
CASTLE: CA Signing in a Touch-Less Environment

Stephanos Matsumoto†‡

smatsumoto@cmu.edu

Samuel Steffen‡

steffsam@student.ethz.ch

Adrian Perrig‡

adrian.perrig@inf.ethz.ch

†Carnegie Mellon University
Pittsburgh, PA, USA

‡ETH Zurich
Zurich, Switzerland

ABSTRACT
With the emergence of secure network protocols that rely on public-
key certification, such as DNSSEC, BGPSEC, and future Internet
architectures, ISPs and domain administrators not specialized in
certification have been thrust into certificate-signing roles. These
so-called conscripted CAs sign a low volume of certificates, but still
face the same challenges that plague modern CAs: private signing
key security, administrator authentication, and personnel and key
management. We propose CA Signing in a Touch-Less Environ-
ment (CASTLE), an air-gapped and completely touchless system to
enable low-volume, high-security certificate signing in conscripted
CAs. We demonstrate that CASTLE’s layered, defense-in-depth
approach is technically and practically feasible, and that CASTLE
empowers conscripted CAs to overcome challenges that even pro-
fessional CAs struggle with.

1. INTRODUCTION
Public-Key Infrastructures (PKIs) in the current Internet provide

certificates, which bind public keys to information such as DNS
names, routing identifiers, or organizational identities. These cer-
tificates are issued by Certificate Authorities (CAs), whose public
keys are known and trusted by their relying parties. CAs are re-
sponsible for issuing certificates with the correct information and
for protecting their private signing keys.

While most CAs operate as business entities dedicated to certifi-
cate issuance and maintenance, they are not the only entities that
issue certificates. For example, corporations use internal CAs and
certificates as part of an enterprise PKI. In some future Internet ar-
chitectures, ISPs and domains have CA responsibilities thrust upon
them [10, 16, 24]. Finally, technologies such as DNS Security Ex-
tensions (DNSSEC) are causing entities such as the operators of
ccTLDs to take on CA roles. Like full-time CAs, these conscripted
CAs sign certificates, but at a much lower volume than dedicated
CAs.

Moreover, even traditional CAs, who specialize in the business
of signing certificates, face operational challenges in their signature
process. In 2013, TURKTRUST accidentally issued several certifi-
cates that endowed the holders with CA authority, allowing those

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACSAC ’16, December 05 - 09, 2016, Los Angeles, CA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4771-6/16/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2991079.2991115

certificate holders to issue fraudulent certificates for Google [13].
In 2015, Symantec (the largest CA today) issued unauthorized cer-
tificates for organizations such as Google and Opera for test pur-
poses without the knowledge of these organizations [22]. These
CAs are thus failing to carefully check the certificates that they are
issuing.

The storage of private signing keys is also a challenge, even for
traditional CAs. Virtually all CAs protect their private signing keys
through the use of Hardware Security Modules (HSMs), leveraging
hardware-based protection to prevent the private key from falling
into the wrong hands. They are used to protect high-value keys such
as the DNSSEC root key [3, 21]. However, HSMs are not a cure-all
solution for private key storage, as they can be circumvented by ex-
ploiting misconfigurations or software flaws, or by compromising
authentication that enables HSM functionality [9, 23]. CA-grade
HSMs can also cost upwards of tens of thousands of dollars [21],
and create vendor lock-in due to proprietary, closed-source tech-
nologies that make switching to a new solution difficult.

Another challenge is the protection of the private signing keys
against potentially malicious administrators, who may attempt to
use these keys for nefarious purposes. For example, in 2015, a
Chinese CA’s private signing key was installed in a proxy, allowing
the proxy to sign arbitrary certificates and mount on-the-fly man-
in-the-middle (MitM) attacks [14]. While there may be legitimate
reasons to allow administrator access to the private key storage,
such as to back up or update the private key, we observe the need
to enable useful management without unnecessarily exposing the
private key to possibly adversarial administrators.

These challenges motivate the core questions of this paper. How
can we encourage conscripted CAs to carefully check the certifi-
cates they sign? How can we protect the private keys used for sign-
ing certificates? How can we simplify management functions such
as private key backup for these entities? Most importantly, if tradi-
tional CAs struggle to perform these operations securely, how can
we make it easier for these non-specialized entities to do so?

In addressing the above questions, we specifically focus on con-
scripted CA organizations, which we characterize as having four
important attributes: (1) a lack of specialized operations and ad-
ministrators for CA functions, (2) a low issuance volume (on the
order of one per week), (3) a reluctance to HSMs due to cost and
vendor lock-in concerns, and (4) facilities and infrastructure to sup-
port physical security. To our knowledge, no current solution is
well-suited to this class of CAs.

To address the problems of securing certificate signatures, pri-
vate key storage, and key management in conscripted CAs, we
propose CA Signing in a Touch-Less Environment (CASTLE), a
CA signing system aimed at entities that sign a low volume of
certificates. CASTLE leverages trusted computing on commodity

http://dx.doi.org/10.1145/2991079.2991115

hardware, highly restricted input/output (I/O) channels, and multi-
administrator management protocols.

CASTLE takes a layered, defense-in-depth approach to secur-
ing certificate signing. The signing machine leverages a trusted
platform module (TPM) to protect the private keys from the un-
trusted OS. Moreover, the signing machine is air-gapped, encased
in a glass box, and completely touchless to thwart physical tamper-
ing. The signing protocol itself authenticates administrators via a
PIN on a mobile device and strong one-time authentication proto-
cols that prevent adversaries from authorizing certificate signatures
Finally, a threshold protocol secures logging, key backup, and ad-
ministrator management.

In summary, we make the following contributions:
• We design a CA application that leverages trusted comput-

ing, physical isolation, strong authentication, and distributed
management to hinder adversaries.
• We develop protocols for logging, log auditing, key backup

and rollover, and administrator management, secured by a
quorum of honest administrators.
• We implement and analyze a proof-of-concept prototype of

CASTLE and demonstrate that our system is both technically
and practically viable.

2. BACKGROUND
In this section, we provide a brief overview on trusted comput-

ing, with a particular emphasis on the Flicker trusted computing
infrastructure used in CASTLE.

The goal of trusted computing is to enable the verification of
software that has executed on a machine. It enables “trusted” pieces
of software to prove their integrity to a local or remote verifier, a
process called attestation. Trusted computing also allows trusted
software to make use of sealed storage, encrypting data such that
only the same software can decrypt the data.

Trusted computing can be implemented based on the trusted plat-
form module (TPM) [1], a commodity chip present in many sys-
tems. In particular, the TPM maintains a set of platform configu-
ration registers (PCRs), which store information of what code the
system has loaded and executed. Before the CPU executes code,
the TPM first measures or hashes the code, and then extends the
code into a PCR by hashing the current contents of the PCR along
with the measurement of the code. A PCR thus represents a chain
of measurements.

Such a chain can be used in the trusted boot process [1], which
leverages the BIOS as a static root of trust. Beginning with the
BIOS, each module measures the next module in the boot process
and extends it into the PCR to create a proof of what modules have
been loaded and executed. By contrast, a dynamic root of trust
provides a special CPU instruction to clear a set of PCRs and a
extend particular code block (called the secure loader block (SLB)
in Intel TXT [5]) into a PCR, allowing the late launch of code that
can be verified without measuring the entire boot process.

A TPM can also make use of sealed storage, in which it encrypts
data using a public key such that it can only be decrypted if the PCR
configuration matches given values. The corresponding private key
used for decryption never leaves the TPM. Sealing data can be used
to make data accessible only to a trusted application. A TPM also
has a small amount of non-volatile RAM (NVRAM), which can be
used to store data on the TPM itself while protecting the data from
applications with incorrect PCR values.

The Intel Software Guard Extensions (SGX) [8] are a relatively
new technology in trusted computing allowing the creation of en-
claves, a region of memory containing private data and/or code.
These enclaves are created by a special CPU instruction, and their

run-time memory is encrypted and integrity-protected. The CPU
protects the data and execution of an enclave from the operating
system and privileged processes such as a hypervisor, as well as
from direct memory accesses. At the moment, SGX is a relatively
new technology and only available on a limited subset of Intel pro-
cessors. However, we envision using SGX in upcoming versions of
CASTLE.

Flicker [15] is a trusted execution infrastructure that can execute
small blocks of code called Pieces of Application Logic (PALs) in
late-launch sessions. While executing a Flicker session, the OS is
suspended to isolate the PAL from the OS and other applications.
The attestation process allows verification of a PAL’s integrity after
a Flicker session. All memory used by the PAL is erased after a
session and an all-zeroes hash is extended into the PCRs to prevent
the data from being accessed further. The PAL output is transferred
to the application that called the session.

The PAL is highly restricted in its operation. For example it
cannot access any I/O devices (except a serial port for debugging)
and cannot make use of dynamically linked libraries. However, by
assembling all the security-critical logic of an application into a
Flicker PAL, the trusted computing base (TCB) of a system can be
minimized. In order to keep the TCB of CASTLE small, we make
use of Flicker in the system architecture.

3. PROBLEM DEFINITION
In this paper, we address the problem of providing a secure CA

signing solution for low-volume conscripted CAs for whom certifi-
cate signing is not a primary business. In this section, we define the
problem in detail, including the desired properties and our adver-
sary model.

3.1 Desired Properties
The primary function of our system is to sign certificates. In

doing so, the system must authenticate administrators and generate
signatures on certificates deemed to be authorized by an adminis-
trator. A secondary function of our system is to provide additional
functions to manage the system operation. These functions include
initializing the system, enrolling or removing administrators, log-
ging past actions such as processed Certificate Signing Requests
(CSRs), and backing up and restoring system information.

In providing the above functions, we aim to achieve several prop-
erties in our system:

1. Security. An adversary as described below cannot obtain an
unauthorized certificate.

2. Efficiency. Interactions with the signer machine (in particu-
lar, the number of messages sent) should be minimal.

3. Auditability. All system actions should be logged. The log
should be reviewable by those auditing the system, and be
resistant to tampering.

4. Cost-effectiveness. The system should be of minimal cost;
in particular, the cost should be at the level of a commodity
PC system.

3.2 Assumptions and Adversary Model
Our adversary’s goal is to undetectably obtain an unauthorized

signature on a certificate. The adversary may attempt to achieve
this goal by gaining access to the private signing key, compromis-
ing the certificate issuance process itself, or by leveraging one or
more malicious administrators.

We assume that the adversary can control up to k− 1 out of m
administrators or their personal verifier devices during a certificate
signing session. The adversary can also control all components of
the signing machine, (including the operating system and applica-

(logging, add/remove admins, backup/restore)

Hardware
(TPM)

Isolation

(secure facilities, touchless signer)
(certi�cate signature process)

Authentication
Management

Figure 1: Defense-in-depth layers of CASTLE.

tions) except the CPU, TPM, the LPC bus connecting the CPU and
TPM, and the memory bus on the signing machine. For manage-
ment functions such as adding administrators, we assume that the
adversary can control at most u− 1 administrators or verifier de-
vices (where u ≥ k), as well as the signing machine as described
above. In both scenarios, the compromised verifier devices can
send or display arbitrary information during operation, and com-
promised administrators can carry out the protocol steps incorrectly
and use their administrator credentials to the adversary’s goal.

We assume that the adversary cannot break cryptographic prim-
itives, i.e., public or symmetric-key cryptography or cryptographic
hash functions, and that the software libraries, in particular, those
used for processing QR codes and certificates, are free of exploitable
bugs. We also assume that software updates are not necessary for
the air-gapped component of our system.

We further assume that the conscripted CA has the means to
provide and enforce physical security measures, such as security
guards, surveillance cameras, restricted areas, and employee access
codes. Because even conscripted CAs have facilities and resources
to physically protect (particularly in enterprise environments), such
as access-controlled server rooms, we find our assumptions regard-
ing physical security to be realizable in practice.

4. CASTLE ARCHITECTURE
We now provide an overview of the CASTLE architecture. We

begin by describing our multi-layer approach to securing certificate
signatures and our architectural components. We then describe how
the design of CASTLE provides security at each layer.

4.1 Security Layers
To secure certificate signing, CASTLE employs a four-layer de-

fense (shown in Figure 1) as follows:
1. The hardware layer protects sensitive data such as the pri-

vate signing key on the signing machine even from an ad-
versary who may have compromised the machine itself. This
layer consists of the TPM and hardware security mechanisms
for the CPU.

2. The isolation layer protects the signing machine from be-
ing tampered with, both physically and at the software level.
This layer consists of several forms of isolation, including
the use of touchless input, air gapping, and secure physical
facilities.

3. The authentication layer prevents the signing machine from
generating signatures without the necessary authentication
and authorization. This layer consists of the certificate sig-
nature process, described in more detail in Section 5.

Signer

Veri�ers

Administrators . . .

. . .

Webcam/Monitor

Front end
application

PAL
Flicker core

OS Disk

CPU/chipsetTPM

Sealed system data
(e.g. private signing key)

Figure 2: CASTLE architecture. The TCB is shown in gray and
in the signer is bounded by dashed lines. Gray stripes indicate
partially-trusted entities.

4. The management layer protects management functions, en-
suring that adversaries cannot enroll themselves as adminis-
trators or gain access to private keys via the backup process.
This layer consists of the log and the protocols for manage-
ment operations, described in more detail in Section 6.

4.2 Architectural Components
As Figure 2 shows, the CASTLE architecture includes adminis-

trators, verifiers, and a signer machine.
An administrator interacts with CASTLE’s devices in order to

authenticate to the signer (see below) and authorize the signature of
a certificate. Administrators also interact with each other to carry
out management functions. Each administrator has a unique index
i in the set of administrators and a public key Ki.

Each administrator carries a verifier, a mobile device (i.e., a
tablet or phone) used to communicate with the signer and perform
computations on behalf of the administrator. A verifier belongs to
a specific administrator and stores the administrator’s private key
K−1

i . The verifier must have a camera and display to communicate
with the signer, an application to run the CASTLE processes, and
protected storage for the private key that can only be unlocked by
authenticating to the application.

The signer is a machine that authenticates administrators and
generates a signed certificate when authorized to do so. The signer
also stores the system information such as private signing keys, ad-
ministrator information, and event logs, and carries out both certifi-
cate signatures and management operations by accessing this infor-
mation. The signer has a commodity OS, touchless I/O interface in
the form of a webcam and monitor, and a TPM.

4.3 Hardware Layer
The TPM, CPU, LPC bus, and memory bus on the signer are

the only fully trusted pieces of hardware in CASTLE (though the

Figure 3: CASTLE signer prototype in the glass box, displaying
a QR code. Manufacturing of the glass box by Magnetron Labs
Merz.

administrators and verifiers are partially trusted. This trusted hard-
ware comprises the hardware layer and protects information that no
other component of the system should access. Protected informa-
tion includes the following: (1) system private keys used in attes-
tation, signatures, and decryption of messages from administrators,
(2) public keys used to authenticate messages from administrators,
(3) event logs, used to record all system operations, (4) session data
used in the authentication layer, and (5) system parameters used in
the management layer. The hardware layer, specifically the TPM,
secures this information via sealed storage and its NVRAM. The
Memoir system [18] can be used to protect the integrity and persis-
tence of information in case of unanticipated power loss.

The protection provided at the hardware layer stems from the
security of the TPM, whose security in turn relies on that of the
CPU, LPC bus, and memory bus. As long as the TPM remains
uncompromised, sealed storage applied properly within Flicker al-
lows protected information to only be released to a specified appli-
cation (Flicker running the CASTLE PAL), and NVRAM storage
allows particularly sensitive information to only be accessible or
modifiable by a specified application. Since we assume that the
TPM cannot be compromised, we therefore conclude that only the
correct CASTLE PAL can access any sealed information, and read
or overwrite any information stored in NVRAM.

4.4 Isolation Layer
The verifiers and signer are stored in secure physical facilities,

and the signer is additionally air gapped and touchless. These mea-
sures comprise the isolation layer, which ensure that the devices
and tokens cannot be stolen or tampered with. Verifiers can be
stored in facilities such as secure lockers only accessible to their
respective administrators, while the signer can be housed in a fa-
cility such as a secure room with security staff to control access to
the room. By our assumptions, a conscripted CA has the means to
maintain such physical security, and thus the signer and verifiers
can remain physically secure.

The signer machine is protected by multiple forms of physical
isolation. As Figure 3 shows, the signer is housed in a glass box,
with only a power connection crossing the box’s boundary.1 All
fans and vents on the box are covered with additional layers of

glass, hindering adversaries from physically accessing the machine
via direct hardware access. The signer also has no network ca-
pabilities, preventing any access through the network or wireless
peripherals.

The signer’s I/O is completely touchless: input is provided by
scanning QR codes (provided by the verifier) with a webcam and
output is provided through a display in the form of human-readable
text and machine-readable QR codes (scanned by verifiers). This
I/O system hinders adversaries by limiting their interactions with
the system compared to using a keyboard or mouse.

4.5 Authentication Layer
A certificate signature session in CASTLE is carried out by k

administrators and their verifiers. The verifiers are protected by a
secure PIN so that only the corresponding administrators can access
them. A signing session consists of four steps:

1. Authentication: the administrators unlock their verifiers with
a PIN, authenticate to the signer via a digital signature, and
initiate the signing process with a CSR conforming to the
PKCS #10 specification [17].

2. Attestation: the PAL checks the signatures and creates a sig-
nature on the CSR provided, attesting the received CSR.

3. Authorization: the administrators check the attestation sig-
nature and if correct, authorize the certificate signature via
signatures with their own private keys.

4. Signature: the PAL checks the authorization, then signs and
returns the certificate, completing the process.

During a certificate signature session, the administrators communi-
cate with the CASTLE PAL through the untrusted signer front end.
Thus the signer front end can observe and modify all messages sent
between the administrators and the PAL. Each step of the session
is designed to prevent a malicious front end from using these ca-
pabilities to sign an unauthorized certificate. Each message from
the administrators is also temporally bound, preventing the reuse
of messages from previously successful process instances (e.g., at-
tempts to re-issue certificates that were revoked).

The verifier serves to provide strong authentication, relying on
what the administrator has (the verifier itself) and what the admin-
istrator knows (the PIN for the verifier application). Moreover, even
a malicious administrator cannot cause a certificate to be signed
without gathering a quorum of k administrators.

4.6 Management Layer
In order to protect management functions, the management layer

primarily relies on the assumption that fewer than u of m admin-
istrators are malicious. The management layer thus requires the
authorization of at least u administrators to add or remove an ad-
ministrator or to back up or restore system information, including
all information secured by the hardware layer. The management
layer also requires authorization from u administrators to change
the value of u.

The backup and restore process allows a system’s private keys,
administrator information, logs, and parameters to be transferred
between two signer machines. A backup from one machine is thus
equivalent to a restore to the other machine. In order to prevent
exposing system information to any observer who sees the mes-
sages exchanged between the signers, the information is encrypted
with the public key of the restored machine, and u administrators
must authorize both the backup and restore actions. If we assume
that fewer than u administrators are malicious, we can infer that the
backup will be encrypted with a real CASTLE signer’s public key
1Using induction coupling would avoid a physical connection into
the glass box for the power line.

Table 1: Notation used in the paper.
Notation Meaning Use

A Attestation Signature Attest to CSR and OTP received at PAL
and to the session BLOB

Ai Authorization Signature Authorize final certificate signature
B Base BLOB Store base key sealed to the PAL.
C CSR Certificate signing request to be signed
C Configuration BLOB Store signer information (encrypted

with Kb)
d Hidden digit Encourage administrator diligence
hi Epoch identifier Identify specific log entry
I Initialization BLOB Store intermediate information during

system setup
k Signature threshold Number of administrators needed for

signature process
K Public key set Store administrator public keys
Kb Base key Encrypt sensitive system information

(symmetric key, sealed to PAL)
Kc, K−1

c Attestation key pair Certify/verify messages from the PAL
Kε Non-migratable key pair Authenticate TPM during initialization

Kr , K−1
r Restoration key pair Ensure confidentiality when restoring a

backup to a target machine
Ks, K−1

s Signature key pair Generate/verify certificate signatures
` Log length Identify how many events have been

logged since initialization
Li Log event Record authentication, signature, or

management operation
m Administrator set size Number of currently enrolled admins
Mi Initialization nonce Prevent replay of old setup messages
Ri Request signature Authenticate administrator at start of

signing session
S Signed certificate Certificate signed with K−1

s
S Session BLOB Store signature session information be-

tween attestation and signature steps
(encrypted with Kb)

Si Setup signature Authorize system state generation
u Management threshold Number of administrators needed for

management functions

and not with a public key created by an adversary. In Section 7, we
further analyze the security of the management operations.

5. CASTLE CERTIFICATE SIGNING
In this section, we describe CASTLE’s certificate signing pro-

cess. Throughout the remainder of the paper, we use notation as
listed in Table 1. We begin the section with a brief description of
the signer configuration, which is required to intuitively understand
some of the design decisions of CASTLE. We then describe the
four steps of the process (authentication, attestation, authorization,
and signature).

5.1 Signer Configuration
The information stored at the signer is structured as shown in

Figure 4. The information stored on the signer consists of three
main parts: the BLOBs, the log, and the NVRAM.

The information required during a certificate signing session is
stored in BLOBs. We use a hybrid encryption scheme in which
only the base key Kb is sealed to the PAL. We thus only seal a sin-
gle symmetric key with the TPM and call this sealed key the base
BLOB B. The base key is used to encrypt the larger configura-
tion BLOB C, which contains the information used during a signing
session, such as private keys. Table 1 explains the use of the infor-
mation (and accompanying notation) used in CASTLE (including
outside of a signing session).

For simplicity of implementing the logging functionality in the
TPM, the log is a hash chain of events stored on disk. Each opera-
tion carried out by the PAL is logged in the form of an event Li that
contains the relevant details of the operation (see Section 6.1 for
precise definitions of each log event). The hash values in the chain

Base BLOB
(sealed to PAL)

Base key

B

Log
(on disk)

Number of admins
Signature threshold
Management threshold

C

m
k
u

Config. BLOB
(enc. w/ base key)

Epoch identifier
Attestation private key
Signature private key
Restoration private key
Admin public keys K

K�1
c

K�1
s

h`

NVRAM
(on TPM)

Non-migratable key
Epoch identifier
Base key hash

K�1
✏

h`

H(Kb)

Kb

L`�1L1

H Hh`�1h0 h1 h`. . .
Hash func.

Epoch identifiers
Log events

K�1
r

Figure 4: Information stored by the signer.

hi are called epoch identifiers and serve to link events and BLOBs
temporally. We describe the logging mechanism in more detail in
Section 6.1.

The NVRAM on the TPM stores a non-migratable private key
K−1

ε (only used in the initial setup of CASTLE), as well as the
current epoch identifier h`, which prevents an adversary from un-
detectably replacing BLOBs with older versions or altering log en-
tries. Moreover, in order to prevent replacement of both BLOBs,
the NVRAM also stores a hash of the base key.

5.2 Request Step
A certificate signing session is carried out by k administrators,

each with their personal verifier. The first step in the session is
the request, in which administrators unlock their verifiers via PIN
and send the CSR and a digital signature (for authentication) to the
signer. The authentication step hinders an adversary from initiating
a signature process, since each request requires signatures from k
administrators.

To initiate the session, one administrator scans the CSR C at
the signer’s webcam, and each participating administrator creates a
request signature

Ri = SignK−1
i
(h`‖C) (1)

The CSR generation process can take place on a verifier or on a
separate machine, and does not need to be trusted due to the later
check in the authorization step.

When the CSR is scanned, the signer displays the CSR fields in
human-readable form to allow the administrators to check the CSR
before authenticating to the signer. The signer then assembles and
sends

C,R1, . . . ,Rk (2)

to the PAL, assuming without loss of generality that the first k ad-
ministrators request the signing session.

5.3 Attestation Step
The attestation step produces a confirmation that the PAL has

received the correct CSR and request signatures. The private key
used for attestation is sealed and only accessible to the PAL, and

Algorithm 1 PAL procedure during attestation, assuming the first
k administrators participate in the session.
1: procedure ATTESTATION

Input: C,R1, . . . ,Rk,B,C
2: Kb ← unseal B
3: h`, K−1

c , K, k, . . .← verify/decrypt C
4: for 1≤ i≤ k do
5: if !VrfyKi

(Ri,h`‖C) then
6: h`+1← H(h`‖failed‖att‖i)
7: C′← write h`+1 into C
8: return h`+1,0,0,0,C′

9: h`+1← H(h`‖success‖att‖{1, . . . ,k})
10: write h`+1 into NVRAM
11: S← EncKb (h`+1‖C)
12: A← SignK−1

c
(h`+1‖C‖S)

13: C′← write h`+1 into C
14: return h`+1,C,S,A,C′

Algorithm 2 Administrator and verifier procedure during the au-
thorization step.
1: procedure AUTHORIZATION

Input: h`,C,S,A
2: if VrfyKc

(A,C‖S) then
3: d← check human-readable CSR
4: if correct d and correct PIN at verifier then
5: Ai← SignK−1

i
(S)

6: return S,Ai
7: else return 0,SignK−1

i
(h`)

8: else return 0,SignK−1
i
(h`)

therefore the attestation signature can only be created by the PAL
and only on the information that the PAL actually receives as input.

In addition to the information in Equation 2, the signer front end
also sends the BLOBs B and C to the PAL, allowing the PAL to
access the information it needs to complete the step. The PAL then
carries out the procedure shown in Algorithm 1. In essence, the
PAL checks each request signature, logging the result and produc-
ing a new epoch identifier.

If all request signatures verify successfully, the PAL creates the
session BLOB S, which links the new epoch identifier to the CSR.
The PAL then creates an attestation signature A that contains the
new epoch identifier, the CSR, and session BLOB. The PAL then
updates the configuration BLOB with the new epoch identifier and
returns the CSR, session BLOB, attestation signature, and updated
configuration BLOB. The signer then displays a QR code encoding

C,S,A (3)

as well as the fields of C in human-readable form.

5.4 Authorization Step
The administrators scan the QR code containing Equation 3 from

the signer and can carry out the next step of the session, autho-
rization. The authorization step ensures that the administrators can
check the CSR received by the PAL and then choose to authorize
the signature or abort the process. The administrators must unani-
mously agree to authorize the signature, preventing a mistake by a
fraction of the administrators from authorizing a signature.

Each verifier has a private key belonging to the administrator
who is assigned to the verifier; this key is denoted K−1

i for the ad-
ministrator Ai. Each administrator scans the output of the signer

Algorithm 3 PAL procedure during the signature step.
1: procedure SIGNATURE

Input: S,{S}K−1
1
, . . . ,{S}K−1

k
,B,C

2: Kb ← unseal B
3: h`, K−1

s , K, k, C, . . .← verify/decrypt S, C
4: for 1≤ i≤ k do
5: if !VrfyK[i](S,Ai) then
6: h`+1← H(h`‖failed‖sig‖i)
7: C′← write h`+1 into C
8: return h`+1,0,C′

9: S← SignK−1s
(C)

10: h`+1← H(h`‖success‖sig‖S)
11: write h`+1 into NVRAM
12: C′← write h`+1 into C
13: return h`+1,S,C′

from the attestation step and carries out the procedure in Algo-
rithm 2. In essence, each administrator simply verifies the attesta-
tion signature using Kc to ensure that the PAL indeed received and
acknowledged the correct CSR. An administrator can also check
the human-readable display on the signer to confirm the CSR.

The verifier then displays the CSR fields on its display as a fi-
nal confirmation of the certificate that will be signed. In order to
encourage the administrator to diligently check the CSR, the veri-
fier additionally displays a hidden digit d, which appears randomly
among the CSR fields. The administrator must then find and pro-
vide d as well as a PIN (established a priori) on the verifier. Au-
thentication via a PIN provides access to K−1

i on the verifier.
If either the attestation signature check or the hidden digit and

PIN check fail, the verifier returns an abort message consisting of
a signature on the current epoch identifier. Otherwise, the verifier
displays the session BLOB S (linked to the CSR C) along with an
authorization signature

Ai = SignK−1
i
(S) (4)

which confirms S as the session BLOB to be passed back to the
PAL. Each administrator then scans his or her respective authoriza-
tion signature at the signer, which collects and sends the signatures
to the PAL.

5.5 Signature Step
The PAL then proceeds with the final step of the session: gener-

ation of the signature. The signature step checks that the adminis-
trators have confirmed the certificate to be signed via authorization
signatures, which relies on the previous steps in the session. The
signature step thus ensures that a signed certificate can only be cre-
ated by the PAL and only on a CSR that has been passed through
the previous steps. As with the attestation private key, the signature
private key is sealed and only accessible to the unmodified CAS-
TLE PAL.

Along with the authorization signatures, the signer front end
sends the BLOBs B, C, and S to the PAL, providing the neces-
sary information for the PAL to carry out the step. The PAL then
carries out the procedure shown in Algorithm 3. The PAL first
checks that the session BLOB’s epoch identifier matches the value
in NVRAM, preventing replays of old session BLOBs. The PAL
then has the correct CSR and checks the authorization signatures.
If all k authorization signatures are correct, the PAL logs this event
and issues the signed certificate S. If any signature is incorrect, the
PAL logs and returns an error.

The signer then displays the signed certificate S as a QR code.

Operation Information
Attestation C, partic./failed admins
Signature S, partic./failed admins
Key generation m, k, u, K, Kc, Ks, Kr
Add/remove administrator m, Km
Backup/restore C

Table 2: Information recorded for each log event.

The administrators can then scan this code with their verifiers to
obtain, verify, and distribute the digital certificate.

6. DEPLOYMENT AND MANAGEMENT
While certificate signing is the main function of CASTLE, sev-

eral other functions are critical to its operation in practice. In this
section, we discuss four such functions: logging, initialization,
adding and removing administrators, and the backup and restore
process.

6.1 Logging
For auditability, the PAL logs all operations that modify the sys-

tem state (i.e., the configuration BLOB) at the signer. Each opera-
tion is recorded as a log event that records the attempted operation,
whether or not the operation was successful, and information fur-
ther describing the specifics of the operation. We thus define a log
event Li as follows:

Li = <success/failure>‖<operation>‖Ii (5)

where Ii for each operation is shown in Table 2.
To prevent tampering with the log, the logged events are stored

in a chronologically-ordered hash chain similarly to timestamping
protocols [7]. As shown in Figure 4, the epoch identifier after an
event Li is

hi = H(hi−1‖H(Li)) (6)

where hi−1 is the latest epoch identifier before the current event is
logged. Each time the epoch identifier changes, the PAL writes the
latest value hi into NVRAM in order to prevent replay attacks with
old system state [18].

An administrator or other auditor can synchronize with the log
by performing a log check at the PAL. The auditor provides a nonce
Nv to the PAL and an epoch identifier hv. The PAL returns a signa-
ture on the events since hv:

{Li : v < i≤ `} ,{h`,Nv}K−1
c
. (7)

The signer then displays this information as a QR code, where it
can be scanned and verified.

The latest epoch identifier is also included in the output of each
PAL operation, along with a signature. This allows the administra-
tors to keep the most recent epoch identifier, which is required to
initiate a certificate signature session.

6.2 System Initialization
Before a CASTLE system can sign certificates, it must first have

its own keys as well as those of its administrators. We achieve
this via an initialization process that is carried out by the group of
initial administrators. We assume that there are m administrators,
and that each has a key pair Ki,K−1

i stored on a verifier as well
as a nonce Mi used during setup. We also assume that the admin-
istrators have knowledge of a public key Kε whose corresponding
private key K−1

ε is stored in and only accessible to the TPM, such
as the endorsement key or attestation identity key, and agree on a

Algorithm 4 PAL initialization procedure.
1: procedure INIT

Input: M1, . . . , Mm, m, k, u, K1, . . . , Km
2: h0← generate random value
3: Kb← generate symmetric key
4: write h0 into NVRAM
5: B← Kb sealed to PAL
6: write H(Kb) into NVRAM
7: M←⊕m

i=1Mi
8: Q← TPM quote with nonce M on PAL PCRs
9: I← EncKb(h0‖m‖k‖u‖K1‖ . . .‖Km)

10: σ ← SignK−1
ε
(M‖Q‖h0‖m‖k‖u‖K1‖ . . .‖Km)

11: return M,Q,h0,B,I,σ

Algorithm 5 PAL state generation procedure.
1: procedure STATE_GEN

Input: S1 . . . , Sm, B, I
2: Kb← unseal B and check against NVRAM
3: h0,m,k,u,K1, . . . ,Km←DecKb(I)
4: check h0 against NVRAM
5: for 1≤ i≤ k do
6: if !VrfyKi

(h0,Si) then
7: return 0
8: K←{K1, . . . ,Km}
9: Kc,K−1

c ← generate asymmetric key pair
10: Ks,K−1

s ← generate asymmetric key pair
11: Kr,K−1

r ← generate asymmetric key pair
12: h1← H(h0‖success‖state_gen‖m‖k‖u‖K‖Kc‖Ks‖Kr)
13: write h1 to NVRAM
14: C← EncKb(h1‖m‖k‖u‖K‖K−1

c ‖K−1
s ‖K−1

r)
15: σ ← SignK−1

ε
(h1‖K‖Kc‖Ks‖Kr‖m‖k‖u)

16: return h1,Kc,Ks,Kr,C,σ

threshold k for authorizing certificate signatures and a threshold u
for management operations. Finally, we assume that the PAL code
is unmodified and available to the TPM.

Each administrator uses a verifier to generate and scan a QR code
encoding

Mi,m,k,u,Ki (8)

at the signer. The PAL then performs the initialization step, which
is shown in Algorithm 4. In the initialization step, the PAL creates
an initial epoch identifier and base key, and writes these values into
NVRAM to tamper-proof them. The PAL also seals the base key to
the PCR values containing the Flicker core and PAL. To attest to the
PAL that is running, the signer invokes a TPM quote on the PCRs
measuring the PAL, using ⊕m

i=1Mi as a nonce (preventing any sin-
gle administrator from biasing the nonce). The PAL then creates an
initialization BLOB I, which holds the number of administrators,
thresholds for signature and management operations, and admin-
istrator public keys. The PAL then returns the above information
with a signature by the non-migratable secret key K−1

ε .
The administrators can then review this information to confirm

that the PAL received the correct information. Once this check
has passed, each administrator creates a setup signature, defined as
Si = SignK−1

i
(h0), which authorizes the remainder of system setup.

The administrators scan their setup signatures at the signer, which
passes them to the PAL along with B and I.

The PAL then performs state generation, shown in Algorithm 5.
In this step, the PAL checks the setup signatures to ensure that the
administrators have authorized the remainder of setup, and also en-

sures that the initial epoch identifier matches the value in NVRAM
(thus preventing replays of old setup signatures). If these checks
pass, the PAL generates the attestation, signature, and restoration
key pairs and creates the configuration BLOB C with the newly-
generated public keys and information from the initialization BLOB.
Finally, the PAL logs and signs the public information in C and re-
turns this information along with C (which is encrypted with Kb).
The verifiers can use this information to check the signature σ and
store the public keys Kc, Ks, and Kr.

6.3 Administrator Management
Adding or removing an administrator requires agreement by at

least u administrators. The new administrator Am+1 must have a
key pair and verifier like all other administrators. We assume that
the u administrators all know Km+1 and the latest epoch identifier
h`, which links the operation to a specific point in time.

The quorum of administrators each contribute a message of the
form

SignK−1
i
(h`,“add,” Km+1) (9)

and scan these messages at the signer. The PAL then checks each
signature, and if all signatures are correct, adds Km+1 to K and logs
the event, returning the new epoch identifier h`+1.

The administrators can remove an existing administrator by pro-
viding a message of the form in Equation 9, but by stating “remove”
instead of “add” along with the public key of an existing adminis-
trator. The PAL then removes the public key from K. The thresh-
olds k and u are also decremented along with m if they are equal to
the new number of administrators m−1.

Administrators can also initiate other operations, such as chang-
ing parameters or signing keys, by signing messages in the form
of Equation 9, but with a string stating “change param/key” and
identifying the parameter or key being changed, and if changing a
parameter, the new value of the parameter. The PAL then checks
the signatures and makes the change if there are at least u valid sig-
natures authorizing the change. If any keys, such as Kb, K−1

c , or
K−1

s are changed, the PAL generates a new key rather than having
the administrators specify a new value (since these values must be
known only to the PAL).

6.4 System Backup and Restoration
We now describe how a CASTLE system can be securely backed

up and restored. In particular, we back up the information stored at
the signer. The backup material consists of the base BLOB B and
the main BLOB C. We use the term source machine to refer to the
signer being backed up, and the term target machine to refer to the
new signer restoring the backup. In CASTLE, a backup from the
source machine entails a restore to the target machine and requires
a quorum of administrators at each machine. We use the restoration
key pair of the target machine to encrypt the backup in transit and
ensure that the contents of B and C are not accessible, even to the
administrators that carry out the process.

Restoring a backup onto a target machine first requires the target
machine to be initialized as described in Section 6.2 and an iden-
tical quorum of u administrators to be registered at both machines.
To achieve this in a setup where the target machine is already ini-
tialized with a different set of administrators, the target machine’s
administrators and threshold can be adapted to those of the source
machine as described in Section 6.3 before starting the backup pro-
cess. The restoration public key K′r of the target machine is publicly
available to its own administrators, having been provided during the
state generation step described in Algorithm 5.

The u administrators initiate the backup at the source machine by

Administrators Verifiers Signer PAL

Trusted

C, Ri C, {Ri}, B, C

Att.

hℓ+1, S , A, C’hℓ+1, S , A

C

Check A

OK, d

authenticate

S , Ai S , {Ai}, B, C’

Sig.

hℓ+2, S, C′′hℓ+2, S

S

Check S

OK

msc CASTLE Signing Process

Figure 5: Message sequence chart for a signing session. Dotted
lines indicate messages encoded as QR codes.

scanning QR codes encoding a signature on K′r. Each participating
administrator thus sends a message of the form SignK−1

i
(h`,K′r),

which the PAL responds to with the encrypted backup

E = EncK′r (Kb,C) (10)

The PAL also returns a signature on the epoch and backup:

SignK−1
c
(h`,E) (11)

This information is displayed by the source signer as a QR code.
Using Kc, administrators at both the source and target machines
can verify that the signature is correct and thus that the backup
was created by the source PAL. The administrators can then scan
signatures of the form SignK−1

i
(h′`,E) at the target machine, which

checks the u signatures and overwrites its own configuration with
the information provided in E . The state of the source machine is
thus copied to the target machine.

7. ANALYSIS
In this section, we perform an informal analysis of a certificate

signing session and argue that under the limitations of the adver-
sary model described in Section 3, the adversary cannot cause a
certificate to be issued. We note that even for an adversary with
capabilities beyond those listed in Section 3, the event will still be
logged and can be audited in the future. We plan on conducting a
formal analysis in future work.

7.1 Security of Certificate Signing
We now argue for the security of a certificate signing session by

showing that an adversary must compromise at least k administra-

tors or verifiers to issue an unauthorized certificate. Consider the
messages sent by the signer as shown in Figure 5. A compromised
signer can forge or replay messages, and because it directly han-
dles the input and output of the PAL, can attempt to modify these
messages in order to obtain a signed certificate from the PAL. How-
ever, we observe that without access to administrator private keys,
a compromised signer cannot forge or replay any message that will
be accepted by its recipient in the protocol. We assume that each
administrator knows the latest epoch identifier h` and the set of
other administrators participating in the session.

In the request step, the signer cannot send a different CSR with-
out altering the corresponding request signatures, and cannot re-
play previous CSRs with their request signatures because the re-
quest signatures contain the epoch identifier at the time of the ses-
sion. The signer also cannot forge BLOBs because the base key
is sealed to and thus only accessible to the PAL, and cannot re-
play BLOBs because they too are bound to the epoch identifier in
NVRAM, which is also accessible only to the PAL. Thus the signer
cannot modify any messages in the request step.

After the attestation step, the signer cannot forge the new epoch
identifier, since it is included in the attestation signature (which
only the PAL can create). The signer also cannot replay old epoch
identifiers and attestation signatures, since the administrators can
easily verify the log entry, given that they know the other partici-
pating administrators by assumption, and C and h` from creating
the request signature in the previous step. Thus each administrator
can verify that the epoch identifier h`+1, session BLOB S, and at-
testation signature A are the correct output for the given CSR and
starting epoch identifier h`.

In the authorization step, the signer cannot forge the session,
base, or configuration BLOBs because each BLOB is bound to
the base key to which only the PAL has access. Similarly, the
signer cannot replay the BLOBs because they are all bound to the
epoch identifier h`+1 written into NVRAM. Finally, the signer can-
not forge the authorization signatures Ai without access to admin-
istrator private keys, and cannot replay the authorization signatures
because they contain the session BLOB, which cannot be forged or
replayed as explained above.

Finally, after the signature step, the signer cannot forge or re-
play the final epoch identifier h`+2 because the administrators can
again check the log entry given h`+1, the set of participating ad-
ministrators, and the signature S. Similarly, the signer cannot forge
the signature S without access to the signing key K−1

s , and cannot
replay old signatures because the administrators know the CSR C
used in the session.

We observe, however, that by compromising administrators or
verifiers, the adversary can gain access to administrator private keys
needed to create request and authorization signatures. In particular,
with k administrators or verifiers compromised, an adversary can
generate the number of request signatures and authorization sig-
natures necessary to proceed with the entire signing session for a
given CSR. However, the adversary must compromise at least k ad-
ministrators or verifiers, and thus within the limitations of our ad-
versary model, therefore cannot obtain an unauthorized signature
on a certificate.

7.2 Security of Management Operations
For management operations, we observe that adding or removing

administrators, changing parameters, or backing up or restoring a
signer requires at least u administrators to provide a signature au-
thorizing the operation. Because we assume that an adversary can
compromise a maximum of u− 1 administrators and verifiers, it
can only gain access to a maximum of u− 1 administrator private

SLOC
Flicker kernel module 5,521
Flicker helpers 4,789
mbed TLS 6,097
PAL 1,115
TCB Total 17,522
mbed TLS base 64 utilities 652
Signer front-end 2,656
Crypto, I/O libraries (OpenSSL, ZBar, qrencode) 143,621
Untrusted Total 146,929

EJBCA Modules 182,716
EJBCA Core 43,753
EJBCA Total 226,469

Table 3: Source lines of TCB and untrusted code of CASTLE
versus that of EJBCA.

keys. Thus an adversary with the limitations of our model given in
Section 3 cannot authorize these management operations.

8. EVALUATION
In this section, we evaluate our prototype implementation of CAS-

TLE. We begin by describing the implementation itself, and then
discuss the performance results of the system. We then briefly dis-
cuss the cost of the prototype.

8.1 Implementation
We implemented our signer prototype in C. The signer applica-

tion runs on a 3.6GHz Intel Core i7-4790 machine with 3GB of
RAM and support for Intel’s Trusted Execution Technology [5].
As verifiers will likely be mobile devices carried with administra-
tors, we implemented the verifier in Java as an Android application.
We used a variety of off-the-shelf libraries for features such as QR
code detection and the GUI interface, and we note in particular that
we used OpenSSL for cryptographic operations, except in the PAL,
where we utilized the mbed TLS library2 (formerly PolarSSL) for
its compact code.

For the purposes of the prototype, some features were simpli-
fied or omitted. For example, CSRs are passed as hashes to be
signed rather than in PEM format, and signer parameter changes
were not implemented. However, sealed storage and NVRAM are
fully implemented and our prototype works with X.509v3 [2] cer-
tificates (though it is not fully compatible with the standard). We
will make our code open-source so that existing CAs can begin de-
ploying CASTLE.

We measured the source lines of code of our prototype imple-
mentation, and the results are shown in Table 3, separated into code
that is part of the TCB and code that is not. We further compare
this to the EJBCA open-source CA code base [19], developed by
PrimeKey. We measured the source lines of code in EJBCA Com-
munity 6.3.1.1, and also present these results in the table.

We observe that a majority of the CASTLE TCB consists of
Flicker and the mbed TLS library. In fact, the PAL itself is a small
part, comprising only 6.4% of the TCB. Similarly, the size of the
signer front-end is dwarfed by the off-the-shelf libraries, partic-
ularly OpenSSL. Further optimization or a different choice of li-
braries could shrink the size of both the TCB and untrusted por-
tions, but the CASTLE portion of the code base will likely remain
below 10,000 lines of code, even with future extensions.

When compared to EJBCA’s code base, we observe that CAS-
TLE takes fewer lines of code than the EJBCA implementation
does. Moreover, the CASTLE implementation has a limited TCB,

2https://tls.mbed.org/

Key Assembly Signature Total

Ti
m

e
(s

)

0

2

4

6

8

10

12

14

16

18
Attestation
Signature

Figure 6: Running time for attestation and signature functions.
Key assembly corresponds to the time required to calculate the
private key description according to PKCS#1 [11].

Number of admins
0 1 2 3 4 5 6 7 8

Ti
m

e
(s

)

15

15.5

16

16.5

17

17.5

18

Figure 7: PAL run times for initialization given the number
of participating administrators. The error bars are standard
error.

whereas in EJBCA all code must be trusted. We note that simply
comparing lines of code does not necessarily denote an advantage
of CASTLE over EJBCA (in particular, EJBCA is implemented in
Java while CASTLE is implemented in C), but unless EJBCA is
used in conjunction with an HSM, it cannot offer similar protection
for its operations and private signing keys as CASTLE does.

8.2 PAL performance
To evaluate the performance of the Flicker sessions, we mea-

sured the running time of the attestation, signature, and initializa-
tion processes. For each PAL function, we measured 10 runs of
execution. For the attestation and signature, we used a single ad-
ministrator but measured the relative times of the key assembly and
the creation of the attestation or signature, respectively. For ini-
tialization and state generation, we measured the effect of admin-
istrators on the running time. Figure 6 shows the results for the
attestation and signature functions, Figure 7 shows the results for
initialization, and Figure 8 shows the results for state generation.

Attestation took longer than signature on average, likely due to
the extra operation of creating the session BLOB. We also observe
that the majority of execution time consists of key assembly (cal-
culating large helper numbers) along with the attestation signature
or certificate signature. This indicates that the overhead of starting
and ending the Flicker sessions and the remainder of the PAL logic

Number of admins
0 1 2 3 4 5 6 7 8

Ti
m

e
(s

)

0

50

100

150

200

250

300
512-bit
1024-bit

Figure 8: PAL run times for state generation given the number
of participating administrators and the key size. State genera-
tion for 2048-bit keys took around 40 minutes and are thus not
shown here. The error bars are standard error.

is a small portion of the run time (around 2.5s for each mode). In
initialization, we observed that there was a small effect of the num-
ber of administrators on the running time. In state generation, we
observed that the number of administrators has no significant effect
on the running time. This is due in part to the fact that state gen-
eration, which must obtain randomness from the TPM to generate
three RSA public keys, has a running time on the order of minutes
as opposed to seconds for the other operations.

We acknowledge that the duration of the Flicker sessions are
long compared to standard signature processes, sometimes taking
longer than 15 seconds. We could reduce the running time of the
PAL by storing the private key descriptions in PKCS #1 format in
S, eliminating the key assembly overhead, and by optimizing the
mbed TLS library for performance, reducing the time required for
an attestation or certificate signature. However, we emphasize that
the system is already usable in its current instantiation, and the few
seconds of waiting time are acceptable for conscripted CAs, who
issue certificates at a much lower volume than commercial CAs.

8.3 Signature Session Performance
To estimate the running time of a signature session with trained

administrators, we performed several signature sessions. In a cer-
tificate signing session, an administrator must scan a QR code at
the request, attestation, authorization, and signature steps. Thus
each administrator scans or displays a total of 4 QR codes over the
course of a session. However, there are k administrators for each
session, and QR codes must be scanned sequentially to or from the
signer. Thus a total of 4k QR codes are exchanged between the
signer and administrators.

At the request step (and in each step where sequential scanning
of QR codes is required), sequentially scanning QR codes took ap-
proximately 5 seconds per administrator on average, and as shown
above, attestation took about 15 seconds on average. During autho-
rization, finding the hidden digit and authenticating took 1.5 min-
utes on average, assuming careful checking of the CSR contents.
Finally, the signature took about 14 seconds on average.

Scanning the certificate signature and exporting the certificate
took 30 seconds on average. Thus a full signature procedure took
an average of approximately 150+20k seconds. Even with careful
checking in a production environment, we do not expect a full ses-
sion to take more than 5 minutes. For high-value certificates, we
argue that such a latency is reasonable, considering that EV certifi-
cates require an in-person meeting and can take days.

8.4 Cost
The physical construction of the machine, monitor, webcam, and

glass box was around US$2000, where the manufacturing of the
glass box accounts for roughly $1000. We anticipate that these
costs can be reduced in a larger-scale production, but even so, a
cost of $2000 should be within CA means, given that purchasing a
certificate costs on the order of $1000.

We anticipate that the majority of the cost of deploying CASTLE
will stem from the training and salary of administrators. Due to
the low volume of certificate issuances we expect from conscripted
CAs, existing administrators could take on signing session duties in
CASTLE. We note that the protocol requires at least two (and ide-
ally three) administrators to secure the signature and management
operations against a single misbehaving administrator.

9. DISCUSSION
In this section, we briefly discuss several important aspects of

CASTLE. In particular, we address several design alternatives for
CASTLE in practice. We then acknowledge limitations of CAS-
TLE and outline our future work.
Certificate Revocation. The current version of CASTLE does not
handle certificate revocation. CASTLE can support various revo-
cation systems such as CRLs [2] or OCSP [20], but the use of an
air-gapped signer would limit the frequency of interactions with
the signer machine to authorize a revocation. We leave the detailed
design and implementation of such a mechanism to future work.
Limitations. One limitation of CASTLE is that BLOBs and log
entries can be modified (in encrypted form) or destroyed (though
detectably so). To address this weakness, we could add an extra
step to each signature operation that requires the administrator to
confirm that other administrators have received a record of the sig-
nature before the final certificate signature is provided. Another
limitation is the lack of formal verification of our protocols. We
plan to address this limitation in future work.
Deploying CASTLE. In future work, we plan to conduct additional
work to assess and improve the operation of CASTLE in practice.
In particular, we plan to carry out a survey among both full-time
and conscripted CAs to determine the relative costs of adminis-
trators, types of hardware and software, security of their physical
facilities, and history of certificate misissuance. The results of this
survey would provide us with an overview of the causes of certifi-
cate misissuance at both full-time and conscripted CAs, and pro-
vide us with a realistic estimate of the cost of deploying CASTLE
in a conscripted CAs.

We also plan to conduct a comprehensive usability test of the
CASTLE software with domain experts (i.e., administrators at con-
scripted CAs). This testing will allow us to improve the ease of
use of CASTLE for administrators, and we anticipate that such im-
provements will lead to fewer operational errors on the administra-
tors’ part. Finally, we plan to perform further optimizations in the
code to improve performance and security. In particular, we plan to
harden the QR code and certificate processing libraries, which are
critical pieces of our current signer prototype.
Related Work. Little related work on hardware-secured CA sign-
ing exists besides HSMs, though some proposals leverage trusted
computing for authentication [4, 12], key management [25], and
replay protection [18]. These offer similar functionality to that of
CASTLE, but often with a larger TCB. For example, KISS [25]
uses devices carried by administrators similar to verifiers, but all of
these devices must be trusted. Other work has attempted to simplify
the PKI signing process [6], but for end-users rather than CAs.

Several open-source projects offer code for different CA func-
tionality. For example, OpenCA3 offers code for an OCSP respon-
der called OCSPD, while PrimeKey’s EJBCA [19] offers a full CA

application. EJBCA can be run in a virtual machine or make use
of an HSM. EJBCA includes a CA, validation authority (to vali-
date certificates), and an OCSP responder. However, while EJBCA
offers the ability to use secure hardware such as HSMs and smart
cards, CAs must still purchase the secure hardware and design their
administrative processes.

10. CONCLUSION
Our layered defense-in-depth design for CASTLE shows that we

can leverage a diverse arsenal of defenses to secure certificate sign-
ing and management for low-volume conscripted CAs. CASTLE
is easy to use for entities who can follow operating procedures and
provide physical security, and thus provides a much-needed step
towards improving security, ease of use, and economic operation
for conscripted CAs.

Acknowledgments
The research leading to these results has received funding from the
European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013), ERC grant agreement
617605, and the National Science Foundation, Grant DGS1252522.
We also gratefully acknowledge support from ETH Zurich and from
the Zurich Information Security and Privacy Center (ZISC).

We graciously thank Magnetron Labs Merz for production of
the glass box prototype. We also thank David Barrera and Daniele
Asoni, who provided feedback on drafts of the paper, and the anony-
mous reviewers, whose feedback helped to improve the paper.

11. REFERENCES
[1] TPM main specification level 2 version 1.2, revision 116.

Trusted Computing Group (March 2011)
[2] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley,

R., Polk, T.: Internet X.509 public key infrastructure
certificate and certificate revocation list (CRL) profile. RFC
5280 (May 2008)

[3] Dillow, C.: An order of seven global cyber-guardians now
hold keys to the Internet. http:
//www.popsci.com/technology/article/2010-07/order-seven-
cyber-guardians-around-world-now-hold-keys-internet (July
2010)

[4] Gajek, S., Löhr, H., Sadeghi, A.R., Winandy, M.: Truwallet:
trustworthy and migratable wallet-based web authentication.
In: ACM Workshop on Scalable Trusted Computing (STC).
pp. 19–28. ACM (2009)

[5] Greene, J.: Intel trusted execution technology. White paper
(2012)

[6] Gutmann, P.: Plug-and-play PKI: A PKI your mother can
use. In: 12th USENIX Security Symposium. USENIX
(2003)

[7] Haber, S., Stornetta, W.: How to time-stamp a digital
document. Journal of Cryptology 3(2), 99–111 (1991),
http://dx.doi.org/10.1007/BF00196791

[8] Hoekstra, M.: Intel SGX for dummies (Intel SGX design
objectives). https://software.intel.com/en-us/blogs/2013/09/
26/protecting-application-secrets-with-intel-sgx (September
2013)

[9] Hoogstraaten, H., Prins, R., Niggebrugge, D., Heppener, D.,
Groenewegen, F., Wettink, J., Strooy, K., Arends, P., Pols, P.,
Kouprie, R., Moorrees, S., van Pelt, X., Hu, Y.Z.: Black

3https://www.openca.org/

http://www.popsci.com/technology/article/2010-07/order-seven-cyber-guardians-around-world-now-hold-keys-internet
http://www.popsci.com/technology/article/2010-07/order-seven-cyber-guardians-around-world-now-hold-keys-internet
http://www.popsci.com/technology/article/2010-07/order-seven-cyber-guardians-around-world-now-hold-keys-internet
http://dx.doi.org/10.1007/BF00196791
https://software.intel.com/en-us/blogs/2013/09/26/protecting-application-secrets-with-intel-sgx
https://software.intel.com/en-us/blogs/2013/09/26/protecting-application-secrets-with-intel-sgx

Tulip: Report of the investigation into the DigiNotar
certificate authority breach.
www.rijksoverheid.nl/bestanden/documenten-en-
publicaties/rapporten/2012/08/13/black-tulip-update/black-
tulip-update.pdf (August 2012)

[10] Jacobson, V., Smetters, D.K., Thornton, J.D., Plass, M.F.,
Briggs, N.H., Braynard, R.L.: Networking named content.
In: ACM CoNEXT (December 2009)

[11] Jonsson, J., Kaliski, B.: PKCS #1: RSA cryptography
specifications version 2.1. RFC 3447 (February 2003)

[12] Kostiainen, K., Ekberg, J.E., Asokan, N., Rantala, A.:
On-board credentials with open provisioning. In: 4th
International Symposium on Information, Computer, and
Communications Security (ASIACCA). pp. 104–115. ACM
(2009)

[13] Langley, A.: Enhancing digital certificate security.
http://googleonlinesecurity.blogspot.ch/2013/01/enhancing-
digital-certificate-security.html (January 2013)

[14] Langley, A.: Maintaining digital certificate security.
http://googleonlinesecurity.blogspot.co.uk/2015/03/
maintaining-digital-certificate-security.html (March 2015)

[15] McCune, J.M., Parno, B.J., Perrig, A., Reiter, M.K., Isozaki,
H.: Flicker: An execution infrastructure for TCB
minimization. In: ACM SIGOPS Operating Systems Review.
vol. 42, pp. 315–328. ACM (2008)

[16] Naylor, D., Mukerjee, M.K., Agyapong, P., Grandl, R., Kang,
R., Machado, M.: XIA: Architecting a more trustworthy and
evolvable Internet. In: ACM SIGCOMM Computer
Communication Review (CCR). vol. 44. ACM (July 2014)

[17] Nystrom, M., Kaliski, B.: PKCS #10: Certification request
syntax specification. RFC 2986 (November 2000)

[18] Parno, B., Lorch, J.R., Douceur, J.R., Mickens, J., McCune,
J.M.: Memoir: Practical state continuity for protected
modules. In: IEEE Symposium on Security and Privacy (SP).
pp. 379–394. IEEE (2011)

[19] PKI, P.: EJBCA PKI CA. https://www.ejbca.org/ (June 2015)
[20] Santesson, S., Myers, M., Ankney, R., Malpani, A., Galperin,

S., Adams, C.: X.509 Internet public key infrastructure
online certificate status protocol - OCSP. RFC 6960 (June
2013)

[21] Sara Dickinson, R.v.R.: HSM buyers’ guide. https://wiki.
opendnssec.org/display/DOCREF/HSM+Buyers%27+Guide
(August 2012)

[22] Sleevi, R.: Sustaining digital certificate security.
https://googleonlinesecurity.blogspot.com/2015/10/
sustaining-digital-certificate-security.html (October 2015)

[23] Zetter, K.: PIN crackers nab holy grail of bank card security.
http://www.wired.com/2009/04/pins/ (April 2009)

[24] Zhang, X., Hsiao, H.C., Hasker, G., Chan, H., Perrig, A.,
Andersen, D.G.: SCION: Scalability, control, and isolation
on next-generation networks. In: Security and Privacy (SP),
2011 IEEE Symposium on. pp. 212–227. IEEE (May 2011)

[25] Zhou, Z., Han, J., Lin, Y.H., Perrig, A., Gligor, V.: KISS:
“Key It Simple and Secure” corporate key management. In:
Trust and Trustworthy Computing, pp. 1–18. Springer (2013)

www.rijksoverheid.nl/bestanden/documenten-en-publicaties/rapporten/2012/08/13/black-tulip-update/black-tulip-update.pdf
www.rijksoverheid.nl/bestanden/documenten-en-publicaties/rapporten/2012/08/13/black-tulip-update/black-tulip-update.pdf
www.rijksoverheid.nl/bestanden/documenten-en-publicaties/rapporten/2012/08/13/black-tulip-update/black-tulip-update.pdf
http://googleonlinesecurity.blogspot.ch/2013/01/enhancing-digital-certificate-security.html
http://googleonlinesecurity.blogspot.ch/2013/01/enhancing-digital-certificate-security.html
http://googleonlinesecurity.blogspot.co.uk/2015/03/maintaining-digital-certificate-security.html
http://googleonlinesecurity.blogspot.co.uk/2015/03/maintaining-digital-certificate-security.html
https://www.ejbca.org/
https://wiki.opendnssec.org/display/DOCREF/HSM+Buyers%27+Guide
https://wiki.opendnssec.org/display/DOCREF/HSM+Buyers%27+Guide
https://googleonlinesecurity.blogspot.com/2015/10/sustaining-digital-certificate-security.html
https://googleonlinesecurity.blogspot.com/2015/10/sustaining-digital-certificate-security.html
http://www.wired.com/2009/04/pins/

	Introduction
	Background
	Problem Definition
	Desired Properties
	Assumptions and Adversary Model

	CASTLE Architecture
	Security Layers
	Architectural Components
	Hardware Layer
	Isolation Layer
	Authentication Layer
	Management Layer

	CASTLE Certificate Signing
	Signer Configuration
	Request Step
	Attestation Step
	Authorization Step
	Signature Step

	Deployment and Management
	Logging
	System Initialization
	Administrator Management
	System Backup and Restoration

	Analysis
	Security of Certificate Signing
	Security of Management Operations

	Evaluation
	Implementation
	PAL performance
	Signature Session Performance
	Cost

	Discussion
	Conclusion
	References

