
Using Clustering Information for Sensor Network
Localization?

Haowen Chan, Mark Luk, and Adrian Perrig

Carnegie Mellon University
{haowenchan,mluk,perrig}@cmu.edu

Abstract. Sensor network localization continues to be an important research
challenge. The goal of localization is to assign geographic coordinates to each
node in the sensor network. Localization schemes for sensor network systems
should work with inexpensive off-the-shelf hardware, scale to large networks,
and also achieve good accuracy in the presence of irregularities and obstacles in
the deployment area.
We present a novel approach for localization that can satisfy all of these desired
properties. Recent developments in sensor network clustering algorithms have re-
sulted in distributed algorithms that produce highly regular clusters. We propose
to make use of this regularity to inform our localization algorithm. The main
advantages of our approach are that our protocol requires only three randomly-
placed nodes that know their geographic coordinates, and does not require any
ranging or positioning equipment (i.e., no signal strength measurement, ultra-
sound ranging, or directional antennas are needed). So far, only the DV-Hop lo-
calization mechanism worked with the same assumptions [1]. We show that our
proposed approach may outperform DV-Hop in certain scenarios, in particular
when there exist large obstacles in the deployment field, or when the deployment
area is free of obstacles but the number of anchors is limited.

1 Introduction

Many wireless sensor network applications require information about the geographic
location of each sensor node. Besides the typical application of correlating sensor read-
ings with physical locations, approximate geographical localization is also needed for
applications such as location-aided routing [2], geographic routing [3], geographic rout-
ing with imprecise geographic coordinates [4, 5], geographic hash tables [6], and for
many data aggregation applications.

Manually recording and entering the positions of each sensor node is impractical
for very large sensor networks. To assign an approximate geographic coordinate to each
sensor node, many automated localization algorithms have been developed. To obtain
the information required for node locations, researchers proposed approaches that make
different assumptions: (1) quantitative ranging/directionality measurements [7–11]; (2)
long range beacons [12–16]; (3) centralized processing [17, 18]; and (4) a flat, unob-
structed deployment area. We do not discuss protocols related to cases (1)–(3) because
we are steering away from such assumptions.

? This research was supported in part by CyLab at Carnegie Mellon under grant DAAD19-02-
1-0389 from the Army Research Office, and grant CAREER CNS-0347807 from NSF, and by
a gift from Bosch. The views and conclusions contained in this paper are those of the authors
and should not be interpreted as representing the official policies, either expressed or implied,
of Bosch, Carnegie Mellon University, NSF, the Army Research Office, the U.S. Government
or any of its agencies.

Algorithms that assume a flat, unobstructed deployment area experience serious
degradation in their position estimates in the presence of large obstacles and other ir-
regularities in the deployment area. Most of the localization algorithms in current liter-
ature have been evaluated only for deployments clear of obstacles. However, such ideal
deployments only represent the special case, while large obstacles are common in real-
istic settings. For a localization protocol to be practical, it is essential that it functions
even in the presence of such irregularities. As can be seen in Figure 7 of Section 4, our
algorithm has much better accuracy in recreating the topology of irregular deployments.

Generally, any algorithm that uses triangulation based on distance estimates to
known anchors falls victim to errors caused by obstacles. An anchor is defined as a
node that is aware of its own location, either through GPS or manual preprogramming
during deployment. An example of a distance-triangulation protocol is the Ad-hoc Posi-
tioning System (APS) described by Niculescu and Nath [1]. They describe three meth-
ods of performing the distance estimate, the most widely cited of which is the DV-Hop
method. DV-Hop uses a technique based on distance vector routing. Each node keeps
the minimum number of hops to each anchor, and uses the hop count as an estimate
of physical distance. Once a node has the estimated distance and location of 3 or more
anchors, it performs least-squares error triangulation to estimate its own position. Nag-
pal et al. [19] describe a similar scheme but improve the accuracy of the distance es-
timation by using the average hop count of all the neighbors of a node as a distance
estimate.

We present a localization scheme that requires no ranging or measuring equipment,
no long range beacons, and no centralized processing, and is able to operate with ar-
bitarily positioned anchor nodes. Furthermore, unlike DV-Hop, it makes no assump-
tions about the shape or internal topology of a deployment area: in particular, when the
deployment area is occupied by large, well-spaced obstacles, our scheme significantly
outperforms DV-Hop since it is able to re-create the physical topology of the network
where DV-Hop cannot. Our scheme is based on the novel approach of first performing
sensor node clustering on the network in order to create a regular structure of rep-
resentative nodes (called cluster-heads). To the best of our knowledge, this is the first
localization protocol that does not make any assumption on the sensor node’s hardware,
yet performs well in certain classes of irregular topologies.

2 Sensor Network Clustering

2.1 Clustering Goals

Performing clustering on a sensor network deployment prior to localization has two
advantages. First, it creates a regular pattern from which location information can be
extracted. Second, it helps reduce the amount of communication overhead since only
the cluster-heads need to be involved in the initial phase of the localization.

When a sensor network is first deployed, we cannot assume any regularity in the
spacing or the pattern of the sensor nodes. Figure 1(a) shows that after clustering, the
cluster-heads are regularly spaced throughout the network. We call two cluster-heads
adjacent if there exists some other sensor node that is within communication range of
both cluster-heads. Figure 1(a) shows the graph created by setting each cluster-head as
a vertex and connecting each pair of adjacent cluster-heads with an edge. We call this
graph the cluster-adjacency graph. The edges in the graph are called cluster-adjacency

(a) After clustering

���
�

���
� ���

�

���
�

��	
	

�
���

A

B

F

C

G
E

D

(b) Expanded view

1 1.2 1.4 1.6 1.8 2
Edge Length scaled by Communication Range

0

0.05

0.1

0.15

0.2

Pe
rc

en
ta

ge

(c) Distribution of edge lengths

Fig. 1. Effects of clustering.

edges. The cluster-adjacency graph is mesh-like and has few crossing edges. Further-
more, the variance in the length of the edges between adjacent nodes is small. Fig-
ure 1(c) is a histogram of edge length. Most edges fall within 1.3 to 1.7 r, with r being
the maximum communication range between two nodes. The average edge length is
1.63 r and variance is 0.0309 r. Hence, the cluster-adjacency graph forms a regular
structure from which location information can be extracted. This regularity is degraded
slightly when the communication pattern is nonuniform (i.e., not a unit disk), or when
the node density is low, but in general the regularity of cluster-head separation is always
much greater than the distribution of physical distances between unclustered sensor
nodes.

2.2 Modifying the ACE Algorithm

We chose to modify ACE [20] for use in our localization algorithm, because ACE al-
ready produces clusters with highly regular separation. Our localization techniques are
not confined to the clusters produced by ACE; we can also use any other clustering
technique that produces clusters with highly regular separation, such as the algorithm
proposed by Younis and Fahmy [21].

A brief description of ACE is as follows (for details, please refer to the original
paper [20]). The algorithm proceeds in a fixed number of iterations. In each iteration,
sensor nodes gradually self-elect to become cluster-heads if they detect that many nodes
in their neighborhood do not belong to any cluster. To achieve regular separation, these
clusters then migrate away from other clusters by re-selecting their respective cluster-
heads.

We modified ACE to improve the regularity of the separation between cluster-heads.
First, we increased the number of iterations for ACE from 3 to 5, trading off increased
communication cost for increased regularity. We also modified the migratory mech-
anism by approximating a spring effect between adjacent clusters. This effect causes
clusters that are close together to migrate apart, and clusters that are too far apart to be
attracted. During the migration phase, each cluster-head evaluates the potential fitness
score of each candidate node C in its neighborhood. The score for each candidate C

is calculated as the total number of sensor nodes belonging to the cluster if C was to
become the next cluster-head, plus a modifier for each adjacent cluster of C. Let s be
the estimated separation between C and the adjacent cluster-head in terms of maximum

communication radius r; s can be estimated by counting the number of common nodes
in both clusters – the more common nodes, the closer the two clusters are. The final
modifier is calculated via the function g(s):

g(s) =

{

d(3(0.125− (1

2
(s − 1.5)2))) if s ≥ 1.5

d(12(0.125− (1

2
(s − 1.5)2))) − 1.125 if s < 1.5

Where d is the total number of nodes in the neighborhood of C. The constants used
above are empirically derived – their exact values are not important to the correctness
of the algorithm. Note that the function above reaches a maximum at s = 1.5, meaning
that clusters that are estimated to be more than 1.5r apart will attract each other, while
clusters that are less than 1.5r apart will repel each other.

3 Localization Procedure

In this section we describe how the localization algorithm proceeds after clustering
is complete. We first describe a naive version of our general approach using several
strong assumptions. In subsequent subsections, we will eliminate these assumptions
and improve the accuracy of our basic algorithm using more complex approaches.

3.1 The Basic Cluster Localization Algorithm

In this section we describe a high level overview of our general approach. Each of the
steps described in this section are naive approaches which we significantly improve in
subsequent sections.
Locally-Aware Anchors The algorithm starts from the anchor nodes, which are them-
selves cluster-heads and have knowledge of their geographical positions. We assume
that these are Locally-Aware Anchor Nodes, able to determine the geographical po-
sitions of all the cluster-heads adjacent to themselves. This could be performed by in-
stalling ranging and direction-finding hardware on the anchor nodes, or more practically
by pre-selecting the cluster-head nodes in their neighborhood and directly programming
these coordinates into the anchors. This increases the hardware or installation overhead
of the scheme, hence we eliminate this assumption in Section 3.4.
Expanding the Calibrated Set The anchor nodes and their adjacent cluster-heads form
an initial set of calibrated nodes which are aware of their positions. Given this base
set of calibrated nodes, our algorithm will continually expand this set until all cluster-
heads in the network have been calibrated. This is performed in a distributed manner
where each cluster-head calibrates itself if two or more of its adjacent cluster-heads
have successfully calibrated.

The self-calibration procedure uses the regularity of edge-lengths between cluster-
heads to perform a position estimate. As an example, Figure 1(b) shows node A along
with its adjacent neighbors, or its cluster-head neighborhood. If node A knows the
topological configuration of its cluster-head neighborhood as well as the estimated
physical positions of two neighbors, C and D, A can estimate its own position by as-
suming some pre-determined standard value l for the length of the edges AC and AD.
After A is calibrated, node B can similarly estimate its position based on positions of
C and A, further enabling node G to calibrate, and so on. In this manner, the set of

calibrated nodes grows until all cluster-heads in the network are calibrated. We present
an significantly improved method for position estimation in Section 3.3.
Refining the Position Estimate The initial position estimate is based on the early posi-
tion estimates of two neighbors. As more information becomes available, more cluster-
heads will be able to estimate their position, and some already-calibrated cluster-heads
may further refine their position estimate. Each cluster-head reacts to this new informa-
tion by recomputing its own position estimate. A simple way of improving the position
estimate would be to repeat the initial position estimation once for each adjacent pair
of calibrated cluster-heads in the calibrating node’s neighborhood, and then taking the
average position of these results. To prevent propagation of small changes, each node
only rebroadcast its updated position if its difference from the previous position is larger
than some threshold. When this occurs, we call it a major position update.

To improve the accuracy of this step, we have developed a more sophisticated algo-
rithm for performing position refinement which we present in Section 3.2.
Termination Each node continues refining its position until either of two conditions
occurs:

– The node has reached some maximum number of major position updates. We count
the number of major position updates, and when it reaches 10 in the case of re-
peated initial calibration (see Section 3.3) or 60 in the case of mesh relaxation (see
Section 3.2) then the node terminates and accepts its current estimated position as
its final position.

– The node has not received any position updates during the past time period. The
amount of time to wait is chosen to be equal to the maximum time that position
information needs to disseminate across the network, which is proportional to the
diameter of the network. If the node has not received any new updates within this
time frame after the last update, then there cannot be any further updates remaining
in the system, indicating convergence.

Calibration of Follower Nodes Thus far, locality calibration has only been performed
on the cluster-heads. When the cluster-heads have been fully localized, there remains
the final step of calibrating the non-cluster-head nodes (i.e., the follower nodes). Var-
ious methods exist for calibrating these nodes. In our algorithm, each node takes the
average of the estimated positions of all the calibrated nodes within its communication
range (including cluster-heads and other follower nodes). This produces a localization
accuracy for the non-cluster-head nodes that is very close to the localization accuracy
of the cluster-heads. When this step is complete, all the sensor nodes are localized.

3.2 Improved Position Refinement: Mesh Relaxation

We note that the goal of our algorithm is to solve for the geographical configuration of
cluster-heads that is most likely, given the adjacency information of all cluster-heads
and the position information of the anchors. We can approximate this solution by dis-
tributedly solving for the global configuration in which the square of the difference of
the length of each edge from the known average edge length l is minimized.

To solve this problem, we use mesh relaxation, an approximation algorithm for find-
ing the least-squares solution to a set of pairwise constraints. Mesh relaxation has pre-
viously been studied for localization in robotics [22–24]. A general description of mesh

relaxation is beyond the scope of this paper; we describe how the method is applied to
our localization protocol.

Each cluster-head is modeled as a mass point, and the distance between each pair of
adjacent cluster-heads is modeled as a spring of length equal to the average edge length
l. The calculation thus becomes equivalent to a physical simulation. Consider a cluster-
head A. It has some estimated coordinate pA,t at time t, and we wish to continue the
simulation to update its position in time t + δt. Let the set of A’s adjacent cluster-heads
be S. Each of the members of S will exert a force on A. According to Hooke’s law,
this force can be expressed as F = k∆x, with ∆x defined as the displacement of a
spring from its equilibrium length (set at the average edge length l), and k is the spring
constant. Note that the value of k is irrelevant in this computation since we are looking
for the point where all forces are equalized, which would be the same for any value of
k. Hence, we let k = 1. The resultant force on A at time t is:

F A =
∑

B∈S

(|dB,A| − l)d̂B,A

The variable dB,A represents the 2-dimensional vector of the separation between the
estimated positions of cluster-heads B from A at time t, i.e., dB,A = pB,t − pA,t. The
variable d̂B,A represents the unit vector in the direction of B from A, and l is the known
average link length. We displace the position of A by qF A, a quantity proportional to
the resultant force on A. Hence, the updated position of A is pA,t+1 = pA,t + qF A. We
iterate this process until the change in position is below a threshold c.

The above algorithm is naturally parallelizable onto the cluster-heads; each cluster-
head A calculates the forces acting on itself based on the current estimated locations of
the nodes in its cluster-head neighborhood S and updates its own estimated position,
which is then sent as an update to all the members of S.

3.3 Improved Initial Calibration

While mesh relaxation produces accurate localization results, if it begins with a poor
initial estimated position, it takes many iterations to converge. Hence, having an initial
accurate estimate is essential to produce a workable algorithm. In this section we de-
scribe how to accurately make an initial estimate of a cluster-head’s position based on
the structure of the cluster-heads around it.

This algorithm consists of three steps. First, we acquire knowledge of a node’s two-
hop neighborhood to produce an ordered circular list of its adjacent cluster-heads. This
list corresponds to either a counter-clockwise or a clockwise traversal of the set of ad-
jacent cluster-heads. Then, we augment this list with some heuristic information about
the relative separations of each cluster-head from its predecessor and successor in the
circular list. Finally, the node calculates an estimate for its own position when two or
more of its neighbors are calibrated.
Ordering the adjacent cluster-heads To orient a given cluster-head A correctly within
the topology, we need to extract an ordering in its set of adjacent cluster-heads S. This
ordering will produce information that we will later use to derive a location estimate for
A based on the location estimates of the members of S.

Figure 2(b) shows the neighborhood of cluster-head A. It has 5 adjacent cluster-
heads, {B, C, D, E, F}. At the beginning of the protocol, A is aware of its neighbor-
hood set (e.g., {D, C, F, B, E}) but not its order. The objective of this step of the al-

gorithm is to derive an ordering on the set that corresponds to either a clockwise or
counterclockwise traversal of the set, e.g., either (B, C, D, E, F) or (F, E, D, C, B).
Note that the ordering is on a circle hence any cyclic shift of a correct sequence is still
correct, e.g., (D, E, F, B, C).

We now introduce some terminology. Let the cluster-head for which we wish to
derive the ordered circular list be the calibrating node. The cluster-head neighbor-
hood of a cluster-head is the set of cluster-heads that are adjacent to it (recall that two
cluster-heads are considered adjacent if there exists some node which is in communi-
cation range of both of them). If two members of the cluster-head neighborhood of the
calibrating node are also adjacent, then we call them directly linked with respect to
the calibrating node. Examples of directly linked neighbors of the calibrating node A in
Figure 2(b) are B and C, or C and D. If two members of the cluster-head neighborhood
are not adjacent, but they are adjacent to another cluster-head that is not the calibrating
node, nor in the cluster-head neighborhood, then we call them indirectly linked with
respect to the calibrating node. For example, in Figure 2(b), B and F are indirectly
linked with respect to A since they are both adjacent to G. Finally, if two members
of the cluster-head neighborhood have no adjacent cluster-heads in common besides
the calibrating node, then they are unlinked with respect to the calibrating node. Un-
linked pairs are also called gaps since they represent a discontinuity in the cluster-head
neighborhood of a node.

At the beginning of the algorithm, each cluster-head communicates its neighbor-
hood information to all the members of its cluster-head neighborhood. Thus every
cluster-head is aware of its cluster-head topology up to two edges away. If the cluster-
adjacency graph has no cross edges in its physical embedding, then it is straightforward
to construct the ordered circular list of neighbors for a calibrating node. The calibrat-
ing node selects any neighbor as a starting point and traverses the set of neighbors by
selecting the next neighbor that has a direct or indirect link to the current node, then
appending it to the list. The selected neighbor then becomes the current node, and the
process is iterated until the traversal returns to the starting point, or the current node
has no direct or indirect links that have not already been traversed. In the latter case,
traversal is restarted from the starting point in the opposite direction, and the nodes vis-
ited are pre-pended to the sequence. Ambiguities may arise if there are crossing edges,
since in this case there may be more than one possible choice for the next node in the
traversal. However this occurs sufficiently infrequently that this choice can be resolved
easily. For example, we use the heuristic of choosing the node that has the most com-
mon neighbors with the calibrating node, and skipping over any alternative nodes (i.e.,
not including them in the traversal at all).

At the end of this step, we have constructed an ordered circular list of the cluster-
head neighborhood of a calibrating node. This list represents an initial estimate of the
local physical topology of cluster-heads around the calibrating node.
Assigning angles to adjacent cluster-heads The next step in obtaining a physical map-
ping of this topology is to assign angular separations between subsequent members of
the circular list. If all the cluster-heads in the list are all directly linked, we simply as-
sign equal angular shares to each sector. For example, in Figure 2(a), each sector is
given 60◦ for a total of 360◦.

If there are one or more indirect links, we wish to assign larger angular shares to
sectors subtended by indirect links since indirect links are usually longer than direct
links. Letting the length of a direct link be l, we estimate the length of an indirect link as

PSfrag replacements

θ

(a)

PSfrag replacements

θ

(b)

PSfrag replacements

θ

(c)

Fig. 2. a) Assignment of angular shares when there are 6 adjacent cluster-heads all directly linked.
The cluster-heads are assumed to be equally distributed, hence each angle is 360

◦/6 = 60
◦.

b) Assignment of 5 angular shares when there are 4 direct links and 1 indirect links. Angles
opposite to a direct link is denotes as α, and β represents the angle opposite to an indirect link.
c) Orienting A’s circular list direction. If A is clockwise from Q with respect to P , and P is
clockwise from A with respect to Q, then Q must be clockwise from P with respect to A.

√
2l based on the intuition that the vertices forming an indirect link form a quadrilateral

with the typical shape of a square. Hence, if α is the angle assigned to a direct link,
then we should assign approximately β =

√
2α to an indirect link. Figure 2(b) shows

an example of a node having 5 neighbors where there are 4 direct links and 1 indirect
link, resulting in α = 66.5◦ assigned to the direct sectors and β = 94.0◦ assigned to
the indirect links.

In the case where there is a gap in the circular list (e.g., at the edge of the deploy-
ment area or next to an obstacle), we use the heuristic of assigning α = 60◦ to angles
subtended by direct links and β = 90◦ to angles subtended by indirect links.

When this portion of the algorithm is completed, every node has an ordered circular
list representing its cluster-head neighborhood, as well as an angle between each adja-
cent pair of members of the circular list, representing the estimated angular separation
of the pair.
Performing the position estimate At this point, the calibrating node is able to perform
an initial position estimate if two or more of the nodes in its cluster-head neighborhood
have already performed an initial position estimate. We call nodes which have success-
fully performed an initial position estimate, calibrated nodes. A calibrated node not
only has a position estimate but also has its circular list of its cluster-head neighborhood
ordered in the canonical direction (i.e., physically clockwise or counterclockwise). For
simplicity, we shall assume the canonical ordering is clockwise.

We first describe the algorithm using two calibrated nodes as reference nodes. Sup-
pose the calibrating node A has two calibrated nodes P and Q in its cluster-head neigh-
borhood. The first step in calibration is to orient A’s circular list in the canonical clock-
wise direction. P and Q transmit to A their estimated positions (xP , yP) and (xQ, yQ)
as well as their ordered cluster-head neighborhood list. These lists are ordered in the
canonical clockwise direction. A observes its own position in these lists and deduces
the ordering of its own list as follows. Figure 2(c) provides an illustration of the process.
Suppose in the list of P , A occurs after Q. Furthermore, in the list of Q, P occurs after
A. Hence we know that A is clockwise from Q with respect to P , and P is clockwise
from A with respect to Q, hence it must be that Q is clockwise from P with respect to A.
Hence, in the ordered list of A, if the angular displacement of Q from P is greater than

180◦, then A needs to reverse its ordered list to put it in a clockwise order. The other
case (where P is clockwise from Q with respect to A) follows an analogous argument.

Once A has determined the canonically correct ordering of its cluster-head neigh-
borhood, it is now aware of which side of the line PQ it belongs. Hence, its initial
position estimate can be calculated using basic trigonometry from the positions of P

and Q and their estimated angular separation with respect to A. An estimate can be
computed in several ways. We describe the method that we chose. The angle PAQ is
known due to our angular assignment. Assuming that AP = AQ, we derive the angle
QPA. Given this angle and the estimated position of P and Q, we can compute the
angular bearing of A from P . We the compute A’s estimated position with respect to P

by assuming A’s displacement from P is the known average edge length l. If there are
multiple neighbors with known coordinates, we perform these operations once for each
of them, i.e., for each Pi, compute the angular bearing of A from Pi and estimate A’s
position as a displacement of l along that bearing. After each estimate is computed, the
final estimated position is calculated as the average (centroid) of all the estimates.
Repeated Initial Calibration We have found that this empirical process of estimating
position is highly accurate. In fact, we can use this algorithm for both the initial po-
sition calibration, and for position refinement instead of performing mesh relaxation.
When new information arrives as neighboring nodes update their positions, we merely
perform the same position estimation algorithm again to obtain the new estimate. This
process achieves comparable performance with mesh relaxation while incurring less
communication overhead.

3.4 Self-orienting Anchors

Thus far, we have assumed that the anchors are “locally aware” (i.e., know the physical
locations of all cluster-heads in their neighborhood), and that all nodes are aware of
the average edge length between any two adjacent cluster-heads. We now describe an
optimisation to remove these assumptions.

In this scheme, each anchor picks an arbitrary orientation and sets the average edge
length l to 1. It assigns estimated positions to all the cluster-heads in its neighbor-
hood according to the angular share system described in Section 3.3. Calibration then
proceeds with respect to each anchor as normal. When calibration is complete, each
cluster-head has formed a location estimate with respect to each anchor’s arbitrary co-
ordinate system. Specifically, each anchor is now calibrated with respect to every other
anchor’s coordinate system. All the anchors exchange this information along with their
known physical coordinates.

Now each anchor can proceed to orient and scale its coordinate system to best
fit the estimated positions of every other anchor under its coordinate system with its
known physical location. Specifically, consider some anchor A. Number the other an-
chors 1..m. After all calibration is complete, each of the other anchors sends to A their
respective estimated locations e1, e2, . . . , em under A’s arbitrarily chosen coordinate
system. Each of the other anchors also sends to A their respective actual physical loca-
tions, i.e., p1, p2, . . . , pm. Now, A finds a transform T characterised by a rotation θ, a
scaling factor c, and a bit r indicating whether or not reflection is needed, such that T is
the transform that yields the lowest sum of squared errors between Tei and pi for each
of the other anchors:

T = argmin
G

m
∑

i=1

(pi − Gei)
2

At least 2 other anchors are needed to uniquely determine T . Once T is determined,
it is then flooded to the rest of the network to allow the other cluster-heads to convert
their estimated positions under A’s coordinate system to actual physical locations.

This procedure will result in each cluster-head having several estimates of its posi-
tion, one for each anchor. Based on the observation that position estimates increase in
error with increasing hop distance from the anchor, each cluster-head uses the estimate
associated with the closest anchor (in terms of cluster-head hop-count) and discards the
others.

4 Results

Based on various combinations of the optimizations described in Section 3, we imple-
mented three versions of our algorithm with various trade-offs:

1. Locally-Aware Anchors with Repeated Initial Calibration
2. Locally-Aware Anchors with Mesh Relaxation
3. Self-Orienting Anchors with Repeated Initial Calibration

With Locally-Aware Anchors, anchors are assumed to know the geographic posi-
tions of their immediate cluster-head neighborhood. This involves greater hardware or
set-up cost. Self-Orienting Anchors do not make this assumption, and are only assumed
to know their own geographic positions. The trade-off for removing this assumption is
slightly lower accuracy and a higher communication cost.

In Repeated Initial Calibration, nodes are first calibrated using the method described
in Section 3.3. When new information arrives and the nodes need to update their posi-
tion estimates, they simply perform the initial calibration algorithm again to compute
their new position. In Mesh Relaxation, the nodes are initialized similarly (i.e., using
the technique of Section 3.3). However, as new information gets updated in the network,
the nodes update their positions using mesh relaxation as described in Section 3.2. The
trade-off is that mesh relaxation is more accurate than repeated initial calibration when
using locally-aware anchors, but mesh relaxation requires more communication and
takes a longer time. We used standard 32-bit floating point numbers during the simu-
lated calculations, but we expect our results to hold also with lower levels of precision
or with fixed-point computations.

We did not investigate the performance of self-orienting anchors with mesh relax-
ation, since these two methods did not interact well together and resulted in both higher
communication overhead and less accuracy than self-orienting anchors with repeated
initial calibration.

We provide a detailed quantitative analysis of each of the three versions of our
algorithm. We evaluate our algorithms against the DV-Hop localization algorithm [1]
with the smoothing optimization described by Nagpal et al. [19], because this is the
only algorithm that also assumes no ranging/directional measurements, no long-range
beacons, and no centralized processing. We investigated the performance of DV-Hop
using normal anchors, as well as with Locally-Aware anchors for some scenarios. As

we show from our results, although DV-Hop often has better accuracy in deployment
settings with no obstacles and many well-placed anchors, our algorithms often outper-
form DV-Hop in more realistic settings in the presence of obstacles, irregularities and
randomly placed anchors.

4.1 Base Simulation Assumptions and Parameters

Our base simulation setup is described for reference; how we vary the parameters of
this base setup will be described later in each set of results. To evaluate the algorithms,
we set up experiments using a deployment of 10,000 nodes over a square region of
20r × 20r where r is the maximum communication radius. We do not assume that
nodes are synchronized in time; nodes would periodically run an iteration of the algo-
rithm regardless of the state of its neighbors. Anchor nodes are distributed randomly
throughout the deployment. The base setup does not include obstacles.

To simulate irregular communication range, we used the DOI model (or Degree of
Irregularity) described by He et al. [14]. The transmission range of a node is a random
walk around the disc, bounded by the maximum range rmax and minimum range rmin.
We chose to set rmin = 0.5rmax. Let the range of a node in the bearing θ (in degrees)
be rθ. We start with r0 = 0.5(rmin + rmax) and compute each subsequent rθ as a
random walk, i.e., rθ = rθ−1 + X(rmax − rmin)D where X is a random real value
uniformly chosen in the range [−1, 1] and D is the degree of irregularity (DOI). Note
that rtheta is not allowed to exceed rmax or go below rmin. rtheta represents only the
transmission range of a node; since our schemes require bidirectional communication,
we require both nodes to be within each other’s respective transmission ranges in order
to be able to communicate.

The metric for localization is the accuracy of the estimated position, which is mea-
sured as the distance between a node’s estimated position and its true location, divided
by maximum communication range r. The accuracy of a particular trial is measured as
the average error over all nodes in the deployment. We also measured how much the
average error varies among different trials.

4.2 Varying Number of Anchor Nodes in Uniform deployment

We varied the number of anchors from 3 to 7 to observe how accuracy is improved with
increasing number of anchors for each algorithm. We also studied how much the error
varies over different trials.

Figure 3 shows the average error for all four of our algorithms as well as DV-Hop
with normal anchors and with locally aware anchors. The average localization error
for all algorithms improves as the number of anchors increases. However, while the
performance of our algorithms remained relatively stable as the number of anchors
were varied, DV-Hop showed a very high sensitivity to the number of anchors. With
the minimum number of anchors (3), regardless of whether these anchors were locally
aware, DV-Hop typically incurs higher error than any of our algorithms. With 7 anchors,
however, DV-Hop’s average error improves to roughly half of ours. This suggests that
DV-Hop requires significantly more anchors than our protocols in order to be maxi-
mally effective. Furthermore, the rapid degradation of the performance of DV-Hop as
the number of anchors decreases indicates that it is not robust in scenarios where an-
chor node failure could be a factor. On the other hand, our algorithms provide uniformly

3 4 5 6 7
Number of Anchors

0

0.5

1

1.5

2

E
rr

or

DV-Hop
Locally-Aware, DV-Hop
Locally-Aware, Repeated Calculation
Self-Calibrating, Repeated Calculation
Locally-Aware, Mesh Relaxation

(a) DOI=0.05

3 4 5 6 7
Number of Anchors

0

1

2

3

4

E
rr

or

DV-Hop
Locally Aware, DV-Hop
Locally-Aware, Repeated Calculation
Self-Calibrating, Repeated Calculation
Locally-Aware, Mesh Relaxation

(b) DOI=0.20

Fig. 3. Average Error with Varying Number of Anchors

3 4 5 6 7
Number of Anchors

0

1

2

3

4

5

6

7

8

9

10

11

E
rr

or

DV-Hop
Locally-Aware, Mesh Relaxation

(a) Min and max avg. error

3 4 5 6 7
Number of Anchors

0

1

2

3

4

St
an

da
rd

 D
ev

ia
tio

n
of

 E
rr

or

DV-Hop
Locally-Aware, Repeated Calculation
Self-Calibrating, Repeated Calculation
Locally-Aware, Mesh Relaxation
Self-Calibrating, Mesh Relaxation

(b) Std Dev of avg. error

Fig. 4. Spread of Average Error for the different schemes, DOI=0.2

good performance even with a very small number of anchor nodes, indicating depend-
able performance even if anchor nodes are subject to failure.

Figure 3 also shows that our self-orienting algorithms exhibit slightly poorer but
comparable performance to the algorithms with locally aware anchors. This is an indi-
cation that the algorithms for self-orientation are reasonably effective.

Figure 4a shows how the accuracy varies throughout different trials, with the error
bars representing the minimum and maximum average error among all the trials. For
clarity only one of our algorithms is shown; the other three exhibit similar behavior.
Figure 4b graphs the standard deviation of the average error of each scheme over all
our trials. We observe that although the expected error of DV-Hop becomes lower than
our algorithms when five or more anchors are used, the variance is always much higher.
In the best case, DV-Hop generates extremely accurate estimates. However, DV-Hop’s
error in the worst case scenario is significantly higher than the worst case error of our
algorithm.

The intuition is that DV-Hop algorithm is more sensitive to the relative placement
of anchors since it uses triangulation from anchors to estimate each node’s position.
Triangulation provides highly inaccurate results when anchors are placed in a co-linear

3 4 5 6 7
Number of Anchors

0

5

10

15

20

A
ve

ra
ge

 C
om

m
un

ic
at

io
n

O
ve

rh
ea

d
pe

r
N

od
e

DV-Hop
Locally-Aware, Repeated Calculation
Self-Calibrating, Repeated Calculation
Locally-Aware, Mesh Relaxation

(a) DOI=0.05

3 4 5 6 7
Number of Anchors

0

5

10

15

20

A
ve

ra
ge

 C
om

m
un

ic
at

io
n

O
ve

rh
ea

d
pe

r
N

od
e

DV-Hop
Locally-Aware, Repeated Calculation
Self-Calibrating, Repeated Calculation
Locally-Aware, Mesh Relaxation

(b) DOI=0.20

Fig. 5. Communication Overhead

fashion or are too close together. Clustering, on the other hand, has the advantage of
not being significantly effected by positioning of anchor nodes. In certain cases, an-
chor nodes placed near each other actually improves performance. Random placement
of anchor nodes thus proves to be a great advantage of cluster localization. As sensor
networks become commodity technologies, random placement of anchors will be de-
sirable because it allows for deployments by untrained personnel, instead of needing a
specialized engineer to plan the process.

4.3 Communication Overhead

We measured the communication overhead of each of our schemes. We note that the
overhead of performing clustering formed the bulk of our communications cost. Since
the subsequent localization only involves cluster-heads, the communication cost for
the network is low. An average of 9.11 communications per node were required for
our modified ACE clustering protocol, while the localization schemes at most require
about 3 more communications per node on top of that. Hence, all our schemes achieve
communication costs comparable to DV-Hop.

4.4 Obstacles

In this section, we study deployments with obstacles. Previously, we showed that DV-
Hop is often more accurate in the case where obstacles are absent from the deployment
field and numerous anchors are present. However, in more realistic scenarios, obstacles
of various size and shape can disrupt communication and consequently interfere with
localization.

Our 2 types of obstacles are walls and voids. Walls are represented as a line seg-
ment with length of 250 units, or half the length of the deployment field. Walls can be
oriented in any direction, and all communication through the wall is blocked. Voids are
areas of various fixed shapes that are off-limits during deployment. Our experiments
investigated the effect of irregularly placed walls and regularly-spaced voids on the
various schemes.

Since DV-Hop counts the number of hops between nodes to estimate distance, it
almost always overestimates distances when the 2 nodes are separated by some type of

0 1 2 3 4 5 6
Number of Walls

0

0.5

1

1.5

2

2.5

3

E
rr

or
s

(r
)

DV-Hop
Locally-Aware, Repeated Calculation
Self-Calibrating, Repeated Calculation
Locally-Aware, Mesh Relaxation

(a) DOI=0.05

0 1 2 3 4 5 6
Number of Walls

0

1

2

3

4

E
rr

or
 (

r)

DV-Hop
Locally-Aware, Repeated Calculation
Self-Calibrating, Repeated Calculation
Locally-Aware, Mesh Relaxation

(b) DOI=0.20

Fig. 6. Accuracy with obstacles, 5 anchor nodes

obstacle. This is because DV-Hop uses hop count as an estimator of physical distance.
When an obstacle is between an anchor and a calibrating node, hop counts can be in-
flated leading to a large overestimate of the physical distance. This can negatively affect
the accuracy of the position estimation.

Clustering, on the other hand, is not significantly affected by obstacles. As shown in
Figure 7(c), the regular structure of cluster-heads are preserved around obstacles. Thus,
localization based on clustering typically has much better performance than DV-Hop
when faced with obstacles.

Figure 6 plots the accuracy of localization while increasing number of walls when
using 5 anchor nodes. Locally-Aware schemes had the best performance, consistently
outperforming DV-Hop whenever there are walls in the deployment area. The Self-
Orienting schemes did not do as well in this scenario, yielding slightly worse perfor-
mance compared with DV-Hop. In performing this series of tests, we observed the main
flaw of clustering localization: our schemes perform by creating a map of the deploy-
ment area at the cluster-head level, which represents a relatively coarse granularity of
resolution (about 1.5r). Hence, our schemes perform best when here is sufficient space
between obstacles to allow the regular but coarse structure of the clustering mesh to
pass through the gap. If obstacles are placed close together (e.g., a gap of less than one
communication radius), then the structure of cluster-heads through the gap may be too
coarse to allow cluster-head localization to traverse the gap, leading to a failure in lo-
calization for certain segments of the deployment area. The self-calibrating scheme is
particularly vulnerable to this effect since if an anchor is unable to find the estimated
positions of at least two other anchors, it is unable to calibrate its own relative coor-
dinate space and is thus almost useless for localization. Because the walls used in this
experiment are extremely long and placed independently at random, their placement
would occasionally create small gaps though which DV-Hop could perform localiza-
tion but our cluster-based schemes could not. This explains the relatively small degree
of the performance improvement of our schemes over DV-Hop in these scenarios.

Table 1 shows the average error for selected deployments of voids, which are more
well-spaced obstacles which were designed with sufficient gaps between obstacle fea-
tures to enable the coarse-grained clustering structure to pass through and map out the
entire deployment area. The name of each deployment represents what type of void is

(a) Actual (b) DV-hop (c) Cluster-
heads

(d) Localized

Fig. 7. Large Obstacles

Cross H S Thin S
DV-Hop 0.768 1.903 4.328 3.670
Locally Aware DV-Hop 0.686 1.650 5.145 3.575
Locally Aware, Mesh Relaxation 0.685 1.228 1.316 1.443
Locally Aware, R.I.C. 0.969 1.177 1.699 1.459
Self-Orienting, R.I.C. 1.235 1.469 2.951 2.919

Table 1. Average error for selected irregular deployments (5 anchors, DOI=0.05)

in the deployment field. For example, cross is a large void in the middle of the deploy-
ment field in the shape of a cross. H is an obstacle in the shape of a large capital H as
represented in Figure 7 and S is a similar large obstacle constructed in the shape of an
S using straight line segments. Figure 7(a) shows the actual deployment of nodes for
obstacle H. Figure 7(b) shows how DV-Hop is unable to reconstruct occluded areas.
Figure 7(c) shows that our cluster-head localization phase yields a good reconstruction
of the deployment area which leads to good localization accuracy for all nodes as shown
in Figure 7(d).

The experimental results confirm our hypothesis that for well-spaced, deeply con-
cave obstacles, clustering localization always performs significantly better than DV-
Hop, much greater than the improvement shown in Figure 6 where the obstacles were
not well-spaced. The Cross-shaped obstacle was sufficiently convex in shape that DV-
Hop retained relatively good accuracy and performed roughly as well as cluster local-
ization. However, both the H and S deployments possess deep cul-de-sacs which could
not be accurately triangulated by DV-Hop (see Figure 7(b)). However, our clustering
methods allowed our schemes to reconstruct the shape of the deployment area (see
Figure 7(c)) which yielded significantly better accuracies. The self-orienting schemes
suffered inaccuracies since occasionally some anchors were unable to deduce estimated
positions of at least two other anchors and were thus unable to self-calibrate. However,
this is not a fundamental weakness of clustering localization and can probably be ad-
dressed by more sophisticated self-calibration algorithms.

We hypothesize that the accuracy of cluster-localization is dependent on having
sufficient clearance space between obstacles to allow the regular cluster-head mesh
structure to pass through. To investigate the extent of this effect, we simulated our self-
calibrating scheme in a deliberately anomalous “dumbbell-shaped” deployment con-

(a)

1 1.5 2 2.5 3 3.5
Corridor Width (r)

0.6

0.8

1

1.2

1.4

1.6

1.8

2

E
rr

or

(b) Corridor Experiment

0 20 40 60 80
Node Density

0

0.5

1

1.5

2

E
rr

or

DV-Hops
Locally-Aware, DV-Hops
Locally-Aware, Repeated Calculation
Self-Calibrating, Repeated Calculation
Locally-Aware, Mesh Relaxation

(c) Node Density

Fig. 8. Limitations of Cluster-Localization

sisting of two large square deployment areas joined by a long narrow corridor (see
Figure 8(a)). Only two anchors were placed in each each main deployment area; thus
cluster-localization can only be successful if sufficient information can pass through
the corridor to allow calibration of each anchor (unsuccessful nodes simply adopt the
location of the nearest anchor). The results are shown in Figure 8(b) for a DOI of 0.2.
As can be seen, accuracy degrades significantly when the corridor is too narrow to fit
a sufficient number of cluster-heads for the reconstruction of the cluster-head topol-
ogy; however once the corridor is sufficiently wide (2.5r in this case), the cluster-head
structure is able to reconstruct the shape of the corridor and yields accurate results.

We note that our schemes only yield high accuracy for sufficiently dense networks;
Figure 8(c) shows that at low densities (less than 30 nodes per circle of radius r), the
accuracy of cluster localization suffers while DV-Hop retains good performance. This
is because at low densities, clustering is not as tight, and hence the number of adjacent
cluster-heads is lower, leading to a more sparse cluster-head topology which yields less
information for localization.

5 Conclusion

Localization continues to be an important challenge in today’s sensor networks. In this
paper, we propose to use clustering as a basis for determining the position information
of sensor nodes. To the best of our knowledge, this is the first paper to consider this
approach. Our clustering-based approach has many benefits: it is fully distributed, it
provides good accuracy, it only requires that three randomly placed sensor nodes know
their geographic position information, and it works with standard sensor node hardware
without requiring any special hardware such as ultrasound or other ranging equipment.
Moreover, our approach provides accurate position information even in topologies with
walls and other concave structures, as long as the granularity of the obstacle features
are on the same order as the separation between cluster-heads.

References

1. Niculescu, D., Nath, B.: Ad hoc positioning system (APS). In: Proceedings of IEEE
GLOBECOM. (2001) 2926–2931

2. Ko, Y.B., Vaidya, N.: Location-aided routing (LAR) in mobile ad hoc networks. In: Pro-
ceedings of MobiCom, ACM (1998) 66–75

3. Karp, B., Kung, H.T.: GPSR: greedy perimeter stateless routing for wireless networks. In:
Proceedings of MobiCom. (2000) 243–254

4. Newsome, J., Song, D.: GEM: Graph embedding for routing and data-centric storage in
sensor networks without geographic information. In: Proceedings of SenSys. (2003) 76–88

5. Rao, A., Ratnasamy, S., Papadimitriou, C., Shenker, S., Stoica, I.: Geographic routing with-
out location information. In: Proceedings of MobiCom. (2003) 96–108

6. Ratnasamy, S., Karp, B., Yin, L., Yu, F., Estrin, D., Govindan, R., Shenker, S.: GHT: a
geographic hash table for data-centric storage. In: Proceedings of WSNA. (2002)

7. Capkun, S., Hamdi, M., Hubaux, J.P.: Gps-free positioning in mobile ad-hoc networks.
Cluster Computing 5 (2002)

8. Savarese, C., Rabaey, J., Langendoen, K.: Robust positioning algorithms for distributed
ad-hoc wireless sensor networks. In: Proceedings of the General Track: USENIX Annual
Technical Conference. (2002) 317–327

9. Savvides, A., Han, C., Srivastava, M.B.: Dynamic fine grained localization in ad-hoc sensor
networks. In: Proceedings of MobiCom. (2001) 166–179

10. Savvides, A., Park, H., Srivastava, M.B.: The n-hop multilateration primitive for node local-
ization problems. Mobile Networks and Applications 8 (2003) 443–451

11. Ji, X., Zha, H.: Sensor positioning in wireless ad-hoc sensor networks with multidimensional
scaling. In: Proceedings of IEEE Infocom. (2004)

12. Bahl, P., Padmanabhan, V.: Radar: an in-building RF-based user location and tracking sys-
tem. In: Proceedings of IEEE Infocom. (2000)

13. Bulusu, N., Heidemann, J., Estrin, D.: GPS-less low cost outdoor localization for very small
devices. IEEE Personal Communications Magazine 7 (2000) 28–34

14. He, T., Huang, C., Blum, B., Stankovic, J.A., Abdelzaher, T.: Range-free localization
schemes for large scale sensor networks. In: Proceedings of MobiCom. (2003) 81–95

15. Priyantha, N.B., Chakraborty, A., Balakrishnan, H.: The Cricket location-support system.
In: Proceedings of MobiCom. (2000)

16. Nasipuri, A., Li, K.: A directionality based location discovery scheme for wireless sensor
networks. In: Proceedings of WSNA. (2002) 105–111

17. Doherty, L., Pister, K.S.J., Ghaoui, L.E.: Convex position estimation in wireless sensor
networks. In: Proceedings of IEEE Infocom. (2001)

18. Shang, Y., Ruml, W., Zhang, Y., Fromherz, M.P.: Localization from mere connectivity. In:
Proceedings of MobiHoc. (2003) 201–212

19. Nagpal, R., Shrobe, H., Bachrach, J.: Organizing a global coordinate system from local
information on an ad hoc sensor network. In: Proceedings of IPSN. (2003)

20. Chan, H., Perrig, A.: ACE: An emergent algorithm for highly uniform cluster formation. In:
Proceedings of EWSN. (2004)

21. Younis, O., Fahmy, S.: Distributed clustering in ad-hoc sensor networks: A hybrid, energy-
efficient approach. In: Proceedings of IEEE Infocom. (2004)

22. Duckett, T., Marsland, S., Shapiro, J.: Learning globally consistent maps by relaxation. In:
Proceedings of IEEE ICRA. (2000)

23. Golfarelli, M., Maio, D., Rizzi, S.: Elastic correction of dead-reckoning errors in map build-
ing. In: Proceedings of IEEE ICRA. (1998)

24. Howard, A., Matarić, M., Sukhatme, G.: Relaxation on a mesh: a formalism for generalized
localization. In: Proceedings of IEEE IROS. (2001)

