
Round-Efficient Broadcast Authentication Protocols for Fixed Topology Classes

Haowen Chan, Adrian Perrig

Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

haowenchan@cmu.edu, perrig@cmu.edu

Abstract—We consider resource-constrained broadcast au-
thentication for n receivers in a static, known network topology.
There are only two known broadcast authentication protocols
that do not use asymmetric cryptography, one-time signa-
tures, multi-receiver MACs, or time synchronization [1], [2].
Both these protocols require three passes of a message front
traversing the network. We investigate whether this amount of
interaction can be improved efficiently for specific common
topology classes, namely, linear topologies, tree topologies
and fully connected topologies. We show modifications to the
protocols allowing them to complete in just two passes in
the linear and fully connected cases with a small constant
factor increase in per-node communication overhead, and a
further optimization that achieves the equivalent of just a single
pass in the linear case with O(logn) increase in per-node
communication overhead. We also prove new lower bounds
for round complexity, or the maximum number of consecutive
interactions in a protocol. We show that protocols with efficient
per-node communication overhead (polylogarithmic in n) must
require at least 2 logn rounds in any topology; this implies that
our two-pass protocol in the fully-connected topology requires
the fewest possible passes, and this bound is asymptotically
tight for the full-duplex communication model. Furthermore,
we show that communication-efficient protocols must take
asymptotically more than 2 logn rounds on trees; this implies
that that there are some tree topologies for which two passes
do not suffice and the existing three-pass algorithms may be
optimal.

Keywords-Multicast Authentication, Broadcast Authentica-
tion, Linear Topology, Path Topology, Fully Connected Topol-
ogy

I. INTRODUCTION

Broadcast authentication is a critical security primitive in

computer networks. Due to the high computational overhead

of asymmetric cryptography and the high communication

costs of one-time signatures and multi-receiver message

authentication codes (MMACs), signature-free broadcast

authentication protocols have received a great amount of

attention in the research literature. Instead of a single cryp-

tographic construction transmitted from sender to receivers,

such protocols rely on multiple interactions among the

sender and the set of receivers. Of these, TESLA and related

protocols assume secure time synchronization and involve

long message buffering times. There are two remaining types

of efficient broadcast authentication protocols: hash-chain

protocols based on the “Guy Fawkes” protocol first proposed

by Anderson et al. [1] and a hash-tree protocol that we

described in previous work [2]. Both of these are three-

pass protocols, requiring message exchanges that traverse

the network a total of three times. Typically, the payload

message and an initial authenticator is disseminated from

the sender to the rest of the network; then a return pass

of messages is initiated from the edges of the network,

flowing back towards the sender in a “converge-cast” traffic

pattern; finally a third wave of messages flows outwards

from the sender to the rest of the network. The fact that

the only known broadcast protocols that do not require

time synchronization all require three passes across the

network motivates the question of whether three passes is

universally minimal for such protocols. We show that this is

not the case by describing communication-efficient two-pass

versions of both algorithms for certain general classes of

network topologies. At this point it may seem like there is no

further potential for improvement: a true single-pass protocol

implies the ability of each receiver to verify the broadcast

message upon reception; this seems unlikely without the

use of costly signatures or MMACs. However, we show

that this intuition is misleading. For the linear topology

(where all receivers are arranged in a simple path) we

can achieve a number of rounds of interaction functionally

equivalent to only taking a single pass across the network:

the optimization allows every receiver to authenticate the

message within the time it takes to reach the farthest receiver

from the sender. In addition to these optimizations, we

also show new theoretical lower bounds proving that our

optimizations do indeed achieve the lowest possible number

of passes in the topologies that we consider, as well as

showing that some classes of trees do require more than

two passes, and thus the three-pass algorithms may indeed

be optimal in general scenarios. This implies that analyses

which consider separate optimizations for separate network

topology classes are a necessary methodology for optimizing

protocol structure.

The concept of reducing the number of “passes” across

the network is intuitive; we quantify this more precisely.

Fundamentally, we are interested in optimizations for re-

ducing dependencies and increasing parallelism in terms

of interactions, such that the protocol requires a smaller

number of consecutive communication events. The metric

of choice is thus round complexity: we model the protocol

as taking a number of rounds, where, in each round, every

node exchanges information with at most one other node

(this is the standard “one-port” model used in the theory of

distributed systems [3], in which each machine has a single

network interface). Round complexity is a favored measure

of the time complexity of a protocol in the analysis of

distributed algorithms [4] because it is a fundamental prop-

erty of the protocol, reflecting how the protocol structures

its data/message dependencies: a protocol with low round

complexity necessarily has a shallow dependency graph.

As an intrinsic property of the protocol, round complexity

can thus be expressed solely in terms of n, the number of

nodes in the network, and, unlike more specific measures

of delay, remains constant regardless of the size of the

broadcast data payload and the particular physical or link-

layer characteristics of the network.

To measure the communication overhead of our protocols,

we use worst-case per-node communication, or congestion,

as a metric (this is more formally defined in Section III).

Low communication congestion yields lower per-node en-

ergy consumption, which is important for many wireless

network applications. For completeness, we also consider

total communication overhead.

Our exploration of the design space for these protocols

thus yields various trade-offs between round complexity and

communication overhead. Consequently, different protocols

and optimizations will be most efficient in terms of more

direct performance measures (such as latency, energy cost, or

usage of the medium) depending on the different deployment

environments.

We examine three topology classes covering most easily-

characterizable topology types in practice: paths, trees and

complete graphs. The path or linear topology occurs fre-

quently in wireless networks both directly in such examples

as networks deployed along corridors and roadways and

indirectly as a multi-hop routing path between a sender

and receiver. Trees are of prime importance in broadcast,

since spanning tree construction can occur implicitly in any

broadcast pattern: the sender is at the root of the tree, while

the parent of each receiver di is the node that first forwarded

the broadcast message to di. The ease and generality of

defining such a spanning tree explains why many broadcast

protocols are defined only on trees [2], [5]. Trees can also

occur directly in sensor networks which are often deployed

in a hierarchical structure with a base station at the root [6].

The complete graph or fully connected topology occurs

frequently in Internet-scale distributed systems such as grid

computing and peer-to-peer networks, where any node can

communicate (via the Internet) with any other node.

Contributions: While there has been much work on

reducing the number of rounds of interaction in general

cryptographic protocols (such as secure multiparty compu-

tation), to the best of our knowledge, we present the first

analysis on reducing the number of rounds of interaction

in broadcast authentication protocols deployed over network

topologies. We show the feasibility of this avenue of research

by deriving a variety of new optimizations and bounds

for round complexity in specific topology classes with n
receivers. For the linear topology, we show an algorithm that

completes in the equivalent of a single pass (n rounds), three

times less than the round complexity of any currently known

protocol. This optimization causes O(logn) communication

congestion overhead. We show another algorithm that com-

pletes in 2n rounds with constant congestion overhead; and

a general parameterization for 2-pass protocols that yields at

most n+ n
(2k−1)

round complexity for an additive k-factor

congestion overhead increase. We prove that any protocol

(in any topology) that achieves polylogarithmic congestion

overhead must require at least 2 log n rounds. For the fully-

connected topology under our communication model, we

show that this lower bound is achievable with an algorithm

that completes in 2⌈log n⌉ + 1 rounds with O(logn) con-

gestion overhead. We also show a round complexity lower

bound of 2.44 log n− 2.33 rounds for polylogarithmic con-

gestion authenticated broadcast in trees. These are the first

proven bounds linking the fundamental trade-offs between

round complexity and per-node communication in broadcast

authentication protocols.

II. RELATED WORK

In prior work [2], we describe using hash trees over

MACs for broadcast authentication. The construction is only

described for a tree topology; precise round complexity

and congestion optimizations for specific topologies are not

investigated. The general Guy Fawkes protocol framework

is proposed by Anderson et al. [1]; Bergadano et al. propose

CSA, a variant using explicit synchronization with acknowl-

edgments [7]. CSA uses per-receiver acknowledgments; Yao

et al. improve this for tree-based networks by proposing the

construction of an authenticated aggregate acknowledgment

using hashes [5]. Heer et al. suggest using a variant of

Guy Fawkes for authenticating two-party messages while

simultaneously securing message forwarding on the forward-

ing path [8]. In this protocol, message authentication is

only achieved between the two endpoints; the forwarding

nodes only achieve resistance against forwarding extraneous

amounts of spurious traffic and cannot authenticate the

integrity of the actual message content being exchanged.

Perrig et al. propose TESLA [9], which replaces explicit

synchronization with loose time synchronization. There have

been a variety of improvements to TESLA, all requiring

some form of time synchronization [10], [11]. Zhu et al. pro-

pose a lightweight variant for one-hop communications

where messages are considered authentic if immediately

followed by a valid hash chain value [12]; this approach

does not work for multi-hop broadcasts. Luk et al. propose

families of broadcast authentication mechanisms [13], but

the communication overhead of their one-time signature

schemes can be quite substantial.

Multicast MACs (MMACs) are another major class of

broadcast authentication mechanisms. An inexhaustive list

of work on MMACs follows. Desmedt et al. propose

a polynomial-based multicast authenticator [14], which

is generalized by Safavi-Naini and Wang [15]. Canetti

et al. propose an MMAC by concatenating bits of multiple

MACs [16]. Zhang et al. suggest adding perturbations to

improve the security of multi-MAC constructions [17]. All

MMACs involve communication overhead proportional to

the number of node compromises that the scheme tolerates.

Boneh et al. show that this overhead is a lower bound

for all schemes which do not involve digital signature

properties [18]. Stream signatures involve amortizing the

cost of a signature over a large number of packets [19],

[20], [21], [22], [23]. These approaches either require the

sender to know the data stream beforehand or use expensive

one-time signatures, or require the receiver to buffer a large

number of packets before it can reconstruct the authenticator,

and are hence more limited in their applicability than general

broadcast authentication techniques. Zhu et al. implement a

variant of the multiple-MAC approach in their interleaved

hop-by-hop packet filtering system, essentially requiring

t individual MACs to protect against up to t malicious

nodes [24].

III. PROBLEM DEFINITION

We consider a network consisting of a sender node s
and n receiver/destination nodes d1, . . . , dn. The network

topology is represented by an undirected graph G = (V,E)
where V = {s, d1, . . . , dn} and an edge connects any two

nodes that can communicate (all communication links are

bidirectional).

We consider communication in the single-port model,

where each node has only one network interface and thus

can only communicate with only a single neighbor at a

time. We also do not consider local broadcast modes of

communication (where a single node broadcasts the same

message to all its neighbors) because the protocols we con-

sider are sensitive to packet loss; this implies the strong de-

sirability of a link-layer acknowledgment and retransmission

mechanism, which essentially reduces a local broadcast to

the equivalent of a series of point-to-point communications

(in terms of acknowledgments). Rather than model link-

layer acknowledgments as separate communication events,

for simplicity we consider only bidirectional point-to-point

communications in this model. Specifically, each node can

only communicate with one neighbor at any given point in

time, but this point-to-point communication can involve both

sending and receiving.

We assume that each receiver knows the number of

receivers n and its own index in the enumeration of the

receivers (i.e., node d1 knows that its index is 1, node d2
knows that its index is 2, and so on). Also, since we consider

topology-specific optimizations, the implicit assumption is

that the senders and receivers also know the general class

of the topology (e.g., linear, tree, or fully connected).

The sender s shares a unique secret key Ki with each

receiver node di. The nodes will not use asymmetric-key

cryptography in the protocol and rely on symmetric-key

methods for authenticity and integrity.

In the broadcast authentication problem, the sender s
wishes to send a series of messages M1,M2, . . . ,Mm to

all receivers such that each receiver can check that each

message is authentic, i.e., Mi was truly sent by s. Some

unknown fraction of the receivers may be malicious and may

behave in arbitrary ways to subvert the protocol. The goal of

the adversary is to cause some legitimate receiver to accept

some forged M ′
i that was never sent by the sender s. We

do not consider denial-of-service attacks, where a legitimate

message Mi that is sent by s is rejected by a legitimate node

due to the malicious actions of the adversary. We assume that

the messages contain sequence numbers such that message-

replay attacks are infeasible; specifically, each Mi contains

a unique sequence number identifying it as the ith message.

We consider several evaluation metrics. The first metric

is communication congestion cost. Let c(v) be the total

amount of communications (transmission or reception) in

the entire protocol performed by some node v. Then the

congestion of the protocol is maxv∈V c(v), i.e., the greatest

amount of communications performed by any single node.

We also consider the total communication cost incurred by

the protocol over all nodes in the network. Since we only

wish to consider protocol overhead, we disregard the size

of the message payload (i.e., the number of bits in each

Mi). Communication overhead is measured assuming all

hash values, single-block ciphertexts, message authentication

codes and pseudorandom function ranges are of identical

length (e.g., 128 bits). Since these are the only values

exchanged in the protocols, we measure communication

overhead in terms of the number of cryptographic values

exchanged; this maps linearly to the actual number of bits

(e.g., exchanging 4 hash values involves an exchange of

4 · 128 = 512 bits).

The second metric is the round complexity of the pro-

tocol. In each round, every node is allowed to exchange

information (both ways) from only one other node. The

round complexity of the protocol is defined as the total

number of such rounds of interaction needed to authenticate

a single broadcast message, starting from when the sender

s initiates the protocol in the first round up until the latest

round by which time all receiver nodes have authenticated

the message. Since we are concerned only with correct

authentication and not denial of service, we measure only

honest round complexity. That is, for the purposes of this

metric, we do not consider malicious actions specifically

aimed at increasing the number of rounds (such as refusing

to respond, or connecting to an incorrect communication

partner, etc). Conceptually, it can be easier to think of all

nodes performing the protocol in lock-step, with all nodes

switching connection partners simultaneously at each round:

for clarity, this is how we will describe our protocols. In

practice, no synchronization is necessary for these protocols:

nodes can attempt to establish connections as soon as they

are able to do so in the protocol; if their partner is not ready

(e.g., it is busy with an existing connection, or waiting on a

dependency), then this connection attempt can fail or block

until the partner node is ready to connect.

Round complexity is related to actual protocol latency

when the amount of data exchanged per round remains rela-

tively small, such that the cost of transferring the data does

not strongly dominate over the cost of establishing the link.

To take this into account, we also consider the maximum

per-round data transfer, as measured by the amount of data

exchanged in the largest single-round message exchange

in the protocol. To remain practically viable, a round-

complexity optimization should not increase this quantity

by a large factor.

Even though some of the motivation of our topology cases

are drawn from wireless applications, we do not explicitly

consider the effect of wireless medium access contention

on the latency of the protocols. There are two reasons

for this. Firstly, we focus primarily on round complexity,

which is an intrinsic property of a broadcast authentication

protocol which always holds regardless of the characteristics

of the application on which it is deployed. Medium access

contention and wireless interference, on the other hand, are

extrinsic properties that vary depending on the specific phys-

ical deployment characteristics of the application and do not

hold as generally. Secondly, in terms of specific effects, we

note that under the linear topology, if we model interference

as occurring within a radius r of each pair of communi-

cating nodes, this only increases the round complexity and

communication congestion by at most an additive factor

of O(r) under our optimizations (see Section V-A2). This

reinforces the observation that medium interference does

not fundamentally change the general results derived in this

paper.

IV. BACKGROUND

We consider two classes of algorithms for broadcast

authentication for arbitrary topologies: the hash tree based

schemes and the hash chain based schemes. We first provide

a general description of these algorithms, and then show

optimizations and bounds for the various topology classes

that we consider in the subsequent sections.

A. Hash Tree Broadcast Authentication

To authenticate a message M to all nodes, the sender

could send a different MACKi
(M) to each receiver di. This

has poor communication congestion due to the large number

of MACs involved. Instead, we can compute a hash tree over

these authenticator values: since only the sender knows all

Figure 1. Hash Tree of PRF values. Authentication path of v3 is
highlighted (u1, v4).

keys needed to compute the leaves of this hash tree, the

adversary cannot derive the root value. Note that the idea of

using a hash tree to batch many MACs for a single message is

completely different from the common idea of using a hash

tree to batch many messages together to save authentication

costs (e.g., Wong and Lam’s scheme [23]).

In prior work, we described the hash tree based broadcast

authentication protocol for tree topologies [2]. The sender

constructs a binary hash tree T over a set of n leaf values

which contain the authentication codes for the message M .

The leaf values are {PRFKi
(M)|i = 1, . . . , n} where PRF

denotes a keyed pseudorandom function accepting arbitrary

length inputs (e.g.,Jutla’s construction [25]). The hash tree

T is constructed over this set of leaf values by repeatedly

generating parent vertices to unify adjacent subtrees of the

same height. For two subtrees with root vertices c1, c2,
respectively, a parent vertex p is generated using the rule

p = H(c1‖c2) where H is a collision-resistant hash func-

tion. This process is repeated until all the vertices are in

a single tree. Figure 1 shows such a hash tree; each arrow

indicates a hash dependency of a parent vertex on its (two)

children.

Given the root vertex r of a hash tree, we can verify the

inclusion of a given leaf value u by recomputing all hash tree

vertices on the path from u to r, or the authentication path

of u. The authentication path of vertex v3 is highlighted

in Figure 1. Each receiver di knows the position of its

respective PRFKi
(M) in the hash tree, and thus knows the

structure of the authentication path from PRFKi
(M) to r.

Security follows from the observation that the root vertex

r and the authentication path together can act as an authen-

ticator for M to di. This is because an adversary cannot

derive an acceptable root vertex value r′ for an unknown

leaf vertex value u: a good candidate for r′ must work for

many possible values of u; finding such a value implies the

ability to generate hash collisions for H (a formal proof of

this security property is available [26]).

In the original protocol for tree topologies, the authen-

tication paths are reconstructed in two-passes. The leaves

of the network perform a convergecast towards the sender

allowing internal network nodes to compute internal vertices

in the hash tree; subsequently, the sender initiates a wave of

messages spreading out towards the leaves resulting in the

Algorithm 1 Hash Tree Broadcast Authentication

Sender s:

construct hash tree T over leaf values PRFKi
(M)

r := root vertex of T .

disseminate (M, r) to all receivers

Each receiver di:
check that M is fresh (e.g., inspect seq. num), otherwise

abort.

release PRFKi
(M) to the network.

collaborate to reconstruct valid authentication path Pi

check Pi. If valid, accept M .

Figure 2. Hash chain

dissemination of all authentication paths. In Sections V-A

and VI-B, we show that we can speed this process up con-

siderably for the specific topology classes that we consider

in this paper.

B. Hash Chain Broadcast Authentication

Hash chains are used for broadcast authentication in such

protocols as the Guy Fawkes schemes (an example of which

is the Chained Stream Authentication algorithm or CSA) [7]

and in TESLA [9]. The basic structure of these algorithms

are similar and can be sketched as follows.

On initialization, the sender generates a hash chain of

some predetermined length k by randomly selecting a secret

seed value hk and then iterating a pre-image resistant hash

function H to generate a chain of k values such that hi−1 =
H(hi) for i = k − 1, k − 2, . . . , 0. Figure 2 shows a hash

chain. Receivers are loaded with the final hash chain value

h0 during initialization.

To authenticate the ith message mi, the sender broad-

casts (mi,MAChi
(mi)). Once all receivers have received

MAChi
(mi), the sender broadcasts hi. Receivers can check

that H(hi) = hi−1 and also that the MAC is correct given

mi and hi. If so, they accept the message.

The security of the scheme follows from the synchroniza-

tion requirement that hi is released only after all receivers

have stopped accepting candidates for MAChi
(mi). The

protocol thus temporally separates MAC generation from

MAC verification; at some point in the protocol, it is ensured

that hi becomes useless for MAC generation, and thus hi

can be safely released to facilitate MAC verification. The

different variants of hash chain based schemes use different

techniques to ensure this temporal separation; TESLA uses

loose time synchronization which implies additional as-

sumptions and protocol overheads, while CSA/Guy Fawkes

uses explicit acknowledgments which are expensive in terms

of communication overhead. In Section V-B we describe

several optimizations to speed up and to reduce the commu-

nication overhead of explicit acknowledgments.

C. Hash Tree vs Hash Chain: Trade-offs

The hash-chain schemes typically have lower congestion

and memory overhead than hash-tree schemes since only

one MAC value needs to be stored as opposed to a whole

authentication path. On the other hand the hash tree scheme

has the advantage of being able to easily recover from

missed reception since the PRF values of the hash tree

scheme can be selectively revealed by the sender without

compromising the security of the protocol; in hash-chain

schemes, if any receiver did not receive or respond to

all protocol messages, the protocol must be restarted from

scratch. A related advantage of hash-tree schemes is the

ability to perform authenticated multicast to any subset of

the receivers; hash-chain schemes cannot exclude a subset

of receivers since when the hash chain key is released, it

can potentially be used to forge messages to receivers in the

excluded subset.

V. LINEAR TOPOLOGY

We now examine optimizations of the hash tree and hash

chain protocols for the linear network topology. G is a

single path starting at s and ending at dn, in the sequence

(s, d1, d2, . . . , dn). In this topology, since the nth receiver is

n hops away from the sender, any protocol for disseminating

M must take at least n rounds.

There are numerous applications of broadcast authentica-

tion in a linear topology. For example, wireless networks

deployed in a linear environment naturally assume a linear

topology. Examples of such networks include sensor and

wireless networks deployed along corridors, roadways, tun-

nels and pipelines. In such environments, all applications

for broadcast authentication benefit from our optimizations.

Specific examples of such applications include network-key

updates in Zigbee, notifications to allow joining/leaving of

devices, and network-wide data query messages.

General sensor networks are often logically arranged in

a tree with the base station at the root [6], [27]. Paths

naturally occur in tree topologies as the subgraph of all the

nodes between the root and any leaf. Hence our algorithms

are useful for securing broadcast communications to all

nodes along any root-leaf path. A specific example of such

communications include node join/leave notifications. In the

event of a new node joining a tree topology as a leaf, all its

ancestors up to the root may need to be authentically notified

of the change in membership of their respective subtrees; the

notification would take the form of a broadcast along a linear

topology from the base station to all affected ancestors. A

similar argument applies for nodes leaving the topology and

reorganizations of the tree due to sporadic mobility.

More generally, the linear topology also occurs as a

routing path between any two endpoints. Broadcast authen-

tication on the routing path can then be used for functions

related to route maintenance and data transport. For example,

endpoints may wish to inform forwarders that they are still

actively using this routing path, or to request a certain traffic

rate on the route. Endpoints may also send out authenticated

packet loss statistics to help forwarders determine if they

are responsible for packet dropping bottlenecks. In scenarios

where a group key is shared between all nodes on the path

(e.g., for the purposes of preventing injection of packets

from nodes outside of the forwarding path), authenticated

broadcast may be used to maintain consistency in sequence

numbers or, in high traffic situations, to update the path key

periodically to prevent key overuse.

A. Hash Tree Based Schemes

In the basic hash tree based scheme [2], the protocol

proceeds in three passes. The first pass consists of a broad-

cast message front expanding outwards from the sender;

this disseminates the message M and the hash tree root r
to all nodes. The second pass is a convergecast message

front starting at the leaves of the network topology and

converging towards the sender; this allows internal nodes in

the topology to compute internal hash tree vertices. The third

front is another outgoing message front from the sender and

facilitates the dissemination of the computed internal hash

tree vertices to the rest of the network for the reconstruction

of each node’s respective authentication paths.

A naive implementation of the basic protocol on a linear

topology will result in a round complexity of 3n − 2 as

the first pass takes n hops to traverse the network while

the remaining two passes are from the nth receiver back

to the first and vice-versa. The maximum amount of data

transferred in a round is ⌈log n⌉ hash values (the length of

an authentication path in a hash tree). The communication

congestion of the basic protocol is ⌈log n⌉+ 2 hash values

(+1 due to minor asymmetries in the tree, and +1 for the

root r).

We show an optimization that reduces the round complex-

ity to 2n − 1 with no change in communication overheads

and only a small constant increase in maximum per-round

data transfer, and a further optimization that can achieve

optimal n round complexity by doubling both the congestion

overhead and the maximum per-round data transfer.

1) Optimization for 2n − 1 round complexity: The first

optimization is based on the following observation: as soon

as (M, r) is received by a node i, the value of PRFKi
(M)

can immediately be released to the (untrusted) network to

facilitate the derivation of authentication paths for other

nodes. In other words, each node can individually start to

reconstruct the hash tree as soon as it has received the

payload message M and does not have to wait for other

nodes to also receive M . This allows us to “piggy-back” the

dissemination of (M, r) onto the two passes that reconstruct

the hash tree, thus reducing round complexity to 2n− 1.

The optimization is as follows. For a linear topology of

n receivers d1, . . . , dn with node d1 being closest to the

sender, the hash tree is constructed with leaf vertices, from

left to right, (v1, . . . , vn), with vi = PRFKi
(M) where Ki

is the key shared between the sender and di. We define the

left off-path vertices Li for a hash tree leaf vi as the set of

all sibling vertices that are to the left of the path from i to

the root vertex r; similarly the right off-path vertices Ri of

vi is the set of all sibling vertices that are to the right of

the path. For example, in Figure 3, the left off-path vertices

of vertex 4 are vertices 3 and 9; similarly, there is one right

off-path vertex, 14. Given vi, Li and Ri, the authentication

path from vi to the root can be computed.

We show that Li+1 can be easily computed from Li and

vi. Intuitively, we can simply insert vi to Li and repeatedly

compute hash tree vertices as far up the authentication path

of vi as possible. This yields the deepest left-child in the

authentication path of vi. For example, in Figure 4, given

L4 (vertices 3,9) and vertex 4, we can first compute vertex

10 and then vertex 13, which is the first left-child in the

authentication path (4, 10, 13, 15). Vertex 13 is exactly the

left off-path vertex of vertex 5. More generally, let h be the

height of the hash tree. If Li has no vertex at maximum

depth h, then we can just add vi to Li and obtain Li+1.

Otherwise, let k be the deepest level of the hash tree which

has no vertices in Li. Then Li has vertices at all depths from

k+1 to h. Let them be uk+1, uk+2, . . . , uh respectively. Now

Li+1 has a vertex uk at level k: this vertex is root of the

largest subtree that contains vi as the right-most child, i.e., it

is the deepest left-child in the authentication path of vi. The

path from vi up to uk has each of the uk+1, uk+2, . . . , uh

as left-children; hence we can compute uk:

uk = H(uk+1‖H(uk+2‖ · · ·H(uh−1‖H(uh‖vi)) · · ·))
All vertices of Li+1 at depths less than k are the same as

those at the same depth in Li. A symmetrical reasoning

applies to computing Ri−1 from Ri and vi. The algo-

rithm thus completes in two passes: in the outgoing pass,

nodes compute left off-path vertices for their downstream

neighbors; in the incoming pass, nodes compute right off-

path vertices for their upstream neighbors. The message

and authenticator (M, r) are piggybacked onto the outgoing

pass. The algorithm is shown in Algorithm 2; an example is

illustrated in Figure 3.

The communication congestion of this protocol remains

⌈log n⌉+ 2 hash tree vertices. The round complexity of the

protocol is exactly 2n−1 rounds since the protocol proceeds

in two passes of the linear topology and the second pass does

not need to reach the sender. Total communications remains

unchanged (n⌈logn⌉ hash values) since this algorithm is

essentially a re-ordering of the messages in the original

Algorithm 2 2-pass Hash Tree Protocol

Sender s sends (M, r) to d1
for i = 1 to n do

Node di checks freshness of M (e.g. inspect seq. num),

otherwise abort.

Node di computes Li+1 from Li and vi = PRFKi
(M)

Node di sends (M, r), Li+1 downstream to Node di+1

end for

for i = n down to 1 do

Node di computes Ri−1 from Ri and vi = PRFKi
(M)

Node di sends Ri−1 upstream to Node di−1

end for

Figure 3. Example of Algorithm 2 with 8 nodes. Numbers indicate
transmitted hash tree vertices.

protocol. The maximum per-round data transfer increases

by one to ⌈log n⌉+ 1 due to the piggy-backing of r on the

outgoing pass.

2) Optimization for n round complexity: The optimiza-

tion of Section V-A1 reduced the number of passes of the

broadcast authentication protocol from three passes down

to two. We now present an additional optimization which

reduces the round complexity of the algorithm to the equiv-

alent of a single pass, i.e., n rounds. This optimization makes

the protocol optimally fast in terms of round complexity,

since all broadcast protocols on the linear topology require

at least n rounds.

The optimization is parameterizable to trade off round

complexity and congestion, and is applicable to all 2-

pass authentication protocols. The intuition is that we can

perform a variant of divide-and-conquer on the receiver set.

We observe that a 2-pass protocol takes 2n − 1 rounds

due to the round-trip time from the sender to the farthest

receiver and back. To reduce the size of this round-trip,

we can partition the set of n receivers into two contiguous

subsets R1 and R2. The first subset R1 contains the first

m receivers {d1, . . . , dm} (for some selected value of m)

and R2 contains the rest of the receivers {dm+1, . . . , dn}.
We then run the protocol separately for each subset. The

sender computes different authenticators T1, T2 for each

receiver subset R1, R2. Recall that for the hash-tree scheme,

the authenticators are the roots of the hash trees com-

Figure 4. Partitioning the receiver set

puted over the PRF values of the receiver set, so in

this case T1 is the root of the hash tree computed over

PRFK1
(M), . . .PRFKm

(M), while T2 is the root of the hash

tree computed over PRFKm+1
(M), . . .PRFKn

(M). Receiver

subset R1 performs the protocol using T1, and forwards T2

to R2 as part of its own outgoing pass; once the last node

dm receives T2, it is forwarded to dm+1 in the next round to

allow R2 to perform the protocol. Receiver subset R1 will

take 2m rounds: 2(m−1) rounds to pass messages within the

receiver set and an extra round to receive the first message

from s and another for rm to forward T2 to R2. Receiver

subset R2 will take no more than 2(n−m) +m = 2n−m
rounds since it has n − m receivers and needs m rounds

before it receives T2 forwarded across the m nodes of set

R1. Setting m = 2
3n causes both subsets to complete at the

same time (43n rounds) and minimizes the worst case round

complexity.

Figure 4 shows how partitioning the receiver set yields

lower overall round complexity. The more subsets we use,

the lower the round complexity, at the cost of greater conges-

tion due to the larger number of authenticators that have to

be forwarded to the respective receiver groups. For k subsets

R1, R2, . . . , Rk, worst case round complexity is minimized

by having each successive receiver subset be half the size of

the previous subset, i.e., |Ri+1| = 1
2 |Ri| for i = 1, . . . , n−1,

with the smallest subset having n/(2k − 1) receivers. This

results in an overall round complexity of n+n/(2k−1)−1
rounds. For values of n which are not divisible by 2k−1, we

need to round down the subset boundaries to the next largest

integer value. This may introduce up to one extra round

in each subset. Hence the round complexity is bounded by

n+ n/(2k − 1) rounds.

Each receiver subset Ri must receive a separate authenti-

cator Ti to execute its respective authentication protocol;

these authenticators must be forwarded through the first

group R1, adding to its congestion. For k groups, we

thus have a worst-case of ⌈log n⌉ + k + 1 hash values

of communication congestion at R1. Due to the additional

overhead of carrying the extra k authenticators across up to

n hops each, the total communication overhead increases

by up to nk cryptographic values, thus an upper bound

on total communications is n(⌈log n⌉ + k) hash values.

Figure 5. 3 groups of values forwarded separately for an extra 4 rounds

The maximum per-round data transfer also increases by k
cryptographic values to ⌈log n⌉+ k + 1.

Since the optimization achieves n + n/(2k − 1) round

complexity for k subsets, setting k = log n suffices to

achieve a round complexity of at most n + 1. To achieve

optimal n round complexity, we can use a slightly different

way of partitioning the receiver subsets as follows. Let

|Rk| = |Rk−1| = 1, and each preceding subset double in

size, e.g., |Rk−2| = 2, |Rk−3| = 4, and so on until R1

contains the remaining receivers. For example, a receiver

set of size n = 35 can be divided into 7 subsets of size

3, 16, 8, 4, 2, 1, 1 respectively. It can be seen that, except

possibly for R1 (which may complete early if n is not a

power of 2), all subsets complete their respective protocols

at the same time: after n rounds. This method of partitioning

yields k = ⌈log n⌉ + 1 subsets and involves a total of

2⌈log n⌉ + 2 congestion in the hash tree protocol. Total

congestion is 2n(⌈log n⌉+ 1) hash values.

Application of this family of optimizations increases the

maximum per-round data by ⌈log n⌉ + 1 hash values. This

expression grows only slowly with n (e.g., 176 bytes for a

network with 1000 nodes). Furthermore, none of the values

contributing to this data transfer are mutually dependent

in terms of processing or forwarding. Hence, in the few

applications for which per-round overhead is a factor, these

values can be independently scheduled with only a small

additive effect on the number of rounds (as shown in

Figure 5).

Another possible concern with this optimization is that, in-

stead of a single message front outgoing from the sender and

then returning from the farthest node, we now have multiple

message fronts traversing the network simultaneously. Since

the applications that drive the linear topology are primarily

wireless, interference and medium contention between may

prevent nodes that are close together from transmitting

simultaneously. However, we can show that for a fixed

interference radius δ, this implies at most an additional δ
rounds. We perform the following adaptations: instead of

splitting the receiver set into log n subsets, we stop halving

the sets when the smallest subset still has size at least δ; this

means that the receiver sets are of size n/2, n/4, . . . and so

on until the smallest set has size between 2δ− 1 and δ. We

then run the algorithm as normal, except that the returning

passes do not start until the outgoing pass has proceeded

out of interference range, i.e., we delay each returning pass

by δ rounds. It is not hard to see that this modification

completes within n + δ rounds and the communication

congestions remains bounded by O(logn). Hence, limited-

radius interference only contributes a fixed additive effect to

the number of rounds and does not fundamentally affect the

round complexity of the protocol.

B. Hash Chain Based Schemes

The operation of hash-chain based broadcast authenti-

cation schemes is described in Section IV-B. Within the

family of hash chain schemes, TESLA [9] uses time syn-

chronization to ensure all receivers have received the MAC

before releasing the hash chain key. Not only is secure time

synchronization an additional complication, but furthermore,

to ensure that a legitimate message is not rejected sim-

ply because it was delayed in transit, the delay between

broadcasting the MAC and releasing the key must be at

least the worst-case estimate of the round complexity from

the sender to the furthest node, which may be many times

the average case round complexity. In contrast, Guy-Fawkes

schemes like CSA [7] use explicit acknowledgments sent

from the receivers to the sender; only when the sender has

received acknowledgments from all nodes does it release

the hash chain key. This results in a three-phase protocol

with a round complexity of 3n rounds. We now describe

two optimizations that combine to reduce the number of

passes of the protocol from 3 to 2 passes, allowing us to use

the technique in Section V-A2 to improve this to optimal n
round complexity.

1) Optimization 1: Use Aggregated Acknowledgments:

In CSA, each receiver transmits a separate hash-chain based

ACK message back to the sender. This causes n messages in

total to be received by the sender, thus the communication

congestion of the scheme is n cryptographic values. Yao

et al. improve this for tree-based networks by proposing

the construction of an authenticated aggregate acknowledg-

ment via construction of a hash tree over the acknowledg-

ments [5], which reduces the congestion to a single hash

value; however the sender must know the exact topology of

the tree to verify the aggregated acknowledgment (instead

of just the receiver set).

We propose using XOR-based aggregate acknowledg-

ments [28], [2], [29] which can provide equivalent function-

ality without these drawbacks. The construction can be sum-

marized as follows: to acknowledge receipt of a message Mj

with MAC Tj , receiver di releases the value PRFKi
(Tj‖Mj)

to the network where Ki is the secret key shared between

receiver di and the sender, and PRF is a cryptographic hash

function. Since Ki is secret, no other node except receiver

i can produce this value. These values are aggregated using

XOR as they traverse the return-path to the sender until

ultimately the sender receives Aj =
⊕n

i=1 PRFKi
(Tj‖Mj).

Since the sender knows all the Ki, it can then check the

received aggregate value to see if it is correctly the XOR

of all the PRF values computed by each receiver; if any

of the receivers did not supply the correct PRF value then

the received aggregate value will be incorrect. Katz and

Lindell formally proved that the aggregate MAC is secure

against existential forgery if each individual PRF component

is also secure against existential forgery [29]. By using this

aggregated acknowledgment in the acknowledgment phase

of Guy Fawkes, we can achieve a 3-pass protocol with

constant congestion.

2) Optimization 2: Encrypt the Hash Chain Key: In

Guy Fawkes, the third pass where the hash chain key hj

is disseminated starts only after the sender has confirmed

that all receivers have received the MAC. When using

XOR-aggregated acknowledgments, this involves checking

the received aggregate acknowledgment against the cor-

rect value Aj that is the XOR of all the expected PRF

values. We make two observations. First, computation of

the aggregate acknowledgment can be performed on the

initial outgoing pass; this is because, similarly to the case

for the hash-tree schemes, it is safe for receiver di to

release its value PRFKi
(Tj‖Mj) as soon as it has received

message Mj . This allows each node to compute the running

XOR of its own PRF value with the values of all the

preceding receivers, until the final receiver dn computes

Aj =
⊕n

i=1 PRFKi
(Tj‖Mj). Second, we note that (1) Aj

can be precomputed by the sender and (2) Aj remains

computationally indistinguishable from a random value to

the adversary as long as it contains a PRF value from at

least one legitimate receiver. Hence, Aj can be used as a key

to encrypt the value of hj ; since Aj is only revealed once

all legitimate receivers have received Mj , this is precisely

the time to expose hj . In particular, in a linear topology,

this sender can include Ej = EAj
(hj) in the broadcast,

where EK(X) denotes the encryption of string X with key

K. When the broadcast reaches the last node dn, it then

decrypts Ej to reveal hj which is then sent back upstream

to allow the rest of the receivers to authenticate the message.

The result is a protocol with only two passes.

In general E can be any encryption function (e.g., AES),

but since each Aj is used as a key to encrypt only one

fixed-length plaintext hj , if we set the output lengths of the

PRF and the hash function to be equal, we can simply use

Aj as a pseudorandom masking factor for hj , i.e., Ej =
[
⊕n

i=1 PRFKi
(Tj‖Mj)] ⊕ hj . From this construction, it is

clear that if even one PRF value is unknown, the adversary

finds it infeasible to recover any bits of hj from Ej . The

protocol is described in pseudocode in Algorithm 3; the

proof of the security of this optimization is a straightforward

reduction of attacking the protocol to attacking either the

pre-image resistance of H or the distinguishability of the

PRF from a random function [26].

Like the basic CSA scheme, the algorithm requires a

freshness check on Mj . This prevents the adversary from

using possible old revealed values on the hash chain to

authenticate bogus messages.

The resultant protocol terminates in 2 passes and thus

results in a round complexity of 2n−1 for a linear topology.

Algorithm 3 Hash Chain Protocol with 2 passes

Require: Hash chain h0, . . . , hm

Mj = jth Message

s computes: Tj = MAChj
(Mj)

s computes: Ej =
⊕n

i=1 PRFKi
(Tj‖Mj)⊕ hj

Aj ← 0
s sends (Mj , Tj , Ej , Aj) to d1:

for i = 1 to n do

Check that Mj is from stage j;

If di has already attempted the algorithm for stage j or

later, abort.

di computes: Aj ← Aj ⊕ PRFKi
(Tj‖Mj)

di forwards (Mj , Tj , Ej , Aj) to di+1

end for

dn computes: hj ← Aj ⊕ Ej

for i = n downto 1 do

di checks Tj = MAChj
(Mj); if success, accept Mj .

di forwards hj to di−1

end for

Each of Tj , Ej , Aj and hj are passed through each node

in the network, resulting in a total of 4 cryptographic

values are sent through each receiver in the network. The

total communication cost is thus 4n cryptographic values.

The maximum per-round data transfer increases from 1
cryptographic value to 3.

3) Partitioning the receiver set: Since this protocol is

now a 2-pass protocol, the speedup trade-offs of Sec-

tion V-A2 apply directly. In general, n + n/(2k − 1)
round complexity is achievable with k subsets implying

a congestion overhead of 2(k + 1) cryptographic values.

Total communication cost remains n times the congestion,

i.e., 2n(k + 1). The maximum per-round data transfer

increases to 2k + 1 cryptographic values. Optimal n round

complexity is achievable with k = ⌈log n⌉+1 receiver sets,

at the cost of 2(⌈log n⌉ + 2) communication congestion.

Total communication cost is n times the congestion, i.e.,

2n(⌈logn⌉ + 2). The maximum per-round data transfer

increases to 2⌈log n⌉+ 3 cryptographic values; however, as

discussed in Section V-A2, this is unlikely to be a limiting

factor.

VI. FULLY CONNECTED TOPOLOGY

We now examine bounds and optimizations for the fully

connected topology. In the fully connected topology, G is

the complete graph Kn+1 of n + 1 vertices (including the

sender s and n receivers).

Fully-connected topologies are important in both theory

and practice. In terms of theoretical importance, round com-

plexity lower bounds proven on fully connected topologies

apply to all topologies. Since any graph G of n+1 nodes is a

subgraph of Kn+1, any algorithm for G is also an algorithm

for Kn+1; hence if we can show that no algorithm can be

Figure 6. Maximum Dissemination Tree

faster than f(n) on the complete graph Kn+1, the bound also

applies directly to arbitrary topologies. In terms of practical

importance, fully-connected topologies occur whenever a

network of nodes can achieve any-to-any addressability; this

commonly occurs on Internet-based distributed systems such

as peer-to-peer networks and grid computing.

A. Doubling Broadcast / Maximum Dissemination Trees

Most of the algorithms in this and subsequent sections rely

on well-known techniques and bounds for fast information

dissemination in arbitrary networks. Hence, as a preliminary,

we first consider the problem of disseminating a message M
from one node to as many other nodes as possible within t
rounds. A straightforward approach is doubling broadcast:

in each round, every node which has knowledge of M
communicates it to a different node that has not yet received

M . An inductive reasoning on t shows that this schedule

reaches the maximum number of nodes for each t; since each

node can only communicate with one other node in each

round, the number of nodes that have received M can at most

double at each round. Thus, after t rounds, up to 2t nodes

have received M . Figure 6 shows this process; the numbers

in the circled nodes indicate in which round the node first

receives the message. We define the communication pattern

caused by this optimal dissemination schedule the maximum

dissemination tree. A consequence of this schedule being

optimally fast is that any dissemination of a message from

one node to n nodes must take at least ⌈log2(n)⌉ rounds on

any topology.

B. Hash Tree Based Schemes

As mentioned in Section IV-A, the hash tree based broad-

cast authentication scheme takes three message passes to

and from the sender to the rest of the network. Since the

network is fully connected, it is easy to derive a maximum

dissemination spanning tree rooted at the sender that reaches

all nodes. The tree will have depth ⌈log(n + 1)⌉; three

passes on this tree will take 3⌈log(n + 1)⌉ rounds; this is

the fastest possible round complexity for the unoptimized

protocol. Authentication paths on this hash tree will have

O(logn) length; congestion and max per round data transfer

are also O(logn).
As an improvement, we present a schedule which takes

at most 2 log n + 1 rounds, with a maximum per-round

Figure 7. Path Reconstruction Phase

data transfer of 2 cryptographic values. We first describe

an algorithm for the case where n is a power of 2, i.e., the

hash tree is a perfect binary hash tree.

The protocol proceeds in two phases. In the first phase,

the sender computes the hash tree root r for the message M
using the construction of Section IV-A. Then the message

tuple (M, r) is disseminated using the repeated maximum

dissemination broadcast method of Section VI-A. This takes

log n + 1 rounds: one round for the sender to send the

initial message, then log n rounds for all receivers to receive

it. In the second phase, nodes collaborate to reconstruct

authentication paths. This phase of messages is illustrated

in Figure 7. There is one round of message exchanges for

each level of the hash tree, starting from the leaves. At each

level j, every node exchanges the hash tree vertex at level j
on its authentication path with that of its counterpart in the

neighboring subtree at level j. This allows it to compute

the next higher hash tree vertex (at level h − 1) on its

authentication path and thus repeat the process in the next

round. Within log n rounds all nodes will have computed

their authentication paths to the root. This process is shown

in Algorithm 4. The communication pattern is similar to all-

to-all broadcast on a hypercube.

It remains to address the case where n is not a power of

2. In this case, we can partition the receiver set into up to

log n subsets where each subset is a distinct power of 2. The

subsets correspond to the binary representation of n, e.g., for

n = 13, we have subsets of size 8, 4 and 1. The protocol

then runs, in parallel, one completely separate instance of the

protocol for each subset. Since the sender can only start one

instance of the protocol in each round, it starts the protocol

for the largest subset first, then it starts the protocol for the

second largest subset in the next round, and so on. Even

with this head start, the largest subset has the largest hash

tree and will be the last subset to complete verification; it

has 2⌊logn⌋ nodes and thus takes 1+2⌊log n⌋ ≤ 2 log n+1

Algorithm 4 Hash Tree Scheme

s sends (M, r) to all receivers using doubling broadcast

(Sec. VI-A).

Check freshness of M (e.g., inspect seq. num), if not

fresh, abort.

Otherwise, di sets vi[0]← PRFKi
(M)

for h = 0 to (log n)− 1 do

for i = 1 to n do

j ← ((i− 1)⊕ 2h) + 1
di sends to dj : vi[h]
di receives from dj : vj [h]
if i < j do vi[h+ 1]← H(vi[h]‖vj [h])
if i > j do vi[h+ 1]← H(vj [h]‖vi[h])

end for

end for

Each di checks authentication path in vi.

rounds to complete verification.

The greatest amount of per-round data transfer occurs

when the nodes are exchanging hash-tree vertices: since one

hash value is transmitted and received respectively, a total of

2 cryptographic values are exchanged. The communication

congestion overhead for this scheme is at most 2⌈log n⌉
values: ⌈log n⌉ for the dissemination of r, and ⌈log n⌉
for the authentication path. The sender is responsible for

sending up to ⌈log n⌉ cryptographic values, leading to a total

communication overhead of (2n+ 1)(⌈logn⌉).
Hash Chain Algorithms: We note that a 2-pass hash-

chain based scheme (see Section V-B2) can follow the

same schedule, resulting in similar round complexity and

communication overheads. Instead of exchanging hash tree

vertices, receivers will exchange their XOR-aggregated ac-

knowledgments; by the end of the protocol each receiver

has collected the aggregated acknowledgments of all the

receivers in the network and can thus decrypt the hash chain

value and authenticate the broadcast message.

C. Lower Bounds on Round Complexity vs Congestion

Several of our schemes for the linear topology are round

complexity-optimal: they take n rounds, which is the lower

bound on the number of rounds needed for message dis-

semination. It is less clear what lower bounds exist for

the fully connected topology. The requirements for message

dissemination (log n rounds for doubling broadcast) provide

a loose bound, which can be achieved by attaching a dig-

ital signature to every message. However digital signatures

represent a fundamentally harder problem than authenti-

cation, being both more computationally expensive and

providing additional unnecessarily strong properties such as

non-repudiation. Therefore, we investigate what bounds can

be derived for protocols which do not involve the digital

signature problem.

We prove that, any network broadcast authentication pro-

tocol that with a fixed communication pattern that completes

in at most (2− ρ) logn+ k rounds (where k is a constant)

must imply a digital signature or have communication over-

head at least proportional to nρ. By implication, any protocol

that completes in asymptotically less than 2 log n rounds

cannot have communication complexity polylogarithmic in

n unless it also provides signature properties (i.e., it solves

a fundamentally harder problem).

We build on the result of Boneh, Durfee and Franklin [18]

which showed that any multicast MAC (or MMAC) for

n receivers must either imply a digital signature or have

overhead proportional to n. An MMAC is defined by

three algorithms KEY-GEN, MAC-GEN, MAC-VER. Algo-

rithm KEY-GEN takes a security parameter s and a number

of receivers n and generates the sender key sk and receiver

keys rk1, . . . , rkn for each receiver d1, . . . , dn. Algorithm

MAC-GEN takes a payload message M and a sender key

sk returns a fixed-length tag T = MAC-GEN(M, sk). Al-

gorithm MAC-VER takes a payload message M , a tag T ,

and a receiver key K and returns a bit indicating whether

the tag T verified correctly for payload message M , un-

der the constraint that correctly generated tags from the

sender always verify successfully for all receivers, i.e.,

MAC-VER(M, MAC-GEN(M, sk), rki) = ‘accept’ for all

i = 1, . . . , n.

MMACs are static codes; in this sense they can be

considered a special case of the set of broadcast authen-

tication protocols under the restriction that the sender only

produces a single, fixed-length tag T for all receivers. Each

receiver must then perform verification by inspection of

T without interacting with the sender or other receivers.

General broadcast authentication protocols, on the other

hand, allow the sender to send different protocol messages to

different receivers, which can perform rounds of interaction

with each other or the sender to determine if the payload is

legitimate. Boneh, Durfee and Franklin’s result holds only

for MMACs and do not apply to broadcast authentication

protocols in general. We extend their result to show that if a

broadcast authentication protocol is fast, then it implies an

MMAC. The basic idea is that if the protocol is fast, then

there must exist a (large) set of receivers that did not interact

with each other in the protocol; in the absence of interaction

between receivers, a broadcast authentication protocol can be

reduced to an MMAC.

The details of the proof are as follows. To begin with,

assume that all receivers are deterministic, i.e., they do not

perform any purely random coin tosses during the protocol,

although they may simulate this with pseudorandom val-

ues generated from a preloaded seed. We assume that the

communication pattern is static for each execution of the

protocol, i.e., the set of nodes that communicate with each

other in each round is fixed regardless of the message or tag

originated by the sender. These assumptions are consistent

with all known broadcast authentication protocols in the

literature. We do not count setup overhead (such as key

establishment, etc) in the rounds of the protocol; thus we can

assume that no receiver starts the protocol until it receives

a message that contains information from the sender.

The proof involves a reduction from a fast broadcast

authentication protocol to an MMAC; we define the security

games for each class of problems as follows. For the MMAC

security game: (1) The adversary adaptively selects a proper

subset SA of S for compromise, and the challenger provides

A with all secret information known by these receivers as

they are selected; the adversary can expand her choice of

SA based on this information. (2) The adversary can query

the challenger to provide valid MMACs for some adaptively

chosen M1, . . . ,Mq. (3) The adversary constructs a forged

data-message M ′ 6= Mi for all i, . . . , q and a tag T ′.

The adversary wins the game if some receiver in S − SA

accepts message M ′. We say the MMAC is ǫ-secure if the

probability of any adversary winning is at most ǫ.

The security game for existential forgery on the broad-

cast authentication protocol is similarly structured: (1) The

adversary adaptively selects a subset of receivers C for

compromise, and the challenger provides all secret infor-

mation known by these receivers. (2) The adversary can

query the challenger to execute the authentication protocol

for some adaptively chosen M1, . . . ,Mq. (3) The adversary

constructs a forged data-message M ′ 6= Mi for all i, . . . , q,

and sends a (polynomially bounded) series of messages to

some receivers not in C. The adversary wins if any of

these uncompromised receivers accept M ′ because of these

messages. We say the protocol is ǫ-secure if the probability

of any adversary winning is at most ǫ.

The construction of a MMAC from a broadcast protocol

is based on finding a set of nodes that do not interact directly

or indirectly in the protocol. More formally:

Definition 1. For a given sequence of messages in a

protocol, Node A is an upstream node of node B if A could

have sent any information to Node B in the protocol. Let B
be a downstream node of node A iff node A is upstream of

B.

More precisely, A is upstream of B if there exists a

sequence of nodes X1, . . . , Xk and messages m1, . . . ,mk

in successive (not necessarily consecutive) rounds that start

with A and end with B (e.g., A→ X1 : m1, X1 → X2 : m2,

. . ., Xk → B : mk in successive rounds).

Lemma 1. Let P be a broadcast authentication protocol

that is ǫ-secure against arbitrary coalitions of receivers that

has congestion at most c(n) bits. Let S be a subset of m
receivers in the protocol P such that no two members of

S are upstream (or downstream) of each other. Then there

exists an MMAC for m receivers with tag length no more

than c(n) bits that is also ǫ-secure.

Proof: We can construct a MMAC for receivers

s1, . . . , sm in S by defining the three subroutines KEY-

GEN,MAC-GEN and MAC-VER in terms of the broadcast

authentication protocol P . Let KEY-GEN be defined as

follows: for each receiver si in S, let rki be the receiver key

of si in P ; let the information sk known to the sender be all

the information known by all principals in the broadcast pro-

tocol. This allows the sender to fully simulate the execution

of any run of the protocol; in particular it can predict a-priori

the set of messages it will send in any run of the protocol

for a given message M . Hence, let the tag T generated by

MAC-GEN(M, sk) be the ordered set of all messages sent by

the sender for a given broadcast of message M . We define

MAC-VER(M,T, rki) such that it simulates the operation of

P to the point of verification by receiver si. Let RS be the

set of all nodes that are upstream of any node in S. By

definition of S, RS ∩S = ∅. Encode (publicly) inside MAC-

VER all the protocol information associated with the nodes

in RS (including their receiver keys). By definition of RS ,

this information allows any MMAC receiver si to accurately

simulate the entire broadcast protocol from the point of view

of node si in the broadcast protocol; in other words, all

messages sent and received by node si in the broadcast

protocol can be generated from this information by MMAC

receiver si. We can thus define MAC-VER(M,T, rki) to

return ‘accept’ if si accepts the payload M in the simulation

of the protocol P where the sender sends the messages

encoded in T , and ’reject’ if si does not accept M .

Since the protocol P has at most c(n) bits of congestion,

the tag T is no more than c(n) bits since it consists of all

messages from a single node (the sender). It remains to show

that the MMAC construction is at least as secure as P .

Let adversary A be an adversary for the MMAC game

that wins with probability ǫ. We define Adversary B for

attacking the broadcast authentication protocol that runs A
as a subroutine. Adversary B first compromises RS , the set

of all nodes upstream of S. From this, B constructs the

KEY-GEN,MAC-GEN and MAC-VER for the MMAC, which

is fed to A. Now A adaptively selects some set SA for

compromise; these nodes are also adaptively compromised

by B in the broadcast authentication protocol. By definition

of S, RS∩S = ∅, so the set S−SA remain uncompromised

for both adversaries. During the chosen message attack

phase, queries of A are forwarded to B’s challenger, and

the corresponding MMACs are reconstructed by inspection

of the sender’s messages for Mi. Now when attacker A
produces M ′ and T ′, since Adversary B has compromised

all receivers upstream of S, it can use this information as a

script to (interactively and independently) simulate the pro-

tocol P to each member of S. Since MAC-VER(M ′, T ′, rki)
succeeds with at least ǫ probability for some receiver in

S − SA, by construction, the chance of Adversary B suc-

cessfully causing a receiver in S − SA to accept the forged

broadcast message M ′ is also ǫ.

Lemma 2. In any broadcast authentication protocol, for any

topology, at least n/2 nodes start executing the protocol only

after ⌊log n⌋ rounds.

Proof: The doubling broadcast of Sec. VI-A) is the

fastest rate at which information can spread in the network.

At round ⌊log n⌋ − 1, no more than 2⌊logn⌋−1 ≤ n/2
nodes have received their first message of the protocol; the

remaining nodes must start the protocol after ⌊log n⌋ rounds.

Lemma 3. Let G be a network topology and L ⊆ V be a

subset of the nodes in G. Let U(v, t) be an upper bound

on the number of nodes in L that can receive information

from a node v ∈ L within t rounds. Then U(v, t) is also

an upper bound on the number of nodes in L that can send

information to v within t rounds in the topology.

Proof: Any schedule for disseminating information

from v can be converted to a schedule for converge-casting

information to v by reversing the schedule chronologically

and reversing the direction of all communications. Hence, in

a fixed topology, the maximum possible number of upstream

and downstream nodes from a given node v are the same.

Lemma 4. If a broadcast authentication protocol takes no

more than (2 − ρ)⌊log n⌋ rounds, then there exists a set S
of at least 1

4n
ρ receivers that are not mutually upstream or

downstream of each other.

Proof: Let L be the set of receivers which started the

protocol after round ⌊log n⌋. By Lemma 2, |L| ≥ n/2.

The nodes in L only have (1− ρ)⌊log n⌋ rounds remaining

in which to exchange information. By the doubling broad-

cast of Section VI-A, any node in L can reach at most

2(1−ρ) log n ≤ n1−ρ other members of L within that time;

by Lemma 3, likewise less than n1−ρ of the other nodes in

L can be upstream nodes of li. Hence, we can construct S
as follows: starting with empty S, select any node li in L;

remove it from L and add it to S; also remove all nodes in L
that are upstream or downstream of li. After each selection,

the size of L decreases by less than 2n1−ρ nodes. Hence,

we can perform such a selection at least 1
2n/2n

1−ρ = 1
4n

ρ

times. The resultant S has at least 1
4n

ρ nodes each of which

are neither upstream nor downstream of each other.

Theorem 1. Any deterministic ǫ-secure broadcast protocol

taking at most (2 − ρ)⌊logn⌋ rounds either implies an

(ǫ+1/2m)-secure signature mechanism or requires at least
1
4n

ρ −m bits of congestion where m is a constant security

parameter (e.g., 128).

Proof: By Lemmas 4 and 1, any deterministic broadcast

protocol taking at most (2 − ρ)⌊logn⌋ rounds implies

an equivalently-secure MMAC for 1
4n

ρ receivers with tag

length equal to the congestion at the sender. Boneh, Durfee

and Franklin [18] showed that an ǫ-secure MMAC for r
receivers with tag length no more than r −m bits implies

an (ǫ+1/2m)-secure signature scheme. Hence, the broadcast

protocol either involves the use of a (ǫ + 1/2m)-secure

signature primitive, or it must incur at least 1
4n

ρ −m bits

of congestion at the sender.

More significantly, this implies that no deterministic

broadcast protocol can take asymptotically less than 2 log n
rounds while achieving congestion complexity polylogarith-

mic in n. This means that the hash tree based algorithm of

Section VI-B achieving 2 log n+1 rounds is asymptotically

optimal for protocols with polylog congestion complexity; in

other words the existence of the algorithm of Section VI-B

shows that bound we have proved is tight for polylog-

congestion algorithms under the full-duplex communication

model. As noted earlier in the beginning of SectionVI, this

lower bound holds for all topologies. Since the algorithm of

Section VI-B relies on a two-way exchange of information

in each round, whether this bound is tight for the half-

duplex communication model (where all communications

are strictly one-way in each round) remains an open ques-

tion.

VII. EXTENDING THE LOWER BOUND TO TREE

TOPOLOGIES

The method of proving the round complexity lower bound

of 2 logn for arbitrary topologies can be extended to trees.

The proof for trees follows the same structure as the

proof for fully connected topologies (Section VI-C); while

information spreads at the rate of 2t in fully-connected

topologies, we can show that it spreads at a slower rate

between leaf nodes in trees and hence the round complexity

lower bound is higher. Specifically, we prove the following

lemma:

Lemma 5. Let v be a vertex at the greatest depth in an

arbitrary tree topology with a designated root r. The number

of nodes that can be reached from v within t rounds is no

more than φt+3/
√
5, where φ is the golden ratio (≈ 1.618).

Proof: We consider the set of all nodes reachable from

each node at each depth from u to the root. We define a

term T (t, h) as the size of the h height-bounded maximum

dissemination tree (see Section VI-A, Figure 6) of t rounds.

This can be defined as the maximum size of the set of nodes

reached from a single node v0 given t rounds such that no

node is more than h hops away from v0. This can be obtained

from the maximum dissemination tree T (t) by truncating off

all levels with depth greater than h.

We observe that T (t, h) = T (t− 1, h) + T (t− 1, h− 1).
This follows from the observation that in the first round,

the original node v0 can send to at most one other node

v1; in the remaining t− 1 rounds, each of these two nodes

then continue disseminating into their respective subtrees,

except that the height bound of the maximum dissemination

Figure 8. Reachable nodes Figure 9. Structure of T (t, h)

tree rooted at v1 is one less than the original height bound h.

This reasoning is shown in Figure 9. For base cases, we note

that, for any x, T (x, 0) = 1 (a height bound of 0 does not

allow the original node to disseminate to any other node) and

T (0, x) = 1 (with 0 rounds, no dissemination takes place).

We can now consider the maximum number of nodes

reachable from a max-depth leaf vertex u within t rounds.

The argument is illustrated in Figure 8. The figure shows

the nodes between u and the root r. The node ui is i
levels above u. It can be reached no earlier than at round

i. Thus, ui has t − i rounds remaining to disseminate into

its subtree. Since u is a node at maximum depth in the tree,

the subtree rooted at ui has a height bound of i. Hence, the

maximum number of nodes reached from ui is T (t − i, i).
A bound on the total number of nodes reachable from u in t
rounds is thus F (t) =

∑t
i=0 T (t−i, i). Using the recurrence

T (t, h) = T (t− 1, h)+T (t− 1, h− 1) we can expand F (t)
as follows:

F (t) =

t∑

i=0

T (t− i, i)

= T (t, 0) +
t−1∑

i=1

T (t− i, i) + T (0, t)

= 1 +

t−1∑

i=1

[T (t− i− 1, i) + T (t− i− 1, i− 1)] + 1

= T (t− 1, 0) +
t−1∑

i=1

T (t− 1− i, i)

+

t−1∑

i=1

T (t− 2− (i− 1), i− 1) + 1

=

t−1∑

i=0

T (t− 1− i, i) +

t−2∑

j=0

T (t− 2− j, j) + 1

= F (t− 1) + F (t− 2) + 1

By substituting F ′(t) = F (t) + 1, we can see that F ′(t) =
F ′(t − 1) + F ′(t − 2) yielding a Fibonacci series. From

the base cases F (0) = 1, F (1) = 2 we can show F (t) =
Fib(t+ 3)−1 where Fib(x) is the xth number in the standard

Fibonacci series. From Binet’s formula, Fib(x) ≤ ⌈φx/
√
5⌉,

hence F (t) < φt+3/
√
5.

Lemma 6. If a broadcast authentication protocol on a tree

topology takes no more than (2.44−ρ) log n−2.33 rounds,

then there exists a set S of at least 1
4n

0.694ρ receivers that

are not mutually upstream or downstream of each other.

Proof: Let L be the set of receivers which started the

protocol after round log n − 1. By Lemma 2, |L| ≥ n/2.

Consider the maximum-depth node u in L relative to the

sender at the root of the tree topology. We can bound the

number of members of L reachable by u in the remaining

rounds after the first log n rounds by Lemma 5 because

any nodes that are at a greater depth than u in the tree

are all not in L and are hence irrelevant to the count.

Let t be the number of rounds needed for u to reach

all n receivers. We can set φt+3/
√
5 = n, and solve

t = logφ n + (logφ
√
5 − 3)> 1.44 log n − 1.33. Hence, in

the remaining (1.44 − ρ) logn − 1.33 rounds, u can reach

at most φ(1.44−ρ) logn+1.67/
√
5 ≤ n1−0.694ρ total members

of L (including u itself); by Lemma 3, likewise less than

n1−0.694ρ of the other nodes in L can be upstream nodes of

li. Hence, we can construct S as follows: starting with empty

S, select a node li that is at the greatest depth in the tree of

all the nodes in L; remove it from L and add it to S; also

remove all nodes in L that are upstream or downstream of li.
Repeat until L is empty. After each selection, the size of L
decreases by no more than 2n1−0.694ρ nodes. Hence, we can

perform such a selection at least 1
2n/2n

1−0.694ρ = 1
4n

0.694ρ

times. The resultant S has at least 1
4n

0.694ρ nodes each of

which are neither upstream nor downstream of each other.

Theorem 2. Any deterministic ǫ-secure broadcast protocol

on a tree topology taking at most (2.44 − ρ) logn − 2.33
rounds either implies an (ǫ+1/2m)-secure signature mech-

anism or requires at least 1
4n

0.694ρ −m bits of congestion

where m is a constant security parameter (e.g., 128).

Proof: Identical to the proof of Theorem 1, except using

Lemma 6 instead of Lemma 4.

Theorem 2 implies that any protocol with at most (2.44−
ρ) logn−2.33 rounds on a tree topology must involve either

a signature scheme or congestion polynomial in n. In partic-

ular this rules out the possibility of strictly 2-pass schemes

on max-dissemination trees with polylog congestion, since

such a scheme would take only 2 log n rounds. From the

discussion at the beginning of Section VI-B, we note that a

3-pass broadcast authentication protocol takes only 3 log n
rounds on maximum dissemination trees; we conjecture that

the small gap factor between 2.44 and 3 seems to indicate

that the current 3-pass schemes are likely round complexity-

optimal for such trees, i.e., the true lower bound over all trees

is possibly 3 logn.

Rounds Max data per round Congestion Total comm.

Linear Topology

HT (Basic) [2] 3n− 2 ⌈log n⌉ ⌈log n⌉+ 2 n⌈logn⌉
HT (Sec.V-A1) 2n− 1 ⌈log n⌉+ 1 ⌈log n⌉+ 2 n⌈logn⌉
HT, k subsets (Sec.V-A2) n+ n

(2k−1)
⌈log n⌉+ k + 1 ⌈log n⌉+ k + 1 n(⌈logn⌉+ k)

HT, ⌈log n⌉+ 1 subsets n 2(⌈log n⌉+ 1) 2(⌈log n⌉+ 1) 2n(⌈logn⌉+ 1)
HC (Basic) [5] 3n 1 3 3n
HC, 2-pass (Sec.V-B2) 2n− 1 3 4 4n
HC, k subsets (Sec.V-B2) n+ n

(2k−1)
2k + 1 2(k + 1) 2n(k + 1)

HC, ⌈log n⌉+ 1 subsets n 2⌈log n⌉+ 3 2(⌈log n⌉+ 2) 2n(⌈logn⌉+ 2)
Tree Topology

Lower Bound (Sec.VII) (2.44− ρ) logn− 2.33 – Ω(n0.694ρ) –

Full Topology

HT (Max. Dissem. Tree) 3⌈log(n+ 1)⌉ Θ(log2 n) Θ(log2 n) Θ(n log2 n)
HC (Max. Dissem. Tree) 3⌈log(n+ 1)⌉ 1 ⌈log n⌉ 3(n+ 1)
Lower Bound (Sec.VI-C) (2− ρ) logn – Ω(nρ) –

HT/HC (Sec.VI-B) 2⌈log n⌉+ 1 2 2⌈log n⌉ (2n+ 1)⌈logn⌉
HT: Hash Tree based scheme; HC: Hash Chain based scheme.

Italics denote unoptimized schemes for comparison.

Lower Bounds establish a relationship between min. number of rounds and min. congestion

Table I
ROUND COMPLEXITY AND CONGESTION BOUNDS OF OUR PROTOCOLS.

VIII. SUMMARY AND CONCLUSION

A summary of the results presented in this paper is

presented in Table I. The new protocols avoid the high

computation overhead of digital signatures and the high

communication overhead of one-time signatures and multi-

receiver MACs, as well as the time synchronization needed

by TESLA. In terms of round complexity and commu-

nication congestion, our protocols provide points in the

design space that are not achievable by previously published

protocols. In particular, for the linear topology, the hash

tree scheme achieves the fastest possible round complexity

n with only O(logn) congestion; the hash chain scheme

achieves constant congestion with only 2n round complexity.

For the fully connected topology, the hash tree scheme

requires at most 2⌈log n⌉ + 1 round complexity with only

O(logn) congestion; since we also show that this is the

fastest possible round complexity achievable for schemes

with polylogarithmic congestion, this also functions as an

existence proof that the 2 log n bound is asymptotically tight

on the coefficient of log n for the full-duplex communication

model. Our optimizations do not significantly increase the

per-round communication cost.

The other main contribution of this paper is in show-

ing previously uninvestigated round complexity bounds for

symmetric-key-based broadcast authentication in fully con-

nected and tree topologies. We show a tight round com-

plexity bound of 2 logn rounds for broadcast authentication

schemes with polylogarithmic congestion in any topology

and another round complexity lower bound of 2.44 log n−
2.33 rounds for trees. These lower bounds show the funda-

mental round complexity limitations of broadcast authentica-

tion protocols, and can inform the design constraints of new

authentication protocols in networks. The new bounds also

significantly extend the relevance of the result on multicast

message authentication by Boneh, Durfee and Franklin [18].

The previous result applied only to static authentication

codes and did not address protocols involving multiple

interactions between receivers, which are in fact the primary

methods of multicast message authentication in practice. In

our proofs of round complexity lower bounds, we greatly

improve the relevance of this result by showing how it can

be extended to apply to general authentication protocols by

considering round complexity. This significantly expands the

existing level of understanding about the fundamental limits

in signature-free multicast authentication.

ACKNOWLEDGMENTS

We would like to thank Patrick Tague and the anony-

mous reviewers for their helpful feedback. This research

was supported by CyLab at Carnegie Mellon under grants

DAAD19-02-1-0389 and MURI W 911 NF 0710287 from

the Army Research Office, and grant CNS-0347807 from

the National Science Foundation. The views and conclusions

contained here are those of the authors and should not be

interpreted as necessarily representing the official policies

or endorsements, either express or implied, of ARO, CMU,

CyLab, NSF, or the U.S. Government or any of its agencies.

REFERENCES

[1] R. Anderson, F. Bergadano, B. Crispo, J. Lee, C. Manifavas,
and R. Needham, “A new family of authentication protocols,”
SIGOPS Oper. Syst. Rev., vol. 32, no. 4, pp. 9–20, 1998.

[2] H. Chan and A. Perrig, “Efficient security primitives derived
from a secure aggregation algorithm,” in Proc. ACM Conf. on
Computer and Communications Security, 2008, pp. 521–534.

[3] S. Johnsson and C. Ho, “Optimum broadcasting and per-
sonalized communication in hypercubes,” IEEE Trans. on
Computers, vol. 38, no. 9, pp. 1249–1268, 1989.

[4] N. Lynch, Distributed algorithms. Morgan Kaufmann, 1996.

[5] T. Yao, S. Fukunaga, and T. Nakai, “Reliable broadcast
message authentication in wireless sensor networks,” in Proc.
Workshops on Emerging Directions in Embedded and Ubiq-
uitous Computing, 2006, pp. 271–280.

[6] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong,
“TAG: a tiny aggregation service for ad-hoc sensor networks,”
SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 131–146, 2002.

[7] F. Bergadano, D. Cavagnino, and B. Crispo, “Chained stream
authentication,” in Proc. Int. Workshop on Selected Areas in
Cryptography, 2001, pp. 144–157.

[8] T. Heer, S. Götz, O. Garcia-Morchon, and K. Wehrle, “Al-
pha: An adaptive and lightweight protocol for hop-by-hop
authentication,” in Proc. Conf. on Emerging Networking Ex-
periments and Technologies, 2008.

[9] A. Perrig, R. Canetti, J. Tygar, and D. Song, “Efficient
authentication and signing of multicast streams over lossy
channels,” in Proc. IEEE Symp. on Security and Privacy,
2000, pp. 56–73.

[10] D. Liu and P. Ning, “Multi-level uTESLA: Broadcast au-
thentication for distributed sensor networks,” ACM Trans. in
Embedded Computing Systems, vol. 3, no. 4, pp. 800–836,
2004.

[11] Y. Chen, I. Lin, C. Lei, and Y. Liao, “Broadcast authentication
in sensor networks using compressed bloom filters,” in Proc.
Int. Conf. on Distributed Computing in Sensor Systems), 2008,
pp. 99–111.

[12] S. Zhu, S. Xu, S. Setia, and S. Jajodia, “LHAP: a lightweight
hop-by-hop authentication protocol for ad-hoc networks,” in
Proc. Int. Conf. on Distributed Computing Systems, 2003, pp.
749–755.

[13] M. Luk, A. Perrig, and B. Whillock, “Seven cardinal prop-
erties of sensor network broadcast authentication,” in Proc.
ACM Workshop on Security of Ad Hoc and Sensor Networks,
2006, pp. 147–156.

[14] Y. Desmedt, Y. Frankel, and M. Yung, “Multi-receiver/multi-
sender network security: efficient authenticated multi-
cast/feedback,” in Proc. Conf. of the IEEE Computer and
Communications Societies, 1992, pp. 2045–2054.

[15] R. Safavi-Naini and H. Wang, “New results on Multi-Receiver
authentication codes,” in Proc. Int. Conf. on the Theory and
Application of Cryptographic Techniques, 1998, pp. 527–544.

[16] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and
B. Pinkas, “Multicast security: a taxonomy and some efficient
constructions,” in Proc. Conf. of the IEEE Computer and
Communications Societies, 1999, pp. 708–716.

[17] W. Zhang, N. Subramanian, and G. Wang, “Lightweight and
compromise-resilient message authentication in sensor net-
works,” in Proc. IEEE Conf. on Computer Communications,
2008, pp. 1418–1426.

[18] D. Boneh, G. Durfee, and M. Franklin, “Lower bounds for
multicast message authentication,” in Proc. Int. Conf. on the
Theory and Application of Cryptographic Techniques, 2001,
pp. 437–452.

[19] R. Gennaro and P. Rohatgi, “How to sign digital streams,” in
Proc. Int. Cryptology Conf., 1997, pp. 180–197.

[20] P. Golle and N. Modadugu, “Authenticating streamed data in
the presence of random packet loss,” in Proc. Network and
Distributed System Security Symp., 2001, pp. 13–22.

[21] J. M. Park, E. Chong, and H. Siegel, “Efficient multicast
packet authentication using signature amortization,” in Proc.
IEEE Symp. on Security and Privacy, 2002, pp. 227–240.

[22] S. Miner and J. Staddon, “Graph-based authentication of dig-
ital streams,” in Proc. IEEE Symp. on Security and Privacy,
2001, pp. 232–246.

[23] C. K. Wong and S. Lam, “Digital signatures for flows and
multicasts,” in Proc. Int. Conf. on Network Protocols, 1998,
pp. 198–209.

[24] S. Zhu, S. Setia, S. Jajodia, and P. Ning, “An interleaved hop-
by-hop authentication scheme for filtering of injected false
data in sensor networks,” in Proc. IEEE Symp. on Security
and Privacy, 2004, pp. 259–271.

[25] C. Jutla, “PRF domain extension using dags,” in Proc. Theory
of Cryptography Conf., 2006, pp. 561–580.

[26] H. Chan, “Authenticated communication and computation in
known-topology networks with a trusted authority,” PhD Dis-
sertation, Carnegie Mellon University, Department of Com-
puter Science, 2009.

[27] Zigbee Alliance, “Zigbee specification document 053474r17,”
2008.

[28] H. Chan, A. Perrig, and D. Song, “Secure hierarchical in-
network aggregation for sensor networks,” in Proc. ACM
Conf. on Computer and Communications Security, 2006, pp.
287–297.

[29] J. Katz and A. Lindell, “Aggregate message authentication
codes,” in Proc. Cryptographers Track at the RSA Conf.,
2008, pp. 155–169.

