t1] ∧ r = σn.resv(src(m),m.id)

⇒ allocBW (r,σn.time) = minx∈sgmt(m){ideal(m,σñ.resx)}

Proof. We first show that after maxT the requested demands
in all reservation maps correspond to D,

∀n ∈ N.σn.time ∈ ]t0 +maxT; t1]. σn ` D

From this follows that for any honest AS v and reservation
r corresponding to a reservation message m ∈ rng(D) the
function demBW remains constant and evaluates to m.maxBW

∀n ∈ N,v ∈ H,m ∈ rng(D) ,r ∈ Res.

σn.time ∈ ]t0 +maxT; t1]∧ r = σn.resv(src(m),m.id)

⇒ demBW(r, t) = m.maxBW.

Since the ideal bandwidth computation on the first AS of a
path only depends on the value of the function demBWv and
not on the ideal bandwidth computations executed at previous
ASes on the path, it remains constant as well. We can show
by induction on the length of the message’s path that the ideal
computations for all ASes on the path remain constant after
time t0 + stabT .

Using this, we show that the result of the avail computation
is greater than that of the ideal computation for every renewal

∀n ∈ N,evt ∈ {CMP,UPT,T RN}.
∀v ∈ H,m,m′ ∈MR, i ∈ I, t ∈ N
σn.time ∈ ]t0 + stabT; t1]∧λn = evt(m,m′,v, i, t)∧m ` D

⇒ ideal(m,σn.resv)≥ avail(m,σn.resv).

Hence, together with the definition of finBW

finBW(m) = min{m.maxBW,min(m.accBW)}

it follows that

allocBW (r,σn.time) = minx∈sgmt(m){ideal(m,σñ.resx)}

as required.

4) Local Properties of N-Tube’s Computation: For a valid
reservation message m, N-Tube’s bandwidth allocation compu-
tation has the following four local properties: positivity, lower
ideal bound, bounded-tube proportionality, and per-request
proportionality. We define and prove these properties below.
These properties hold at each AS, and are later used to prove
the global properties (G1–G5).

As illustrated in Section III, a source’s aggregated demands
at a given link may exceed the link’s capacity, even if none
of its individual requests does. We now formally define the
notion of a source having excessive demands on a link.

Definition (Excessive Demands). We say an AS s has excessive
demands on the egress link e, if egDem(s,e) > δcap(x,e).

Otherwise, we say s has moderate demands on e. We call an
egress link e congested if

∑s′∈V egDem(s′,e)> δ · cap(x,e).

Analogous definitions apply to ingress links.

Positivity: The functions avail and ideal always compute
strictly positive values.

Lemma 9 (Positivity). For a valid request with (∗) m.minBW =
0 and (+) nodes(m)⊆ H a positive amount of bandwidth is
always allocated:

∀event ∈ {CMP,T RN,UPT}.
∀n ∈ N,m,m′ ∈MR,v ∈ H, i ∈ I, t ∈ N.
λn = event(m,m′,v, i, t)⇒ finBW(m,resMv)> 0.

Proof. W.l.o.g. we show the claim for the event UPT. For
the events TRN and CMP the proof works analogously. By
induction on n:
• n = 0 : Since in a valid execution all buffers are empty

in σ0.buf and therefore no message processing event can
happen, the premise λn =UPT (m,m′,v, i, t) is not satisfied
and the claim holds trivially.

• n > 0 : By IH it holds

∀n′ < n,m,m′ ∈MR,v ∈ H, i ∈ I, t ∈ N.
λn′ =UPT (m,m′,v, i, t)⇒ finBW(m,resMv)> 0.

Given AS v, message m with (i,v,e) = cur(m). By the
event’s guard it holds that m is valid, in particular, that

(1) m.maxBW > 0,
(2) cap(v,e)> 0,
(3) cap(v, i)> 0.

Furthermore, by the event’s action it holds that

save(v ∈V,resM ∈ ResMap,m′ ∈MR) =

let
L i,v,e M = cur(m)

finBW = min(m′.accBW)

vrs′ = L minBW := m′.minBW;
maxBW := m′.maxBW;

idBW := min
(
δcap(v, i),m′.maxBW,preIdBW(m′)

)
;

resBW := finBW;
expT := m′.expT M

vrsM′ = resM(v,src(m′),m′.id).vrs
(
m′.idx 7→ vrs′

)
res′ = L path := m′.path;

ptr := m′.ptr;
first := m′.first;
last := m′.last;
vrs := vrsM′ M

in
resM

(
(v,src(m′),m′.id) 7→ res′

)
.
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and the event’s guards onPth, i.e., m.first < m.ptr < m.last
and ResMapCheck it follows for the reservation corre-
sponding to m, with
r = σn+1.res(v,src(m),m.id), that

(4) r.first < r.ptr < r.last

(5) r.vrs(m.idx).expT > t

By the function compute

compute(m ∈MR,res ∈ ResMap,δ ∈]0;1[, t ∈ N) =
let
newBW = L avBW := avail(m,res,δ , t);

idBW := ideal(m,res,δ , t) M
in
mL accBW := newBW # m.accBW M.

it follows that

m′.accBW[m′.ptr] =

L avBW := avail(m,res,δ , t); idBW := ideal(m,res,δ , t) M

Since m′.maxBW = m.maxBW and (1) it suffices to show
that both avail and ideal return a positive values.

– avail : By definition

avail(m,resM,δ , t) =

let
L i,v,e M = cur(m)

resM′ = resM ((v,src(m),m.id) 7→ ⊥)
resM′v = filter(resM′,v)

in

δ ·
(

cap(v,e)−∑r∈rng(resM′v):
resEg(r)=e

allocBW(r.vrs, t)
)

By Lemma 10 it follows that

cap(v,e)> ∑r∈rng(resM′v):
resEg(r)=e

allocBW(r.vrs, t)

Note, that in Lemma 10 the removal of all versions
of reservation (v,src(m),m.id)

resM′ = resM ((v,src(m),m.id) 7→ ⊥)

is not assumed. By δ > 0 it follows that
avail(m,resM,δ , t)> 0.

– ideal : By definition it suffices to show that each of
the three factors reqRatio, linkRatio, and tubeRatio
is positive. Since their denominators are sums of non-
negative summands it is sufficient to show that each
nominator is positive. We show this only for the factor
reqRatio, since the other cases can be shown with
analogous arguments.

The nominator of reqRatio (analogously for
reqRatiostart)

reqRatiotransit(v,s, id, i,resM, t) =
adjIdDem(v,resM(v,s, id),resM, t)

transitDem(v, i,resM, t)

is given by

adjIdDem(v,r,resM, t) =

egScalFctr(v,s,e,resM, t)·
min{cap(v, i),cap(v,e), idBW(r.vrs, t)}

which by (2) and (3) is positive if egScalFctr and
idBW are positive.
∗ egScalFctr : By the definition of egScalFctr

egScalFctr(v,s,e,resM, t) =
min(cap(v,e),egDem(v,s,e,resM, t))

egDem(v,s,e,resM, t)

and assumption (2) it suffices to show that
egDem(v,s,e,resM, t) is positive. By the definition
of egDem

egDem(v,s,e,resM, t) =

∑r′∈rng(resM):
resSr(r′)=s
resEg(r′)=e

reqDem(v,r′,resIn(r′),e, t).

it suffices to show that reqDem(v,r, i,e, t) is posi-
tive. By the definition of reqDem

reqDem(v,r, i,e, t) =

min{cap(v, i),cap(v,e),demBW(r.vrs, t)}.

and (2) and (3) it suffices to show that
demBW(r.vrs, t) is positive. By definition of
demBW

demBW(vrsM, t) =

max{vrs.maxBW | vrs ∈ rng(vrsM) ∧
vrs.minBW ≤ vrs.resBW ∧ vrs.expT ≥ t}

it suffices to show that

(a) r.vrs(m′.idx).maxBW > 0
(b) r.vrs(m′.idx).minBW ≤ r.vrs(m′.idx).resBW

(c) r.vrs(m′.idx).expT ≥ t

The fact (a) follows from (1).
The fact (b) follows by assumption (∗) and that

r.vrs(m′.idx).minBW = m′.minBW = m.minBW = 0

The fact (c) follows by (5), n′ < n, and Lemma 3.
∗ idBW : By the definition of function idBW

idBW(vrsM, t) =

max{vrs.idBW | vrs ∈ rng(vrsM) ∧
vrs.minBW ≤ vrs.resBW ∧ vrs.expT ≥ t}.
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it suffices to show that

(a) r.vrs(m′.idx).idBW > 0
(b) r.vrs(m′.idx).minBW ≤ r.vrs(m′.idx).resBW

(c) r.vrs(m′.idx).expT ≥ t

The fact (a) follows by the definition of the
function save, in particular by

r.vrs(m′.idx).idBW := m′.accBW.[m′.ptr−1].idBW,

We can show using assumption (+) that there is
a n′ < n such that

λn′ =UPT (m̃, m̃′, ṽ, ĩ, t̃)

and therefore

m′.accBW.[m′.ptr−1].idBW = ideal(m̃′,σn′ .res,δ , t̃)

By IH it follows that

finBW(m̃,resMṽ)> 0

and therefore in particular

ideal(m̃′,σn′ .res,δ , t̃)> 0

The facts (b) and (c) follow analogously to the
case above.

Observe that all three factors contain their nominator
as a summand in the denominator. Since all the
denominators’ summands are non-negative, it follows
trivially that all three factors are less or equal than 1
and therefore

ideal(m,resM,δ , t)≤ δ · cap(v,e).

Lemma 10 (Capacity-constraint-invariant).

∀n ∈ N,s,v ∈ H,e ∈ I, id ∈ N, t ∈ N.
resM′v = filter (σn.res(v,s, id),v) ∧ cap(v,e)> 0
⇒ cap(v,e)> ∑r∈rng(resM′v):

resEg(r)=e

allocBW(r.vrs, t)

Proof. By induction on n.
• n = 0 : The inequality holds trivially since in the initial

state σ0.res = /0, hence allocBW(r.vrs, t) = 0 for any
r ∈ rng(resM′v). By assumption cap(v,e) > 0 the claim
follows.

• n→ n+1 : Assume s,v ∈ H,e ∈ I, id ∈ N, t ∈ N with

resM′v = filter (σn(v,s, id).res,v)∧ cap(v,e)> 0

By IH

∀s,v ∈ H,e ∈ I, id ∈ N, t ∈ N.
resM′v = filter (σn(v,s, id).res,v)∧ cap(v,e)> 0
⇒ cap(v,e)> ∑r∈rng(resM′v):

resEg(r)=e

allocBW(r.vrs, t)

By case distinction on λn. The relevant events are the
following:

– FWD(m̃, m̃′, ṽ, ĩ, t̃): By the event’s guard onWay(m),
it follows that the reservation that gets updated is
filtered out by filter

filter(resM,v) =

λ (s′, id′).

let r = resM(v,s′, id′)

in
(
if r.first ≤ r.ptr ≤ r.last then resM(v,s′, id′) else ⊥

)
Hence, allocBW(r.vrs, t) stays the same the claim
follows by IH.

– CMP(m̃, m̃′, ṽ, ĩ, t̃) : The only relevant case is if ṽ = v.
Then by the event’s action

save(v ∈V,resM ∈ ResMap,m′ ∈MR) =

let
finBW = min(m′.maxBW,min(m′.accBW))

vrs′ = L minBW := m′.minBW;
maxBW := m′.maxBW;
idBW := m′.accBW.[m′.ptr−1].idBW;
resBW := finBW;
expT := m′.expT M

vrsM′ = resM(v,src(m′),m′.id).vrs
(
m′.idx 7→ vrs′

)
res′ = L path := m′.path;

ptr := m′.ptr;
first := m′.first;
last := m′.last;
vrs := vrsM′ M

in
resM

(
(v,src(m′),m′.id) 7→ res′

)
.

and the event’s guards onPth, i.e., m̃.first <
m̃.ptr < m̃.last and ResMapCheck it follows
for the reservation corresponding to m̃, with
r = σn+1.res(v,src(m̃), m̃.id), that

(4) r.first < r.ptr < r.last

(5) r.vrs(m̃.idx).expT > t

By IH it holds that

resMv = filter (σn(v,s, id).res,v)∧ cap(v,e)> 0
⇒ cap(v,e)> ∑r̃∈rng(resMv):

resEg(r̃)=e
allocBW(r̃.vrs, t)

We need to show that

resM′v = filter (σn+1(v,s, id).res,v)∧ cap(v,e)> 0
⇒ cap(v,e)> ∑r̃∈rng(resM′v):

resEg(r̃)=e

allocBW(r̃.vrs, t)
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The only reservation that changed from σn to σn+1
is r to r′, hence it holds (a)

∑r̃∈rng(resM′v):
resEg(r̃)=e

allocBW(r̃.vrs, t)

= ∑ r̃∈rng(resM′v):
r̃ 6=r′resEg(r̃)=e

allocBW(r̃.vrs, t)+allocBW(r′.vrs, t̃)

= ∑ r̃∈rng(resMv):
r̃ 6=rresEg(r̃)=e

allocBW(r̃.vrs, t)+allocBW(r′.vrs, t̃)

Furthermore, it holds that

(b) r′.vrs(m̃.idx).resBW = min
(
m̃′.maxBW,min(m̃′.accBW)

)
and for all other indices idx 6= m̃.idx it holds that

(c) r′.vrs(m̃.idx).resBW = r.vrs(m̃.idx).resBW

There are two cases:

∗ r′.vrs(m̃.idx).resBW ≤ allocBW(r.vrs, t̃) : From
this together with (b) and (c) it follows

(d) allocBW(r.vrs, t̃) = allocBW(r′.vrs, t̃).

From this it follows by (c) and IH

∑r̃∈rng(resM′v):
resEg(r̃)=e

allocBW(r̃.vrs, t)

=(c)
∑ r̃∈rng(resMv):

r̃ 6=r∧resEg(r̃)=e
allocBW(r̃.vrs, t)+allocBW(r′.vrs, t̃)

=(d)
∑ r̃∈rng(resMv):

r̃ 6=r∧resEg(r̃)=e
allocBW(r̃.vrs, t)+allocBW(r.vrs, t̃)

= ∑r̃∈rng(resMv):
resEg(r̃)=e

allocBW(r̃.vrs, t)

<IH cap(v,e)

and therefore the claim.
∗ r′.vrs(m̃.idx).resBW > allocBW(r.vrs, t̃) : In this

case by (b), (c), and the definition of allocBW
it follows

allocBW(r′.vrs, t̃) = r′.vrs(m̃.idx).resBW

and together with the definition of finBW it follows

r′.vrs(m̃.idx).resBW

:= min(m̃′.maxBW,min(m̃′.accBW))

≤ m̃′.accBW[m̃′.ptr].avBW

= avail(m̃,resMv,δ , t̃)

hence, altogether it holds

(e) allocBW(r′.vrs, t̃)≤ avail(m̃,resMv,δ , t̃)

By the definition of avail

avail(m,resM,δ , t) =

let
L i,v,e M = cur(m)

resM′ = resM ((v,src(m),m.id) 7→ ⊥)
resM′v = filter(resM′,v)

in

δ ·
(

cap(v,e)−∑r∈rng(resM′v):
resEg(r)=e

allocBW(r.vrs, t)
)

Applying this to (c) and

∑r̃∈rng(resM′v):
resEg(r̃)=e

allocBW(r̃.vrs, t)

=(c)
∑ r̃∈rng(resMv):

r̃ 6=rresEg(r̃)=e
allocBW(r̃.vrs, t)+allocBW(r′.vrs, t̃)

=(e)
∑ r̃∈rng(resMv):

r̃ 6=r∧resEg(r̃)=e
allocBW(r̃.vrs, t)+

avail(m̃,resMv,δ , t̃)

=( f )
∑ r̃∈rng(resMv):

r̃ 6=r∧resEg(r̃)=e
allocBW(r̃.vrs, t)+

δ

(
cap(v,e)−∑ r̃∈rng(resMv):

r̃ 6=r∧resEg(r̃)=e
allocBW(r̃.vrs, t)

)
= δcap(v,e)+(1−δ )∑ r̃∈rng(resMv):

r̃ 6=r∧resEg(r̃)=e
allocBW(r̃.vrs, t)

≤ δcap(v,e)+(1−δ )∑r̃∈rng(resMv):
resEg(r̃)=e

allocBW(r̃.vrs, t)

<IH
δcap(v,e)+(1−δ )cap(v,e) = cap(v,e)

and the claim follows.

– T RN(m̃, m̃′, ṽ, ĩ, t̃) : Analogous to CMP.
– UPT (m̃, m̃′, ṽ, ĩ, t̃) : The only relevant case is if ṽ = v.

Then by the event’s guard isRsvd(σn.res, ṽ, m̃, t̃) it
follows

(11) r.vrs(m̃.idx).resBW ≥min(m̃.accBW)

Then by the event’s action it follows for the updated
reservation r′ = σn+1.res(v,src(m̃), m̃.id) that

r′.vrs(m̃′.idx).resBW := min(m̃′.maxBW,min(m̃′.accBW))

and therefore

r′.vrs(m̃′.idx).resBW ≤ r.vrs(m̃′.idx).resBW

From this and the fact that the version with index
(m̃′.idx is the only entry changed in the reservation
map it follows

(g) allocBW(r′.vrs, t̃)≤ allocBW(r.vrs, t̃)
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From this together with the IV it follows as in event
CMP that

∑r̃∈rng(resM′v):
resEg(r̃)=e

allocBW(r̃.vrs, t)

=(c)
∑ r̃∈rng(resMv):

r̃ 6=r∧resEg(r̃)=e
allocBW(r̃.vrs, t)+allocBW(r′.vrs, t̃)

≤(g)
∑ r̃∈rng(resMv):

r̃ 6=r∧resEg(r̃)=e
allocBW(r̃.vrs, t)+allocBW(r.vrs, t̃)

= ∑r̃∈rng(resMv):
resEg(r̃)=e

allocBW(r̃.vrs, t)

<IH cap(v,e)

and therefore the claim.
– BWD(m̃, m̃′, ṽ, ĩ, t̃) : Analogous to FWD.
– FIN(m̃, m̃′, ṽ, ĩ, t̃) : Analogous to FWD.

In case of the other events, reservations get removed,
hence,
allocBW(r.vrs, t) stays the same or decreases for a corre-
sponding reservation and the claim holds trivially.

Lower ideal Bound: Let m be a valid message with
(∗) m.minBW = 0, (+) nodes(m) ⊆ H, source s, ID id, and
first AS v together with v’s ingress and egress interface iv
and ev. There is a strictly positive lower bound G · rv ·
m.maxBW on the ideal computation (even when all sources
exceed their demands), where G only depends on m’s path and
rv = reqRatio(s, id, iv,ev) is the request ratio of m at v.

∀event ∈ {CMP,T RN,UPT}.
∀n ∈ N,m,m′ ∈MR,v ∈ H, i ∈ I, t ∈ N.
λn = event(m,m′,v, i, t)⇒
∃G > 0.∀x ∈ sgmt(m). ideal(m,resMx)> G · rv ·m.maxBW

Proof. By assuming (+) there is no attack AS on the path that
can change the field m.accBW and a successful reservation
done according to the N-Tube algorithm. By induction on the
length of the path segment sgmt(m) by the next Lemma 11.

Lemma 11 (Ideal-computation-at-AS).

∀m ∈MR,s ∈ H,v ∈ sgmt(m)\{first(m)}∩H.

∀i,e ∈ I,resM ∈ ResMap, t ∈ N.
cur(m) = ve

i ∧ s = src(m) ∧
vrs = resM(v,src(m),m.id).vrs(m.idx) ∧
0 < vrs.maxBW = m.maxBW ∧
m.accBW[m.first].idBW = m.maxBW ∧
vrs.idBW = m.accBW[m.ptr].idBW ∧
egDem(v,src(m),e,resM, t)≤ cap(v,e) ∧
inDem(v,src(m), i,resM, t)≤ cap(v, i) ∧
transitDem(v, i,resM, t)≤ cap(v, i)

⇒∃Gv > 0.
ideal(m,resM,δ , t)≥ Gv ·m.accBW[m.ptr].idBW

and for v = first(m)∩H

∃Gv > 0. ideal(m,resM,δ , t)≥
Gv · reqRatiostart(v,s, id, i,resM, t) ·m.maxBW

with

Gv :=
m.maxBW

2 · cap(v, i) ·∑i′∈Iv cap(v, i′)
·δ · cap(v,e).

Proof. Given m, v ∈ sgmt(m), i,e ∈ I, resM ∈ ResMap, and
t ∈ N with cur(m) = ve

i , src(m) = s, and

(a) 0 < m.maxBW

(b) egDem(v,src(m),e,resM, t)≤ cap(v,e)

(c) inDem(v,src(m), i,resM, t)≤ cap(v, i)

(d) transitDem(v, i,resM, t)≤ cap(v, i)

(e) 0 < vrs.maxBW = m.maxBW

( f ) vrs.idBW = m.accBW[m.ptr].idBW

(g) m.accBW[m.first].idBW = m.maxBW

By the definition of ideal

ideal(m,resM,δ , t) =

let
L i,v,e M = cur(m)

vrs′ = L minBW := m.minBW;
maxBW := m.maxBW;
idBW := min(δcap(v, i),m.maxBW,preIdBW(m)) ;
resBW := m.minBW;
expT := m.expT M

vrsM′ = /0
(
m.idx 7→ vrs′

)
res′ = L path := m.path;

ptr := m.ptr;
first := m.first;
last := m.last;
vrs := vrsM′ M

resM′ = resM
(
(v,src(m),m.id) 7→ res′

)
resM′v = filter(resM′,v)

tubeRatio = tubeRatio(v, i,e,resM′v, t)

if (m.first < m.ptr)

then reqRatio = reqRatiotransit(v,src(m),m.id, i,resM′v, t)

linkRatio = linkRatiotransit(v, i,resM′v, t)

else reqRatio = reqRatiostart(v,src(m),m.id, i,resM′v, t)

linkRatio = linkRatiostart(v, i,resM′v, t)

in
min(δcap(v, i),m.maxBW,

reqRatio · linkRatio · tubeRatio ·δ · cap(v,e)).

we consider the term:

reqRatio · linkRatio · tubeRatio(v, i,e,resM′v, t) ·δ · cap(v,e)
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We need to show that there are lower bounds for each of the
following factors:
• tubeRatio : By its definition

tubeRatio(v, i,e,resM, t)

=
min{cap(v, i), tubeDem(v, i,e,resM, t)}

∑i′∈I min{cap(v, i′), tubeDem(v, i′,e,resM, t)}
First we derive a lower bound for the fraction’s nominator.
By the definition of tubeDem

tubeDem(v, i,e,resM, t)

= ∑r∈rng(resM):
resIn(r)=i
resEg(r)=e

adjReqDem(v,r, i,e,resM, t)

A lower bound is the summand r = resM(v,s,m.id)

adjReqDem(v,r,resM, t) =

= min{inScalFctr(v,s, i,resM, t),egScalFctr(v,s,e,resM, t)}
· reqDem(v,r, i,e, t)

From (b) and the definition of egScalFctr

egScalFctr(v,s,e,resM, t) =
min(cap(v,e),egDem(v,s,e,resM, t))

egDem(v,s,e,resM, t)
.

it follows that

(∗) egScalFctr(v,s,e,resM, t) = 1

and the same for inScalFctr by (c). Hence, it is sufficient
to provide a lower bound for reqDem

reqDem(v,r, i,e, t)

= min{cap(v, i),cap(v,e),demBW(r.vrs, t)}

By the definition of egDem

egDem(v,s,e,resM, t) =

∑r′∈rng(resM):
resSr(r′)=s
resEg(r′)=e

reqDem(v,r′,resIn(r′),e, t).r.path[r.ptr].inI,e).

and (b) it follows that

(A) reqDem(v,r, i,e, t)≤ egDem(v,s,e,resM, t)≤(b) cap(v,e)

and analogously

reqDem(v,r, i,e, t)≤ inDem(v,s, i,resM, t)≤(c) cap(v, i)

it follows that

reqDem(v,r, i,e, t) = demBW(r.vrs, t).

By the definition of demBW

demBW(vrsM, t) =

max
vrs∈

rng(vrsM)

{vrs.maxBW | vrs.minBW ≤ vrs.resBW ∧ vrs.expT ≥ t}

it follows that

(B) demBW(vrsM, t)≥ r.vrs(m.idx).maxBW = m.maxBW

All together we obtain that

tubeRatio(v, i,e,resM, t)

=
min{cap(v, i), tubeDem(v, i,e,resM, t)}

∑i′∈I min{cap(v, i′), tubeDem(v, i′,e,resM, t)}

≥ min{cap(v, i), tubeDem(v, i,e,resM, t)}
∑i′∈Ix cap(v, i′)

≥(A),(B) m.maxBW
∑i′∈Iv cap(v, i′)

with Iv := {i′ ∈ I | cap(v, i′)> 0}.
• linkRatio There are two cases v = first(m) and v ∈

sgmt(m)\first(m). By the definition of linkRatiotransit

linkRatiotransit(v, i,resM, t) =

let
stDem = startDem(v, i,resM, t)

trDem = transitDem(v, i,resM, t)

in
min{cap(v, i), trDem}

min{cap(v, i),stDem}+min{cap(v, i), trDem}
.

By (d) it follows for its nominator

(D) min{cap(v, i), trDem}
= min{cap(v, i), transitDem(v, i,resM, t)}
=(d) transitDem(v, i,resM, t)

and therefore

linkRatiotransit(v, i,resM, t)

=
min{cap(v, i), trDem}

min{cap(v, i),stDem}+min{cap(v, i), trDem}

≥ min{cap(v, i), trDem}
2 · cap(v, i)

=(D) transitDem(v, i,resM, t)
2 · cap(v, i)

• linkRatiostart : In this case (D) does not hold, but by (C)
and (g) it follows

(E) adjIdDem(v,r,resM, t)

≥(C) m.accBW[m.ptr].idBW

=(g) m.maxBW

and we obtain as lower bound

linkRatiostart(v, i,resM, t)

=
min{cap(v, i),stDem}

min{cap(v, i),stDem}+min{cap(v, i), trDem}

≥ min{cap(v, i),stDem}
2 · cap(v, i)

≥(E) m.maxBW
2 · cap(v, i)
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• reqRatiotransit : By the definition of adjIdDem

adjIdDem(v,r,resM, t) =

egScalFctr(v,s,e,resM, t)·
min{cap(v, i),cap(v,e), idBW(r.vrs, t)}.

and similar as above (∗) egScalFctr(v,s,e,resM, t) = 1
and (+) idBW(r.vrs, t) ≤ cap(v, i), cap(v,e) it follows
that

(C) adjIdDem(v,r,resM, t)

=(+),(∗) idBW(r.vrs, t)

≥ r.vrs(m.idx).idBW

=( f ) m.accBW[m.ptr].idBW

By (C) and (d) and the definition of reqRatiotransit

reqRatiotransit(v,s, id, i,resM, t)

=
adjIdDem(v,resM(v,s, id),resM, t)

transitDem(v, i,resM, t)

it follows

reqRatiotransit(v,s, id, i,resM, t)

=
adjIdDem(v,resM(v,s, id),resM, t)

transitDem(v, i,resM, t)

≥(C) m.accBW[m.ptr].idBW
transitDem(v, i,resM, t)

• reqRatiostart : By (E) and the definition of reqRatiostart it
follows

reqRatiostart(v,s, id, i,resM, t)

=
adjIdDem(v,resM(v,s, id),resM, t)

startDem(v, i,resM, t)

≥(E) m.maxBW
startDem(v, i,resM, t)

Altogether we obtain the following lower bounds for ideal
depending on the two cases v = first(m) and v ∈ sgmt(m) \
{first(m)}, respectively:
• v = first(m) :

ideal(m,resM,δ , t)

= reqRatiostart · linkRatiostart · tubeRatio ·δ · cap(v,e)

≥ reqRatiostart ·
m.maxBW
2 · cap(v, i)

· m.maxBW
∑i′∈Iv cap(v, i′)

·δ · cap(v,e)

= reqRatiostart ·m.maxBW · m.maxBW
2 · cap(v, i) ·∑i′∈Iv cap(v, i′)

·δ · cap(v,e)

Hence, we can set

Gv :=
m.maxBW

2 · cap(v, i) ·∑i′∈Iv cap(v, i′)
·δ · cap(v,e)

which only depends on m.maxBW and the capacities on
m.path of the network.

• v ∈ sgmt(m)\{first(m)} :

ideal(m,resM,δ , t)

= reqRatiotransit · linkRatiotransit · tubeRatio ·δ · cap(v,e)

≥ m.accBW[m.ptr].idBW
trDem

· trDem
2 · cap(v, i)

· m.maxBW
∑i′∈Iv cap(v, i′)

·δ · cap(v,e)

= m.accBW[m.ptr].idBW · m.maxBW
2 · cap(v, i) ·∑i′∈Iv cap(v, i′)

·δ · cap(v,e)

Hence, we can set

Gv :=
m.maxBW

2 · cap(v, i) ·∑i′∈Iv cap(v, i′)
·δ · cap(v,e)

which only depends on m.maxBW and the capacities on
m.path of the network.

Lemma 12 (Bounded Tube-Proportionality). Provided that two
ingress links i, i′ of AS x are not congested, the tubeRatio com-
putation splits the capacity of the egress link e proportionally
according to the tube demands of i and i′ to e

tubeRatio(i,e)
tubeRatio(i′,e)

=
tubeDem(i,e)
tubeDem(i′,e)

.

In case i′ is congested and its tube demand to e further increases,
the ratio between both tube ratios remains fixed

tubeRatio(i,e)
tubeRatio(i′,e)

=
tubeDem(i,e)

cap(x, i′)
.

Proof. Given two ingress links i, i′ of AS x. If both ingress
links i and i′ are not congested, i.e.,

(a) ∑s̃∈V inDem(x, s̃, i,resM, t)≤ cap(x, i)

(b) ∑s̃∈V inDem(x, s̃, i′,resM, t)≤ cap(x, i′).

By this it follows and the definition of tubeDem it follows

(a′) tubeDem(v, i,e,resM, t)

= ∑ r∈rng(resM):
resIn(r)=i∧resEg(r)=e

adjReqDem(v,r, i,e,resM, t)

≤ ∑ r∈rng(resM):
resIn(r)=i∧resEg(r)=e

reqDem(v,r, i,e,resM, t)

≤ ∑r∈rng(resM):
resIn(r)=i

reqDem(v,r, i,e,resM, t)

= ∑s̃∈V ∑ r∈rng(resM):
resSr(r)=s̃∧resIn(r)=i

reqDem(v,r, i,resEg(r), t)

= ∑s̃∈V inDem(x, s̃, i,resM, t)

≤(a) cap(x, i)

and similarly

(b′) tubeDem(v, i′,e,resM, t)≤ cap(x, i′)
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therefore it follows

tubeRatio(x, i,e,resM, t)
tubeRatio(x, i′,e,resM, t)

=

min{cap(x,i),tubeDem(x,i,e,resM,t)}
∑ĩ∈I min{cap(x,ĩ),tubeDem(x,ĩ,e,resM,t)}

min{cap(x,i′),tubeDem(x,i′,e,resM,t)}
∑ĩ∈I min{cap(x,ĩ),tubeDem(x,ĩ,e,resM,t)}

=
min{cap(x, i), tubeDem(x, i,e,resM, t)}

min{cap(x, i′), tubeDem(x, i′,e,resM, t)}

=(a′),(b′) tubeDem(x, i,e,resM, t)
tubeDem(x, i′,e,resM, t)

Independent from ingress link i′ being congestion, if i is not
congested then it follows

tubeRatio(x, i,e,resM, t)
tubeRatio(x, i′,e,resM, t)

=

min{cap(x,i),tubeDem(x,i,e,resM,t)}
∑ĩ∈I min{cap(x,ĩ),tubeDem(x,ĩ,e,resM,t)}

min{cap(x,i′),tubeDem(x,i′,e,resM,t)}
∑ĩ∈I min{cap(x,ĩ),tubeDem(x,ĩ,e,resM,t)}

=
min{cap(x, i), tubeDem(x, i,e,resM, t)}

min{cap(x, i′), tubeDem(x, i′,e,resM, t)}

≥(a′) tubeDem(x, i,e,resM, t)
cap(x, i′)

.

If the tube demand between i′ and e exceeds cap(x, i′), i.e.,

tubeDem(x, i′,e,resM, t)≥ cap(x, i′)

then the last inequality becomes an equality

tubeRatio(x, i,e,resM, t)
tubeRatio(x, i′,e,resM, t)

=
tubeDem(x, i,e,resM, t)

cap(x, i′)

and stays fixed no matter how much tubeDem(x, i′,e,resM, t)
increases.

Per Request-Proportionality: Suppose two sources s and
s′ respectively make new reservations m and m′ whose paths
intersect on a connected segment [v0, . . . ,vn], i.e.,

∃n,k,k′ ∈ N.
m.first < k ≤ m.last ∧ m′.first < k′ ≤ m′.last

∧ ∀i≤ n. vi = m.path[k+ i].as = m.path[k′+ i].as

If s and s′ do not have excessive demands on this segment,
then the ratio of their ideal bandwidth computations on the
segment remain the same to their ratio at the first AS on the
segment, even if links on the segment are congested

∀vi ∈ {v0, . . . ,vn}.
ideal(m,resMvi ,δ , t)
ideal(m′,resMvi ,δ , t)

=
ideal(m,resMv0 ,δ , t)
ideal(m′,resMv0 ,δ , t)

.

Lemma 13 (Per Request-Proportionality).

∀m,m′ ∈MR,r,r′ ∈ Res,s,s′ ∈V,v ∈ H, i,e ∈ I,resM ∈ ResMap, t ∈ N
m.path[m.ptr] = m′.path[m′.ptr] = ve

i ∧
s = src(m) ∧ s′ = src(m′) ∧
r = resM(v,s,m.id) ∧ r′ = resM(v,s′,m′.id) ∧
inDem(v,s, i,resMv, t)≤ δcap(v, i) ∧
egDem(v,s′,e,resMv, t)≤ δcap(v,e)

⇒ ideal(m,resM,δ , t)
ideal(m′,resM,δ , t)

=
idBW(r.vrs, t)
idBW(r′.vrs, t)

Proof. Given m,m′ ∈MR, s,s′ ∈ V , v ∈ H, i,e ∈ I, resM ∈
ResMap, t ∈ N with

m.path[m.ptr] = m′.path[m′.ptr] = ve
i

s = src(m),s′ = src(m′)

r = resM(v,s,m.id),r′ = resM(v,s′,m′.id)

and that s and s′ have modest demands, i.e.,

(a) inDem(v,s, i,resMv, t), inDem(v,s′, i,resMv, t)≤ δcap(v, i)

(b) egDem(v,s,e,resMv, t),egDem(v,s′,e,resMv, t)≤ δcap(v,e).

By this it follows that both inScalFctr and egScalFctr are
equal to 1 and therefore (c) adjIdDem = idBW for m and m′,
respectively.

Using (a), (b), (c), and the definition of ideal it follows:

ideal(m,resM,δ , t)

= reqRatiotransit · linkRatiotransit · tubeRatio ·δ · cap(v,e)

=
adjIdDem(v,r,resM, t)

trDem

· min{δcap(v, i), trDem}
min{δcap(v, i),stDem}+min{δcap(v, i), trDem}

· min{δcap(v, i), tubeDem(v, i,e,resM, t)}
∑i′∈I min{δcap(v, i′), tubeDem(v, i′,e,resM, t)}

·δ · cap(v,e)

=
idBW(r.vrs, t)

stDem+ trDem

· tubeDem(v, i,e,resM, t)
∑i′∈I min{δcap(v, i′), tubeDem(v, i′,e,resM, t)}

·δ · cap(v,e)

Due to the assumption m.path[m.ptr] = m′.path[m′.ptr] = ve
i it

follows that stDem, trDem, and tubeDem are the same for m
and m′, and therefore the conclusion of this lemma.

5) Global Properties of N-Tube: Given a valid execution,
we formally specify the global properties (G1–G5). Table I
shows a summary of these properties, which we define and
prove in detail in the following.
Availability: If an honest AS makes a successful reservation
m, then a positive amount of bandwidth, finBW(m), will be
reserved on its path until it expires.

Corollary 1 (Availability). Assume s makes a successful
reservation m at time t, then

∀n ∈ N,v ∈ sgmt(m). σn.time ∈ ]t;m.expT]

⇒ σn.resv(s,m.id).vrs(m.idx).resBW > 0.
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Proof sketch. Follows directly from Theorem 2 and the pos-
itivity property of the bandwidth computation from Sec-
tion IV-D.

Immutability: If an honest AS makes a successful reservation
m, the reserved bandwidth stays the same for all ASes on m’s
path until it expires.

Corollary 2 (Immutability). Assume s makes a successful
reservation m at time t. Then

∀n,n′ ∈ N,v,v′ ∈ sgmt(m). σn.time,σn′ .time ∈ ]t;m.expT]

⇒ σn.resv(s,m.id).vrs(m.idx).resBW

= σn′ .resv′(s,m.id).vrs(m.idx).resBW.

Proof sketch. This follows directly from the first statement in
Theorem 2, since the resBW fields are set to finBW(m) for all
path ASes until m expires.

Stability: During a period of constant demands, all reservations
stabilize.

Corollary 3 (Stability). Assume there are constant demands
D between t0 and t1. Then

∀n,n′ ∈ N,r,r′ ∈ Res,v ∈ H,m ∈ rng(D) .

σn.time,σn′ .time ∈ ]t0 + stabT; t1] ∧
r = σn.resv(src(m),m.id) ∧ r′ = σn′ .resv(src(m),m.id)

⇒ allocBW (r,σn.time) = allocBW
(
r′,σn′ .time

)
Proof sketch. This follows directly from Theorem 3.

Minimum Bandwidth Guarantee: If there are constant de-
mands D between t0 and t1, then there is a lower bound on the
ideal bandwidth allocations that only depends on the request
ratios on their first link and on the link capacities along their
paths.

Corollary 4 (Minimum Bandwidth Guarantee). Assume there
are constant demands D between t0 and t1, then for any
successful reservation request m there is a lower bound on the
ideal bandwidth allocation that all ASes on m’s path reserve
until t1.

∃ñ ∈ N. σñ.time = t0 + stabT ∧
∀m ∈ rng(D) ,r ∈ Res. Succ(src(m),m, t0)

⇒∃ G > 0 ∀n > ñ,v ∈ sgmt(m).

σn.time ∈ ]t0 + stabT; t1] ∧ r = σn.resv(src(m),m.id)

⇒ allocBW(r,σn.time)≥
G · reqRatio(m,σñ.resfirst(m)) ·m.maxBW

Proof sketch. This follows directly from Theorem 3 and the
lower ideal bound property of the ideal function in the
bandwidth computation from Section IV-D.

Bounded Tube Fairness: If there are constant demands D
between t0 and t1, then, in the absence of congestion, band-
width of egress links is allocated proportionally between tube

demands and, in case some tube demands exceed their ingress
links’ capacities, their tube ratio is bounded.

Corollary 5 (Bounded Tube Fairness). Assume there are
constant demands D between t0 and t1, then

∃ñ ∈ N. σñ.time = t0 + stabT ∧
∀m ∈ rng(D) ,v ∈ sgmt(m)∩H, i, i′,e ∈ I,n > ñ.

tubeDemv(i,e) ∈ ]0;δcap(v, i)]∧
tubeDemv(i′,e) ∈ ]0;δcap(v, i′)]

⇒ tubeRatiov(i,e)
tubeRatiov(i′,e)

=
tubeDemv(i,e)
tubeDemv(i′,e)

.

Analogously, in case tubeDemv(i′,e) ≥ cap(v, i′), e.g., there
are excessive demands from i′ to e,

tubeRatiov(i,e)
tubeRatiov(i′,e)

=
tubeDemv(i,e)

δcap(v, i′)
.

Here tubeRatiov and tubeDemv denote the corresponding
functions defined in Section IV-D that are computed at AS v.

Proof sketch. This follows directly from Theorem 3 and the
bounded tube-proportionality property of the ideal function in
the bandwidth computation from Section IV-D.

Bounded tube-fairness implies that, when the system reaches
a stable state, the bounded tube-proportionality property holds
globally, i.e., on all links of honest ASes. This guarantees that
in case of a link-flooding allocation attack the attacked ingress
links’ tube ratios are always bounded, which prevents that
bandwidth reservations through the other ingress links will be
reduced ad infinitum.

F. Parameters for Statistical Analysis

Table II lists all parameters used in the statistical analysis
of N-Tube as described Section VI together with their default
values, which the three generators use to generate the topologies,
paths, and workloads (including reservations, renewals, and
deletions).

Table II: Generators Parameters

Parameters Default Value
# benign ASes 90

# malicious ASes 10
# sources 20

# intermediate ASes 75
# destinations 5

adjusted capacity δ 0.8
minBW [0,50]
maxBW [50,250]
maxT 20

reservation frequency 10
renewal frequency 2
deletion frequency 50
snapshot frequency 5

reservations per source 5
# paths per source-dest pair 5

segment length 5
link capacity [100,300]

message delay lognormal: µ = 0.0, σ = 1.0
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