
SIA: Secure Information Aggregation in Sensor Networks

HAOWEN CHAN

Carnegie Mellon University

ADRIAN PERRIG∗

Carnegie Mellon University

BARTOSZ PRZYDATEK†

ETH Zurich

DAWN SONG

Carnegie Mellon University

Abstract

In sensor networks, data aggregation is a vital primitive enabling efficient data queries. An on-site aggregator

device collects data from sensor nodes and produces a condensed summary which is forwarded to the off-site querier,

thus reducing the communication cost of the query. Since the aggregatoris on-site, it is vulnerable to physical

compromise attacks. A compromised aggregator may report false aggregation results. Hence, it is essential that

techniques are available to allow the querier to verify the integrity of the resultreturned by the aggregator node.

We propose a novel framework for secure information aggregation insensor networks. By constructing efficient

random sampling mechanisms and interactive proofs, we enable the querier to verify that the answer given by the

aggregator is a good approximation of the true value, even when the aggregator and a fraction of the sensor nodes

are corrupted. In particular, we present efficient protocols for secure computation of the median and average of the

measurements, for the estimation of the network size, for finding the minimum and maximum sensor reading, and for

random sampling and leader election. Our protocols require only sublinear communication between the aggregator

and the user.

Keywords: sensor networks, information aggregation, security, approximate interactive proofs.

1 Introduction

Sensor networks can provide economical solutions in many applications such as real-time traffic monitoring, wildfire

tracking, wildlife monitoring, or building safety monitoring. In a sensor network, hundreds or thousands of wireless

sensor devices calledsensor nodescollectively monitor an area, generating a substantial amount of data. An important

∗Contact author. Email: adrian@ece.cmu.edu. Address: AdrianPerrig, CIC 2110, 4720 Forbes Avenue, Pittsburgh, PA 15213.Telephone: 412
268 2242. Fax: 412 268 6779.

†Research done while this author was at Carnegie Mellon University

1

technical challenge is the design of efficient in-network information processing algorithms to reduce the energy cost

of transmitting this large volume of data to the user [16, 22].

Information aggregationis an important technique which fulfills the function of efficient data collection. In an

information aggregation algorithm, designated nodes in the sensor network, calledaggregators, collect the raw infor-

mation from the sensors, process it locally, and reply to theaggregate queries of a remote user. However, information

aggregation in sensor networks is complicated by the fact that the sensor nodes and aggregators may be compromised

due to physical tampering. A compromised aggregator may report arbitrary spurious results to the querier, thus al-

lowing the adversary to subvert the operation of the entire network with only a few compromised nodes. To prevent

this, techniques are needed to ensure that the user can stillbe confident of the (approximate) accuracy of the aggre-

gated data even when the aggregator and a small subset of the sensor nodes are under the control of an adversary

attempting to inject falsified data. However, the majority of current work in data aggregation assumes that every node

is honest [12, 16, 22, 28].

We propose several algorithms to improve the confidence of the user in the result returned by the aggregator.

Specifically, we focus on preventing an attack we callstealthy aggregate manipulation. In a stealthy aggregate manip-

ulation attack, the attacker’s goal is to make the user accept false aggregation results without revealing its presenceto

the user. Our goal is to develop countermeasures that will alert the user if the adversary causes the aggregation result

to deviate significantly from the true value, thus preventing the user from accepting arbitrarily spurious values.

The framework we describe is calledaggregate-commit-prove: in our setting, the aggregators not only perform the

aggregation tasks, but alsoprovethat they perform these tasks correctly. Specifically, to prevent the aggregators from

cheating, we use cryptographic techniques ofcommitments, and construct efficient random sampling mechanisms and

interactive proofs, which enable the user to verify that theanswer given by the aggregators is a good approximation of

the true value, even when the aggregators and/or a fraction of the sensor nodes may be corrupted.

1.1 Related work

Previous work in sensor network data aggregation has mainlyfocused on how to aggregate information assuming

every node is honest [12, 16, 22, 28]. Hu and Evans [21] have studied the problem of information aggregation if

one node is compromised, but their protocol may be vulnerable if a parent and a child node in their hierarchy are

compromised. Wagner [36] studied what aggregation functions may be more resilient against malicious attacks. Jadia

and Mathuria [23] extend the approach of Hu and Evans by incorporating privacy. Mahimkar and Rappaport [29]

also propose an aggregation-verification scheme for the single-aggregator model using a secret-sharing scheme. Du

et al. [13] propose using multiplewitnessnodes as additional aggregators to verify the integrity of the aggregator’s

result. Yang et al. [38] describe a secure aggregation algorithm which subdivides an aggregation tree into subtrees,

2

(a) Example physical topology (b) Logical Topology

Figure 1: Network Topology

each of which reports their aggregates directly to the base station. In related work, some of the authors have presented

a secure aggregation scheme for the hierarchical aggregator case [9]. However, that algorithm is not practical for the

single aggregator topology since it would overwhelm the aggregator withΩ(nlog2n) messages due to the aggregator’s

exceptionally highΩ(n) degree in the logical connectivity graph. A preliminary version of this paper appeared as [35].

The concept of interactive proofs was introduced by Goldwasser, Micali and Rackoff [20], and continues to be a

very active research area since then. Ergün et al. [15] studied the problem ofapproximateinteractive proofs, where a

prover (the aggregator) proves to a verifier (the home server) that the input data has some property. However, in their

model both the prover and the verifier can access the input data, and the task of the prover is to assist the verifier, so

that the verifier doesn’t have to read the entire input. Some of their solutions can be implemented directly in our model

by simulating verifier’s access to the input: whenever verifier should read a part of the input, he asks the prover to

deliver the desired part. However, in many cases thelocationsof the desired parts should be hidden from the prover,

hence a more expensive simulation is needed, e.g., using a private information retrieval protocol [7, 27].

2 Problem Statement: Secure Information Aggregation

Secure information aggregation refers to the efficient delivery of summaries of measured data from the sensor network

to an off-site user in such a way that the user can have high confidence that the reported data summaries have not

been manipulated by an adversary. In this section, we describe the specific parameters, metrics and assumptions of the

problem.

2.1 Problem Setting

The secure aggregation problem arises in the following scenario, an example of which is depicted in Figure 1(a).

Consider a large wireless ad-hoc sensor network deployed over an extensive area, with a subset of sensor nodes

3

covering a particular area of interest. A remotehome serverwishes to perform an aggregate query (such as getting

the median or average of the sensor readings) on the nodes in the area of interest. The home server could be, for

example, a dedicated data-storage server or a user-driven program running on a desktop computer. Forwarding each

of the individual sensor readings from each sensor node to the home server would be impractical for the energy-

constrained sensor nodes [24]. Since only aggregate statistics are required, anaggregatordevice (which could be a

sensor node itself, or a dedicated base station device) collects the readings from all the sensor nodes in the area of

interest. The aggregator then computes the desired aggregation result, and transmits this condensed report to the home

server. We assume that, due to its great length, the link between the home server and the aggregator is very costly in

terms of energy overhead, and thus our goal is to minimize traffic between the aggregator and the home server. This

assumption is true, for example, if the aggregation report is transmitted using peer-to-peer routing via the nodes of the

sensor network, but some situations are exceptions; for example, if the aggregator was a resource-rich base station and

was linked directly to the home server via a wired network. Such special cases are out of the scope of this paper since

in-network aggregation is not particularly useful in such sensor networks. Some sensor networks may have multiple

aggregators (for example, in TAG [28], each non-leaf node isan aggregator). In this paper, we only consider the case

of a single aggregator.

We assume that the aggregator and some subset of the data nodes may be compromised by a malicious attacker (cf.

Section 2.3). We assume the compromised nodes are unable to partition the network. Partitioning occurs when there

are two or more subsets of legitimate nodes which are unable to communicate with each other except through one or

more compromised nodes. Specifically, our assumption of non-partitioning implies that any legitimate data node is

able to communicate with any other legitimate data node, andthe adversary is unable to prevent this.

The problem topology is illustrated in Figure 1(b). The single aggregator collects data from the data nodes (which

are free to communicate with each other) and reports the result to the home server, over the expensive home server-

aggregator link. Our goal is to verify the reported result with as little traffic between the home server and the aggregator

as possible.

2.1.1 Additional Assumptions

If we assume that (1) the home server has completely no information about which sensor nodes are active and uncom-

promised in the network and (2) the home server cannot communicate with the sensor nodes in the network except

through the aggregator, then it is impossible to prevent a malicious aggregator from undetectably omitting the readings

of any set of legitimate nodes: for example, the aggregator can falsely claim that some legitimate nodeA is dead, and

there would be no way to verify this. Hence, one of the above conditions has to be weakened. We consider algorithms

for both cases.

4

ID-knowledge scenario. This scenario assumes the home server has knowledge of the IDs of all the deployed sensor

nodes and the adversary can only compromise a small fractionof these. Clearly, the home server always knows the

universe of all possible node IDs since it shares cryptographic keys with every possible node ID. In this scenario, we

further assume that the home server has knowledge of which IDs are deployed and alive (i.e., not battery exhausted,

and connected to the network) in the area of interest. ID-knowledge could be maintained, for example, by randomly

sampling sensor nodes in the network. We omit the details of such ID-knowledge maintainence algorithms and assume

perfect ID-knowledge — adaptation of our algorithms for cases of partial ID-knowledge is straightforward.

Alarm channel scenario. This scenario assumes there exists a reliable multihop communication channel that sensor

nodes can use to alert the home server of the presence of the adversary, and its latency bound is known. In certain

applications, tracking the set of active node IDs in a specific area of interest may be difficult, especially considering

natural node death and the possible disruptive presence of malicious nodes. In particular if the set of queried nodes

is unknown to the home server but is defined via a logical predicate, ID-knowledge presents a technical challenge in

itself. As an alternative, we consider the availability of amethod for sensor nodes to (reliably) communicate with

the home server without using the aggregator. In the most naive setting, this may simply be a network-wide flooding

broadcast from the node, which guarantees transmission if the attacker has not successfully partitioned the node away

from the network. Multipath routing may also be used; many such routing schemes are known. A few examples are

braided multipath [18], meshed multipath [11], split multipath [26], SMLDR [3] and AOMDV [32]. It is assumed that

this alarm channel is more expensive even than the link between the aggregator and the home server; however, since

it is not used unless an adversary is detected, its high cost is not a factor under normal operation. Under this scenario,

we also do not assume any limits on the ability of the adversary to perform node compromise.

In this paper, if the specific scenario is not specified, then the described techniques are applicable tobothscenarios.

Techniques specific to each scenario will be labeled as such in the section headings.

2.2 Key Setup

We assume that each sensor has a unique identifier and shares aseparate secret cryptographic key with the home

server and with the aggregator [34]. The keys enable messageauthentication, and encryption if data confidentiality is

required. We assume that the home server has a mechanism to broadcast authentic messages into the network, such that

each sensor node can verify the authenticity of the message,for example using the TESLA broadcast authentication

protocol [33, 34].

5

2.3 Attack Model And Security Goals

We consider a setting with a polynomially-bounded attacker, which can compromise some of the sensors as well

as the aggregator. Actions of a corrupted device are totallydetermined by the adversary (i.e., a compromised node

or aggregator isByzantinein its behavior). In particular, the adversary can arbitrarily change the measured values

reported by a corrupted sensor. We assume that the adversarycan only compromise a (small) fraction of the sensor

nodes.

In this setting, we focus onstealthy aggregate manipulation attacks, where the attacker’s goal is to make the

home server accept false aggregation results, which are significantly different from the true results determined by the

measured values, while not being detected by the home server. In this context, denial-of-service attacks such as not

responding to queries clearly indicates to the home server that something is wrong and therefore is not a stealthy

attack.

Our security goal is to prevent stealthy aggregate manipulation attacks.In particular, we want to guarantee that if

the home server accepts a reported aggregation result from the aggregators, then the reported result is “close” to the

true aggregation value with high probability; otherwise, if the reported value is significantly different from the true

value due to the misbehavior of the corrupted aggregators and/or the sensors, the home server will detect the corruption

and reject the reported aggregation result with high probability.

2.4 Notation and Conventions

In the remainder of this paper,n denotes the number of sensors,S1, . . . ,Sn, A denotes the aggregator, andB the home

server. We consider scenarios where the values measured by the sensors are from some totally ordered set, and we

denote byai the value reported by sensorSi . In fact, without loss of generality, we assume that the valuesai are

integers from[m] = {1, . . . ,m}.

For the complexity analysis, we assume that each element andeach hash value can be accessed in 1 step, and

sending it costs 1 unit of communication. Also, we assume that each hash value can be computed inO(1) steps.

Assuming that all measurements may be different, in “real life” each element is actually at least⌈logm⌉ bits long.

Finally, we assume that the verifier knows the number of sensors reporting the measurements (or a good estimate

of this number). This number can be given as a system parameter, or can be estimated using our secure counting

protocol, which we describe in Section 6.

6

2.5 Efficiency vs. Accuracy Tradeoff

The problems discussed in this paper have a straightforward(but very inefficient) solution: the aggregator forwards

to the home server all data and authentication information from each sensor. Given all the data, the home server can

verify authenticity of each data item, and answer all the statistical queries locally.

However, we assume that the communication between the aggregator and the home server is expensive, which

makes this approach impractical. On the other hand, communicating just the result of a query is in many cases (e.g.,

for count, min/max, average, or median queries) very efficient, but it does not give the guarantee of correctness.

Moreover, for many of the problems studied in this paper one can show that in order to prove that the reported

aggregation result is exact (with zero probability of error), we need at least linear communication complexity (linear

in the size of the network), i.e., we cannot do much better than sending all the data to the aggregator. If we are willing

to accept (a small) non-zero probability of error, then theoretically general methods based on PCP techniques could

be applied [2, 25]. However, such methods would be very inefficient in practice. Hence, in order to achieve practical

sublinear communication complexity, we need to relax the accuracy requirements and accept approximative results,

and we need new, efficient techniques that bound the attacker’s ability to tamper with the aggregation result.

Let the aggregation result bey = f (a1, . . . ,an) where f : [m]n→ R is the aggregation function. We say that ˜y is a

multiplicativeε-approximationof y (or justε-approximation) if (1− ε)y≤ ỹ≤ (1+ ε)y. We say that ˜y is anadditive

ε-approximationof y if y− ε≤ ỹ≤ y+ ε.

The difference betweeny andỹ can be caused by various factors:

(1) One or more corrupted data nodes is reporting a value different from its actual sensor reading. It may be difficult

to detect this misbehavior since anomaly detection requires application-specific knowledge.

(2) In some scenarios, when the aggregator uses sampling techniques to calculate the aggregation result, the sam-

pling technique will introduce some estimation error. We can bound the estimation error by adjusting the number

of required samples.

(3) The aggregator may be compromised, and may try to cheat byreporting wrong aggregation values. Without

security mechanisms, a corrupted aggregator can lie about the aggregation result and report wrong values that

are very far from the true result.

Because the errors caused by factors (1) and (2) can be upper bounded, they do not represent a serious threat to

data accuracy if simple countermeasures are taken, such as using only resilient aggregation functions like the median,

or bounding the range of allowable sensor readings. Wagner [36] presents an in-depth analysis of the countermeasures

against this class of attacks. In the rest of the paper we focus on describing new techniques preventing the attacks of

7

the third kind (corrupted aggregator). To keep our techniques as general as possible, we do not assume application-

specific knowledge (such as knowing the general statisticaldistribution of sensor readings). Without application-

specific knowledge, no algorithm can extract any information about the true readings of compromised nodes. Hence,

we will not consider the falsification of sensor data by compromised nodes to be an attack; when we speak of the “true”

aggregate result, it is assumed that the aggregate considers the (possibly false) claimed reading of a compromised node

as a legal input.

In addition to the approximation errorε, which describes the quality of a reported result, we introduce a pa-

rameterδ, which upper bounds the probability of not detecting a cheating aggregator (i.e., an aggregator reporting

a result not withinε bounds). Formally, a (multiplicative/additive)(ε,δ)-approximationprotocol finds a (multiplica-

tive/additive)ε-approximation with probability at least 1−δ, and runs in time polynomial in 1/ε and log(1/δ). Adopt-

ing this convention, our goal is the following: a (multiplicative/additive)(ε,δ)-secureprotocol runs in time polynomial

in 1/ε and log(1/δ), and always returns the true aggregation result in the absence of an adversary. In the presence of an

adversary, the protocol either (1) returns an aggregation result: the result is a (multiplicative/additive)ε-approximation

of the true result with probability at least 1− δ, or (2) returnsREJECT: if so, it is able to prove the presence of an

adversary in the system. Intuitively, this means that if theprotocol returns an aggregation result, there is only a small

possibility δ that the returned result is not close to the true result. Hence, an adversary faced with an(ε,δ)-secure

protocol may either report a result that isε-approximate to the true result, or report a result that is not ε-approximate,

but run the high 1−δ probability of detection.

2.6 Tools and Techniques

In our constructions we make use of numerous tools from cryptography and distributed computing. Here we briefly

describe the main techniques and concepts, and give references for more detailed expositions.

2.6.1 Committing to Data

The concept ofcommitmentsdenotes the functionality which allows one party to commit to some data, so that the data

cannot be changed once committed, but the data remains secret1 until the commitment isopened. An important feature

of (computationally binding) commitment schemes is that the size of the commitment can be substantially smaller than

the size of the data committed to. For example in theMerkle-treeconstruction [30, 31] all the collected data is placed

at the leaves of the tree, and the committing party then computes a binary hash tree starting from the leaf nodes: each

internal node in the hash tree is computed as the hash value ofthe concatenation of the two child nodes. The root of

the tree represents the commitment. Because the hash function in use is collision resistant, once the party commits

1This secrecy property is not essential for our applications.

8

m0 m1 m2 m3 m4 m5 m6 m7

H

v0,0 = H(v1,0 ‖ v1,1)

v1,0 v1,1

v2,0 v2,1 v2,2 v2,3

v3,0 v3,1 v3,2 v3,3 v3,4 v3,5 v3,6 v3,7

Figure 2: Merkle hash tree used to commit to a set of values.

to the collected values, she cannot change any of the collected values. On the other hand, the party can construct a

concise proof of correctness for the value at any leaf by providing all hash values (with siblings) on the path from the

leaf to the root. Note that the size of the proof of correctness is in this case only logarithmic in the size of the data.

Figure 2 gives an example of a Merkle hash tree.

2.6.2 Interactive Proofs

Intuitively, an interactive proof is a two-party protocol which allows one party (the prover) to convince some other

party (the verifier) about the truth of some statement. This concept was introduced by Goldwasser, Micali, and Rack-

off [20]. Interactive proofs have numerous applications incryptography, distributed computing, and in complexity

theory (see for example a survey by Goldreich [19]).

2.6.3 Computation on Data Streams

In the setting of computation on data streams Flajolet and Martin [17] proposed a space-efficient technique for estima-

tion of the number of distinct elements (µ) in a stream. The key idea is to pick a random hash functionh : [m]→ [0. . .1],

apply it to all the elementsai and keep the valuev= minn
i=1h(ai). Finally, the number of distinct elements is estimated

by the valueµ′ = 1/v.

Alon et al. [1] have shown that in this algorithm pairwise independent hash functions are sufficient to achieve

with probability 2/c an estimateµ′ satisfyingµ/c≤ µ′ ≤ cµ, for anyc > 2. Bar-Yossefet al. [5] further improved

this method and presented a(ε,δ)-approximation forµ. The basic idea for the improvement is to maintain several

(t = O(1/ε2)) elementsai on which a randomly picked hash functionh evaluates to thet smallest values. This

significantly improves the accuracy for the cost of increased space complexity.

9

3 Our General Approach: Aggregate-Commit-Prove

We propose a new approach, which we callaggregate-commit-prove: aggregators collect the sensor nodes’ raw data,

compute the desired function of the data, and reply to the home server with the computation result together with a

commitmentto the collection of data; the home server and the aggregators then perform efficientinteractive proofs

such that the home server will be able to verify the correctness of the results (or detect cheating with high probability).

We show that such an approach improves both security and efficiency. By letting the aggregator perform the

aggregation, the raw data does not need to be sent back to the home server, but only the aggregation result together

with a (small) proof of correctness is transfered over the expensive long-distance communication link. By engaging

with the aggregator in an interactive proof phase, the home server will detect with high probability if the aggregator or

some sensor nodes are cheating.

More precisely, the solutions proposed in this paper consist of three steps: computation of the result, committing

to the collected data and reporting the aggregation result,and proving the correctness of the result.

1. In the first step, the aggregator collects the data from sensors and locally computes the aggregation result. As

we discuss in Section 2, each data node shares a key with the aggregator, such that the aggregator can verify

the authenticity of each sensor reading (preventing sensorimpersonation, but not flawed data from a corrupt

sensor).

2. In the second step, the aggregator commits to the data it received from the data nodes. The commitment includes

the authentication codes which allow the home server to verify that the data was indeed delivered from an

authentic data node (and not, for example, simply fabricated by the aggregator). The commitment to the input

data further ensures that the aggregator cannot be change the received data after the commitment step. Once

the data is committed to, it can be used multiple times, for computation of various aggregates. Hence, it can be

viewed as a pre-processing step, and its cost can be amortized over multiple aggregates.

3. In the third step, the aggregator and the home server engage in a protocol, in which the aggregator communicates

the aggregation result and the commitment to the server, andproves to the server that the reported results are

correct using interactive proof protocols. The interactive proof usually contains two phases:

(a) The home server checks that the committed data is a good representation of the true data values in the

sensor network.

(b) The home server checks if the aggregator is cheating, in the sense that the aggregation result is not (close

to) the correct result aggregated from the committed data values.

10

Functions Covered in Our Framework. It follows immediately thatany function approximable by naive uniform

sampling of the input values can be approximated securely inthe proposed framework, since the combination of

commitments with authentication enables reliable uniformsampling. In other words, our framework in a natural way

enables communication-efficient androbustapproximation of a general class of functions. However, as we show in

the sequel, for some problems uniform sampling does not yield a good approximation, or is still too expensive in terms

of communication. In a few such cases we propose solutions which are significantly better than the uniform sampling.

Our techniques employ more involved actions of the aggregator and/or sampling over specially constructed probability

spaces.

4 Common Primitives for Aggregate-Commit-Prove

We now describe in detail the phases of the aggregate-commit-prove framework which are common for most of the

aggregation functions we will consider in this paper.

The home server initiates a query by sending it to the aggregator, which then disseminates the query message to

the sensor nodes. The query message is broadcast-authenticated such that each sensor node can verify that it is from

the home server. The message also contains a query nonceN, which uniquely identifies the query; for example, it

could be the home server’s unique identifier and a timestamp.

Each sensor nodeSi then constructs a message:

Mi = ID i‖ai‖N‖MACKia(ID i‖ai‖N)‖MACKis(ID i‖ai‖N)

The message contains the sensor node’s unique identifier (ID i), its reported data valueai , the query nonceN, and two

message authentication codes (MACs) of the data with the twokeys that it shares with the aggregator and the home

server respectively. This message is forwarded to the aggregator. While it is collecting the data, the aggregator checks

the first authentication code (MACKia(ID i‖ai‖N)) to verify that this data has a valid origin.

When the aggregator has received all the data messages from the sensor nodes, it cryptographically commits to the

inputs it has received. This commitment binds the aggregator to a particular ordered set of inputs: after commitment,

the aggregator cannot claim that its input set was anything other than the committed set, since any discrepancy would

result in an inconsistent commitment value. The specific mechanics of the commitment are as follows. The aggregator

first arranges the received messages (i.e. the variousMis) in a specific order (for example, sorted by the node IDs).

Using these messages as leaves, the aggregator then constructs a Merkle hash tree. The root value of the hash tree

is the commitment value, which is reported to the home serveralong with the number of leaves of the hash tree (i.e.

11

number of responding nodes) and the evaluated value of the aggregation function.

Once the home server has received the aggregator’s response, it may then begin probing the aggregator to verify

the correctness of the aggregated result. The adversary’s may take any or all of the following actions:

1. Add some fabricated data values that were not reported by any sensor node at all.

2. Duplicate some existing legitimate sensor value so it hasa disproportionately large impact on the aggregation

result, or allow a compromised sensor node to report more than one data value.

3. Ignore some legitimate data values and not include them inthe committed set of data readings.

4. Report a aggregation result that is inconsistent with thecommitted input data.

The countermeasures against attacks 1 and 2 are common to most of our algorithms regardless of the aggregation

function, and we discuss them in Sections 4.1 and 4.2. Attack3 can be prevented by calculating an estimate of the

size of the set of data values, and we show how to do this in Section 6. Countermeasures against attack 4 involve tests

specific to each aggregation function, and we discuss how this is done for each aggregation function in Sections 7, 8

and 9.

4.1 Detecting Falsified Inputs

An attacker performs a falsified input attack when it places an non-legitimate, fabricated data value in one of the leaves

of its commitment hash tree. Clearly, if the attacker was allowed to do this without bound, it could arbitrarily affect

the result of the aggregation function.

The algorithm detects the presence of falsified inputs by requesting random leaves of the commitment hash tree. To

make a request, the home server chooses a leaf position in theMerkle hash tree at random, and prompts the aggregator

to return the specified leaf as well as its path verification information. Since the position and contents of each leaf

is fixed by the structure of the Merkle hash tree, the aggregator is unable to hide the presence of a fabricated data

value if it happens to be randomly requested. Since each leafin the Merkle hash tree contains an authentication

code (MACKis(ID i‖ai‖N)) that the home server can verify, the aggregator is also unable to fabricate illegal values that

appear to be from legitimate sensor nodes in the network.

The malicious aggregator is thus only able to undetectably falsify values if the home server happens to not request

any falsified leaves. By requesting sufficiently many randomsamples of the leaves of the commitment hash tree, we

can bound the likelihood of this event.

Theorem 4.1. Suppose the home server requests1
ε ln 1

δ samples. Then, if the aggregator has falsified at leastε data

values, the probability of detecting the falsification is atleast1−δ.

12

Proof. If there areε falsified leaves in the commitment hash tree, then each random request has probability(1− ε)

of completing successfully. The probability that all requests complete successfully is((1− ε)1/ε)ln 1
δ < (1/e)ln 1

δ = δ.

Hence, the probability of detection is at least 1−δ. 2

4.2 Detecting Duplicated IDs

The detection algorithm of Section 4.1 works only for data values with inauthentic MACs. However, an attacker can

add illegal leaves with authentic MACs to the commitment hash tree in two ways: first, it may be in control of a

compromised node, which it can then use to add multiple illegal data values with authentic MACs; second, it may

include the data value of a single legitimate node multiple times. Both these attacks areduplicated IDattacks, where

a single node ID appears more than once in the input data set.

To detect duplicate IDs, the algorithm requires the aggregator to commit to the sequence of measured valuessorted

according to thesensor IDs. Subsequently, we verify that the sequence is properly sorted, using theSort-Check-II

spot checker proposed by Ergün et al. [14]. TheSort-Check-II spot checker performs binary searches for ran-

domly selected elements in the committed sequence. Ergün et al. showed that if there does not exist an increasing

subsequence of length at least(1− ε′1) fraction of the entire sequence, then each binary search hasprobability at least

1− (ε′1/4) probability of detecting that the committed sequence was not sorted. Hence, 4/ε′1 searches will detect

unsortedness with probability at least 1−1/e, and 4
ε′1

ln 1
δ searches will reveal unsortedness with probability at least

1−δ.

Consider an adversary attempting to include two (possibly identical) readings from the same sensorSi with identi-

fier ID i . Without loss of generality call one reading the “original”and the other reading the “duplicate”. The adversary

may choose to place the duplicate reading in sorted order in the committed sequence, in which case the duplicate

reading will be adjacent to the original. Alternatively, the adversary may choose to place the duplicate somewhere

else, in which case it will be out of order. In the previous stage we established that the total fraction of out of order

elements is at mostε′1.

To detect the presence of duplicates which appear in sorted order in the committed sequence, the algorithm per-

forms uniform sampling ofpairsof neighboring elements. Ifε′′1 or more fraction of the elements are in fact duplicates

which appear in sorted order in the sequence, each sample hasprobability at leastε′′1 of detecting a duplicate. Hence,

1
ε′′1

ln 1
δ total pairs of samples will detect a duplicate with probability at leastδ.

The entire duplicate-checking procedure is given in pseudo-code below.

In practice, the samples for duplicate detection and for detecting inauthentic values should be combined. Specif-

ically, we no longer need to specially request any elements to check for authenticity. Instead, the MAC of every

leaf element sampled in the duplicate-checking procedure should be checked for authenticity. When these tests are

13

procedureCheckInput(n,ε):
/** run Sort-Check-II: **/
for i = 1. . .(4ln 1

δ)/ε′1 do
pick j ∈R {1. . .n}
requesta j

perform a binary search fora j

if search failedthen
return REJECT

/** check for duplicates & multiples:**/
for i = 1. . .(ln 1

δ)/ε′′1 do
pick j ∈R {1. . .(n−1)}
requesta j , a j+1

if a j , a j+1 invalid or stem from the same sensorthen
return REJECT

return ACCEPT

combined, it is clear that the following property holds:

Theorem 4.2. The duplicate-detecting algorithm requests O
(

(1
ε′1

+ 1
ε′′1

) ln 1
δ)

)

elements, and ensures that either

there are less than a total ofε1 = ε′1+ε′′1 non-legitimate values in the committed sequence, or the adversary’s presence

will be detected with probability at least1−δ.

Proof. The Sort-Check-II spot checker detects cheating with probability 1− δ if at leastε′1 of the elements

in the committed sequence are duplicates placed out of node-ID order, or are values with inauthentic MACs. The

second phase of duplicate detection detects cheating with probability 1−δ if at leastε′′1 of the elements in committed

sequence are duplicates placed in node-ID order or are values with inauthentic MACs. If the adversary has less than

1− δ probability of detection, then it must be that the total number of falsified and duplicated values is less than

ε′1 + ε′′1. 2

5 Secure Computation of Min/Max

The problem of finding the minimum (or the maximum) value of the measurements is a fundamental task in monitoring

applications, and protocols for solving it are useful not only as stand-alone primitives but also as subprotocols for more

complex aggregates. In this section, we describe a secure min-discovery protocol that enables the home server to find

the minimum of the values reported by the sensors. Then in Section 8 we show example applications, namely how we

use our secure min-discovery protocol as a building block toenable random selection of a node in the network, leader

election, and secure counting the number of distinct elements and estimating the network size.

Recall that in our setting some sensors may be corrupted, anda corrupted sensor could always report a forged value

which is smaller than the smallest true value, which rendersthe problem of finding the minimum value meaningless.

14

Therefore, here we focus on the scenarios where either a corrupted sensor cannot lie about its value (for example, if

the value is a deterministic function of a node’s ID or keyinginformation), or it is not in the interest of the adversary

to report smaller values (for example, if the adversary is trying to hide exceptionally small or large values, such as for

a triggered burglar or fire alarm).

One approach to preventing cheating is to use the method for computing quantiles as described in Section 7, to

ensure that the value the aggregator reported is among theεn smallest with high probability. Below we propose a

new protocol,FindMin, for finding the minimum value, which achieves a better bound. Assuming that an uncorrupted

sensor node holds the minimum value in the committed values mentioned above, theFindMin protocol will enable the

home server to find the minimum value in the committed values with high probability.

5.1 FindMin for the ID-Knowledge Scenario

TheFindMin protocol involves having each (legitimate) sensor node perform a peer-to-peermultihopbroadcast of its

value (and, associated with its value, its own ID) to all the nodes in the area of interest. Assuming that the legitimate

sensor nodes form a connected component, eventually the true minimum valuevmin and the ID of the originator of the

minimum IDmin will reach each of the legitimate nodes (assume ties for the minimum value are broken by ID). Each

of the legitimate nodes will then construct an authenticated message indicating it believes the minimum isvmin and it

comes from nodeIDmin. The structure of the messages is identical to that described in Section 4, withai = vmin‖IDmin.

Each of these messages are relayed to the aggregator, which then commits to these messages in the method described

in Section 4. The aggregator reportsvmin and the commitment to the home server.

The home server must now verify thatvmin was indeed the minimum value. Assuming that at mostκ fraction of

the nodes in the area of interest are malicious, the home server issuesO(logδ/ logκ) requests for uniformly random

selected node IDs from the known list of IDs in the area of interest (recall that the home server has knowledge of these

IDs by the ID-knowledge assumption). If each requested nodeID is present in the commitment of the aggregator, and

all agree onvmin and IDmin, the home server then requests an authenticated message from the nodeIDmin verifying

that its value was indeedvmin. If so, then it acceptsvmin.

Formally, we have the following theorem.

Theorem 5.1. Assuming that no more thanκ fraction of the sensors are corrupted, that the minimum value in the

committed values is from an uncorrupted sensor, and that alluncorrupted sensors form a connected component,

procedureFindMin requests O(logδ
logκ) elements and satisfies:

(1) If all the sensors and the aggregator follow the protocolthen the home serverACCEPTs the result, which is equal

to the minimum of the values committed to initially.

15

(2) If the value reported by the aggregator is not equal to theminimum of the values committed to initially, then the

home serverREJECTs with probability at least1−δ.

Proof. (sketch)The assumption that the uncorrupted sensors form a connected component implies that the adversary

cannot stop the propagation of the minimum value in this component. If the aggregator tries to cheat, each random

sample of a node will with probability at least 1−κ hit an uncorrupted sensor, and detect cheating. Hence,logδ
logκ such

samples suffice to detect cheating with probability at least1−δ. 2

5.2 FindMin for the Alarm Channel Scenario

If an alarm channel is available, the home server simply broadcasts the minimum value reported by the aggregator.

Any sensor node that has a smaller value than the minimum raises an alarm using the reliable communication channel

with the home server. If the home server does not receive an alarm within a given latency bound, then it assumes that

no sensor node has raised an alarm and accepts the proposed minimum. Unlike the algorithm described in Section 5.1,

this algorithm detects any forged result with certainty andinvolves no probes (or, in fact, any form of cryptography)

at all.

5.3 Applications: Random Selection of a Node & Leader Election

A basic tool needed in many applications is a method for a selection of a sensor node at random. Note that even if the

home server has a list ofIDs of the sensor nodes in the network, a mere selection of a nodefrom the list uniformly

at random does not solve the problem — the aggregator might becorrupted and deny contact to the picked sensor by

claiming that the picked node does not respond. In such a casethe home server has no way of deciding what is faulty,

the sensor or the aggregator.

We propose a new mechanism which enables the home server to perform a random sampling in the sensor network

and does not suffer from the above drawback. The main idea of the proposedRandomSampleprocedure is as follows.

The home server picks a random hash functionh and sends it to the aggregator. The aggregator is then supposed to

broadcasth with the sampling request. Each sensor node then computes the hash value of itsID. Then the whole

network performs a MIN-discovery protocol to discover the node with the smallest hash value. If a corrupted sensor

node happens to have the smallest hash value, it could choosenot to report its own value. However, a corrupted sensor

cannot report any fake value, since the value to be reported by each sensor is uniquely determined byh and theID of

the sensor. Moreover, if the smallest hash value is computedby an uncorrupted sensor node, the attacker cannot stop

the uncorrupted sensor node to become the winner and be discovered and reported back to the home server. Thus,

because any uncorrupted sensor node has equal probability of computing the smallest hash value, this method enables

16

the home server to sample uniformly at random from the uncorrupted sensor nodes.

Corollary 5.2. Under assumptions of Theorem 5.1, with h denoting a functionpicked uniformly at random from a

family of pairwise independent hash functions, the procedure RandomSample(h) satisfies

(1) If all the sensors and the aggregator follow the protocolthen the home serverACCEPTs.

(2) If the home serverACCEPTs, then with probability at least(1−ε), for every honest sensor node S, the probability

of picking S as the sample is within1/n and1/(n(1− ε)).

This random sampling technique has many applications. In particular, it can be used to pick a leader among the

sensors, and as shown below, it is very useful for counting distinct elements and computing the network size.

6 The COUNT Aggregate

TheCOUNT aggregate computes the cardinality of a subset of the sensornodes. Let the subset to be counted be called

thecounted set. The exact membership of the counted set is unknown to the querier, but may be defined using a logical

predicate. For example, we may wish to count the number of sensors which are registering a reading above 20◦ C. We

can visualize theCOUNT aggregate as performing a summation aggregation operationover the data values of either

1 (fulfills the predicate) or 0 (does not fulfill the predicate). As a special case, theCOUNT aggregate may be used to

determine the total number of data nodes in the system.

The algorithm proceeds as follows. First, the sensor nodes that fulfill the predicate send their authenticated values

(i.e., ai = 1) to the aggregator. The aggregator then commits to the received values using the preprocessing step in

Section 4. The aggregator also computes the count aggregatea and returns both the commitment and the computed

aggregate to the querier.

The querier now has the count aggregatea and a commitment hash value which should be the root of a Merkle hash

tree of height⌈loga⌉ with exactlya leaves each of which is an authenticated message from some nodeSi indicating

its data value ofai = 1. The querier must now verify the authenticity of the resulta. Let the correct count bea. There

are two kinds of attacks to consider: eithera > a (inflation of the reported result) ora < a (deflation of the reported

result).

6.1 Resisting Result Inflation

To verify that the resulta has not been inflated, the querier needs to check that each oneof the a leaves of the

commitment hash tree consists of an authentic message from adistinct nodeSi . The preprocessing step of Section 4

17

ensures that less than a small fractionε of the leaf nodes may be duplicate or falsified messages, otherwise the adversary

is detected with probability 1−δ. Hence, no additional work needs to be done to prevent resultinflation.

6.2 Resisting Result Deflation - ID-knowledge Scenario

The adversary may attempt to reduce the reported count by ignoring the reported messages of some of the sensor

nodes. The home server can counter this by probing the commitment structure to verify that all sensor nodes that

should be counted are indeed counted. To select a node for probing, the home server uses the random node selection

algorithm of Section 5.3 to randomly choose a node from amongthe counted set. The home server then requests the

aggregator to prove the selected node’s presence in the committed set.

Theorem 6.1. If the adversary reportsa < (1− ε)a where a is the true count, then O(1
ε ln 1

δ) requests suffice to detect

this with probability at least1−δ.

Proof.(Theorem 6.1) Ifa< (1−ε)a, then at leastε fraction of the counted set is omitted (not present in the committed

set). Each request fails to detect the manipulation only if an omitted element was not requested; this happens with

probability 1− ε. By an argument as in the proof of Theorem 4.1, the probability of detection is at least 1−δ. 2

Each application ofFindMin usesO(log1/δ) requests, hence the overall request complexity isO(1
ε log2 1

δ).

6.3 Resisting Result Deflation - Alarm Channel Scenario

The algorithm of Section 6.2 requires multiple rounds ofFindMin, which involve multiple rounds of broadcast and

many requests per application ofFindMin. If an alarm channel exists, we have a more efficient algorithm which does

not involve significant broadcast overhead, and only requiresO(1
ε log 1

δ) requests. The algorithm uses a probabilistic

“roll-call” mechanism where data nodes randomly verify that they are indeed included in the aggregate.

The home server authentically broadcasts a check-request message containing the computedCOUNT aggregatea,

and the commitment of the aggregator, to every sensor node. Each sensor node then randomly decides whether to

check that it was included in the commitment. Each sensor node Si , which belongs to the counted subset, repeats

the following trialO(1/ε) times: it flips a coin with probability 1/a of success, wherea is the authenticatedCOUNT

aggregate sent to it by the base station in the query. If any ofthese trials succeed, the sensor node then performs a

probe. The probe asks the aggregator to prove the sensor node’s presence in the commitment tree. The sensor node is

able to verify the aggregator’s response because it knows the commitment hash value that was sent to the home server.

If the aggregator does not respond satisfactorily, the sensor node may then use the reliable communication channel to

raise an alarm to the home server.

18

procedureCountDeflateCheck(n,a, ε):
receivea and commitment valueh
c← 0

for i = 1. . .

⌈

ln1/δ
ε− 1

2ε2

⌉

do

if random ([0,1)) < 1/a then c← 1
if c = 1 then

challengeaggregator to verify this sensor’s inclusion in commitment
if challenge not satisfiedthen

raise alarm

For simplicity, we analyze a variant of the participation-checking algorithm where, instead of having each node

immediately perform all the coin flips, we consider the case where we have severalrounds, and in each round, every

node flips a coin with probability 1/a of success, wherea is the authenticatedCOUNT aggregate sent to it by the base

station in the query. Clearly, the original single-round algorithm is equivalent to this multi-round algorithm, except

that in the single-round algorithm, nodes do not wait for a round to complete before making their next coin flip, and

do not repeat their probes if they receive more than one successful coin flip.

Lemma 6.2. If an adversary reduces the aggregation result by a factor ofε′ ≥ ε, then the probability of it being

undetected in a single round of coin flips is less than1− (ε− 1
2ε2).

Proof. Suppose an adversary reports a low resulta < (1− ε′)a wherea is the trueCOUNT aggregate. Since the

number of leaves (and the shape) of the commitment hash tree is fully determined by the reportedCOUNT aggregate

value, at most 1− ε′ of the nodes which should be in the counted subset can actually have data values as leaves in the

commitment tree. This implies that at leastε′ fraction of the sensor nodes have no leaves in the commitmenttree.

The adversary’s tampering is detected whenever a sensor node that has no leaf in the commitment tree performs a

probe, since the aggregator will be unable to produce the leaf vertex that corresponds to the sensor node. Leta be the

true count, and letm= ε′a be the number of nodes without leaves in the commitment tree.

19

Pr [Adversary is undetected in any single round] =

= (1−
1
a
)m

< (1−
1
a
)m

< 1−
m
a

+

(

m
2

)

1
a2 (Sincem

a < 1, the absolute value of each succeeding term decreases)

= 1− ε′+(
1
2
−

1
2m

)ε′2

< 1− (ε′−
1
2

ε′2)

≤ 1− (ε−
1
2

ε2) (Sincex− 1
2x2 is monotonically increasing for 0≤ x≤ 1)

Theorem 6.3. Let each sensor node in the counted subset perform

⌈

ln1/δ
ε− 1

2ε2

⌉

coin tosses. Then, if an adversary

reduces the aggregation result by a factor ofε′ ≥ ε, this cheating will be detected with probability at least1−δ, and

the expected number of requests issued by the base station when the adversary is absent is O(1
ε log 1

δ).

Proof. From Lemma 6.2, the probability that the adversary remains undetected in

⌈

1
ε− 1

2ε2

⌉

rounds is less than(1−

(ε− 1
2ε2))

1
ε− 1

2 ε2
< 1

e. Hence, if we repeat this ln1δ times (for a total of

⌈

(ln 1
δ) 1

ε− 1
2ε2

⌉

rounds), the probability of

non-detection is less thanδ.

By linearity of expectations, the expected number of probe requests in each round is∑n
i

1
a = 1

1−ε′ . Hence, the

expected number of probe requests in the multi-round protocol is 1
1−ε′

⌈

(ln 1
δ) 1

ε(1− 1
2ε)

⌉

. When the adversary is not

present,a = a = n, and so the expected number of probes in the network is1
n ·n·

⌈

(ln 1
δ) 1

ε(1− 1
2ε)

⌉

= O(1
ε log 1

δ). 2

Since the single-round protocol makes no more probe requests than the multi-round protocol, the number of probes

in the actual protocol is alsoO(1
ε log 1

δ). When the adversary is in the network, a malicious aggregatorcan easily

increase the probe complexity (e.g. by reportinga = 0, causing every node to initiate a probe and fail), but this would

immediately reveal the adversary’s presence. Causing every node in the network to use the expensive alarm channel

may be an effective denial-of-service (DoS) attack; however DoS is outside the scope of this paper. An attacker in

complete control of the aggregator is capable of far more insidious damage than simple DoS if it can cause the home

server to accept false results.

20

7 Computing The Median

In this section we study the problem of computing the median of the measured values. Without loss of generality we

assume that all valuesai are distinct—if they are not distinct, we can run the protocolon the (distinct) pairs(ai , ID i),

whereID i is a unique ID of thei-th sensor.

The most straightforward approach is to sample the measurements and use the median of the sample as an estimate

of the true median. Bar-Yossefet al. [4] showed thatΩ(1/ε2) samples are necessary to achieve aε-approximation

with high probability [35]. We show how to achieve more efficient solutions with onlyO(logn/ε) element requests.

Note that here we assume that the user knows the approximate size of the sensor network. This can be achieved, for

example, with the methods presented in Section 6.

7.1 Algorithm for M EDIAN

The aggregate-commit-prove approach forMEDIAN builds on common steps described in Section 4 with some addi-

tional steps to verify the integrity of the proposed median.

The common steps in Section 4 describe how the aggregator commits to a sequence of node readings sorted in

order of the node IDs. ForMEDIAN , we additionally require the aggregator to provide a commitment to a sequence

which ismedian-separated, or pivoted around the median element. Specifically, the median element is in positionn/2,

while every reading that is smaller than the median lies to its left in the commitment tree, and every reading that is

larger than the median lies to the right of the middle. To verify that the two committed sequences are the same, the

home server requests1ε2
ln 1

δ random elements from each sequence and verifies that these elements are present in the

other sequence. This ensures (with probability 1− δ) that the two sequences have at least a factor of 1− ε2 overlap;

the proof structure is essentially identical to the proof ofTheorem 4.1.

Subsequently, the home serverB obtains an alleged medianamed and verifies its correctness in an interactive

proof. Specifically, to check thatamed is (close to) the median of the committed sequence,B picks elements from

random positions in the committed median-separated sequence and checks that elements picked from the left half of

the sequence are less than the reported median, and elementsfrom the right half are greater than the median.

A pseudo-code description of this median-checking test is given below.

Theorem 7.1. ProcedureMedianCheck(n, amed, ε3) requests1/ε3 elements ai , and satisfies:

(1) if the measurements sequence is median-separated and amed is equal to an/2, then the result is “ACCEPT”

(2) if amed is not present in the sequence, or its position p in the sortedsequence satisfies

|p−n/2|> ε3n ,

21

procedureMedianCheck(n, amed, ε3):
requestan/2
if an/2 6= amed then

return REJECT

for i = 1. . . 1
ε3

do
pick j ∈R {1. . .n}\{n/2}
requesta j from median-separated sequence
if j < n/2 and a j > amed then

return REJECT

if j > n/2 and a j < amed then
return REJECT

return ACCEPT

then with probability at least1−1/e> 1/2 the result is “REJECT”

Proof. The number of requests and property (1) follow immediately.For property (2), notice that if|p−n/2|> ε3n,

then there are at leastε3n values of j, which yield REJECT. Hence with probability at most(1− ε3)
1/ε3 ≤ 1/e the

for -loop completes without rejection, i.e., the algorithm rejects with probability at least 1−1/e. 2

Theorem 7.1 implies that by requesting in total1
ε3

ln 1
δ elements, we can provide a 1−δ probability of detecting if

the reported value is not anε3-approximation of the median in the committedmedian-separatedsequence.

When all the stages are combined, we have the following analysis. We wish to derive an(ε,δ)-secureMEDIAN ; in

such an algorithm, an attacker is either limited to reporting a result that isε-close to the true value or it must be detected

with probability 1−δ. We prove that if the attacker does not encounter the 1−δ probability of detection at any stage,

then its reported result must beε-close for someε. Suppose the attacker has a greater thanδ probability of evading

detection. Then the reported median must be aε3-approximation to the median for the median-separated sequence.

The median-separated sequence isε2-close to the sequence sorted by node ID, which has at mostε1 elements which

were duplicated, falsified, or dropped. Settingε = ε1 + ε2 + ε3, it is clear that the combined algorithm forMEDIAN is

a (ε,δ)-secure aggregation algorithm.

NOTE: Clearly, using the same techniques we can compute with low communication complexity not only the median,

but also arbitrary quantiles.

7.2 MEDIAN for the Alarm Channel Scenario

In the alarm channel scenario, the algorithm forCOUNT is significantly more efficient than in the ID-knowledge

scenario (cf. Section 6). Hence, an alternative algorithm for MEDIAN is to reduce it toCOUNT. The aggregator collects

the data values and computes the median, which it then forwards to the home server. Note that no commitments are

necessary at this stage. After the home server has received the proposed median, it then performs aCOUNT of the total

number of sensor nodes that have a reading less than the reported median. If the number is not half the total number

22

of nodes queried, then the proposed median is rejected. The fact that this is an (ε,δ)-secure algorithm forMEDIAN

follows directly from the property that the algorithm forCOUNT is (ε,δ)-secure. This algorithm can also be adapted

for arbitrary quantiles.

8 Counting Distinct Elements

COUNT-DISTINCT is the problem of counting the numberµ of distinct values in the measurements, i.e., the problem

of determining the cardinality of the set of all the measurements.

Ergün et al. [15] give a very efficient protocol for proving a lower bound on the size of a set. While it is possible

to use their solution in our context, a direct implementation would require application of PIR protocols [7, 27]. The

reason for this requirement is the fact that in the protocol proposed by Erg̈unet al. it is essential that the prover does not

know the positions of randomly selected elements. The application of PIR significantly increases the communication

complexity of the solution — the currently most efficient PIRprotocol [27] imposes an additional factor ofΩ(log2n)

per access of a single bit.

We propose two different protocols for estimating the number of distinct elements. Our solutions are based on

algorithms for space-efficient approximation of the numberof distinct elements in a data stream [5, 17, 1], and on a

novel technique for random selection of the nodes of the network (cf. Section 5.3).

8.1 Method I: Counting Distinct Elements by Distributed MIN-Computation

The described approach to the estimation of the number of distinct elements in a data stream can be viewed as a

process of finding a minimum, in which the same computation isperformed for each element: compute the hash-value

and save it if it is smaller than the current minimum. This observation immediately suggests that the algorithm for the

data stream [1] can be easily implemented in a distributed way, and the estimation of the number of distinct elements

can be reduced to the problem of finding the minimum. First thehome station picks at random a hash functionh from

an appropriate family, and through the aggregator announces h to each sensor. Each sensor locally computes the hash

value of its element, and then participates in a protocol forfinding the minimum hash value (cf. Section 5).

If we want to improve the accuracy, we can implement the algorithm of Bar-Yossef et al. [5], by keepingt smallest

hash values instead of just the single minimum. However, this improvement comes at a cost of higher communication

complexity.

23

8.2 Method II: Proving Bounds on the Number of Distinct Elements

The above method for counting distinct elements depends on the random selection procedure from Section 5.3. In

some applications the communication overhead of this selection procedure may be too high. In this section we present

alternative, more efficient methods for estimation of the number of distinct elements.

The method requires the aggregator to show evidence that theproposed distinct-count is not lower than a certain

lower bound, and is not higher than a certain upper bound. Since we require that the lower and upper bounds are

closely matched, this implies that the aggregator is not able to either inflate or deflate the count.

8.2.1 A Lower Bound on the Number of Distinct Elements

At the beginning of the protocol for showing a lower bound on the number of distinct elements the aggregatorA com-

mits to the values reported by the sensors using the hash-tree construction of Section 4, and reports the commitment

(and the proposedCOUNT-DISTINCT aggregateµ) to the home serverB. A then runs an algorithm for counting distinct

elements in a stream by Bar-Yossefet al.[5], using hash functions specified by the home serverB .

Let H = {h| h : [m]→ [M]}, whereM = m3, be a family of pairwise independent hash functions [37], such that any

functionh∈ H has a short description. AfterA commits to the input,B computes an estimate for a lower bound on

the true aggregate resultµ as follows.B picks at random a hash functionh from the familyH and sends it toA . Then

A computesh(ai) for all i = 1. . .n, and sends back toB t elements (for appropriately chosent), on whichh evaluates

to thet smallest values. ThenB checks the correctness of the received elements and computes an estimate ofµ as

µ′ = tM/v, wherev is thet-th smallest value to whichh maps the received elements.

Bar-Yossefet al. [5] show that with high probabilityµ′ is a good approximation of the number of distinct elements.

We can further amplify the accuracy by repeating the protocol ℓ times and estimatingµ with the median of theℓ

resulting estimatorsµ′1, . . . ,µ
′
ℓ. A pseudo-code description of the entire protocol is given below.

procedureDistinctLowerBound(n, m,ε, ℓ):
t := ⌈96/ε′2⌉
M := m3

for j = 1. . . ℓ do
pick h j ∈R H
senddescription ofh j to A
requestt elementsai on whichh j evaluates to thet smallest values
let v be thet-th smallest such value
setµ′j = tM/v

return µ′ = median(µ′1, . . . ,µ
′
ℓ)

Theorem 8.1. ProcedureDistinctLowerBound(n, m, ε′, ℓ) requests O(ℓ · 1/ε′2) elements ai and returns a value µ′

which satisfies the following:

24

• µ′ > (1+ ε′)µ with probability less than(1/6)ℓ/2.

• µ′ < (1− ε′)µ with probability less than(1/6)ℓ/2 if the attacker is not present.

Proof. First consider the special case whenℓ = 1. Bar-Yossefet al. [5] bound the probability that the estimateµ′1

is significantly larger thanµ: Pr [µ′1 > (1+ ε)µ] < 1
6. For ℓ > 1, the median ofℓ valuesµ′1, . . . ,µ

′
ℓ exceeds the bound

(1+ ε′)µ if at least half of the estimates exceed the bound, hencePr [median(y1, . . . ,yℓ) > (1+ ε)µ] <
(

1
6

)l/2
. A

symmetric argument bounds the probability ofµ′ being significantly lower thanµ, hence the result follows. 2

A naive approach would be to useµ′ as the reported aggregate value. However, the estimator is probabilistic, which

means that even if the adversary is absent, there exists a chance that it may return an estimate that is far from the true

count. To ensure complete accuracy in the absence of an attacker, we use the verified estimator valueµ′ as a proof that

there are (probably) at leastµ′ distinct values in the set, and compare it against the precise proposed distinct countµ.

Let ε′ = ε/2. If µ′ ≥ (1− ε′)µ then the home server accepts the proposed resultµ as consistent with the verified

estimateµ′. However, ifµ′ < (1− ε′)µ then the reported aggregateµ is suspiciously high (i.e. the proven lower bound

µ′ appears too weak). To determine if this discrepancy was due to a false positive (e.g. the statistical estimator just

happened to get a high error), or if it was due to malicious activity on the aggregator’s part, the home server requests

a full dumpof all the data values committed to by the aggregator so that its correctness can be checked with certainty.

Since this request for alln values is clearly expensive, we choosel such that the probability of such a request is low.

Specifically, we add the condition thatl > 2
log6 logn. This ensures that, if the attacker is not present, the probability that

the estimator raised a false positive is less than 1/n, hence the average cost of the full dump of data values is constant.

We also need to bound the probability of a false negative, which happens ifµ′ > (1+ε′)µ, thus enabling the adversary

to claim a value forµ which is up to1+ε′
1−ε′ ≈ 1+ 2ε′ = 1+ ε factor larger thanµ. By enforcing the requirement that

l > 2
log6 log 1

δ , we provide the 1−δ probability of catching the attacker in such a case. The finalrequest complexity is

O(1
ε2 (log 1

δ + logn)).

Note that in the protocolB has no means to check thatA has evaluated the hash function on all the elements, and

that the reported elements evaluate indeed to thet smallest values. A malicious aggregatorA can omit some elements,

or report elements which evaluate to larger values. However, such cheating results in a smaller estimateµ′, which does

not help the cheater pass the requirement thatµ′ ≥ (1− ε)µ unless it also reports a correspondingly lowµ. In the next

section we show how a lowµ can be detected.

8.2.2 An Upper Bound on the Number of Distinct Elements

Consider the following sampling-based test: first,A commits to the multi-setSof all the elements. Additionally,A

commits to a subsetS′ containing alldistinctelements (without repetitions).A reportsµ′ = |S′| to B , andB verifies

25

A ’s claim by checking that all the distinct elements fromSare present inS′. In other words, the test checks thatµ′ is

an upper bound onµ.

Now, depending on the assumption scenario, and on the ratio of µ′ to the total size of multi-setS, two different

approaches can be used for random sampling fromS.

High Number of Distinct Elements Suppose the number of distinct elements is a significant fraction of the number

of all the elements, i.e.,µ≥ n/c for somec≥ 1. Then for the ID-knowledge scenario, a simple sampling through the

aggregator is sufficient. The home server picks a node at random, with uniform distribution over all nodes. It requests

the chosen node’s reading fromS, and checks to see if the reading is also inS′.

This technique can also be adapted for the alarm-channel scenario by applying the techniques of Section 6 to

ensure thatS is a good representation of the data values of the sensor nodes. Specifically, the techniques of Section 6

will ensure that at mostε1 of the elements inSare illegal, and furthermore at mostε1 of the legitimate nodes are not

represented inS. Then, the home server may select a random reading inS, and check to see if the reading is also inS′,

without having any knowledge of the set of node IDs being queried.

Note that this node-sampling procedure is quite different from the one described in Section 5.3, and in particular

is much more efficient since the home server does not require the FINDM IN primitive. A pseudo-code description of

the entire protocol based on this simple sampling is given below.

procedureHighDistinctUpperBound(n,ε2, ℓ):
for i = 1. . . ℓ do

pick j ∈R {1. . .n}
requesta j

requestan element fromS′ equal toa j

if any of the requests failedthen
return REJECT

return ACCEPT

Theorem 8.2. ProcedureHighDistinctUpperBound(n, ε2, ℓ) requestsℓ elements and satisfies:

(1) if S′ contains all the distinct elements from the input the resultis “ ACCEPT”.

(2) if µ′ < (1− ε2)µ then with probability at least1−e−ℓε2/c the result is “REJECT”, assuming that µ≥ n/c for

some constant c≥ 1.

Proof. Claim (1) is obvious: if all distinct elements are present inS′, the proverA will always be able to return

requested elements. For claim (2) notice that ifµ′ < (1− ε2)µ, then there are at leastµε2 elements inSwhich detect

cheating and lead to “REJECT”. By assumptionµε2 ≥ ε2n/c for somec≥ 1, so the probability that a single sample

26

detects cheating is at leastε2/c. Therefore, the probability of returning “ACCEPT” after ℓ samples is at most(1−

ε2/c)ℓ ≤ e−ℓε2/c, which implies the claim. 2

Theorem 8.2 implies that by takingℓ = c/ε2 we can detect cheating with constant probability 1−1/e. Therefore,

if with such value ofℓ we repeat the test ln1/δ times, we get confidence at least 1− δ. Settingε = ε2 concludes the

analysis for the ID-knowledge case. For the alarm-channel case, combining thisε2 bound with the 2ε1 bound on the

adversary’s ability to drop legitimate values fromS or add false values toS (cf. Section 4), we get an(ε,δ)-secure

algorithm forCOUNT-DISTINCT if we setε = 2ε1 + ε2.

Note that this method yields a significantly better estimatethan the approximation by sampling with a “trivial

aggregator”A , which only forwards the measurements collected from the sensors selected byB [10, 4].

Low Number of Distinct Elements. When the number of distinct elements is low in comparison to the total size

of S the simple sampling will not give us the desired bounds, because the omitted elements not reported inS′ could be

infrequent and so very hard to find by sampling. However, a small modification of the random sampling protocol from

Section 5.3 can fix this problem: each node reports the hash value based on the value measured by the node, not on its

ID. This results in a distribution uniform ondistinct values, not uniform onnodes. In other words, different nodes with

the same measured value will report the same hash values, andby the properties of the hash function, each measured

value will be equally likely to be the minimum. The pseudo-code of this sampling approach is given below.

procedureLowDistinctUpperBound(ε2, ℓ):
for i = 1. . . ℓ do

applyRandomSampleonmeasured values
requestan element fromS′ equal to the sampled value
if any of the requests failedthen

return REJECT

return ACCEPT

The following theorem can be proved analogously to the Theorem 8.2.

Theorem 8.3. ProcedureLowDistinctUpperBound(ε2, ℓ) requestsℓ elements and satisfies:

(1) if S′ contains all the distinct elements from the input the resultis “ ACCEPT”.

(2) if µ′ < (1− ε2)µ then with probability at least1−e−ℓε2 the result is “REJECT”.

9 Computing the Average

In this section, we describe how to efficiently and securely compute the average of sensor data. We describe three

different protocols with different efficiency tradeoffs for this purpose.

27

9.1 Computing AVERAGE by Counting Frequencies

In this subsection, we describe how to compute the average bycounting frequencies of the sensor values. We first

describe a special case and then show that the special case can be extended to the general case.

In the special case whenm≪ n, or more generally when the range of the sensor values is small in comparison with

the size of the sensor network (e.g., poly-logarithmic inn), we can estimate the average quite accurately by taking a

small sample of all the elements and returning the average ofthe sample. However, the number of the samples needed

to assure with constant probability a good estimate for the average depends on the the underlying distribution of the

values, and in general is lower-bounded byΩ(1/ε2), wheremε is the desired additive error bound [8, 4].

As in the case of the computation of the median, the naive sampling only minimally uses capabilities of the

aggregator. Below we present an alternative method for computing the average, in which the aggregator is more

involved. As we shall see, this approach, which we callAverageByFrequency, is in some cases significantly more

efficient.

We assume that the home server knows how many sensor nodes contribute data readings to theAVERAGE com-

putation: this can be computed using theCOUNT primitive (cf. Section 6). Now the aggregatorA collects all the

(value,ID)-pairs(ai , ID i) and commits to them in the manner described in Section 4. ThenA computes an average

ā and reports it toB . In order to prove the correctness of ¯a, A sorts all the pairs using the value as the main sorting

key and the nodeID as a secondary sorting key, and commits also to the sorted sequence. ThenB tests whether the

two committed sequences contain the same elements by requesting 1
ε2

ln 1
δ samples (this is identical to the process for

MEDIAN in Section 7). If the test completes successfully,A sends toB the occurrence-counts for each value 1. . .m.

B verifies the correctness of the counts by deriving from them the positions in the committed sorted sequence, and

checks that the values in the committed sorted sequence are well sorted using the methodSort-Check-II spot

checker [14] (cf. Section 4). If this check also succeeds,B computes the average directly from the occurrence-counts,

and compares it to ¯a. Summarizing, we obtain the following theorem.

Theorem 9.1. Let a1, . . . ,an denote the values committed to by the aggregator. The procedure AverageByFrequency

requests O(logn/ε3 +m) elements and satisfies:

(1) If ā is equal to the average of the values a1, . . . ,an, and the aggregator follows the protocol, thenB always

ACCEPTs.

(2) If |ā−avg(a1, . . . ,an)|> ε3m, thenB REJECTs with probability≥ 3/4 (for a suitable choice of constant param-

eters).

Proof. (sketch) Claim (1) is obvious, since when the aggregator follows the protocol,B receives the exact counts of

28

each value and so computes the exact average. On the other hand, if the average of the values committed to is at least

ε3m away fromā, then at leastε3 fraction of all values are not in order (not sorted), and so the test will fail. 2

Theorem 9.1 implies that, since duplicates and dropped values are limited to a total of 2ε1 of the number of

legitimate values by the process in Section 4, by settingε = 2ε1 + ε2 + ε3, we will have(ε,δ)-secure algorithm.

Note that in many scenarios we have typically logn≪ 1/ε — in such cases the procedureAverageByFrequency

uses significantly fewer samples than random sampling to guarantee the same error bound.

For the general case wherem is large, we could split the range[1,m] in intervals of exponential scale where thei-th

interval is[m/2i ,m/2i−1]. Subsequently, we can perform a protocol similar to the above for each interval and achieve

an estimate of the average. This involves logm invocations of theCOUNT primitive. A related approach also with

logm invocations ofCOUNT is presented in Section 9.3.

9.2 AVERAGE by reduction to COUNT-DISTINCT

We can reduce the problem of computing the average to the problem of determining the number of distinct elements

in a set [15]. Without loss of generality, assume that the sensor values are integers. In particular, consider the set

Ψ = {(i, j)|1≤ i ≤ n,1≤ j ≤ a j} (if a j = 0 then there will be noj such that(i, j) ∈ Ψ). Thus,Ψ contains only

distinct elements and the cardinality ofΨ equals to∑n
i=1ai . By using our protocol for counting the number of distinct

elements in Section 8, we could obtain a protocol to compute the average. Note that the communication efficiency

for the protocol to compute the average is the same as the communication efficiency for the protocol to compute the

number of distinct elements.

9.3 AVERAGE by reduction to COUNT

Clearly, if we have the sum of all the sensor readings, and thetotal number of sensor readings, we can compute the

average as the sum divided by the number of readings. We can get an approximation of the number of readings using

theCOUNT aggregate described in Section 6.

To get an approximation of theSUM aggregate, we reduceSUM to COUNT. Specifically, observe thatCOUNT is

a special case ofSUM with the range of allowable data values in{0,1}. Since the data readings are integers in[m],

we can represent them with⌈logm⌉ bits. To computeSUM, we simply call the algorithm forCOUNT once for each

of the ⌈logm⌉ bit positions. To compute the sum, the algorithm multipliesthe each count by the significance of the

bit counted. For example, if 18 nodes had bit 0 set, 23 nodes had bit 1 set, and 10 nodes had bit 2 set, then the sum

is 18· (20)+ 23· (21)+ 10· (22) = 104. Since, for each bit position, theCOUNT algorithm provides a multiplicative

ε-approximation for the total number of nodes whose data reading has a 1-bit at that position, the final computation of

29

the resultantSUM must also be a multiplicativeε-approximation.

The resultant algorithm requestsO(1
ε logmlognlog 1

δ) elements, which is less than the request complexity of the

method described in Section 9.2 for typical values ofm. Furthermore, it is requires fewer intermediate steps thanthe

algorithm of Section 9.1 and so is more efficient (by some constant factor, but not asymptotically).

10 Forward Secure Authentication

Consider the challenge of securely querying past data. For example, an innocuous event in the past that later became

interesting and we may still want to place a query on that event. We could use the same mechanisms we proposed in

previous sections to run queries on past data. However, we need to solve some additional security issues to securely

query past data. In particular, if a sensor is compromised ata certain time, the attacker should not be able to alter the

data collected in the past before the sensor was compromised. We call this propertyforward secure authentication.

We propose an efficient mechanism to enable forward secure authentication.

As we described before, each sensor shares a key with the homestation. We assume that each sensor node and the

home station are loosely time synchronized and the time is divided into constant time intervals. The length of the time

interval can be minutes or hours depending on the security requirements. To enable forward secure authentication, each

sensor updates its key shared with the home station at the beginning of each time interval using a one-way function and

uses the updated key to compute the MAC on the sensing data during that time interval.2 Thus, even when an attacker

compromises the sensor node in a later time interval, because of the property of the one-way function, the attacker is

unable to compute the MAC key for the previous time interval,and hence will not be able to alter the sensing data for

previous time intervals.

A challenge of this approach is how to efficiently store the past data and authenticator, as well as the challenge that

the verifier either needs to compute many one-way functions for deriving the current key of a node or that the verifier

needs to store one key per node.

Similar techniques have been used to achieve forward secureencryption [6].

11 Conclusions

It is a challenging task to securely aggregate information in large sensor networks when the aggregators and some

sensors may be malicious. We propose theaggregate-commit-proveframework for designing secure data aggregation

protocols (Section 3). We propose specific protocols withinthis framework for securely finding the minimum and

2A one-way functionf is a function that it is easy to computef (x) givenx, but it is difficult to compute a pre-imagex such thatf (x) = y giveny.

30

maximum values, secure random sampling and leader election(Section 5), securely computing the cardinality of a

subset of nodes (Section 6), the median (Section 7), securely estimating the number of distinct elements (Section 8),

and securely computing the average of measurements (Section 9). Our protocols require only sublinear communication

between the aggregator and the user. We also propose the approach offorward secure authenticationto ensure that

even if an attacker corrupts a sensor node at a point in time, it will not be able to change any previous readings the

sensor has recorded locally.

References

[1] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the frequency moments.
In Proceedings of the 28th Symposium on the Theory of Computing, 1996.

[2] Lászĺo Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computations in polylogarithmic
time. InProc. 23rd ACM STOC, pages 21–32, 1991.

[3] Chandramouli Balasubramanian and J. J. Garcia-Luna-Aceves. Shortest Multipath Routing using Labeled Dis-
tances. InProceedings of the IEEE International Conference on MobileAd hoc and Sensor Systems, 2004.

[4] Ziv Bar-Yossef, S. Ravi Kumar, and D. Sivakumar. Sampling algorithms: lower bounds and applications. In
Proceedings of the 33rd Symposium on the Theory of Computing, 2001.

[5] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan. Counting distinct elements in a
data stream. InProceedings of the 6th International Workshop on Randomization and Approximation Techniques,
2002.

[6] Mihir Bellare and Bennet Yee. Forward security in private key cryptography. Report 2001/035, Cryptology
ePrint Archive, 2001.

[7] Christian Cachin, Silvio Micali, and Markus Stadler. Computationally private information retrieval with poly-
logarithmic communication. InAdvances in Cryptology — EUROCRYPT’99: Proceedings of the International
Conference on the Theory and Application of Cryptographic Techniques, pages 402–414, 1999.

[8] Ran Canetti, Guy Even, and Oded Goldreich. Lower bounds for sampling algorithms for estimating the average.
Information Processing Letters, 53(1):17–25, 1995.

[9] Haowen Chan, Adrian Perrig, and Dawn Song. Secure hierarchical in-network aggregation for sensor networks.
In Proceedings of the 13th ACM Conference on Computer and Communications Security, 2006.

[10] Moses Charikar, Surajit Chaudhuri, Rajeev Motwani, and Vivek Narasayya. Towards estimation error guarantees
for distinct values. InProceedings of the 19th Conference on the Principles of Database Systems, 2000.

[11] Swades De, Chunming Qiao, and Hongyi Wu. Meshed multipath routing with selective forwarding: an efficient
strategy in wireless sensor networks.Comput. Networks, 43(4):481–497, 2003.

[12] Amol Deshpande, Suman Nath, Phillip B. Gibbons, and Srinivasan Seshan. Cache-and-query for wide area
sensor databases. InProceedings of the International Conference on the Management of Data, 2003.

[13] Wenliang Du, Jing Deng, Yunghsiang Han, and Pramod K. Varshney. A witness-based approach for data fusion
assurance in wireless sensor networks. InProceedings of the IEEE Global Telecommunications Conference,
2003.

[14] Funda Erg̈un, Sampath Kannan, S. Ravi Kumar, Ronitt Rubinfeld, and Mahesh Viswanathan. Spot-checkers.
Journal of Computer and System Sciences, 60:717–751, 2000.

31

[15] Funda Erg̈un, Ravi Kumar, and Ronitt Rubinfeld. Fast approximate PCPs. In Proceedings of the 31st Symposium
on the Theory of Computing, 1999.

[16] Deborah Estrin, Ramesh Govindan, John Heidemann, and Satish Kumar. Next century challenges: Scalable co-
ordination in sensor networks. InProceedings of the ACM/IEEE International Conference on Mobile Computing
and Networking, MobiCom 99, 1999.

[17] Philippe Flajolet and G. Nigel Martin. Probabilistic counting. InProceedings of the Symposium on the Founda-
tions of Computer Science, 1983.

[18] Deepak Ganesan, Ramesh Govindan, Scott Shenker, and Deborah Estrin. Highly-resilient, energy-efficient mul-
tipath routing in wireless sensor networks.SIGMOBILE Mob. Comput. Commun. Rev., 5(4):11–25, 2001.

[19] Oded Goldreich. Probabilistic proof systems - a survey. In Symposium on Theoretical Aspects of Computer
Science, 1997.

[20] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof-systems.
In Proceedings of the 17th Symposium on the Theory of Computing, 1985.

[21] Lingxuan Hu and David Evans. Secure aggregation for wireless networks. InWorkshop on Security and Assur-
ance in Ad hoc Networks, 2003.

[22] Chalermek Intanagonwiwat, Deborah Estrin, Ramesh Govindan, and John Heidemann. Impact of network den-
sity on data aggregation in wireless sensor networks. InProceedings of International Conference on Distributed
Computing Systems, 2001.

[23] Pawan Jadia and Anish Mathuria. Efficient secure aggregation in sensor networks. InProceedings of the 11th
International Conference on High Performance Computing, 2004.

[24] Joseph Kahn, Randy Katz, and Kristofer Pister. Mobile networking for smart dust. InProceedings of the
ACM/IEEE International Conference on Mobile Computing andNetworking, 1999.

[25] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). InProc. 24th ACM
STOC, pages 723–732, 1992.

[26] Sung-Ju Lee and Mario Gerla. Split Multipath Routing with Maximally Disjoint Paths in Ad hoc Networks. In
Proceedings of the IEEE International Conference on Communications, 2001.

[27] Helger Lipmaa. An oblivious transfer protocol with log-squared communication. InProceedings of the 8th
Information Security Conference, 2005.

[28] Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. TAG: a Tiny AGgregation service
for ad-hoc sensor networks. InProceedings of the Fith Annual Symposium on Operating Systems Design and
Implementation, 2002.

[29] Ajay Mahimkar and Theodore Rappaport. SecureDAV: A secure data aggregation and verification protocol for
sensor networks. InProceedings of the IEEE Global Telecommunications Conference, 2004.

[30] Ralph C. Merkle. Protocols for public key cryptosystems. In Proceedings of the IEEE Symposium on Security
and Privacy, 1980.

[31] Ralph C. Merkle. A certified digital signature. InProceedings on Advances in Cryptology, 1989.

[32] Asis Nasipuri and Samir R. Das. On-Demand Multipath Routing for Mobile Ad Hoc Networks. InProceedings
of the IEEE International Conference on Computer Communication and Networks, 1999.

[33] Adrian Perrig, Ran Canetti, J.D. Tygar, and Dawn Song. The TESLA broadcast authentication protocol.RSA
CryptoBytes, 5(Summer), 2002.

[34] Adrian Perrig, Robert Szewczyk, Victor Wen, David Culler, and J.D. Tygar. SPINS: Security protocols for sensor
networks.Wireless Networks Journal (WINET), 8(5):521–534, 2002.

32

[35] Bartosz Przydatek, Dawn Song, and Adrian Perrig. SIA: Secure information aggregation in sensor networks. In
Proceedings of the 1st ACM Conference on Embedded NetworkedSensor Systems, 2003.

[36] David Wagner. Resilient aggregation in sensor networks. In Proceedings of the ACM Workshop on Security of
Ad Hoc and Sensor Networks, 2004.

[37] Mark N. Wegman and J. Lawrence Carter. New hash functions and their use in authentication and set equality.
Journal on Computer and System Sciences, 22:265–279, 1981.

[38] Yi Yang, Xinran Wang, Sencun Zhu, and Guohong Cao. SDAP:A secure hop-by-hop data aggregation protocol
for sensor networks. InProceedings of the ACM International Symposium on Mobile AdHoc Networking and
Computing, 2006.

33

