
AGVI{ Automatic Generation, Veri�cation, and

Implementation of Security Protocols

Dawn Song dawnsong@cs.berkeley.edu,

Adrian Perrig perrig@cs.berkeley.edu, and

Doantam Phan dphan@hkn.eecs.berkeley.edu

University of California, Berkeley

Abstract. As new Internet applications emerge, new security protocols

and systems need to be designed and implemented. Unfortunately the

current protocol design and implementation process is often ad-hoc and

error prone. To solve this problem, we have designed and implemented

a toolkit AGVI, Automatic Generation, Veri�cation, and Implementa-

tion of Security Protocols. With AGVI, the protocol designer inputs the

system speci�cation (such as cryptographic key setup) and security re-

quirements. AGVI will then automatically �nd the near-optimal proto-

cols for the speci�c application, proves the correctness of the protocols

and implement the protocols in Java. Our experiments have successfully

generated new and even simpler protocols than the ones documented in

the literature.

1 Introduction

As the Internet and electronic commerce prospers, new applications emerge

rapidly and require that new security protocols and systems are designed and

deployed quickly. Unfortunately, numerous examples show that security proto-

cols are diÆcult to design, to verify the correctness, and particularly hard to

implement correctly:

{ Di�erent security protocols even with the same security properties vary in

many system aspects such as computation overhead, communication over-

head and battery power consumption. Therefore it is important to design

optimal security protocols that suit speci�c applications. Unfortunately the

current process of designing a security protocol is usually ad-hoc and in-

volves little formalism and mechanical assistance. Such a design process is

not only slow and error prone but also often miss the optimal protocols for

speci�c applications.
{ Experience shows that security protocols are often awed even when they

are designed with care. To guarantee the correctness of security protocols,

we need formal and rigorous analysis of the protocols, especially automatic

protocol veri�ers.
{ Software is notoriously awed. Even if the design of the security protocol is

correct, various implementation bugs introduced by programmers could still

easily break the security of the system.



To solve these problems, we designed and implemented the AGVI toolkit

which stands for Automatic Generation, Veri�cation, and Implementation of

Security Protocols. With AGVI, the protocol designer speci�es the desired secu-

rity requirements, such as authentication and secrecy, and system speci�cation,

e.g., symmetric or asymmetric encryption/decryption, low bandwidth. A protocol

generator then generates candidate security protocols which satisfy the system

requirements using an intelligent exhaustive search in a combinatorial protocol

space. Then a protocol screener analyzes the candidate protocols, discards the

awed protocols, and outputs the correct protocols that satisfy the desired secu-

rity properties. In the �nal step, a code generator automatically outputs a Java

implementation from the formal speci�cation of the generated security protocols.

Even a simple security protocol can have an enormous protocol space (for

example, for a four-round authentication protocol, even after constraining mes-

sage format and sending order, we estimate that there are at least 1012 possible

variation protocols that one would need to consider to �nd an optimal one for the

speci�c application!). Facing this challenge, we have developed powerful reduc-

tion techniques for the protocol generator to weed out obviously awed protocols.

Because the protocol generator uses simple criteria to rule out obviously awed

protocols, it is fast and can analyze 10; 000 protocols per second. Protocols that

were not found awed by the protocol generator are then send to the protocol

screener which can prove whether the protocol is correct or not. Our protocol

screener has the ability to analyze protocol executions with any arbitrary proto-

col con�guration. When it terminates, it either provides a proof that a protocol

satis�es its speci�ed property under any arbitrary protocol con�guration if it

is the case, or it generates a counterexample if the property does not hold. It

also exploits many state space reduction techniques to achieve high eÆciency.

On average, our protocol screener can check 5 to 10 synthesized protocols per

second (measured on a 500 MHz Pentium III workstation running Linux).

We have successfully experimented with AGVI in several applications. We

have found new protocols for authentication and key distribution protocols using

AGVI and some of them are even simpler than the standard protocols docu-

mented in the literature such as ISO standards [Int93]. Details about the exper-

iments and techniques in the tool can be found in [PS00a,PS00b].

2 Components in AGVI

2.1 The Protocol Generator

Our protocol generator generates candidate protocols that satisfy the speci�ed

system speci�cation and discards obviously awed protocols at an early stage.

Intuitively, the protocol space is in�nite. To solve this problem is to use iterative

deepening, a standard search technique. In each iteration, we set a cost threshold

of protocols. We then search through the protocol space to generate all the

protocols below the given cost threshold. After sorting the protocols, the protocol

screener tests them in the order of increasing cost. If one protocol satis�es the

desired properties, it is minimal with respect to the cost metric function given



by the user and the generation process stops. Otherwise, we increase the cost

threshold and generate more protocols.

A simple three-party authentication and key distribution protocol has a pro-

tocol space of order 1012. Our protocol generator generates and analyzes 10000

protocols per second, which would take over three years to explore the entire

space. We have developed powerful protocol space reduction techniques to prune

the search tree at an early stage. With these pruning techniques, it only takes

the protocol generator a few hours to scan through the protocol space of order

1012. More details are included in [PS00a,PS00b].

2.2 The Protocol Screener

We use Athena as the protocol screener [Son99,SBP00]. Athena uses an extension

of the recently proposed Strand Space Model [THG98] to represent protocol

execution. Athena incorporates a new logic that can express security properties

including authentication, secrecy and properties related to electronic commerce.

An automatic procedure enables Athena to evaluate well-formed formulae in

this logic. For a well-formed formula, if the evaluation procedure terminates, it

will generate a counterexample if the formula is false, or provide a proof if the

formula is true. Even when the procedure does not terminate when we allow any

arbitrary con�gurations of the protocol execution, (for example, any number of

initiators and responders), termination could be forced by bounding the number

of concurrent protocol runs and the length of messages, as is done in most existing

automatic tools.

Athena also exploits several state space reduction techniques. Powered with

techniques such as backward search and symbolic representation, Athena natu-

rally avoids the state space explosion problem commonly caused by asynchronous

composition and symmetry redundancy. Athena also has the advantage that it

can easily incorporate results from theorem proving through unreachability the-

orems. By using the unreachability theorems, it can prune the state space at

an early stage, hence, further reduce the state space explored and increase the

likely-hood of termination. These techniques dramatically reduce the state space

that needs to be explored.

2.3 The Code Generator

Our goal for the automatic code generator is to prevent implementation weak-

nesses, and obtain a secure implementation if the initial protocol is secure. The

code generator is essentially a translator which translates the formal speci�cation

into Java code. Given that the translation rules are correct, the �nal impleme-

nation can be shown to be correct using proof by construction. In particular,

we show that our implementation is secure against some of the most common

vulnerabilities:

{ Bu�er overruns account for more than half of all recent security vulnera-

bilities. Since we use Java as our implementation language, our automatically

generated code is immune against this class of attack.



{ False input attacks result from unchecked input parameters or unchecked

conditions or errors. Our automatic implementation ensures that all input

parameters are carefully checked to have the right format before used.

{ Type aws occur when one message component can be interpreted as an-

other message component of a di�erent form. In the implementation, we use

typed messages to prevent type aws.

{ Replay attacks and freshness attacks are attacks where the attacker can

reuse old message components in the attack. Athena already ensures that the

protocols are secure against these attacks. To ensure that the implementation

is secure, we use cryptographically secure pseudo-random number generators

to create secure nonces.

The code generator uses the same protocol description as Athena uses. The

generated code provides a simple yet exible API for the application programmer

to interface with. More details about the code generator can be found in [PPS00].

Fig. 1. AGVI GUI

3 Experiments

We have used AGVI to automatically generate and implement authentication

and key distribution protocols involving two parties with or without a trusted

third party. In one experiment, we vary the system aspects: one system speci-

cation has a low computation overhead but a high communication overhead

and another system specication has a low communication overhead and a high

computation overhead. The AGVI found di�erent optimal protocols for metric

functions used in the two di�erent cases. In another experiment, we vary the



security properties required by the system. Key distribution protocols normally

have a long list of possile security properties and an application might only re-

quire a subset of the list. The AGVI also found di�erent optimal protocols for

di�erent security requirements. In both experiments, AGVI found new proto-

cols that are more eÆcient or as eÆcient as the protocols documented in the

literature. More details can be found in [PS00a,PS00b].

Acknowledgments: We would like to thank Doug Tygar and Jon Millen for

their encouragement and stimulating discussions.

References

[CJ97] J. Clark and J. Jacob. A survey of authentication protocol literature.

http://www.cs.york.ac.uk/~jac/papers/drareview.ps.gz, 1997. Version 1.0.

[CJM98] E.M. Clarke, S. Jha, and W. Marrero. Using state space exploration and a

natural deduction style message derivation engine to verify security protocols.

In In Proceedings of the IFIP Working Conference on Programming Concepts

and Methods (PROCOMET), 1998.

[Int93] International Standards Organization. Information Technology - Security

techniques | Entity Authentication Mechanisms Part 3: Entity authentica-

tion using symmetric techniques, 1993. ISO/IEC 9798.

[Mea94] C. Meadows. The NRL protocol analyzer: An overview. In Proceedings of

the Second International Conference on the Practical Applications of Prolog,

1994.

[Mil95] J. Millen. The Interrogator model. In Proceedings of the 1995 IEEE Sympo-

sium on Security and Privacy, pages 251{260, 1995.

[MMS97] J. C. Mitchell, M. Mitchell, and U. Stern. Automated analysis of crypto-

graphic protocols using mur'. In Proceedings of the 1997 IEEE Symposium

on Security and Privacy. IEEE Computer Society Press, 1997.

[PPS00] Adrian Perrig, Doantam Phan, and Dawn Xiaodong Song. ACG{automatic

code generation. automatic implementation of a security protocol. Technical

Report 00-1120, UC Berkeley, December 2000.

[PS00a] Adrian Perrig and Dawn Song. A �rst step towards the automatic generation

of security protocols. InNetwork and Distributed System Security Symposium,

February 2000.

[PS00b] Adrian Perrig and Dawn Xiaodong Song. Looking for diamonds in the dessert:

Automatic security protocol generation for three-party authentication and

key distribution. In Proc. of IEEE Computer Security Foundations Workshop

CSFW 13, July 2000.

[SBP00] Dawn Song, Sergey Berezin, and Adrian Perrig. Athena, a new eÆcient

automatic checker for security protocols. Submitted to Journal of Computer

Security, 2000.

[Son99] Dawn Song. Athena: An automatic checker for security protocol analysis. In

Proceedings of the 12th Computer Science Foundation Workshop, 1999.

[THG98] F.Javier Thayer, Jonathan C. Herzog, and Joshua D. Guttman. Strand

spaces: Why is a security protocol correct? In Proceedings of 1998 IEEE

Symposium on Security and Privacy, 1998.


