SIA: Secure Information Aggregation in Sensor Networks

HAOWEN CHAN ADRIAN PERRIG* BARTOSZ PRZYDATEK'
Carnegie Mellon University Carnegie Mellon University ETH Zurich
DAWN SONG

Carnegie Mellon University

Abstract

In sensor networks, data aggregation is a vital primitive enabling effidiata queries. An on-site aggregator
device collects data from sensor nodes and produces a condensadisuwhich is forwarded to the off-site querier,
thus reducing the communication cost of the query. Since the aggregatorsite, it is vulnerable to physical
compromise attacks. A compromised aggregator may report falgegagpn results. Hence, it is essential that
techniques are available to allow the querier to verify the integrity of the retulined by the aggregator node.

We propose a novel framework for secure information aggregatisensor networks. By constructing efficient
random sampling mechanisms and interactive proofs, we enable thiergoeverify that the answer given by the
aggregator is a good approximation of the true value, even when thegaggr and a fraction of the sensor nodes
are corrupted. In particular, we present efficient protocols foargecomputation of the median and average of the
measurements, for the estimation of the network size, for finding the mmiamd maximum sensor reading, and for
random sampling and leader election. Our protocols require only sublioeamunication between the aggregator
and the user.

Keywords: sensor networks, information aggregation, security, approximateaties proofs.

1 Introduction

Sensor networks can provide economical solutions in maplicgtions such as real-time traffic monitoring, wildfire
tracking, wildlife monitoring, or building safety monitog. In a sensor network, hundreds or thousands of wireless

sensor devices callextnsor nodesollectively monitor an area, generating a substantialarhof data. An important

*Contact author. Email: adrian@ece.cmu.edu. Address: Aéhgarig, CIC 2110, 4720 Forbes Avenue, Pittsburgh, PA 15Zg&Rephone: 412
268 2242. Fax: 412 268 6779.
TResearch done while this author was at Carnegie Mellon sitye

technical challenge is the design of efficient in-netwoifloimation processing algorithms to reduce the energy cost
of transmitting this large volume of data to the user [16, 22]

Information aggregations an important technique which fulfills the function of eiiiot data collection. In an
information aggregation algorithm, designated nodesearstmsor network, callembjgregators collect the raw infor-
mation from the sensors, process it locally, and reply tcatigregate queries of a remote user. However, information
aggregation in sensor networks is complicated by the fattthie sensor nodes and aggregators may be compromised
due to physical tampering. A compromised aggregator magrtepbitrary spurious results to the querier, thus al-
lowing the adversary to subvert the operation of the enttevark with only a few compromised nodes. To prevent
this, techniques are needed to ensure that the user cabpestibinfident of the (approximate) accuracy of the aggre-
gated data even when the aggregator and a small subset adrikershodes are under the control of an adversary
attempting to inject falsified data. However, the majoritgorrent work in data aggregation assumes that every node
is honest [12, 16, 22, 28].

We propose several algorithms to improve the confidence efuter in the result returned by the aggregator.
Specifically, we focus on preventing an attack we stdhlthy aggregate manipulatiom a stealthy aggregate manip-
ulation attack, the attacker’s goal is to make the user ddabge aggregation results without revealing its presénce
the user. Our goal is to develop countermeasures that witl e user if the adversary causes the aggregation result
to deviate significantly from the true value, thus prevemtime user from accepting arbitrarily spurious values.

The framework we describe is calladgregate-commit-provén our setting, the aggregators not only perform the
aggregation tasks, but alpoovethat they perform these tasks correctly. Specifically, Bvent the aggregators from
cheating, we use cryptographic techniqguesahmitmentsand construct efficient random sampling mechanisms and
interactive proofs, which enable the user to verify thatgahewer given by the aggregators is a good approximation of

the true value, even when the aggregators and/or a fractithre densor nodes may be corrupted.

1.1 Related work

Previous work in sensor network data aggregation has méclysed on how to aggregate information assuming
every node is honest [12, 16, 22, 28]. Hu and Evans [21] hawdiedd the problem of information aggregation if
one node is compromised, but their protocol may be vulnerdld parent and a child node in their hierarchy are
compromised. Wagner [36] studied what aggregation funstinay be more resilient against malicious attacks. Jadia
and Mathuria [23] extend the approach of Hu and Evans by parating privacy. Mahimkar and Rappaport [29]
also propose an aggregation-verification scheme for thideseggregator model using a secret-sharing scheme. Du
et al. [13] propose using multiplavitnessnodes as additional aggregators to verify the integrityhef aggregator’s

result. Yang et al. [38] describe a secure aggregation ighgomvhich subdivides an aggregation tree into subtrees,

Aggregator Home Server

Home Server

S~

A

Expensive Link

Aggregator

/ Sensor nodes*

Sensor nodes\ *Legitimate nodes can
communicate with each other

(a) Example physical topology (b) Logical Topology
Figure 1: Network Topology

each of which reports their aggregates directly to the bad®s. In related work, some of the authors have presented
a secure aggregation scheme for the hierarchical aggrezgge [9]. However, that algorithm is not practical for the
single aggregator topology since it would overwhelm theragator withQ(nlog? n) messages due to the aggregator’s
exceptionally high2(n) degree in the logical connectivity graph. A preliminarysien of this paper appeared as [35].
The concept of interactive proofs was introduced by GoldeadMicali and Rackoff [20], and continues to be a
very active research area since then.(rgt al. [15] studied the problem adpproximatenteractive proofs, where a
prover (the aggregator) proves to a verifier (the home sgtirat the input data has some property. However, in their
model both the prover and the verifier can access the inpat datl the task of the prover is to assist the verifier, so
that the verifier doesn’t have to read the entire input. Softlesdr solutions can be implemented directly in our model
by simulating verifier's access to the input: whenever varishould read a part of the input, he asks the prover to
deliver the desired part. However, in many caseddhationsof the desired parts should be hidden from the prover,

hence a more expensive simulation is needed, e.g., usingaepinformation retrieval protocol [7, 27].

2 Problem Statement: Secure Information Aggregation

Secure information aggregation refers to the efficienveei of summaries of measured data from the sensor network
to an off-site user in such a way that the user can have higfidemte that the reported data summaries have not
been manipulated by an adversary. In this section, we desttre specific parameters, metrics and assumptions of the

problem.

2.1 Problem Setting

The secure aggregation problem arises in the following axenan example of which is depicted in Figure 1(a).

Consider a large wireless ad-hoc sensor network deployed @v extensive area, with a subset of sensor nodes

covering a particular area of interest. A rembtame servewishes to perform an aggregate query (such as getting
the median or average of the sensor readings) on the nodbe Bré¢a of interest. The home server could be, for
example, a dedicated data-storage server or a user-dniggnan running on a desktop computer. Forwarding each
of the individual sensor readings from each sensor nodeedtime server would be impractical for the energy-
constrained sensor nodes [24]. Since only aggregatet&sitise required, aaggregatordevice (which could be a
sensor node itself, or a dedicated base station devicedatelthe readings from all the sensor nodes in the area of
interest. The aggregator then computes the desired adigregasult, and transmits this condensed report to the home
server. We assume that, due to its great length, the linkderivthe home server and the aggregator is very costly in
terms of energy overhead, and thus our goal is to minimiZéafaetween the aggregator and the home server. This
assumption is true, for example, if the aggregation repdrainsmitted using peer-to-peer routing via the nodeseof th
sensor network, but some situations are exceptions; fanpba if the aggregator was a resource-rich base station and
was linked directly to the home server via a wired networlkctSspecial cases are out of the scope of this paper since
in-network aggregation is not particularly useful in suelnsor networks. Some sensor networks may have multiple
aggregators (for example, in TAG [28], each non-leaf nodmisaggregator). In this paper, we only consider the case
of a single aggregator.

We assume that the aggregator and some subset of the datamagée compromised by a malicious attacker (cf.
Section 2.3). We assume the compromised nodes are unakaetitiop the network. Partitioning occurs when there
are two or more subsets of legitimate nodes which are unalderhmunicate with each other except through one or
more compromised nodes. Specifically, our assumption ofpastitioning implies that any legitimate data node is
able to communicate with any other legitimate data node tla@@dversary is unable to prevent this.

The problem topology is illustrated in Figure 1(b). The $énaggregator collects data from the data nodes (which
are free to communicate with each other) and reports thdt testlhe home server, over the expensive home server-
aggregator link. Our goal is to verify the reported resuttwais little traffic between the home server and the aggregato

as possible.

2.1.1 Additional Assumptions

If we assume that (1) the home server has completely no irdtiomabout which sensor nodes are active and uncom-
promised in the network and (2) the home server cannot coruatenwith the sensor nodes in the network except
through the aggregator, then it is impossible to preventla&cioas aggregator from undetectably omitting the reading
of any set of legitimate nodes: for example, the aggregatoifalsely claim that some legitimate noflés dead, and
there would be no way to verify this. Hence, one of the abovelitmns has to be weakened. We consider algorithms

for both cases.

ID-knowledge scenario. This scenario assumes the home server has knowledge ofshuf Hl the deployed sensor

nodes and the adversary can only compromise a small fragfithrese. Clearly, the home server always knows the
universe of all possible node IDs since it shares cryptdgcalgeys with every possible node ID. In this scenario, we
further assume that the home server has knowledge of whistat® deployed and alive (i.e., not battery exhausted,
and connected to the network) in the area of interest. IDakedge could be maintained, for example, by randomly
sampling sensor nodes in the network. We omit the detailadf D-knowledge maintainence algorithms and assume

perfect ID-knowledge — adaptation of our algorithms foremasef partial ID-knowledge is straightforward.

Alarm channel scenario. This scenario assumes there exists a reliable multihop aoriwation channel that sensor
nodes can use to alert the home server of the presence ofthesary, and its latency bound is known. In certain
applications, tracking the set of active node IDs in a speeiféa of interest may be difficult, especially considering
natural node death and the possible disruptive presencalifious nodes. In particular if the set of queried nodes
is unknown to the home server but is defined via a logical pegdj ID-knowledge presents a technical challenge in
itself. As an alternative, we consider the availability ofn@thod for sensor nodes to (reliably) communicate with
the home server without using the aggregator. In the mosersstting, this may simply be a network-wide flooding
broadcast from the node, which guarantees transmissiba #ttacker has not successfully partitioned the node away
from the network. Multipath routing may also be used; marmghswuting schemes are known. A few examples are
braided multipath [18], meshed multipath [11], split mpdtih [26], SMLDR [3] and AOMDV [32]. It is assumed that
this alarm channel is more expensive even than the link miwlee aggregator and the home server; however, since
it is not used unless an adversary is detected, its high €ositia factor under normal operation. Under this scenario,
we also do not assume any limits on the ability of the advgrgaperform node compromise.

In this paper, if the specific scenario is not specified, therdescribed techniques are applicabledthscenarios.

Techniques specific to each scenario will be labeled as suitieisection headings.

2.2 Key Setup

We assume that each sensor has a unique identifier and sheepsirate secret cryptographic key with the home
server and with the aggregator [34]. The keys enable messabentication, and encryption if data confidentiality is
required. We assume that the home server has a mechanisoatichst authentic messages into the network, such that
each sensor node can verify the authenticity of the mes$agexample using the TESLA broadcast authentication

protocol [33, 34].

2.3 Attack Model And Security Goals

We consider a setting with a polynomially-bounded attacldrich can compromise some of the sensors as well
as the aggregator. Actions of a corrupted device are totktgrmined by the adversary (i.e., a compromised node
or aggregator iByzantinein its behavior). In particular, the adversary can arbityathange the measured values
reported by a corrupted sensor. We assume that the advesagnly compromise a (small) fraction of the sensor
nodes.

In this setting, we focus ostealthy aggregate manipulation attackghere the attacker’s goal is to make the
home server accept false aggregation results, which andisantly different from the true results determined by the
measured values, while not being detected by the home sérnvthis context, denial-of-service attacks such as not
responding to queries clearly indicates to the home sehatrsdomething is wrong and therefore is not a stealthy
attack.

Our security goal is to prevent stealthy aggregate manitioaattacks.In particular, we want to guarantee that if
the home server accepts a reported aggregation result Femggregators, then the reported result is “close” to the
true aggregation value with high probability; otherwidethe reported value is significantly different from the true
value due to the misbehavior of the corrupted aggregatai®athe sensors, the home server will detect the corruption

and reject the reported aggregation result with high pritibab

2.4 Notation and Conventions

In the remainder of this paper,denotes the number of sensds,. .., S,, 4 denotes the aggregator, aadhe home
server. We consider scenarios where the values measurdz lsgmsors are from some totally ordered set, and we
denote bya; the value reported by sens8r. In fact, without loss of generality, we assume that the eshy are
integers fromm) = {1,...,m}.

For the complexity analysis, we assume that each elemeneacid hash value can be accessed in 1 step, and
sending it costs 1 unit of communication. Also, we assume ¢hah hash value can be computeddl) steps.
Assuming that all measurements may be different, in “réal Bach element is actually at legsbgm| bits long.

Finally, we assume that the verifier knows the number of ssmeporting the measurements (or a good estimate
of this number). This number can be given as a system pargnogtean be estimated using our secure counting

protocol, which we describe in Section 6.

2.5 Efficiency vs. Accuracy Tradeoff

The problems discussed in this paper have a straightfor¢iatdvery inefficient) solution: the aggregator forwards
to the home server all data and authentication informatiomfeach sensor. Given all the data, the home server can
verify authenticity of each data item, and answer all théstteal queries locally.

However, we assume that the communication between the gaggreand the home server is expensive, which
makes this approach impractical. On the other hand, conmgating just the result of a query is in many cases (e.g.,
for count, min/max, average, or median queries) very efficieut it does not give the guarantee of correctness.

Moreover, for many of the problems studied in this paper ae show that in order to prove that the reported
aggregation result is exact (with zero probability of eyrare need at least linear communication complexity (linear
in the size of the network), i.e., we cannot do much bettan Hemnding all the data to the aggregator. If we are willing
to accept (a small) non-zero probability of error, then teé&oally general methods based on PCP techniques could
be applied [2, 25]. However, such methods would be very icieffit in practice. Hence, in order to achieve practical
sublinear communication complexity, we need to relax thmueacy requirements and accept approximative results,
and we need new, efficient techniques that bound the attagslity to tamper with the aggregation result.

Let the aggregation result lye= f(ay,...,a,) wheref : [m" — R is the aggregation function. We say tlydas a
multiplicativee-approximationof y (or juste-approximation if (1—¢)y < § < (1+4¢€)y. We say thay is anadditive
e-approximationof yif y—e <y <y+e.

The difference betweepandy'can be caused by various factors:

(1) One or more corrupted data nodes is reporting a valuerdiit from its actual sensor reading. It may be difficult

to detect this misbehavior since anomaly detection reg@pplication-specific knowledge.

(2) In some scenarios, when the aggregator uses samplingigees to calculate the aggregation result, the sam-
pling technique will introduce some estimation error. We baund the estimation error by adjusting the number

of required samples.

(3) The aggregator may be compromised, and may try to cheeggmyting wrong aggregation values. Without
security mechanisms, a corrupted aggregator can lie abewtggregation result and report wrong values that

are very far from the true result.

Because the errors caused by factors (1) and (2) can be uppedéd, they do not represent a serious threat to
data accuracy if simple countermeasures are taken, sudirgsanly resilient aggregation functions like the median,
or bounding the range of allowable sensor readings. Wa@8épfesents an in-depth analysis of the countermeasures

against this class of attacks. In the rest of the paper wesfooulescribing new techniques preventing the attacks of

the third kind (corrupted aggregator). To keep our techesgas general as possible, we do not assume application-
specific knowledge (such as knowing the general statistiisifibution of sensor readings). Without application-
specific knowledge, no algorithm can extract any infornmatibout the true readings of compromised nodes. Hence,
we will not consider the falsification of sensor data by coompised nodes to be an attack; when we speak of the “true”
aggregate result, it is assumed that the aggregate cossiidepossibly false) claimed reading of a compromised node
as alegal input.

In addition to the approximation err@; which describes the quality of a reported result, we intceda pa-
rameterd, which upper bounds the probability of not detecting a dhgaaggregator (i.e., an aggregator reporting
a result not withire bounds). Formally, a (multiplicative/additiv€g, d)-approximationprotocol finds a (multiplica-
tive/additive)e-approximation with probability at least-1, and runs in time polynomial in/E and lod1/8). Adopt-
ing this convention, our goal is the following: a (multigltive/additive) e, 5)-secureprotocol runs in time polynomial
in 1/e and lod1/d), and always returns the true aggregation result in the abssran adversary. In the presence of an
adversary, the protocol either (1) returns an aggregagisualt. the result is a (multiplicative/additivedapproximation
of the true result with probability at least-15, or (2) returnsREJECT if so, it is able to prove the presence of an
adversary in the system. Intuitively, this means that ifgh&tocol returns an aggregation result, there is only alsmal
possibility & that the returned result is not close to the true result. Blean adversary faced with &g, 6)-secure
protocol may either report a result thatigpproximate to the true result, or report a result that tssrapproximate,

but run the high % & probability of detection.

2.6 Tools and Techniques

In our constructions we make use of numerous tools from ography and distributed computing. Here we briefly

describe the main techniques and concepts, and give regsdor more detailed expositions.

2.6.1 Committing to Data

The concept oEommitmentslenotes the functionality which allows one party to commgdme data, so that the data
cannot be changed once committed, but the data remains!sactiethe commitment ispened An important feature

of (computationally binding) commitment schemes is thatdize of the commitment can be substantially smaller than
the size of the data committed to. For example inNtekle-treeconstruction [30, 31] all the collected data is placed
at the leaves of the tree, and the committing party then céespubinary hash tree starting from the leaf nodes: each
internal node in the hash tree is computed as the hash vathe gbncatenation of the two child nodes. The root of

the tree represents the commitment. Because the hashdurictuse is collision resistant, once the party commits

1This secrecy property is not essential for our applications

Voo =H(Vio || v11)

NN
JANNANN AN

V31 V33 V34 V35 V36 V37

THTTTTTWIT

mo moom mg my ms
Figure 2: Merkle hash tree used to commit to a set of values.

to the collected values, she cannot change any of the aetle@lues. On the other hand, the party can construct a
concise proof of correctness for the value at any leaf byigiog all hash values (with siblings) on the path from the
leaf to the root. Note that the size of the proof of correcsriesn this case only logarithmic in the size of the data.

Figure 2 gives an example of a Merkle hash tree.

2.6.2 Interactive Proofs

Intuitively, aninteractive proofis a two-party protocol which allows one party (the provercbnvince some other
party (the verifier) about the truth of some statement. Thigept was introduced by Goldwasser, Micali, and Rack-
off [20]. Interactive proofs have numerous applicationgiiyptography, distributed computing, and in complexity

theory (see for example a survey by Goldreich [19]).

2.6.3 Computation on Data Streams

In the setting of computation on data streams Flajolet andiMiL 7] proposed a space-efficient technique for estima-
tion of the number of distinct elements) {n a stream. The key idea is to pick a random hash funétigm) — [0... 1],
apply it to all the elements; and keep the value= min!'_, h(a). Finally, the number of distinct elements is estimated
by the valugy = 1/v.

Alon et al. [1] have shown that in this algorithm pairwise independeaghhfunctions are sufficient to achieve
with probability 2/c an estimatgl satisfyingu/c < i < cy, for anyc > 2. Bar-Yossekt al. [5] further improved
this method and presented g 6)-approximation for. The basic idea for the improvement is to maintain several
(t = O(1/€?)) elementsa on which a randomly picked hash functitnevaluates to thé smallest values. This

significantly improves the accuracy for the cost of increlasgace complexity.

3 Our General Approach: Aggregate-Commit-Prove

We propose a hew approach, which we egfjregate-commit-proveaggregators collect the sensor nodes’ raw data,
compute the desired function of the data, and reply to theehsenver with the computation result together with a
commitmento the collection of data; the home server and the aggregtiten perform efficieninteractive proofs
such that the home server will be able to verify the corresgiod the results (or detect cheating with high probability)

We show that such an approach improves both security andeeffic By letting the aggregator perform the
aggregation, the raw data does not need to be sent back tothe $erver, but only the aggregation result together
with a (small) proof of correctness is transfered over thege@sive long-distance communication link. By engaging
with the aggregator in an interactive proof phase, the hamees will detect with high probability if the aggregator or
some sensor nodes are cheating.

More precisely, the solutions proposed in this paper copsithree steps: computation of the result, committing

to the collected data and reporting the aggregation resmudt proving the correctness of the result.

1. In the first step, the aggregator collects the data fromasrand locally computes the aggregation result. As
we discuss in Section 2, each data node shares a key with ¢inegagor, such that the aggregator can verify
the authenticity of each sensor reading (preventing sengeersonation, but not flawed data from a corrupt

sensor).

2. Inthe second step, the aggregator commits to the datzeivexl from the data nodes. The commitment includes
the authentication codes which allow the home server tdwénat the data was indeed delivered from an
authentic data node (and not, for example, simply fabrithiethe aggregator). The commitment to the input
data further ensures that the aggregator cannot be chaagedbived data after the commitment step. Once
the data is committed to, it can be used multiple times, fonmatation of various aggregates. Hence, it can be

viewed as a pre-processing step, and its cost can be antbotiee multiple aggregates.

3. Inthe third step, the aggregator and the home server engagorotocol, in which the aggregator communicates
the aggregation result and the commitment to the serverpemas to the server that the reported results are

correct using interactive proof protocols. The interaefiwoof usually contains two phases:

(&) The home server checks that the committed data is a gpodsentation of the true data values in the

sensor network.

(b) The home server checks if the aggregator is cheatinggisénse that the aggregation result is not (close

to) the correct result aggregated from the committed ddtesa

10

Functions Covered in Our Framework. It follows immediately thatany function approximable by naive uniform
sampling of the input values can be approximated securethdénproposed framework, since the combination of
commitments with authentication enables reliable unifeempling. In other words, our framework in a natural way
enables communication-efficient armbustapproximation of a general class of functions. However, askow in
the sequel, for some problems uniform sampling does nal gigiood approximation, or is still too expensive in terms
of communication. In a few such cases we propose solutiongvare significantly better than the uniform sampling.
Our techniques employ more involved actions of the aggoegatd/or sampling over specially constructed probability

spaces.

4 Common Primitives for Aggregate-Commit-Prove

We now describe in detail the phases of the aggregate-copromie framework which are common for most of the
aggregation functions we will consider in this paper.

The home server initiates a query by sending it to the agtpegahich then disseminates the query message to
the sensor nodes. The query message is broadcast-auditedhtscich that each sensor node can verify that it is from
the home server. The message also contains a query hgnehich uniquely identifies the query; for example, it
could be the home server’s unique identifier and a timestamp.

Each sensor nodg then constructs a message:
M; = IDil|&;[|N[[MACk, (IDi||ai[[N)[[MACk(IDi|ai[[N)

The message contains the sensor node’s unique identi@igr its reported data valug, the query noncél, and two
message authentication codes (MACSs) of the data with thekye that it shares with the aggregator and the home
server respectively. This message is forwarded to the ggtpe While it is collecting the data, the aggregator checks
the first authentication code (MAG(IDil|a||N)) to verify that this data has a valid origin.

When the aggregator has received all the data messages g@artbor nodes, it cryptographically commits to the
inputs it has received. This commitment binds the aggredata particular ordered set of inputs: after commitment,
the aggregator cannot claim that its input set was anythtingrdahan the committed set, since any discrepancy would
result in an inconsistent commitment value. The specifichapics of the commitment are as follows. The aggregator
first arranges the received messages (i.e. the vakibssin a specific order (for example, sorted by the node IDs).
Using these messages as leaves, the aggregator then ctsatierkle hash tree. The root value of the hash tree

is the commitment value, which is reported to the home seal@rg with the number of leaves of the hash tree (i.e.

11

number of responding nodes) and the evaluated value of tiregation function.
Once the home server has received the aggregator’s respiomss/ then begin probing the aggregator to verify

the correctness of the aggregated result. The adversaaydake any or all of the following actions:
1. Add some fabricated data values that were not reportedypgensor node at all.

2. Duplicate some existing legitimate sensor value so itehdisproportionately large impact on the aggregation

result, or allow a compromised sensor node to report moredha data value.
3. Ignore some legitimate data values and not include thetimeicommitted set of data readings.
4. Report a aggregation result that is inconsistent wittctmamitted input data.

The countermeasures against attacks 1 and 2 are common tofoos algorithms regardless of the aggregation
function, and we discuss them in Sections 4.1 and 4.2. AtBac&n be prevented by calculating an estimate of the
size of the set of data values, and we show how to do this inddegt Countermeasures against attack 4 involve tests
specific to each aggregation function, and we discuss handhidone for each aggregation function in Sections 7, 8

and 9.

4.1 Detecting Falsified Inputs

An attacker performs a falsified input attack when it plages@n-legitimate, fabricated data value in one of the leaves
of its commitment hash tree. Clearly, if the attacker wasvedid to do this without bound, it could arbitrarily affect
the result of the aggregation function.

The algorithm detects the presence of falsified inputs byesting random leaves of the commitment hash tree. To
make a request, the home server chooses a leaf position ke hash tree at random, and prompts the aggregator
to return the specified leaf as well as its path verificatidorimation. Since the position and contents of each leaf
is fixed by the structure of the Merkle hash tree, the aggoegatunable to hide the presence of a fabricated data
value if it happens to be randomly requested. Since eachirietie Merkle hash tree contains an authentication
code (MAG,(IDi|a||N)) that the home server can verify, the aggregator is alsolatalfabricate illegal values that
appear to be from legitimate sensor nodes in the network.

The malicious aggregator is thus only able to undetectaidyfy values if the home server happens to not request
any falsified leaves. By requesting sufficiently many randamples of the leaves of the commitment hash tree, we

can bound the likelihood of this event.

Theorem 4.1. Suppose the home server requc-gslts% samples. Then, if the aggregator has falsified at leakdita

values, the probability of detecting the falsification idestst1 — d.

12

Proof. If there aree falsified leaves in the commitment hash tree, then each mandquest has probabilitil — €)

of completing successfully. The probability that all resisecomplete successfully (g1 — 8)1/5)'”% < (1/e)'”% d.

Hence, the probability of detection is at least &.]

4.2 Detecting Duplicated IDs

The detection algorithm of Section 4.1 works only for datmuga with inauthentic MACs. However, an attacker can
add illegal leaves with authentic MACs to the commitmenthhtxee in two ways: first, it may be in control of a
compromised node, which it can then use to add multipledlleizta values with authentic MACs; second, it may
include the data value of a single legitimate node multipfees. Both these attacks attaplicated IDattacks, where

a single node ID appears more than once in the input data set.

To detect duplicate IDs, the algorithm requires the agdgoega commit to the sequence of measured vatoeted
according to theensor IDs Subsequently, we verify that the sequence is properlgdpusing th&or t - Check- | |
spot checker proposed by Enmget al. [14]. TheSort - Check- 11 spot checker performs binary searches for ran-
domly selected elements in the committed sequencelirtegal. showed that if there does not exist an increasing
subsequence of length at leést- €}) fraction of the entire sequence, then each binary searchrbhability at least
1— (g7/4) probability of detecting that the committed sequence wassoded. Hence, 4/ searches will detect
unsortedness with probability at least-1 /e, and%ln% searches will reveal unsortedness with probability attleas
1-0.

Consider an adversary attempting to include two (possd#piical) readings from the same senSowith identi-
fier ID;. Without loss of generality call one reading the “originalid the other reading the “duplicate”. The adversary
may choose to place the duplicate reading in sorted orddradrcommitted sequence, in which case the duplicate
reading will be adjacent to the original. Alternativelyethdversary may choose to place the duplicate somewhere
else, in which case it will be out of order. In the previougstave established that the total fraction of out of order
elements is at most.

To detect the presence of duplicates which appear in sortit o0 the committed sequence, the algorithm per-
forms uniform sampling opairs of neighboring elements. #; or more fraction of the elements are in fact duplicates
which appear in sorted order in the sequence, each samppedtzability at least; of detecting a duplicate. Hence,
8—%1, In £ total pairs of samples will detect a duplicate with probizit least?.

The entire duplicate-checking procedure is given in psexaite below.

In practice, the samples for duplicate detection and foeattg inauthentic values should be combined. Specif-
ically, we no longer need to specially request any elementsheck for authenticity. Instead, the MAC of every

leaf element sampled in the duplicate-checking proceduoeld be checked for authenticity. When these tests are

13

procedure Checkinput(ng):
/** runSort-Check-11: **/
fori=1...(4In3)/€; do
pick j er{1...n}
requesta;
perform a binary search fear;
if search failedhen
return REJECT
[** check for duplicates & multiples**/
fori=1...(In})/¢} do
pick jer{1...(n—1)}
requesta, aj+1
if aj, aj,1 invalid or stem from the same sengben
return REJECT
return ACCEPT

combined, it is clear that the following property holds:

Theorem 4.2. The duplicate-detecting algorithm requests(@}L + E—%)In%)) elements, and ensures that either
1 1
there are less than a total ef = €} + €] non-legitimate values in the committed sequence, or theraexy’s presence

will be detected with probability at leagt— d.

Proof. The Sort - Check- 11 spot checker detects cheating with probability- & if at leaste] of the elements
in the committed sequence are duplicates placed out of Hodeder, or are values with inauthentic MACs. The
second phase of duplicate detection detects cheating vatiapility 1— o if at leaste’] of the elements in committed
sequence are duplicates placed in node-ID order or aresvalitle inauthentic MACs. If the adversary has less than
1 — 5 probability of detection, then it must be that the total nembf falsified and duplicated values is less than

g +¢€].]

5 Secure Computation of Min/Max

The problem of finding the minimum (or the maximum) value & theasurements is a fundamental task in monitoring
applications, and protocols for solving it are useful ndy@s stand-alone primitives but also as subprotocols faemo
complex aggregates. In this section, we describe a securglistovery protocol that enables the home server to find
the minimum of the values reported by the sensors. Then itidde® we show example applications, namely how we
use our secure min-discovery protocol as a building blodntable random selection of a node in the network, leader
election, and secure counting the number of distinct elésremd estimating the network size.

Recall that in our setting some sensors may be corruptedy aodupted sensor could always report a forged value

which is smaller than the smallest true value, which renttersproblem of finding the minimum value meaningless.

14

Therefore, here we focus on the scenarios where either apted sensor cannot lie about its value (for example, if
the value is a deterministic function of a node’s ID or keyinfiprmation), or it is not in the interest of the adversary
to report smaller values (for example, if the adversaryimt to hide exceptionally small or large values, such as for
a triggered burglar or fire alarm).

One approach to preventing cheating is to use the methodfapating quantiles as described in Section 7, to
ensure that the value the aggregator reported is amongntemallest with high probability. Below we propose a
new protocolFindMin, for finding the minimum value, which achieves a better boukssuming that an uncorrupted
sensor node holds the minimum value in the committed valiergioned above, theindMin protocol will enable the

home server to find the minimum value in the committed valuiés igh probability.

5.1 FindMin for the ID-Knowledge Scenario

The FindMin protocol involves having each (legitimate) sensor nodéoper a peer-to-peemultinopbroadcast of its
value (and, associated with its value, its own ID) to all tbees in the area of interest. Assuming that the legitimate
sensor nodes form a connected component, eventually theninimum value/min and the 1D of the originator of the
minimum IDmin Will reach each of the legitimate nodes (assume ties for timnmuym value are broken by ID). Each
of the legitimate nodes will then construct an authentdatessage indicating it believes the minimunvig, and it
comes from nodé&Dmin. The structure of the messages is identical to that desthib®ection 4, withg; = Vmin|| D min.
Each of these messages are relayed to the aggregator, Wwhitlhammits to these messages in the method described
in Section 4. The aggregator repovits, and the commitment to the home server.

The home server must now verify thatin was indeed the minimum value. Assuming that at moBaction of
the nodes in the area of interest are malicious, the homeisissue(logd/ logk) requests for uniformly random
selected node IDs from the known list of IDs in the area ofriede(recall that the home server has knowledge of these
IDs by the ID-knowledge assumption). If each requested midds present in the commitment of the aggregator, and
all agree onvmin andIDmin, the home server then requests an authenticated messagéhfranode Dy verifying
that its value was indeegh,. If so, then it acceptsmin.

Formally, we have the following theorem.

Theorem 5.1. Assuming that no more thanfraction of the sensors are corrupted, that the minimum eatuthe
committed values is from an uncorrupted sensor, and thatiadiorrupted sensors form a connected component,
logd

procedureFindMin requests %) elements and satisfies:

(1) Ifallthe sensors and the aggregator follow the protdabein the home serveicCEPTS the result, which is equal

to the minimum of the values committed to initially.

15

(2) If the value reported by the aggregator is not equal tortlicimum of the values committed to initially, then the

home serverREJECT with probability at leasi — o.

Proof. (sketch)The assumption that the uncorrupted sensors form a comheateponent implies that the adversary
cannot stop the propagation of the minimum value in this comept. If the aggregator tries to cheat, each random
sample of a node will with probability at least-k hit an uncorrupted sensor, and detect cheating. He}ggesuch

samples suffice to detect cheating with probability at |&asb. a

5.2 FindMin for the Alarm Channel Scenario

If an alarm channel is available, the home server simply drasts the minimum value reported by the aggregator.
Any sensor node that has a smaller value than the minimuresrais alarm using the reliable communication channel
with the home server. If the home server does not receiveamalkithin a given latency bound, then it assumes that
no sensor node has raised an alarm and accepts the propesedimi Unlike the algorithm described in Section 5.1,
this algorithm detects any forged result with certainty anlves no probes (or, in fact, any form of cryptography)

at all.

5.3 Applications: Random Selection of a Node & Leader Election

A basic tool needed in many applications is a method for aeleof a sensor node at random. Note that even if the
home server has a list ®Ds of the sensor nodes in the network, a mere selection of afnoethe list uniformly

at random does not solve the problem — the aggregator migbdtvepted and deny contact to the picked sensor by
claiming that the picked node does not respond. In such atbag®me server has no way of deciding what is faulty,
the sensor or the aggregator.

We propose a new mechanism which enables the home servefdaopa random sampling in the sensor network
and does not suffer from the above drawback. The main idedzegitoposedRandomSamplerocedure is as follows.
The home server picks a random hash functiand sends it to the aggregator. The aggregator is then seghpos
broadcash with the sampling request. Each sensor node then compugdsash value of it$D. Then the whole
network performs a MIN-discovery protocol to discover tlogla with the smallest hash value. If a corrupted sensor
node happens to have the smallest hash value, it could chobsereport its own value. However, a corrupted sensor
cannot report any fake value, since the value to be repostebh sensor is uniquely determinedtbgnd thelD of
the sensor. Moreover, if the smallest hash value is computerh uncorrupted sensor node, the attacker cannot stop
the uncorrupted sensor node to become the winner and bevdiscband reported back to the home server. Thus,

because any uncorrupted sensor node has equal probabditynputing the smallest hash value, this method enables

16

the home server to sample uniformly at random from the unpoed sensor nodes.

Corollary 5.2. Under assumptions of Theorem 5.1, with h denoting a fungiioked uniformly at random from a

family of pairwise independent hash functions, the proceBandomSampléj satisfies
(1) If all the sensors and the aggregator follow the protat@n the home serveicCEPTS.

(2) Ifthe home servexcCEPTSs, then with probability at leagtl — €), for every honest sensor node S, the probability

of picking S as the sample is withlrin and1/(n(1—¢)).

This random sampling technique has many applications. fticpéar, it can be used to pick a leader among the

sensors, and as shown below, it is very useful for countistindit elements and computing the network size.

6 The COUNT Aggregate

The couNT aggregate computes the cardinality of a subset of the sensles. Let the subset to be counted be called
thecounted setThe exact membership of the counted set is unknown to theeguieut may be defined using a logical
predicate. For example, we may wish to count the number afgenwhich are registering a reading above @0We

can visualize th&eOUNT aggregate as performing a summation aggregation operatemthe data values of either
1 (fulfills the predicate) or 0 (does not fulfill the predicatés a special case, theOUNT aggregate may be used to
determine the total number of data nodes in the system.

The algorithm proceeds as follows. First, the sensor ndagdlfill the predicate send their authenticated values
(i.e.,a = 1) to the aggregator. The aggregator then commits to thévegtgalues using the preprocessing step in
Section 4. The aggregator also computes the count aggregate returns both the commitment and the computed
aggregate to the querier.

The querier now has the count aggregatend a commitment hash value which should be the root of a Méxdksh
tree of height[loga] with exactlya leaves each of which is an authenticated message from sodesSnimdicating
its data value o§; = 1. The querier must now verify the authenticity of the regaultet the correct count ba There
are two kinds of attacks to consider: eitteer- a (inflation of the reported result) @& < a (deflation of the reported

result).

6.1 Resisting Result Inflation

To verify that the resuleat has not been inflated, the querier needs to check that eacbfahe a leaves of the

commitment hash tree consists of an authentic message fobstirzct nodeS. The preprocessing step of Section 4

17

ensures that less than a small fracim@f the leaf nodes may be duplicate or falsified messageswitethe adversary

is detected with probability + d. Hence, no additional work needs to be done to prevent riggiaition.

6.2 Resisting Result Deflation - ID-knowledge Scenario

The adversary may attempt to reduce the reported count lorilgnthe reported messages of some of the sensor
nodes. The home server can counter this by probing the conenitstructure to verify that all sensor nodes that

should be counted are indeed counted. To select a node foingydhe home server uses the random node selection
algorithm of Section 5.3 to randomly choose a node from antbagounted set. The home server then requests the

aggregator to prove the selected node’s presence in the ittt iset.

Theorem 6.1. If the adversary reporta < (1— €)a where a is the true count, ther(@n %) requests suffice to detect

this with probability at least — .

Proof. (Theorem 6.1) I5 < (1—¢€)a, then at least fraction of the counted set is omitted (not present in therodted
set). Each request fails to detect the manipulation onlyibmitted element was not requested; this happens with

probability 1— €. By an argument as in the proof of Theorem 4.1, the probglfidetection is at least-2 d. O

Each application oFindMin usesO(log 1/d) requests, hence the overall request complexify(iélog2 %).

6.3 Resisting Result Deflation - Alarm Channel Scenario

The algorithm of Section 6.2 requires multiple roundg=afdMin, which involve multiple rounds of broadcast and
many requests per applicationEihdMin. If an alarm channel exists, we have a more efficient algaoritvhich does
not involve significant broadcast overhead, and only rw@(% Iog%) requests. The algorithm uses a probabilistic
“roll-call” mechanism where data nodes randomly verifytttheey are indeed included in the aggregate.

The home server authentically broadcasts a check-requesstage containing the computeduNT aggregate,
and the commitment of the aggregator, to every sensor nodeh &nsor node then randomly decides whether to
check that it was included in the commitment. Each sensoe §qdwvhich belongs to the counted subset, repeats
the following trial O(1/¢) times: it flips a coin with probability 1a of success, whera is the authenticatedouNT
aggregate sent to it by the base station in the query. If arljexfe trials succeed, the sensor node then performs a
probe The probe asks the aggregator to prove the sensor nodsanmesin the commitment tree. The sensor node is
able to verify the aggregator’s response because it knaswsdimmitment hash value that was sent to the home server.
If the aggregator does not respond satisfactorily, theaersde may then use the reliable communication channel to

raise an alarm to the home server.

18

procedure CountDeflateCheck(@, €):
receivea and commitment valuk
c—0

L In1/3
fori=1... - do

if random([0,1)) < 1/athenc« 1
if c=1then
challengeaggregator to verify this sensor’s inclusion in commitment
if challenge not satisfietthen
raise alarm

For simplicity, we analyze a variant of the participatidmecking algorithm where, instead of having each node
immediately perform all the coin flips, we consider the cabene we have severedunds and in each round, every
node flips a coin with probability /& of success, wherais the authenticatedoUNT aggregate sent to it by the base
station in the query. Clearly, the original single-roundaaithm is equivalent to this multi-round algorithm, extep
that in the single-round algorithm, nodes do not wait for @ to complete before making their next coin flip, and

do not repeat their probes if they receive more than one safidecoin flip.

Lemma 6.2. If an adversary reduces the aggregation result by a factog’ of €, then the probability of it being

undetected in a single round of coin flips is less than(e — %82).

Proof. Suppose an adversary reports a low reault (1—¢')a wherea is the truecOUNT aggregate. Since the
number of leaves (and the shape) of the commitment hashstfa#lyi determined by the reportetbuNT aggregate
value, at most t ¢’ of the nodes which should be in the counted subset can achmik data values as leaves in the
commitment tree. This implies that at leasfraction of the sensor nodes have no leaves in the committresnt

The adversary’s tampering is detected whenever a senserthatlhas no leaf in the commitment tree performs a
probe, since the aggregator will be unable to produce tHevéstex that corresponds to the sensor node.ale the

true count, and lain = £’a be the number of nodes without leaves in the commitment tree.

19

Pr [Adversary is undetected in any single round
1

= (1-=-2)m
1-2)
1
1_7 m
< 1-3)
m /m\1 o m .
< 1—54- 5) 2 (Since3 < 1, the absolute value of each succeeding term decreases)
1 1
_ Y I Y
= 1-¢ +(2 Zm)s

< 1—(¢—Z€?

NI

IN

1
1-(e— ész) (Sincex — %xz is monotonically increasing for @ x < 1)

Theorem 6.3. Let each sensor node in the counted subset perf&?ﬁ%} coin tosses. Then, if an adversary
2
reduces the aggregation result by a factoreb> €, this cheating will be detected with probability at ledst &, and

the expected number of requests issued by the base stat@mnthdnadversary is absent is{%]og %).

Proof. From Lemma 6.2, the probability that the adversary remainuetected inLllEZ] rounds is less thafil —
2

1
(e— 4€2))* 2% < 1 Hence, if we repeat this ftimes (for a total of{(ln%) !

1e2
e—3¢

-‘ rounds), the probability of

non-detection is less than

1
1—¢'-

By linearity of expectations, the expected number of praspests in each round E”% = Hence, the

expected number of probe requests in the multi-round pebtiscyt; {(In %)8(1118)-‘. When the adversary is not
2

presenta = a = n, and so the expected number of probes in the netwotk i {(In %)dllésﬂ =0(llog3). O
Since the single-round protocol makes no more probe regjtiest the multi-round protocol, the number of probes
in the actual protocol is aIs@(%Iog%). When the adversary is in the network, a malicious aggregatoreasily
increase the probe complexity (e.g. by reporting 0, causing every node to initiate a probe and fail), but trosiled
immediately reveal the adversary’s presence. Causiny &agfe in the network to use the expensive alarm channel
may be an effective denial-of-service (DoS) attack; how@®@S is outside the scope of this paper. An attacker in
complete control of the aggregator is capable of far morelimgs damage than simple DoS if it can cause the home

server to accept false results.

20

7 Computing The Median

In this section we study the problem of computing the medigh@measured values. Without loss of generality we
assume that all values are distinct—if they are not distinct, we can run the protamothe (distinct) pair$a;, ID;),
wherelD;j is a unique ID of the-th sensor.

The most straightforward approach is to sample the measuntsrand use the median of the sample as an estimate
of the true median. Bar-Yosset al. [4] showed thaQ(1/¢%) samples are necessary to achieweapproximation
with high probability [35]. We show how to achieve more efiai solutions with onlyO(logn/e) element requests.
Note that here we assume that the user knows the approxiimatefghe sensor network. This can be achieved, for

example, with the methods presented in Section 6.

7.1 Algorithm for M EDIAN

The aggregate-commit-prove approach¥@mDIAN builds on common steps described in Section 4 with some addi-
tional steps to verify the integrity of the proposed median.

The common steps in Section 4 describe how the aggregatamiterto a sequence of node readings sorted in
order of the node IDs. FameDIAN, we additionally require the aggregator to provide a comraiit to a sequence
which ismedian-separatgar pivoted around the median element. Specifically, theiameglement is in position/2,
while every reading that is smaller than the median liesddeitt in the commitment tree, and every reading that is
larger than the median lies to the right of the middle. Tofyehat the two committed sequences are the same, the
home server requesgzsln% random elements from each sequence and verifies that tlessergk are present in the
other sequence. This ensures (with probability) that the two sequences have at least a factor-eEd overlap;
the proof structure is essentially identical to the prooTbéorem 4.1.

Subsequently, the home serverobtains an alleged mediamneg and verifies its correctness in an interactive
proof. Specifically, to check that,eq is (close to) the median of the committed sequemcgicks elements from
random positions in the committed median-separated segquerd checks that elements picked from the left half of
the sequence are less than the reported median, and eldroemtbe right half are greater than the median.

A pseudo-code description of this median-checking tesivisngoelow.
Theorem 7.1. Procedure MedianCheckt, ameq, €3) requestsl/es; elements g and satisfies:

(1) if the measurements sequence is median-separated.agts@qual to @2, then the result is ACCEPT’

(2) if ameqis not present in the sequence, or its position p in the saéepience satisfies

Ip—n/2| >g3n,

21

procedure MedianCheck(n, @eg, €3):
requesta,,
if an/2 # ameathen
return REJECT
for i :1...% do
pick j er{1...n}\{n/2}
requesta; from median-separated sequence
if j <n/2and aj > ameqthen
return REJECT
if j >n/2and a; < amedthen
return REJECT
return ACCEPT

then with probability at least — 1/e > 1/2 the result is ‘REJECT

Proof. The number of requests and property (1) follow immediatEty. property (2), notice that ijp— n/2| > &3n,
then there are at leasgn values ofj, which yieldREJECT Hence with probability at mogtl — £3)Y/%2 < 1/e the

for-loop completes without rejection, i.e., the algorithrerg with probability at least11/e. |

Theorem 7.1 implies that by requesting in to%aln% elements, we can provide a-1d probability of detecting if
the reported value is not ag-approximation of the median in the committectdian-separatedequence.

When all the stages are combined, we have the following aisaiW¢e wish to derive afk, 5)-seCUreMEDIAN;; in
such an algorithm, an attacker is either limited to repgréimesult that is-close to the true value or it must be detected
with probability 1— 6. We prove that if the attacker does not encounter theédprobability of detection at any stage,
then its reported result must lseclose for some. Suppose the attacker has a greater thanobability of evading
detection. Then the reported median must keg-approximation to the median for the median-separatedesexu
The median-separated sequenceyislose to the sequence sorted by node ID, which has at gnaséements which
were duplicated, falsified, or dropped. Setting €1 + €2 + €3, it is clear that the combined algorithm fRIEDIAN is
a (g,8)-secure aggregation algorithm.

NoTE: Clearly, using the same techniques we can compute with dmancunication complexity not only the median,

but also arbitrary quantiles.

7.2 MEeDIAN for the Alarm Channel Scenario

In the alarm channel scenario, the algorithm &wuNT is significantly more efficient than in the ID-knowledge
scenario (cf. Section 6). Hence, an alternative algorithnvEDIAN is to reduce it tacOUNT. The aggregator collects
the data values and computes the median, which it then fdesarthe home server. Note that no commitments are
necessary at this stage. After the home server has recéiggnidposed median, it then performs@unT of the total

number of sensor nodes that have a reading less than théagpoedian. If the number is not half the total number

22

of nodes queried, then the proposed median is rejected. athdéHat this is ang(6)-secure algorithm foMEDIAN
follows directly from the property that the algorithm foouNT is (g, d)-secure. This algorithm can also be adapted

for arbitrary quantiles.

8 Counting Distinct Elements

COUNT-DISTINCT is the problem of counting the numbgiof distinct values in the measurements, i.e., the problem
of determining the cardinality of the set of all the measwrats.

Ergin et al. [15] give a very efficient protocol for proving a lower bound the size of a set. While it is possible
to use their solution in our context, a direct implementatimuld require application of PIR protocols [7, 27]. The
reason for this requirement is the fact that in the protoocmppsed by Ergnet al. it is essential that the prover does not
know the positions of randomly selected elements. The egiin of PIR significantly increases the communication
complexity of the solution — the currently most efficient RiRtocol [27] imposes an additional factor@flog?n)
per access of a single bit.

We propose two different protocols for estimating the numifedistinct elements. Our solutions are based on
algorithms for space-efficient approximation of the numtfedistinct elements in a data stream [5, 17, 1], and on a

novel technique for random selection of the nodes of the owt\icf. Section 5.3).

8.1 Method I: Counting Distinct Elements by Distributed MIN-Co mputation

The described approach to the estimation of the number @hdisslements in a data stream can be viewed as a
process of finding a minimum, in which the same computatigerformed for each element: compute the hash-value
and save it if it is smaller than the current minimum. Thiserlation immediately suggests that the algorithm for the
data stream [1] can be easily implemented in a distributed ared the estimation of the number of distinct elements
can be reduced to the problem of finding the minimum. Firshibrae station picks at random a hash functidrom
an appropriate family, and through the aggregator ann@teeach sensor. Each sensor locally computes the hash
value of its element, and then participates in a protocolificing the minimum hash value (cf. Section 5).

If we want to improve the accuracy, we can implement the #lgorof Bar-Yossef et al. [5], by keepingmallest
hash values instead of just the single minimum. Howeves,ithprovement comes at a cost of higher communication

complexity.

23

8.2 Method II: Proving Bounds on the Number of Distinct Elements

The above method for counting distinct elements dependéi@mandom selection procedure from Section 5.3. In
some applications the communication overhead of this Sefeprocedure may be too high. In this section we present
alternative, more efficient methods for estimation of thenbar of distinct elements.

The method requires the aggregator to show evidence thardpesed distinct-count is not lower than a certain
lower bound, and is not higher than a certain upper boundceSive require that the lower and upper bounds are

closely matched, this implies that the aggregator is nat ttheither inflate or deflate the count.

8.2.1 A Lower Bound on the Number of Distinct Elements

At the beginning of the protocol for showing a lower bound loa humber of distinct elements the aggregataom-
mits to the values reported by the sensors using the hasleorestruction of Section 4, and reports the commitment
(and the proposedoUNT-DISTINCT aggregat@l) to the home serveB. 4 then runs an algorithm for counting distinct
elements in a stream by Bar-Yoss&tfal[5], using hash functions specified by the home sews/er

LetH = {h| h: [m] — [M]}, whereM = m*, be a family of pairwise independent hash functions [37¢hsthat any
functionh € H has a short description. After commits to the input computes an estimate for a lower bound on
the true aggregate resuylias follows.s picks at random a hash functitrfrom the familyH and sends ittei. Then
4 computes(g) for alli =1...n, and sends back 8 t elements (for appropriately chosgnon whichh evaluates
to thet smallest values. Thesa checks the correctness of the received elements and cosnguitestimate oft as
K =tM /v, wherev is thet-th smallest value to which maps the received elements.

Bar-Yossett al. [5] show that with high probability is a good approximation of the number of distinct elements.
We can further amplify the accuracy by repeating the prdtédimes and estimating with the median of the

resulting estimatorg,, ..., 1. A pseudo-code description of the entire protocol is givelow.

procedure DistinctLowerBound(n, ng, ¢):

t:= [96/¢?]

M :=nm?

for j=1...4do
pick hj erH
senddescription ofh; to 4
requestt elementsy; on whichh; evaluates to thesmallest values
let v be thet-th smallest such value
setyj =tM/v

return | = mediarfpy,. .., 1)

Theorem 8.1. ProcedureDistinctLowerBoundg, m, €, £) requests @/ - 1/¢%) elements @and returns a value 'y

which satisfies the following:

24

e [> (1+¢)u with probability less thait1/6)"/2.
e | < (1—¢)u with probability less thaii1/6)%/? if the attacker is not present.

Proof. First consider the special case whes 1. Bar-Yossefkt al. [5] bound the probability that the estimagté
is significantly larger thap: Pr [} > (1+¢)Y < %. For¢ > 1, the median of valuesy, ..., |, exceeds the bound
(1+€)pif at least half of the estimates exceed the bound, hénhdmediarys,...,yr) > (1+ €)Y < (%)I/Z. A

symmetric argument bounds the probabilitybbeing significantly lower thap, hence the result follows.]

A naive approach would be to ugeas the reported aggregate value. However, the estimatahabpilistic, which
means that even if the adversary is absent, there existaekizat it may return an estimate that is far from the true
count. To ensure complete accuracy in the absence of aketttae use the verified estimator valueas a proof that
there are (probably) at legstdistinct values in the set, and compare it against the pgrgeisposed distinct coupt

Lete =¢/2. If U > (1—¢')pthen the home server accepts the proposed rgsagtconsistent with the verified
estimatgl. However, ifif < (1—¢')p then the reported aggregatés suspiciously high (i.e. the proven lower bound
I appears too weak). To determine if this discrepancy was aaefdlse positive (e.g. the statistical estimator just
happened to get a high error), or if it was due to maliciousiagion the aggregator’s part, the home server requests
afull dumpof all the data values committed to by the aggregator so thabirectness can be checked with certainty.
Since this request for afl values is clearly expensive, we chodsgich that the probability of such a request is low.
Specifically, we add the condition tHat- @3 logn. This ensures that, if the attacker is not present, the |bibtyethat
the estimator raised a false positive is less tham lhence the average cost of the full dump of data values ig@ons

We also need to bound the probability of a false negativechvhappens iff > (1+€'), thus enabling the adversary

to claim a value fof which is up toig ~ 1+ 2¢’ = 1+ ¢ factor larger thaqu. By enforcing the requirement that

[> ﬁ Iog%, we provide the 1 & probability of catching the attacker in such a case. The fegiest complexity is
O(Z(log +logn)).

Note that in the protocab has no means to check thathas evaluated the hash function on all the elements, and
that the reported elements evaluate indeed to fmeallest values. A malicious aggregatbran omit some elements,
or report elements which evaluate to larger values. Howesueh cheating results in a smaller estimatevhich does
not help the cheater pass the requirementthat (1 — €)fi unless it also reports a correspondingly [pwin the next

section we show how a lofwcan be detected.

8.2.2 An Upper Bound on the Number of Distinct Elements

Consider the following sampling-based test: firsstcommits to the multi-se® of all the elements. Additionallyz

commits to a subse&® containing alldistinct elements (without repetitions)z reportsy = |S| to 8, and3 verifies

25

a’s claim by checking that all the distinct elements fr@uare present if§. In other words, the test checks thafs
an upper bound op.
Now, depending on the assumption scenario, and on the rafibto the total size of multi-se$, two different

approaches can be used for random sampling ffom

High Number of Distinct Elements Suppose the number of distinct elements is a significantiraof the number
of all the elements, i.ey > n/c for somec > 1. Then for the ID-knowledge scenario, a simple samplingubh the
aggregator is sufficient. The home server picks a node abrandith uniform distribution over all nodes. It requests
the chosen node’s reading frdBnand checks to see if the reading is als&in

This technique can also be adapted for the alarm-channebigoeby applying the techniques of Section 6 to
ensure thaBis a good representation of the data values of the sensosn8gecifically, the techniques of Section 6
will ensure that at most; of the elements irs are illegal, and furthermore at mast of the legitimate nodes are not
represented i®. Then, the home server may select a random readiBgand check to see if the reading is als&in
without having any knowledge of the set of node IDs being igaer

Note that this node-sampling procedure is quite differeminfthe one described in Section 5.3, and in particular
is much more efficient since the home server does not recharéiiDMIN primitive. A pseudo-code description of

the entire protocol based on this simple sampling is givéovibe

procedure HighDistinctUpperBound(rgz, £):
fori=1...¢4do
pick j er{1...n}
requesta;
requestan element fron§ equal toa;
if any of the requests failatien
return REJECT
return ACCEPT

Theorem 8.2. Procedure HighDistinctUpperBoundy, €2, ¢) requesty elements and satisfies:
(1) if S contains all the distinct elements from the input the reisuliacCcEPT.

(2) if W < (1—&2)p then with probability at least — e 62/ the result is ‘REJECT, assuming that |&> n/c for

some constante 1.

Proof. Claim (1) is obvious: if all distinct elements are presenSinthe provera will always be able to return
requested elements. For claim (2) notice that i (1 — &)y, then there are at leagt, elements irSwhich detect

cheating and lead toREJECT. By assumptiorue, > €zn/c for somec > 1, so the probability that a single sample

26

detects cheating is at least/c. Therefore, the probability of returningh&cePT” after £ samples is at mostl —

£2/c)! < e ‘&2/° which implies the claim. o

Theorem 8.2 implies that by takinfg= ¢/, we can detect cheating with constant probability 1/e. Therefore,
if with such value of¢ we repeat the test Iryd times, we get confidence at least . Settinge = €, concludes the
analysis for the ID-knowledge case. For the alarm-chanasd,ccombining this, bound with the 2, bound on the
adversary's ability to drop legitimate values frddor add false values t8 (cf. Section 4), we get afE, d)-secure
algorithm forcOUNT-DISTINCT if we sete = 2¢1 + €.

Note that this method yields a significantly better estinthta the approximation by sampling with a “trivial

aggregator”z, which only forwards the measurements collected from theaes selected by [10, 4].

Low Number of Distinct Elements. When the number of distinct elements is low in comparison ¢ottital size

of Sthe simple sampling will not give us the desired bounds, bieeshe omitted elements not reporte®iicould be
infrequent and so very hard to find by sampling. However, dlsmadification of the random sampling protocol from
Section 5.3 can fix this problem: each node reports the hdsk fdased on the value measured by the node, not on its
ID. This results in a distribution uniform atistinct valuesnot uniform omodes In other words, different nodes with
the same measured value will report the same hash valuebyahd properties of the hash function, each measured

value will be equally likely to be the minimum. The pseudale®f this sampling approach is given below.

procedure LowDistinctUpperBoundg, £):
fori=1...¢do
applyRandomSamplen measured values
requestan element fron8 equal to the sampled value
if any of the requests failetien
return REJECT
return ACCEPT

The following theorem can be proved analogously to the Térad.2.
Theorem 8.3. Procedure LowDistinctUpperBound{,,) requestd elements and satisfies:
(1) if S contains all the distinct elements from the input the reisuliacCcEPT.

(2) if W < (1—e)p then with probability at least — e~ ‘%2 the result is ‘REJECT.

9 Computing the Average

In this section, we describe how to efficiently and secureiynpute the average of sensor data. We describe three

different protocols with different efficiency tradeoffs fihis purpose.

27

9.1 ComputingAVERAGE by Counting Frequencies

In this subsection, we describe how to compute the averagmingting frequencies of the sensor values. We first
describe a special case and then show that the special cabe eatended to the general case.

In the special case when< n, or more generally when the range of the sensor values i$ sncamparison with
the size of the sensor network (e.g., poly-logarithmia)nwe can estimate the average quite accurately by taking a
small sample of all the elements and returning the averatfeeafample. However, the number of the samples needed
to assure with constant probability a good estimate for tleeaaye depends on the the underlying distribution of the
values, and in general is lower-bounded®yl/s?), whereme is the desired additive error bound [8, 4].

As in the case of the computation of the median, the naive Bagpnly minimally uses capabilities of the
aggregator. Below we present an alternative method for atimgp the average, in which the aggregator is more
involved. As we shall see, this approach, which we éakrageByFrequencgys in some cases significantly more
efficient.

We assume that the home server knows how many sensor nodeibuendata readings to the/ERAGE com-
putation: this can be computed using theuNT primitive (cf. Section 6). Now the aggregatar collects all the
(value,ID)-pairs(a;,ID;) and commits to them in the manner described in Section 4. BTheamputes an average
a and reports it tas. In order to prove the correctnessafa sorts all the pairs using the value as the main sorting
key and the nodéD as a secondary sorting key, and commits also to the sortes:seg. Thers tests whether the
two committed sequences contain the same elements by t'EEthédn% samples (this is identical to the process for
MEDIAN in Section 7). If the test completes successfullysends tos the occurrence-counts for each value.in.

3 verifies the correctness of the counts by deriving from thieenpositions in the committed sorted sequence, and
checks that the values in the committed sorted sequencedfsanted using the methaBor t - Check- 11 spot
checker [14] (cf. Section 4). If this check also succeedspmputes the average directly from the occurrence-counts,

and compares it ta. Summarizing, we obtain the following theorem.

Theorem 9.1. Letay,...,a, denote the values committed to by the aggregator. The puveedverageByFrequency

requests @ogn/e3 + m) elements and satisfies:

(1) If a'is equal to the average of the values .a.,a,, and the aggregator follows the protocol, thenalways

ACCEPTS.

(2) IfjJa—avg(ay,...,an)| > €am, thens REJECT with probability> 3/4 (for a suitable choice of constant param-

eters).

Proof. (sketch) Claim (1) is obvious, since when the aggregatdodd the protocols receives the exact counts of

28

each value and so computes the exact average. On the otlikiitthe average of the values committed to is at least

gzmaway froma, then at leasts fraction of all values are not in order (not sorted), and sotést will fail. |

Theorem 9.1 implies that, since duplicates and droppedesaduie limited to a total ofel of the number of
legitimate values by the process in Section 4, by settiag?e; + €2 + €3, we will have(g, d)-secure algorithm.

Note that in many scenarios we have typicallyhog: 1/¢ — in such cases the procedukeerageByFrequency
uses significantly fewer samples than random sampling teegtee the same error bound.

For the general case whargs large, we could split the randg m| in intervals of exponential scale where ihih
interval is[m/2', m/2'~1]. Subsequently, we can perform a protocol similar to the afoveach interval and achieve
an estimate of the average. This involvesrnomvocations of thecOuNT primitive. A related approach also with

logminvocations ofcOUNT is presented in Section 9.3.

9.2 AVERAGE by reduction to COUNT-DISTINCT

We can reduce the problem of computing the average to thégunotf determining the number of distinct elements
in a set [15]. Without loss of generality, assume that thessemalues are integers. In particular, consider the set
W={(@,j)1<i<nl<j<a} (if aj = 0 then there will be ng such that(i, j) € W). Thus,¥ contains only
distinct elements and the cardinality‘®fequals toy]! ; a. By using our protocol for counting the number of distinct
elements in Section 8, we could obtain a protocol to comph#eaierage. Note that the communication efficiency
for the protocol to compute the average is the same as the naioation efficiency for the protocol to compute the

number of distinct elements.

9.3 AVERAGE by reduction to COUNT

Clearly, if we have the sum of all the sensor readings, andata number of sensor readings, we can compute the
average as the sum divided by the number of readings. We ¢am@g@proximation of the number of readings using
the COUNT aggregate described in Section 6.

To get an approximation of theum aggregate, we reducM to COUNT. Specifically, observe thatOuNT is
a special case afum with the range of allowable data values{i, 1}. Since the data readings are integergnih
we can represent them wiftlogm| bits. To computesum, we simply call the algorithm focouNT once for each
of the [logm)] bit positions. To compute the sum, the algorithm multiplies each count by the significance of the
bit counted. For example, if 18 nodes had bit 0 set, 23 nodéshd set, and 10 nodes had bit 2 set, then the sum
is 18- (20) 4-23- (21) 4 10- (22) = 104. Since, for each bit position, tlleoUNT algorithm provides a multiplicative

g-approximation for the total number of nodes whose dataingdths a 1-bit at that position, the final computation of

29

the resultansuM must also be a multiplicative-approximation.
The resultant algorithm requeﬁ&% Iogmlognlog%) elements, which is less than the request complexity of the
method described in Section 9.2 for typical valuesmofFurthermore, it is requires fewer intermediate steps than

algorithm of Section 9.1 and so is more efficient (by some t@onidactor, but not asymptotically).

10 Forward Secure Authentication

Consider the challenge of securely querying past data. >@aomple, an innocuous event in the past that later became
interesting and we may still want to place a query on that ewale could use the same mechanisms we proposed in
previous sections to run queries on past data. However, @@ toesolve some additional security issues to securely
query past data. In particular, if a sensor is compromisedcattain time, the attacker should not be able to alter the
data collected in the past before the sensor was compromWgectall this propertyforward secure authentication

We propose an efficient mechanism to enable forward sectineratication.

As we described before, each sensor shares a key with thegtatimn. We assume that each sensor node and the
home station are loosely time synchronized and the timevidetil into constant time intervals. The length of the time
interval can be minutes or hours depending on the securtyirements. To enable forward secure authentication, each
sensor updates its key shared with the home station at tlertaeg of each time interval using a one-way function and
uses the updated key to compute the MAC on the sensing dataydbat time intervaf. Thus, even when an attacker
compromises the sensor node in a later time interval, becaifuthe property of the one-way function, the attacker is
unable to compute the MAC key for the previous time interaal] hence will not be able to alter the sensing data for
previous time intervals.

A challenge of this approach is how to efficiently store thetjpiata and authenticator, as well as the challenge that
the verifier either needs to compute many one-way functiondériving the current key of a node or that the verifier
needs to store one key per node.

Similar techniques have been used to achieve forward secgrgption [6].

11 Conclusions

It is a challenging task to securely aggregate informatiofaige sensor networks when the aggregators and some
sensors may be malicious. We proposedggregate-commit-provieamework for designing secure data aggregation

protocols (Section 3). We propose specific protocols withia framework for securely finding the minimum and

2A one-way functionf is a function that it is easy to computéx) givenx, but it is difficult to compute a pre-imagesuch thatf (x) = y giveny.

30

maximum values, secure random sampling and leader elg@iection 5), securely computing the cardinality of a
subset of nodes (Section 6), the median (Section 7), sgcesémating the number of distinct elements (Section 8),
and securely computing the average of measurements (88gti@ur protocols require only sublinear communication
between the aggregator and the user. We also propose theaahpsfforward secure authenticatioto ensure that

even if an attacker corrupts a sensor node at a point in tinvélinot be able to change any previous readings the

sensor has recorded locally.

References

[1] Noga Alon, Yossi Matias, and Mario Szegedy. The spaceperity of approximating the frequency moments.
In Proceedings of the 28th Symposium on the Theory of Compa99g.

[2] Laszb Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedye€king computations in polylogarithmic
time. InProc. 23rd ACM STO(pages 21-32, 1991.

[3] Chandramouli Balasubramanian and J. J. Garcia-Lurevé&. Shortest Multipath Routing using Labeled Dis-
tances. IrProceedings of the IEEE International Conference on Mohiehoc and Sensor Syster2f04.

[4] Ziv Bar-Yossef, S. Ravi Kumar, and D. Sivakumar. Samgplaigorithms: lower bounds and applications. In
Proceedings of the 33rd Symposium on the Theory of Comp2dg..

[5] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumarda uca Trevisan. Counting distinct elements in a
data stream. IRroceedings of the 6th International Workshop on Randatioizand Approximation Techniques
2002.

[6] Mihir Bellare and Bennet Yee. Forward security in prvdéey cryptography. Report 2001/035, Cryptology
ePrint Archive, 2001.

[7] Christian Cachin, Silvio Micali, and Markus Stadler. i@putationally private information retrieval with poly-
logarithmic communication. IAdvances in Cryptology — EUROCRYPT'99: Proceedings ofrite¥rational
Conference on the Theory and Application of Cryptograplkichfiquespages 402—414, 1999.

[8] Ran Canetti, Guy Even, and Oded Goldreich. Lower boundsdmpling algorithms for estimating the average.
Information Processing Letter§3(1):17-25, 1995.

[9] Haowen Chan, Adrian Perrig, and Dawn Song. Secure lukieal in-network aggregation for sensor networks.
In Proceedings of the 13th ACM Conference on Computer and Caimations Security2006.

[10] Moses Charikar, Surajit Chaudhuri, Rajeev Motwand &ivek Narasayya. Towards estimation error guarantees
for distinct values. IrProceedings of the 19th Conference on the Principles of Baga System2000.

[11] Swades De, Chunming Qiao, and Hongyi Wu. Meshed muhipauting with selective forwarding: an efficient
strategy in wireless sensor network3omput. Networks43(4):481-497, 2003.

[12] Amol Deshpande, Suman Nath, Phillip B. Gibbons, anai@asan Seshan. Cache-and-query for wide area
sensor databases. Rmoceedings of the International Conference on the Managemof Data 2003.

[13] Wenliang Du, Jing Deng, Yunghsiang Han, and Pramod KsMaey. A witness-based approach for data fusion
assurance in wireless sensor networks.Ptoceedings of the IEEE Global Telecommunications Conteye
2003.

[14] Funda Ergin, Sampath Kannan, S. Ravi Kumar, Ronitt Rubinfeld, and éghhviswanathan. Spot-checkers.
Journal of Computer and System Sciené&&s717—751, 2000.

31

[15] Funda Ergin, Ravi Kumar, and Ronitt Rubinfeld. Fast approximate P@#PBroceedings of the 31st Symposium
on the Theory of Computind999.

[16] Deborah Estrin, Ramesh Govindan, John Heidemann, atishumar. Next century challenges: Scalable co-
ordination in sensor networks. Rroceedings of the ACM/IEEE International Conference obl4oComputing
and Networking, MobiCom 99999.

[17] Philippe Flajolet and G. Nigel Martin. Probabilistioanting. InProceedings of the Symposium on the Founda-
tions of Computer Scienc&983.

[18] Deepak Ganesan, Ramesh Govindan, Scott Shenker, duwtdbeEstrin. Highly-resilient, energy-efficient mul-
tipath routing in wireless sensor networl&GMOBILE Mob. Comput. Commun. Ré&(4):11-25, 2001.

[19] Oded Goldreich. Probabilistic proof systems - a survey Symposium on Theoretical Aspects of Computer
Science1997.

[20] Shafi Goldwasser, Silvio Micali, and Charles RackoffieTknowledge complexity of interactive proof-systems.
In Proceedings of the 17th Symposium on the Theory of Compu®85.

[21] Lingxuan Hu and David Evans. Secure aggregation foeless networks. IWorkshop on Security and Assur-
ance in Ad hoc Network2003.

[22] Chalermek Intanagonwiwat, Deborah Estrin, Rameshiti@an, and John Heidemann. Impact of network den-
sity on data aggregation in wireless sensor network®rbeeedings of International Conference on Distributed
Computing System2001.

[23] Pawan Jadia and Anish Mathuria. Efficient secure agdieg in sensor networks. IRAroceedings of the 11th
International Conference on High Performance Comput2@p4.

[24] Joseph Kahn, Randy Katz, and Kristofer Pister. Mobigworking for smart dust. IfProceedings of the
ACM/IEEE International Conference on Mobile Computing &tetworking 1999.

[25] Joe Kilian. A note on efficient zero-knowledge proofslarguments (extended abstract). Aroc. 24th ACM
STOC pages 723-732, 1992.

[26] Sung-Ju Lee and Mario Gerla. Split Multipath RoutingiwMaximally Disjoint Paths in Ad hoc Networks. In
Proceedings of the IEEE International Conference on Comaations 2001.

[27] Helger Lipmaa. An oblivious transfer protocol with legiuared communication. IRroceedings of the 8th
Information Security Conferenc2005.

[28] Samuel R. Madden, Michael J. Franklin, Joseph M. Hstn, and Wei Hong. TAG: a Tiny AGgregation service
for ad-hoc sensor networks. Proceedings of the Fith Annual Symposium on Operating Bysi2esign and
Implementation2002.

[29] Ajay Mahimkar and Theodore Rappaport. SecureDAV: Ausedata aggregation and verification protocol for
sensor networks. IRroceedings of the IEEE Global Telecommunications Confeye004.

[30] Ralph C. Merkle. Protocols for public key cryptosystenin Proceedings of the IEEE Symposium on Security
and Privacy 1980.

[31] Ralph C. Merkle. A certified digital signature. Rroceedings on Advances in Cryptolod$89.

[32] Asis Nasipuri and Samir R. Das. On-Demand Multipath faufor Mobile Ad Hoc Networks. IrfProceedings
of the IEEE International Conference on Computer Commuitinand Networks1999.

[33] Adrian Perrig, Ran Canetti, J.D. Tygar, and Dawn Sonbe TESLA broadcast authentication protocBISA
CryptoBytes5(Summer), 2002.

[34] Adrian Perrig, Robert Szewczyk, Victor Wen, David Gujland J.D. Tygar. SPINS: Security protocols for sensor
networks.Wireless Networks Journal (WINE®(5):521-534, 2002.

32

[35] Bartosz Przydatek, Dawn Song, and Adrian Perrig. SliécuBe information aggregation in sensor networks. In
Proceedings of the 1st ACM Conference on Embedded NetwBewezbr System2003.

[36] David Wagner. Resilient aggregation in sensor netaotk Proceedings of the ACM Workshop on Security of
Ad Hoc and Sensor Network2004.

[37] Mark N. Wegman and J. Lawrence Carter. New hash funstaomd their use in authentication and set equality.
Journal on Computer and System Scien@@s265—-279, 1981.

[38] Yi Yang, Xinran Wang, Sencun Zhu, and Guohong Cao. SDRABecure hop-by-hop data aggregation protocol
for sensor networks. IRroceedings of the ACM International Symposium on MobildHad Networking and
Computing 2006.

33

