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ABSTRACT

In an ideal Internet, every packet would be attributable to its
sender, while host identities and transmitted content would
remain private. Designing such a network is challenging be-
cause source accountability and communication privacy are
typically viewed as conflicting properties. In this paper, we
propose an architecture that guarantees source accountabil-
ity and privacy-preserving communication by enlisting ISPs
as accountability agents and privacy brokers. While ISPs can
link every packet that originates from their network to their
customers, customer identity remains unknown to the rest
of the Internet. In our architecture, network communication
is based on Ephemeral Identifiers (EphIDs)—cryptographic
tokens that can be linked to a source only by the source’s ISP.
We demonstrate that EphIDs can be generated and processed
efficiently, and we analyze the practical considerations for
deployment.

1. INTRODUCTION

The commercialization of the Internet and its integral role
in our daily lives have spawned a debate on privacy and
accountability—a long-standing discussion about two prop-
erties that are typically considered conflicting. Unfortunately,
today’s Internet does not provide native support for either.
We propose an architecture that resolves the accountability-
privacy tussle and guarantees network-level source account-

ability without forfeiting end-to-end communication privacy.

On one end of the spectrum, source accountability pro-
tects the integrity of the source’s identity and holds the source
responsible for any traffic that it originates. The lack of
source accountability has become a Pandora’s box for In-
ternet security. Attackers spoof their addresses and launch
massive reflection attacks exhausting the available network
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resources. IP spoofing makes it impossible to identify the
actual attacker and renders traffic filtering ineffective, not
to mention the collateral damage when incorrectly blocking
benign hosts.

On the other end of the spectrum is privacy. Recent rev-
elations of pervasive monitoring and mass surveillance [1–
3] have increased users’ interest in communication privacy.
Users know that their identities and network traffic are be-
ing systematically collected by state-level entities. The lack
of native support for private communication in the Internet
forces users to rely on overlay networks and specialized ap-
plications to obtain privacy guarantees [4, 5]. These solu-
tions are complex to install and manage, and degrade appli-
cation performance.

To date, the research community has mainly investigated
approaches that favor either privacy or accountability, typi-
cally offering one at the expense of the other. To our knowl-
edge, the Accountable and Private Internet Protocol (APIP)
is the main proposal that has aimed to find a balance be-
tween the two properties at the network layer [6]. However,
the privacy guarantees are constrained to source anonymity;
data privacy is not addressed but delegated to conventional
protocols, such as IPsec [7] and its key-exchange protocol
(IKE [8]) that in themselves do not explicitly address a criti-
cal problem: certificate management (e.g., issuance, revoca-
tion) at Internet-scale.

In this paper, we propose an Accountable and Private Net-
work Architecture (APNA) that provides source account-
ability guarantees and privacy-preserving communication.
Our notion of communication privacy covers host privacy
(for the source and destination) and data privacy—host pri-
vacy means that the identity of the host (e.g., IP address)
remains private and data privacy means that the transmitted
data remains secret from unintended recipients.

To provide such properties, we enlist Internet Service Pro-
viders (ISPs) as a fundamental component of our architec-
ture for several reasons. First, we build on past efforts to
hold Autonomous Systems (ASes) accountable for malicious
traffic generated within their domain [9,10]. Second, we be-
lieve ISPs have business incentives to provide privacy fea-
tures to their customers, especially in light of recent revela-
tions regarding global surveillance. In APNA, ISPs facilitate
connection establishment between communicating hosts, but
traffic encryption is still performed directly by communica-



tion endpoints, keeping communication content hidden even
from their ISPs.

In our scheme, network communication is based on Ephe-
meral IDentifiers (EphIDs) instead of long-lived network ad-
dresses, such as IP addresses. ASes issue EphIDs and assign
them to their customer hosts as tokens of approval for com-
munication. EphIDs are designed to mask the host address in
the network, providing host privacy, while still functioning
as a return address. In addition, EphIDs are bound to short-
lived and domain-certified public/private key pairs. These
keys are used by hosts to mutually authenticate each other
and to negotiate a shared secret key, which allows native
payload secrecy through network-layer traffic encryption.

The privacy architecture proposed in this paper, which es-
tablishes shared keys based on EphIDs, by default encrypts
all payload data. Pervasive encryption frustrates large-scale
surveillance by obfuscating all communicated content. More-
over, the encryption scheme provides Perfect Forward Se-
crecy (PFS) such that an adversary that obtains all long-term
keys cannot decrypt the content of previous communication
sessions.

EphIDs are cryptographically linked to the identity of a
host and serve as accountability units. ISPs issue and assign
EphIDs only to their authenticated customers, thus bootstrap-
ping source accountability. We argue that ISPs are the nat-
ural accountability agents in today’s Internet since they al-
ready know the identities of their customers. Furthermore,
we describe a shutoff protocol [11], which is a common se-
curity mechanism relying on source accountability. A com-
plaining destination host instructs an ISP to block outgo-
ing traffic from a customer-host that is associated with an
EphID. The accountable identifiers allow an ISP to first ver-
ify that a customer has indeed sent traffic to a certain desti-
nation and then to prohibit any further communication.
Contributions: This paper proposes a cohesive architecture,
the Accountable and Private Network Architecture (APNA),
that simultaneously guarantees accountability and protects
privacy by involving ASes as accountability agents and pri-
vacy brokers. In particular, APNA achieves the following
properties:

• Source accountability by linking every packet in the net-
work to its originating source.

• Host privacy by hiding the host’s identity from every en-
tity except the host’s AS.

• Data privacy by supporting network-layer encryption with
perfect forward secrecy.

• Support for a shutoff protocol that terminates unwanted
communication sessions.

2. PROBLEM DEFINITION

Our goal is to design a network architecture that simultane-
ously supports source accountability while preserving com-
munication privacy. This section describes the necessary re-
quirements to realize these seemingly conflicting goals, the
security properties we strive to achieve, and the adversary
model we consider.

2.1 Source Accountability

Source accountability refers to an unforgeable link between
the identity of a sender host and the sent packet. Thus, ac-
countability ensures that a source cannot deny having sent a
packet and a host cannot be falsely accused of having sent a
packet which it did not send.

Achieving source accountability in practice translates to
two fundamental requirements. First, a strong notion of host
identity is necessary so that hosts cannot create multiple iden-
tities nor impersonate other hosts. Second, a link between
the source’s identity and all of its traffic must be established.
This link must be established (or at least confirmed) by a
third-party (e.g., source AS) that is not the sender itself,
since senders themselves can be malicious. To this end,
the third party must observe all of the sender’s traffic such
that every packet in the network can be linked to a specific
sender.

Adversary Model: The goal of the adversary is to break
source accountability by creating a packet that is attributed
to someone else in the network. We assume that the ad-
versary can reside in multiple ASes and that she can see all
packets within those ASes. Specifically, the adversary can
eavesdrop on all control and data messages in the network,
but cannot compromise the secret keys of the ASes that it
resides in.

2.2 Communication Privacy

Our first goal with respect to privacy at the network layer
is host privacy. To achieve host privacy, the identity of a
host must be hidden from any other host in the source AS
that is not in the same broadcast domain as the host (e.g., on
the same WiFi network or LAN segment), any transit net-
work that forwards traffic, as well as the destination AS (in-
cluding the communication peer). A host cannot hide from
its AS, since the AS knows the identity and network attach-
ment point of every customer; and, a host cannot hide from
other hosts in the same broadcast domain, since the layer-2
address is visible. We address host privacy at the network
layer, which means that network-layer headers should not
leak identity information. A host’s identity may still leak at
higher layers (e.g., HTTP cookies); however, these aspects
are out of scope for this paper.

In addition, our notion of host privacy includes sender-
flow unlinkability [12]: simply by observing packet contents
(both headers and payloads) of any number of flows origi-
nating from the same AS, the source(s) of the flows are no
more and no less related after the observation than they were
before the observation.

Our second goal is data privacy through pervasive end-
to-end encryption. Transmitted data should be hidden from
unintended recipients, including the source and destination
ASes. To this end, the architecture must natively (i.e., with-
out relying on upper-layer protocols) provide secure key es-
tablishment between hosts and protection against Man-in-
the-Middle (MitM) attacks.

Moreover, our notion of data privacy includes perfect for-
ward secrecy (PFS): disclosure of long-term secret keying



material does not compromise the secrecy of exchanged keys
from past sessions and thus data privacy of prior communi-
cation sessions is guaranteed [13, p. 496].

Adversary Model: Breaking host privacy means that an
adversary can determine the identity of a sender, or can de-
termine if two flows from the same source AS originate from
the same host. We assume that the adversary can control any
entity in the Internet except for the source host, hosts that
are in the same broadcast domain as the source host, and the
source AS itself. The adversary can observe packet headers
and content, but we do not consider timing analysis tech-
niques, such as inter-packet arrival times.

We argue that the architecture should provide only the ba-
sic building blocks to achieve host privacy at the network
layer; stronger privacy guarantees (e.g., resiliency against
timing analysis) should be provided by protocols at a higher
layer (e.g., transport protocol). For instance, a transport pro-
tocol could implement a packet scheduling algorithm that al-
ters timing between packets to mitigate traffic identification
based on inter-packet timing analysis [14–17]. Our argu-
ment is grounded by the fact that strong privacy guarantees
often come at the expense of network performance, and not
every user (or application) requires strong privacy guaran-
tees. Hence, protocols that offer stronger privacy guarantees
are left to upper layers so that users can choose the appropri-
ate protocol based on their requirements.

An adversary can try to compromise data privacy by de-
crypting the communication content exchanged between two
hosts. To this end, we assume that the adversary can control
any entity in the Internet except for the two communicating
hosts and one of the two ASes that the hosts reside in.

2.3 Additional Goals

Shutoff Functionality: An accountability architecture can
provide security mechanisms that build on top of account-
able addresses. A shutoff mechanism is commonly used
to terminate any active communication session flagged for
misbehavior. The architecture must ensure that the shut-
off mechanism does not create other attack vectors, such as
denial-of-service through non-permitted shutoff requests.

Support for Network Feedback: The architecture must
allow the network to communicate back to the source with-
out revealing the identity of the source. Feedback from the
network is crucial for network-diagnostic and management
tools, such as ICMP.

3. APNA OVERVIEW

This section describes the components of our Accountable
and Private Network Architecture (APNA), beginning with
the role of the ASes (Section 3.1), followed by the use of
ephemeral identifiers (Section 3.2), and ending with an end-
to-end communication example (Section 3.3).

3.1 Role of ASes

In APNA, ASes act both as accountability agents and as pri-
vacy brokers due to their position in the network. Since
ASes already know the identity and the physical attachment

point of their customers, they naturally act as accountabil-

ity agents. At the same time, ASes mask their customers’
identities from all other entities, and thus act as host-privacy

brokers. In addition, ASes certify their customer-related in-
formation (e.g., public keys), which is then used to generate
keys for pervasive data encryption at the network layer; thus
ASes act as data-privacy brokers.

Accountability Functions: As an accountability agent,
the AS performs the following functions.

First, the AS creates a strong notion of host identity. To
this end, the AS ensures that subscribers do not create and
use multiple unauthorized identities for their communica-
tion. ASes already authenticate their customers and are thus
selected as accountability agents.

Second, the AS creates a link between the identity of the
source and the sent packet. To this end, the AS can store ev-
ery packet or insert a cryptographic mark into every packet.
Regardless of the implementation, the AS is on the forward-
ing path of all the traffic originating from its customers and
is therefore selected to establish this link. Using any other
third party, which is not on the traffic path, as an account-
ability agent would require additional mechanisms to report
every packet to the third party [6].

Third, the AS realizes the shutoff functionality by accept-
ing (and validating) shutoff requests and blocking the cor-
responding flows. An AS is in a strategic position to block
malicious traffic since it is close to the source and can stop
traffic before it leaves its network.

Privacy Functions: As a privacy broker, the AS performs
the following functions.

First, the AS issues an Ephemeral IDentifier (EphID) that
a host uses to mask his identity by using it as the source ad-
dress. This identifier serves as a privacy-preserving return
address and thus does not break bidirectional communica-
tion. However, EphIDs must be bound to specific hosts; and,
since ASes know the identities of the hosts, they are well
suited to perform this binding and act as host-privacy bro-
kers. We provide more details on EphIDs in the following
section.

Second, the AS acts as a certificate issuer, certifying that
a public key indeed belongs to a host in the AS’s network.
More specifically, the AS certifies the binding between an
ephemeral identifier that is issued to a host and a public key
that is bound to the identifier. Hence, the AS becomes a
data-privacy broker without revealing the identity of its cus-
tomers.

3.2 Ephemeral IDs

At the heart of our proposal is the use of ephemeral identi-
fiers instead of addresses. An EphID is an identifier associ-
ated with the identity of a host, yet it does not leak identity
information. Since ASes know the identities of their cus-
tomers, issuing EphIDs to their connected hosts enables the
hosts to hide their identity without sacrificing accountability.

EphID as an Accountability Unit: As an accountability
unit, an EphID is an authorization token for communication
that is issued by the AS to its customer hosts. Issuing these



tokens requires strong host authentication: the host must first
prove its identity to the AS and only then EphIDs can be
issued.

In APNA, a host is represented to its AS through a Host
Identifier (HID). An HID could be a hash of the host’s public
key or a number that is assigned by the AS to the host (e.g.,
IPv4 address). We do not specify how an AS assigns HIDs,
but require that HIDs be unique within the AS’s boundary.
There can be multiple EphIDs that are associated with an
HID, and the EphIDs are cryptographically bound to the
HID such that only the host’s AS can determine the bind-
ing. Furthermore, an EphID serves as the accountability unit
for shutoff requests. A shutoff request against an EphID
terminates all flows of the host that use that EphID as the
source identifier. In other words, flows with the same source
EphID are fate-sharing with respect to the shutoff protocol.
Blacklisting source EphIDs instead of source and destina-
tion EphID pairs forces hosts to carefully manage their pool
of assigned EphIDs.

EphID as a Privacy Unit: The EphID has two roles as a
privacy unit: it hides the identity of a host and provides a tool
to achieve sender-flow unlinkability. An EphID is meaning-
ful only to the issuing AS and opaque to all other parties.
It reveals no information about the host’s identity to other
hosts inside the same AS nor to the peer host that the host is
communicating with.

EphIDs alone are insufficient for routing packets to a des-
tination, since location information is missing; and, in APNA,
the location information is provided at the granularity of
ASes. Hence, a host is fully addressed by an AS Identi-
fier (AID) and EphID tuple (i.e., AID:EphID) where the AID
identifies the AS in which the host resides (e.g., Autonomous
System Number), and the EphID is the ephemeral identi-
fier issued to the host by the corresponding AS. Hence, the
only leaked information is the AS where the host resides; the
host’s anonymity set becomes the size of the AS in terms of
number of hosts.

In addition, decoupling the identity from the address pro-
vides a means to achieve sender-flow unlinkability. A host
can be issued multiple EphIDs and can use them at will, e.g.,
a single EphID for all flows or a different EphID for every
flow. We do not impose any requirements on how EphIDs
are used. We discuss different granularities of EphIDs in
Section 8.1.

3.3 Communication Example

We describe the high-level workflow for communication be-
tween two hosts (Figure 1). The protocol details are pro-
vided in Section 4.

An AS needs to manage its hosts; issue and manage EphIDs;
and authenticate packets that its hosts send. For these tasks,
the following logical entities are present in every AS:

• Registry Service (RS): authenticates and bootstraps hosts
in the AS.

• Management Service (MS): issues EphIDs to the hosts.

• Border Router (BR): handles incoming and outgoing pack-
ets based on the AID:EphID tuple.

• Accountability Agent (AA): handles shutoff requests agai-
nst the hosts in the AS.

In Figure 1, a host in ASA initiates communication with a
host in ASB. Communication proceeds in four steps:

1. Host Bootstrapping: the host authenticates to the RS of
its AS and receives bootstrapping information.

2. EphID Issuance: the host contacts the MS of its AS to
obtain an EphID.

3. Connection Establishment: the hosts know each other’s
AID:EphID identifiers and establish a shared key that will
be used for network-layer data encryption. The shared
key is derived from public keys that are associated with
the EphIDs. In Section 7.1, we describe how hosts can
obtain the necessary communication information through
DNS.

4. Encrypted Communication: the hosts proceed with the
actual communication by using their AID:EphID tuples
instead of network addresses and by encrypting every pac-
ket with their shared symmetric key.

4. APNA PROTOCOL DETAILS

To construct a lightweight and efficient architecture, APNA
is built under consideration of the following design choices:

• Symmetric encryption is used to cryptographically link
EphIDs with HIDs; this allows an AS to efficiently obtain
the HID from the EphID without a mapping table, which
can be large.

• Proof of sending a packet is embedded in the packet, avoid-
ing large amounts of stored state at ASes.

• Forwarding devices perform only symmetric cryptographic
operations, guaranteeing high forwarding performance.

We begin by stating our assumptions and proceed with
the details of the steps that are shown in our communication
example (Section 3.3). Table 1 summarizes the notation we
use throughout the protocol description.

4.1 Assumptions

• We assume that the cryptographic primitives we use are

secure. For instance, we assume that authenticated en-
cryption is used for encrypting data communication, se-
curing data communication against chosen-ciphertext at-
tacks (i.e., CCA-secure). We also require that the gener-
ation of EphIDs to be CCA-secure; in Section 5.1.1, we
describe an efficient CCA-secure encryption scheme for
generating EphIDs.

• Participating parties can retrieve and verify the public

keys of ASes. For example, a scheme such as RPKI [18]
can be used to verify the public keys of the corresponding
ASes. For simplicity, ASes use the same public/private
key pairs for 1) signing messages, and 2) key exchanges.
In a real-world deployment, these two keys would be dif-
ferent, and the key used for signing messages would be
registered with RPKI.
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Figure 1: An end-to-end communication example.

Table 1: Notation.

kAi
Symmetric key of ASi that is known among the infras-
tructure (e.g., routers, RS, MS, AA).

kHiAi
Symmetric key shared between host Hi and its AS (ASi).

kEiE j
Symmetric key generated for the EphID pair Ei and E j .

HIDi Host identifier (HID) assigned to host Hi.

EphIDh An EphID issued to host H.

CEphIDi
Certificate for EphID EphIDi.

K+
E ,K−

E Public, private key of entity E for both DH Exchange
and Digital Signatures.

MACk(M) Message M and MAC of M using symmetric key k.

{M}K− Message M and Signature of M using private-key K−.

Ek(M) Symmetric encryption of M with key k.

E−1
k (C) Symmetric decryption of C with key k.

• Hosts do not use connection sharing devices (e.g., NAT).

We discuss how to relax this assumption in Section 7.2.

4.2 Host Bootstrapping

A host authenticates to its AS using a well-established au-
thentication protocol [19, 20]. For example, when a user
subscribes to an Internet provider, the provider creates the
authentication credentials and these credentials are precon-
figured into an Internet access device (e.g., cable or DSL
modem). The device performs the authentication protocol
when the user connects it to the network.

The host (or his access device) creates a symmetric key
kHA that serves two purposes: encrypting EphID request and
reply messages (Section 4.3), and authenticating every packet
that the host transmits to the network.1 During the authenti-
cation procedure, the host securely sends kHA to the RS by
encrypting it using AS’s public key (K+

AS).

Once the host has successfully authenticated, the Registry
Service (RS) of the AS performs the bootstrapping proce-
dure (Figure 2). During this procedure, the host receives in-
formation about its AS’s services that are necessary to (later)
establish communication sessions; and to support these com-
munication sessions, the infrastructure of the AS gets up-
dated with the host’s information. We require that all boot-

1In practice, two keys (one for encryption and the other for
authentication) are derived from kHA, but for simplicity, we
refer to both keys as kHA throughout the protocol description.

strapping messages are authenticated in order to avoid mod-
ifications en route.

First, the RS creates a control EphID (EphIDctrl
h ) for the

host. Control EphIDs are used to access AS’s internal ser-
vices, e.g., to request data-plane EphIDs from a Manage-
ment Service (MS). Both control and data-plane EphIDs are
constructed identically so that all communication is based
on EphIDs. However, control EphIDs have longer lifetime
(e.g., DHCP lease time) than data-plane EphIDs. In addition,
control EphIDs cannot be used for data communication—
unlike data-plane EphIDs, certificates are not issued for con-
trol EphIDs (see Section 4.3). We use the term EphIDs to
refer to the data-plane EphIDs.

The RS returns the following information to the host: the
control EphID (EphIDctrl

h ) with its expiration time (ExpTime),
and the EphIDs for the MS (EphIDms) and the DNS (EphIDdns)

within the AS. The host uses EphIDctrl
h as the source address,

and EphIDms and EphIDdns as the destination addresses to
access the respective services.

Finally, the RS sends the host information (HID, kHA) to
infrastructure entities in the AS (e.g., routers, MS, AA); the
entities store the information in their database (host_in f o).
The infrastructure of the AS must learn the host information
in order to handle packets that are originating from and des-
tined to this host. Specifically, the entities need to learn the
HID of the host (HID) and the shared key (kHA) with the
host so that they can verify the authenticity of the packets
that originate from the host.

4.3 Ephemeral ID Issuance

An EphID is an encrypted token using the AS’s secret key
(kA); it contains the host’s HID and an expiration time that
indicates the validity period for the EphID (i.e., EphID =
EkA

(HID, ExpTime)). Note that the use of encryption en-
ables the issuing AS to obtain the HID and expiration time
from an EphID in a stateless fashion, without an additional
mapping table.

Every EphID is associated with a public/private key pair
(K+

EphID,K
−
EphID), which serves three purposes: 1) to mutu-

ally authenticate with a peer host, 2) to create a shared key
with a peer host for data encryption (Section 4.4.1), and 3) to
authenticate shutoff requests (Section 4.5). To keep the data
encryption key secret from the AS, the host (not the AS)



AS Entities : All infrastructure (i.e., BRs, MSes, AAs) of the AS
verifySig(K+,M) : Verify signature of message M using K+

Host RS AS Entities

RS authenticates Host
Host securely sends kHA to RS
RS retrieves HID for Host

host_in f o[HID] = kHA

ExpTime = getExpTime()

EphIDctrl
h

= EkA
(HID,ExpTime)

m1 = {EphIDctrl
h

,ExpTime,EphIDdns,EphIDms}K−
AS

m2 = EkA
(HID,kHA)

m1 m2

(HID,kHA) = E−1
kA

(m2)

host_in f o[HID] = kHA

veri f ySig(K+
AS

,m1)

Figure 2: Procedure for Host Bootstrapping.

generates the key pair and the private key is never revealed
to the AS.

The AS certifies the binding between an EphID and a
public/private key pair by issuing a short-lived certificate
(CEphID) that has the same expiration time as the EphID.
From the certificate, a peer host learns the public key (K+

EphID)

that is associated to the EphID as well as the EphID expi-
ration time. The certificate additionally contains informa-
tion about the issuing AS—the AID and the EphID of the
accountability agent (EphIDaa). EphIDaa is used by a peer
host (with which the requesting host communicates) to initi-
ate the shutoff protocol when necessary (Section 4.5).

To obtain an EphID, the host creates and sends an EphID
request message to the MS (Figure 3). Specifically, the host
first generates the public/private key pair (K+

EphID,K
−
EphID) for

the EphID and includes K+
EphID in the request message. In

addition, the host uses EphIDctrl
h as the source address for the

request message and encrypts the message using the shared
key with the AS (kHA). The message is encrypted to hide
it from other entities in the AS that are not part of the AS
infrastructure.

If an adversary trying to compromise sender-flow unlinka-
bility (see Section 2.2 for the adversary model) sees the con-
tent of EphID request packets, she can identify a common
sender across multiple flows at the level of EphIDctrl

h . The

adversary first learns the (EphIDctrl
h , K+

EphID) pair from the

EphID request packets; then, the adversary sees the K+
EphIDs

from the connection establishment packets (see Section 4.4.1),
allowing the adversary to identify the common sender of
multiple connections. Note that the adversary has not com-
promised the host identity since only the host’s AS can ex-
tract host identity from EphIDctrl

h . Nonetheless, she has suc-
cessfully identified a common sender across multiple flows.
In APNA, encrypting the EphID request message prevents
such attacks.

Upon receiving the request, the MS validates the authen-
ticity of the request; decrypts the source EphID (EphIDctrl

h );

and performs the following checks: 1) EphIDctrl
h has not ex-

pired, 2) the client’s identifier (HID) is valid (i.e., has not

g,p : DH Parameters
a : A random DH Secret Integer

Host (EphIDctrl
h

) MS (EphIDms)

(K+
EphID

,K−
EphID

) = (gamod p,a)

EkHA
(K+

EphID
)

(HID,ExpTime1) = E−1
kA

(EphIDctrl
h

)

if ExpTime1 < currTime abort

if HID /∈ host_in f o abort

kHA = host_in f o[HID]

K+
EphID

= E−1
kHA

(EkHA
(K+

E phID
))

ExpTime2 = getExpTime()
EphID = EkA

(HID,ExpTime2)

CEphID = {EphID,ExpTime2,K
+
EphID

,AIDAS ,EphIDaa}K−
AS

EkHA
(CEphID)

veri f yCert(E−1
kHA

(EkHA
(CEphID)))

Figure 3: Procedure for EphID Issuance.

been revoked), and 3) the message is valid (i.e., the message
can be decrypted successfully). If any one of the checks
fails, the request is dropped.

Then, the MS proceeds with the EphID issuance: it gener-
ates an EphID and creates the short-lived certificate (CEphID)
for the EphID. Finally, the MS encrypts the certificate and
sends it to the requesting host. The certificate is encrypted
for the same reason as encrypting the EphID request packets.

4.4 Data Communication

To communicate, two hosts mutually authenticate each other
using each other’s certificates and generate a shared sym-
metric key for their communication session. This key is then
used to encrypt all traffic that belongs to this communica-
tion session. We emphasize that two hosts can create multi-
ple communication sessions and each session has a different
symmetric key to ensure that disclosure of one encryption
key does not compromise data privacy of other communica-
tion sessions.

4.4.1 Connection Establishment

For every connection establishment between a pair of hosts,
the two hosts perform the following tasks: 1) verify each
other’s EphID certificate that is issued by their correspond-
ing ASes, and 2) establish a shared key via a DH key ex-
change to encrypt their communication.

Consider two hosts, A and B, with EphIDs EphIDa
2 and

EphIDb, respectively, that are establishing a connection. As-
sume that the hosts have obtained each other’s EphID and the
associated certificate (we discuss obtaining EphIDs through
DNS in Section 7.1). Using the short-lived certificate of
EphIDb and the public-private key pair associated with EphIDa,
A derives a shared key (kEaEb

) between EphIDa and EphIDb.
Similarly, B computes the same shared key, completing the

2We use small ‘a’ to denote the EphID issued to A (i.e.,
EphIDa) to emphasize that there can be many EphIDs that
are issued to a host.



AID: AID of the Destination AS
EphIDs , AIDS : Source EphID and AID in the packet
EphIDd , AIDD : Destination EphID and AID in the packet
revoked_ids : List of revoked EphIDs
verifyMAC(k,M) : Verify MAC of message M using k

Neighbor AS BR

incoming packet
(AIDS : EphIDs → AIDD : EphIDd )

if AIDD == AID

(HIDD ,ExpTime) = E−1
kAD

(EphIDd )

if ExpTime < currTime drop packet; return

if EphIDd ∈ revoked_EphIDs drop packet; return

if HIDD /∈ host_in f o drop packet; return

intraDomainForward(EphIDd , packet)
else

interDomainForward(AIDD, packet)

Host(EphIDs) BR

outgoing packet
(AIDS : EphIDs → AIDD : EphIDd )

(HIDS ,ExpTime) = E−1
kAS

(EphIDs)

if ExpTime < currTime drop packet; return

if EphIDs ∈ revoked_EphIDs drop packet; return

if HIDS /∈ host_in f o drop packet; return

kHSAS
= host_in f o[HIDS ]

if !veri f yMAC(kHSAS
, packet) drop packet; return

interDomainForward(AIDD , packet)

Figure 4: Procedures for Data Packet Forwarding at Border
Routers for Incoming (Top) and Outgoing (Bottom) Packets.

connection establishment. This symmetric shared key is then
used to encrypt data packets between the two hosts.

4.4.2 Encrypted Communication

After the connection establishment, communication is based
on symmetric cryptographic operations. First, the host uses
the symmetric key that it shares with the peer to encrypt the
packets to the peer. Any existing CCA-secure encryption
scheme can be used for the encryption. Second, the host
computes a MAC for every packet that it sends, using the
symmetric key that it shares with its AS (kHA). This allows
the host’s AS to link every packet to its source and to drop
packets from (potentially) malicious hosts.

4.4.3 Data Forwarding

A border router in the source AS ensures that only pack-
ets from authenticated hosts and authorized EphIDs leave
the AS; and a border router in the destination AS forwards
packets to the correct host based on the destination EphID.
Transit ASes do not perform additional operations and sim-
ply forward packets to the next AS on the path. As per our
design choice, to achieve high-performance data forwarding,
only symmetric cryptographic operations are used.

Communication end-points are specified as AID:EphID
tuples. For inter-domain forwarding, border routers use only
AID to forward packets (Figure 4). Specifically, for external
packets entering the AS, a border router checks whether the

pkt : Packet that is sent by the Src Host but unwanted by the Dst Host
EphIDs , EphIDd: Src/Dst EphIDs in pkt
Dst : Dst Host (i.e., Host that is using EphIDd )
AAS,BRS: Accountability Agent, Border Router at Source AS

AAS (EphIDaa) BRS Dst (EphIDd )

pkt

MACkHDAD
({pkt}

K−
EphIDd

,CEphIDd
)

if !veri f yCert(CEphIDd
) abort

if !veri f ySig(K+
EphIDd

,{pkt}
K−

EphIDd

)

abort

(HIDS ,ExpTime) = E−1
kAS

(EphIDs)

if ExpTime < currTime abort

if HIDS /∈ host_in f o abort

kHSAS
= host_in f o[HIDS ]

if !veri f yMAC(kHSAS
, pkt) abort

MACkAS
(revoke EphIDs)

if !veri f yMAC(kAS
,MACkAS

(revoke EphIDs))

abort

revoked_ids.insert(EphIDs)

Figure 5: Procedure for Shutoff Protocol.

packet has arrived at the destination AS. If not, the packet is
forwarded to the neighboring AS towards the destination AS.
At the destination AS, the border router checks the following
conditions: 1) the destination EphID (EphIDd) is valid (i.e.,
has not expired and has not been revoked), and 2) HIDD is
valid (i.e., is registered and non-revoked).

If all conditions are satisfied, then the packet is forwarded
to the destination host: border routers derive the correspond-
ing HID from the EphID and then forward the packet; we
assume that intra-domain routers forward packets based on
HIDs (e.g., IP addresses).

For outgoing packets, a border router forwards the packets
to a neighboring AS only if all of the following conditions
are satisfied: 1) the source EphID (EphIDs) is valid (i.e., has
not expired and has not been revoked), 2) HIDS is valid, and
3) the MAC in the packet is correct.

To verify the MAC in the packet, a border router retrieves
the shared key (kHA) between the source host and the AS by
searching the host information database (host_in f o) using
the HID of the source host as the key. These checks ensure
that only authenticated packets leave the source AS.

4.5 Shutoff Protocol

Shutoff protocols are designed to allow hosts to selectively
block traffic from specific source hosts. In our architecture,
an accountability agent (AA) checks the validity of a shutoff
request and then blocks the source EphID. More specifically,
the AA checks whether a customer-host has actually sent the
specific packet that the requesting party reports and whether
the party is authorized to make the request (e.g., the request-
ing host was indeed the recipient of the specific packet). The
AA checks the validity of the request since, if misused, the
shutoff protocol can be used to launch DoS attack against a
benign source. Note that the AA does not examine the in-



tent of the source nor tries to determine whether the packet
is malicious.

Figure 5 shows the procedure for the shutoff request: the
destination host (D) that owns EphIDd is attempting to block
traffic coming from the source host (S) that owns EphIDs

after receiving a specific packet. The destination host cre-
ates a shutoff request message with the following informa-
tion: 1) the received packet, 2) a signature over the unwanted
packet using the private key of EphIDd (K−

EphIDd
), and 3) the

certificate of EphIDd . This information serves as evidence
that S has indeed sent traffic to D and that the shutoff request
is not rogue. Then, D sends the request message to the AA
of S.

Upon receiving the request, the AA verifies the certificate
of EphIDd and the signature in the request message to con-
firm that the request has indeed been made by D who owns
EphIDd . Then, to ensure that the packet has been really gen-
erated by S that owns EphIDs, the AA checks the authen-
ticity of the packet using the shared key (kHSAS

) with S. Fi-
nally, the AA instructs the border routers to revoke EphIDs

by putting it into their revoked_ids list.

5. IMPLEMENTATION & EVALUATION

We present the implementation and performance evaluation
of the architecture’s core components—EphID management
server and border router.

5.1 EphID Management Server

The EphID Management Server (MS) is responsible for gen-
erating EphIDs and for assigning them to hosts. The EphID
generation must be efficient since our architecture should
even support per-flow EphIDs. We describe the EphID struc-
ture, the MS implementation, and then evaluate the perfor-
mance of the EphID generation procedure.

5.1.1 EphID Structure

We engineer the EphID length to optimize processing for
the AES block cipher; it is the only cipher with widespread
hardware support, which enables high performance.

An EphID requires the HID of the host and an expiration
time (ExpTime). AES operates on 16-byte (B) blocks, and
we use 4 B for the HID, which are sufficient to uniquely rep-
resent all hosts even in large ASes. The expiration time is
2 B long, which is sufficiently large to express one day in
two-second granularity.

Recall that the security requirement for EphIDs is a CCA-
secure encryption scheme. To this end, we use a generic
composition called Encrypt-then-MAC [21] that combines
a symmetric encryption with a message authentication code
(MAC) (Figure 6). The concatenation of HID and ExpTime

is first encrypted using AES in counter mode. Secure opera-
tion of this mode requires a unique initialization vector (IV)
for every encryption (i.e., for every EphID). Moreover, the
use of the IV allows us to generate multiple EphIDs for a sin-
gle HID. Note that the plaintext data is shorter than a single

CBC-MAC
kA''

AESkA'

EphID:

IV

(4 B)

00…0

(12 B)

HID

(4 B)

EXP 

(2 B)

00…0

(10 B)

CipherText

(6 B)

IV

(4 B)

00…0

(6 B)

IV

(4 B)

CipherText

(6 B)

MAC

(6 B)

Figure 6: EphID Construction, where ExpTime is EXP.

AES block (16 B) and thus the input must be padded to 16 B;
the one-block plaintext requires a single AES operation.

Next, a MAC is computed. The MAC is computed over
the first 6 B of the previously generated ciphertext and the IV
that was used in that encryption. We use CBC-MAC based
on AES to generate the MAC, which is secure as we have a
fixed input length.

Finally, the EphID is constructed from the 6 B of the ci-
phertext, 4 B IV, and 6 B of the MAC; the total length is 16 B.
Note that the keys used for encryption (kA′ ) and authentica-
tion (kA′′) are different; however, they are derived from the
secret key of the AS (kA).

5.1.2 MS Implementation

The MS generates EphIDs according to the procedure in Fig-
ure 3. For asymmetric cryptography, we use cryptographic
primitives based on Curve25519 [22], which offers high per-
formance and features small public-keys (32 B) and small
signatures (64 B). Key exchange is done using the elliptic-
curve variant of Diffie-Hellman (ECDH). To create digital
signatures for certificates, we use the Ed25519 signature sche-
me [23] and the Ed25519 SUPERCOP REF10 implementa-
tion.3 For symmetric cryptographic operations, we leverage
Intel’s AES-NI encryption instruction set [24]. Furthermore,
we implement the host database (host_in f o) that stores the
shared keys between hosts and the AS as a hash table using
HID as the key.

As an optimization, we parallelize the EphID generation
by using four processes to simultaneously handle EphID re-
quests. The parallelization is straightforward since the gen-
eration does not require any coordination between the pro-
cesses (e.g., shared memory or inter-process communica-
tion). However, no other optimizations were performed (e.g.,
optimizing the Ed25519 REF10 implementation).

5.1.3 MS Performance Evaluation

We demonstrate the efficiency of generating per-flow EphIDs.
To this end, we need statistics for the peak flow generation
rate inside an AS.

We use a 24-hour packet trace of HTTP(S) traffic from
SWITCH.4 The trace contains over 104 million entries for
HTTP traffic and 74 million entries for HTTPS traffic. Each
entry contains a timestamp and anonymized source/destination

3http://bench.cr.yp.to/supercop.html
4The Swiss academic ISP (www.switch.ch).



    Source AID              4 Bytes

    Source EphID        16 Bytes

    Dest EphID            16 Bytes

    Dest AID                  4 Bytes

    MAC                      16 Bytes

    Total                       56 Bytes

LengthField

HID

ExpTime

IV

MAC

  4 Bytes

  4 Bytes

  4 Bytes

  4 Bytes

Total 16 Bytes

Figure 7: APNA Header Information and EphID Field
Lengths.

IDs. We identify 1,266,598 unique hosts generating a peak
rate of 3,888 active HTTP(S) sessions per second.

We test our implementation on a desktop machine with
an Intel Core i5-3470s CPU (4 cores, 2.9GHz) and 4 GB
of DDR3 memory. For 500,000 EphID requests, our imple-
mentation runs for 6.87 seconds. On average, 13.7 µs are
needed for a single EphID generation, translating to a gen-
eration rate of 72.8k EphIDs/sec—over 18 times higher than
the request rate. Our experiment shows that even a low-end
desktop machine can keep up with the traffic demands of a
real AS that has over 1.2 million hosts.

5.2 Border Router

We describe our border router prototype starting with the
structure of the network header. Then, we describe the bor-
der router implementation and evaluate the forwarding per-
formance.

5.2.1 APNA Header Information

The network header information (Figure 7) contains the sou-
rce and destination end points (expressed as AID:EphID tu-
ples) and a MAC over the packet’s content. We use 4 B to
express the AID since 4 B are used for AS numbers in the
Internet; the EphID field requires 16 B as described in Sec-
tion 5.1.1; the MAC field requires 16 B. The fields in the
packet header sum up to 56 B.

5.2.2 Border Router Implementation

Our border router performs additional processing compared
to traditional IPv4/IPv6 forwarding (Figure 4). Namely, the
border router additionally performs one decryption, two ta-
ble lookups, and one MAC verification. For MAC compu-
tation, we use Cipher-based Message Authentication Code
(CMAC) that is secure for variable-length inputs [25].

We use DPDK [26] as our packet processing platform,
which allows us to implement the required functionality in
userspace. The decryption of the EphID in the packet is im-
plemented through Intel AES-NI [24].

5.2.3 Forwarding Performance Evaluation

We evaluate the forwarding performance on a commodity
server with two Intel Xeon E5-2680 CPUs and two non-
uniform memory access (NUMA) nodes; each NUMA node
has four banks of 8 GB DDR3 RAM. The server is equipped
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Figure 8: Forwarding performance expressed as (a) packet-
rate and (b) bit-rate.

with 6 dual-port 10 GbE NICs, providing a total capacity
of 120 Gbps. To generate traffic, we use Spirent-SPT-N4U-
220 [27] connected back-to-back with the server. The server
receives the traffic, processes it, and sends it back to the gen-
erator.

We perform a throughput experiment for 5 different packet
sizes—128, 256, 512, 1024, and 1518-byte packets. The re-
sults (Figure 8) confirm that we are able to perform the re-
quired additional processing without incurring a throughput
penalty. The measured performance matches the theoreti-
cal maximum performance; we omit this performance line
for demonstration purposes since the two lines match. Fig-
ure 8(a) shows that even for small packet sizes (i.e., high
packet-rates), the border router performs optimally. Fig-
ure 8(b) shows that as packet sizes increase, we saturate
the capacity of 120 Gbps. The border router performs op-
timally because the additional operations are lightweight.
The border router’s CPUs have adequate capacity to perform
this processing without degrading performance for the given
packet rates. Under higher packet rates, the heavier load
would start to degrade forwarding performance slightly.

6. SECURITY ANALYSIS

We demonstrate how APNA prevents attacks that undermine
source accountability and data privacy.

6.1 Attacking Source Accountability

An adversary attacking source accountability (Section 2.1)
has three attack vectors at hand.

EphID Spoofing: The adversary can attempt to use an
EphID that is issued to another host (the spoofed victim).
For instance, an adversary that shares the same access port
with the victim can sniff traffic and observe valid EphIDs
that are in use. However, using such an EphID is not suffi-
cient since every outgoing packet has to contain a MAC that
is computed with the shared key between the host and the
host’s AS. Without the corresponding shared key, the adver-
sary cannot create valid MACs, resulting in spoofed packets
that are dropped by the host’s AS (additionally making the
attack visible). Obtaining the shared key requires compro-
mising the host or the AS; our adversary model does not
account for such compromises.

An active adversary can attempt to obtain an EphID by
pretending to be another host. However, such an attack is



infeasible: the adversary not only needs to learn the control
EphID (EphIDctrl

h ) of the victim, but also needs to learn the
shared key between the victim and the source AS.

Unauthorized EphID Generation: The adversary can
attempt to create an unauthorized EphID. However, such an
attempt is not feasible since the EphID construction (Fig-
ure 6) is CCA-secure.

We achieve a CCA-secure encryption scheme through two
primitives. First, we use symmetric encryption in counter
mode with a fresh IV for every encryption; this encryption
is secure under a chosen plaintext attack. Second, we use a
CBC-MAC scheme to authenticate the concatenation of the
ciphertext and the IV. Note that our use of the CBC-MAC
is secure since the input length to the CBC-MAC is fixed to
16 B.5 The combination of these two primitives results in a
CCA-secure encryption scheme [21].

Identity Minting: A common attack against systems that
provide accountability is identity minting, whereby a mali-
cious host attempts to create multiple (unauthorized) iden-
tities. In APNA, a host can at most have one HID at any
moment; and, a new HID invalidates previous HID and all
associated EphIDs.

Unauthorized Shutoff Requests: The shutoff protocol
can be misused to perform a DoS attack against a host. To
prevent unauthorized shutoff requests, three measures are
implemented. First, only the destination host and destination
AS are authorized to issue a shutoff request. Furthermore,
the shutoff requester has to present the unwanted packet,
which proves that the source has indeed sent the packet.
Since every packet has been cryptographically marked by
the source AS, the destination cannot issue a shutoff request
with a rogue packet. Lastly, the shutoff requester must present
its authorization credentials—it needs to sign the request
message with the private key associated with the destination
EphID, and include the corresponding short-lived certificate
in the request message, proving that it is an authorized party.

6.2 Attacking Privacy

An adversary attacking data privacy can attempt to eaves-
drop on communication data or store it and decrypt it once
she obtains the encryption keys. In APNA, traffic is en-
crypted by default and our scheme achieves perfect forward
secrecy: The symmetric key that is used for data encryp-
tion is bound to the EphID (and the public/private key pair
for that EphID) that is used for the corresponding commu-
nication session. This key pair is not used to derive other
encryption keys and is not derived from other long-term pri-
vate keys (K−

AS). Hence, only the compromise of a private
key for an EphID compromises data privacy and only for the
communication session that uses this EphID.

Alternatively, an AS-level adversary can actively try to
compromise data privacy of a customer host through a MitM
attack. The malicious AS can perform a MitM attack during
the shared key establishment between the victim (EphIDv)
and a peer host (EphIDp). In this attack the malicious AS re-
places the certificate for the EphID of the victim host (CEphIDv

)

5CBC-MAC is insecure for variable-length messages [25].

with another (fake) certificate, pretending to be the victim
host to the peer host; the peer host accepts CEphIDv

. How-
ever, the AS cannot deceive the victim by pretending to be
the peer host because it cannot generate the certificate for
EphIDp (CEphIDp

) that is signed by the private key of the
peer host’s AS. Consequently, the connection is not estab-
lished and the adversary cannot read any communication of
the hosts. The MitM attack is only possible if the source and
destination ASes collude, which we do not consider.

For communication between two hosts in the same AS
(i.e., intra-domain communication), APNA does not provide
any privacy guarantee from the AS: the identities of the two
hosts are already known to the AS (compromising host pri-
vacy), and the AS can perform MitM attacks to decrypt com-
munication between the hosts (compromising data privacy)
as the AS can fake both certificates for the EphIDs that the
hosts use. The two hosts can use security protocols at higher
layers (e.g., TLS) to encrypt their communication or use
onion routing, such as Tor [5], to make a detour.

7. PRACTICAL CONSIDERATIONS

7.1 DNS Registration

Today, the names of publicly accessible services (e.g., an
online shopping website) are typically registered to public
DNS servers. In APNA, the servers that host public services
publish the EphID to a DNS server, and the DNS server re-
turns the EphID with the corresponding certificate for a re-
quested domain name. To this end, the server performs two
tasks: 1) it requests an EphID and the associated certificate
from its AS; and 2) it registers the certificate under the do-
main name to DNS;6 the registered EphID will be used as
the destination address in future communication.

Publishing certificates to the DNS raises a problem: a
shutoff request against a published EphID would terminate
any ongoing communication sessions that use this EphID. A
naïve solution is to update the DNS entry with a new EphID
whenever the published EphID becomes invalid. However,
this would become burdensome for the DNS infrastructure,
if attackers continuously issue shutoff requests against a do-
main.

Our solution is to define receive-only EphIDs—EphIDs
that are used only to receive packets and are never used as
the source EphIDs. Since they are never used as the source
identifier, they cannot become the target of shutoff requests.
To avoid using receive-only EphIDs as the source identi-
fier, the communication establishment to a server needs to
be changed (i.e., the server does not respond to the client
using the receive-only EphID).

Client-Server Connection Establishment: To support
receive-only EphIDs by the server, the connection establish-
ment procedure in Section 4.4.1 is extended. To simplify the
narrative, assume that the client uses EphIDc to connect to
the server, and that the server uses EphIDr as the receive-
only EphID and EphIDs to serve the client.

After obtaining EphIDr from DNS, the client contacts the

6We assume DNSSec to authenticate DNS records.



server using EphIDc and EphIDr as the source and desti-
nation EphIDs, respectively. The server verifies the short-
lived certificate of EphIDc and computes a shared key that
will be used to encrypt data packets between the client and
the server. However, instead of using the short-lived certifi-
cate of EphIDr, the server uses the short-lived certificate of
EphIDs to compute the shared key. Then, in the response
message to the client, the server includes the short-lived cer-
tificate of EphIDs to inform the client that EphIDs will be
used by the server to serve the client.

The client verifies the short-lived certificate of EphIDs and
computes the shared key using the certificates for EphIDs

and EphIDc. Then, the client uses EphIDs as the destination
EphID to communicate to the server.

Protecting DNS Queries: If the DNS server is operated
by the host’s AS, the AS can compromise the privacy of the
DNS query—the AS knows the identity of the host from the
EphID and retrieves the content of the query from the DNS
server. To prevent such a compromise, the host can use a
DNS server that he trusts and that is not operated by the AS
that he resides in.

7.2 Deployment in today’s Internet

Our ideas are not restricted to a certain Internet architec-
ture, thus APNA could be used in today’s Internet: IPv4
addresses of hosts serve as HIDs; IPv4 addresses of APNA
routers in ASes serve as AIDs; Generic Routing Encapsu-
lation (GRE) [28] is used to insert the APNA header into
IPv4 packets; and, APNA gateways mediate between IPv4
and the APNA protocol, leaving the host’s operating system
unchanged. The following paragraphs summarize the de-
ployment strategy in the Internet; our technical report [29]
contains more detailed descriptions.

For intra-domain forwarding in the source AS, the source
host puts its IP address and the IP address of an APNA router
in the source AS as the source and destination addresses in
the IPv4 header (that comes before the GRE header), respec-
tively. For intra-domain forwarding in the destination AS,
an APNA router 1) decrypts the destination EphID in the
APNA header to get the HID (i.e., IPv4 address) of the des-
tination host; and, 2) replaces the destination IPv4 address
of the IPv4 header with the HID.

This intra-domain forwarding has a privacy implication.
Within the source and destination ASes, the addresses of the
hosts are visible; hence, it is not possible to provide any pri-
vacy guarantee against an adversary who observes packets
within the ASes. However, once an AS fully deploys APNA
(i.e., all routers forward packets based on EphIDs), this pri-
vacy leakage can be mitigated.

For inter-domain forwarding in the source AS, an APNA
router replaces the addresses in the IPv4 header of the APNA
packet with its IPv4 address and the destination AID as the
new source and destination addresses, respectively. For all
transit ASes, the packet is forwarded based on the destina-
tion address in the IPv4 header.

We leverage the GRE protocol to interconnect two APNA
entities (e.g., border routers) over the IPv4 network. This en-

ables encapsulation of the APNA header after the GRE tun-
nel header; a protocol number assigned by IANA and used
for the Protocol Type field in the GRE header would indicate
that the encapsulated protocol is APNA.

Furthermore, gateways are used to bridge between today’s
Internet and APNA, without having to update the host net-
work stack. The role of the gateway is two-fold: 1) as an
APNA host, it runs the protocols described in Section 4; and
2) as a packet translator, it converts between native IPv4 and
APNA packets.

Hosts Behind NAT Devices. In order to support NATs,
the NAT acts as a small AS for its hosts, while it acts as a
single host for the AS network. Thus, the NAT acts as a RS,
a MS, a router, and an accountability agent on behalf of its
clients. As a RS, the NAT bootstraps the hosts into the AP’s
internal network. As an MS, the NAT makes EphID requests
on behalf of its hosts to the AS. As a router, the NAT imple-
ments the data forwarding procedures described in Figure 4.
The NAT plays these roles following the same protocols as
described for an AS, only with minor differences [29].

As an accountability agent, the NAT identifies the misbe-
having hosts based on EphIDs. Since the hosts behind a NAT
are not visible to the AS and since the AS issues EphIDs to
the NAT not to the hosts, the AS holds the NAT accountable
for misbehaving EphIDs. Then, the NAT determines the host
that is using the misbehaving EphID.

8. DISCUSSION

8.1 Ephemeral ID Granularity

Thus far, we have argued that APNA does not impose the
granularity at which EphIDs should be used and we have
shown that the EphIDs can be generated at high speed (see
Section 5.1.3). In this section, we present four granularities
at which EphIDs can be used.

Per-Flow Ephemeral ID: We expect this to be the typi-
cal use case where a host uses different EphIDs for different
flows. There are two advantages to per-flow EphIDs. First, it
prevents an observer’s attempt to identify a common sender
of multiple flows by inspecting the content of the packets
(i.e., APNA header and payload). Second, shutoff incidents
have limited impact on a host. It terminates the flow that
uses the reported EphID as the source; however, all other
flows remain intact. The disadvantage of this case is that
a host needs to acquire and manage EphIDs for every new
flow.

Per-Host Ephemeral ID: A host uses a single EphID for
all packets. The advantage of this model is that a host only
needs to acquire and manage one EphID. However, there
are two drawbacks. Since all packets have the same source
EphID, all packets are linked to a common sender; and, a
shutoff request terminates all connections from the host.

Per-Packet Ephemeral ID: A host could use a different
EphID for each packet so that it is difficult to link packets
to a single flow. This provides the strongest privacy guar-
antee; however, additional mechanisms are necessary for the
destination host to demultiplex packets into flows [30].



Per-Application Ephemeral ID: An EphID can be used
to represent all packets that are generated by an applica-
tion or a service that is running on the host. This EphID
granularity facilitates managing traffic that is generated by
an application. For example, if an AS enforces its hosts to
use per-application EphIDs, the AS and its hosts could col-
laboratively identify malicious applications (e.g., a bot) run-
ning at the hosts. The network identifies malicious activities
(e.g., flooding attacks) to a source EphID and inform the host
about the EphID; then, the host identifies the application that
uses the EphID and takes appropriate actions.

8.2 Support for Network Feedback

In APNA, an on-path intermediate node (e.g., router) can
send messages (e.g., ICMP) back to the source host.

Assume that router R is attempting to send an ICMP mes-
sage to the source host S. To send an ICMP message to S,
R uses the source EphID (i.e., EphIDs) from the received
packet (that has prompted the ICMP message), and uses one
of its EphIDs (i.e., EphIDr) as the destination and source
EphIDs, respectively. Hence, APNA protects the identity of
R from the source host while holding R accountable for the
ICMP message.

8.3 Parameter Considerations

Expiration Time for EphIDs: If EphIDs are used per flow,
the expiration time can be set to 15 minutes as 98% of the
flows in the Internet last less than 15 minutes [31]. Alter-
natively, the EphID issuance protocol (Section 4.3) can be
extended to allow hosts to express their choice of expira-
tion time. For instance, an AS may specify three categories
(short-term, medium-term, long-term EphIDs) to accommo-
date diverse flow duration times.

Managing Revoked EphIDs: EphIDs can be preemp-
tively revoked before they expire: a host could revoke an
EphID that is no longer needed, or an EphID could have
been subjected to a shutoff incident. Regardless of the rea-
son for revoking EphIDs, border routers in the ASes need
to store a list of revoked EphIDs (i.e., revoked_EphIDs in
Figure 4). If there are too many revocations in an AS, it bur-
dens the border routers since the size of the revoked_EphIDs

would become large.

There are methods to limit the size of the revoked_EphIDs

list. First, an AS can rotate its secret key (kA) periodically;
the rotation invalidates all previously issued EphIDs. Sec-
ond, since EphIDs will expire over time and packets using
expired EphIDs are dropped, the expired EphIDs can be re-
moved from revoked_EphIDs. Third, if too many EphIDs of
a host are revoked, the AS should view it as a sign of mali-
cious activity by the host. In such an event, the AS revokes
the HID of the host invalidating all EphIDs that are issued to
the host and it assigns a new HID to the host. In addition,
the AS can contact the host for corrective measures. Such
approaches are already in use, e.g., ISPs that participate in
the Copyright Alert System (CAS) [32].

8.4 Handling Replay Attacks

A malicious entity that aims to “harm” a source host may re-
play packets of the source. In the short-term, replayed pack-
ets may induce shutoff incidents against the source host, dis-
rupting communication of the source; and in the long-term,
the AS of the source host may take retributive action against
the source host for repeated shutoff incidents.

Replay attacks can be prevented by making every packet
unique. That is, a nonce field is added to the APNA header
(Figure 7), and a source host puts a unique number for each
generated packet. Then, the destination host performs replay
detection based on the nonces in the packets and discards all
duplicate packets.

Ideally, replayed packets should be filtered near the replay
location, but this requires routers in the network to perform
replay detection. Designing a practical in-network replay
detection mechanism that does not affect routers’ forwarding
performance is not trivial; it is our future work to design such
a mechanism.

8.5 Governments and Privacy

Although generally perceived as a threat on communication
privacy, there are legitimate reasons for governments to sub-
vert communication privacy (e.g., to monitor terrorist activ-
ities). In fact, many governments by law mandate ISPs to
keep a record of their traffic (e.g., source and destination IP
addresses, packet content, etc).

APNA protects communication privacy by making mass
surveillance difficult; however, at the same time, it allows
entities, such as a government, to deanonymize communica-
tion when necessary. With the cooperation of an AS, a gov-
ernment can deanonymize the identity of hosts from EphIDs.
Furthermore, if the government has cooperation from the
ASes in which communicating hosts reside, the AS could de-
crypt ongoing communication by performing a MitM attack.
However, the government cannot observe communication by
simply collecting packets since packets are encrypted, which
makes mass surveillance difficult. In addition, since APNA
achieves perfect forward secrecy, governments cannot de-
crypt past communication sessions of a host even if the long-
term public key of the host is disclosed.

9. RELATED WORK

Persona [33] seeks to balance privacy and accountability at
the network layer. The source ISP replaces the IP address
of each outgoing packet with another address from an as-
signed pool. This approach hides the source’s identity, but it
breaks the notion of flow and prevents the destination from
demultiplexing connections.

Accountable and Private Internet Protocol (APIP) [6] pro-
poses an architecture that balances accountability and pri-
vacy at the network layer. In APIP, the source address in
the network header is replaced with the address of an ac-

countability delegate that vouches for the source’s packets.
The return address can then be specified at a higher layer—
invisible from the network—protecting the source’s privacy.



Senders are expected to brief each packet to their account-
ability delegate such that on-path devices can request a “vouch-
ing proof” from the corresponding delegate.

APIP balances privacy and accountability at the network
layer, but it comes with certain limitations. APIP’s notion of
privacy is limited to sender-flow unlinkability, leaving data
privacy and the associated challenges (e.g., key distribution,
management, and establishment) unaddressed. Our proposal
presents a holistic architecture that addresses these draw-
backs and by default supports data privacy. Furthermore,
the design of APIP precludes every packet from being ac-
counted for in the network: it is possible for a malicious
host to omit reporting packets to its accountability delegate
when the flow for those packets has been “whitelisted”.7 In
APNA, every packet is linked to its sender since a MAC
is computed using the shared key between the AS and the
host for every packet (Section 4.4). Second, masking the
return address complicates getting messages from the net-
work back to the source—the messages must be redirected
through the accountability delegate of the source; the com-
plexity of this functionality remains unaddressed. APNA al-
lows the network to send messages directly to the source
while preserving host privacy and the accountability proper-
ties (Section 8.2).

Source Accountability: The Accountable Internet Proto-
col (AIP) [11] treats source accountability as a central prin-
ciple. In AIP, self-certifying IDs and a shutoff protocol (im-
plemented by smart Network Interface Cards) are used to
identify and block malicious sources. Our architecture uses
self-certifying IDs in an anonymity-preserving way and del-
egates the shutoff functionality to the source domain.

In Passport [34], OPT [35] and ICING [36], MACs are
used for each AS on the end-to-end path, allowing on-path
ASes to verify the authenticity of packets. In APNA, such
mechanisms can be used to strengthen the shutoff mecha-
nism [29].

Bender et al. [37] were first to introduce the concept of ac-
countability agents in their Accountability-as-a-Service (AaaS)
proposal. However, AaaS does not address privacy consid-
erations and requires symmetric keys between all AS pairs.

Host Privacy and Anonymity: Raghavan et al. [38] pro-
pose ISP-wide NATs to hide the hosts’ identities from enti-
ties in other ASes. We borrow their motivation that the size
of today’s large ISPs provides sufficiently large anonymity
sets. Onion routing [4] and Mix Networks [39] by design
provide anonymity at the cost of source accountability.

Han et al. [40] propose a cross-layer design that uses pseu-
donyms to hide the user’s identity. Similar to APNA, the pro-
posal allows the user to choose the level of anonymity and it
uses encryption to mask the identity of the host in network
addresses. However, the proposal falls short of being a com-
plete architecture that balances between accountability and
privacy: it does not consider pervasive data encryption and

7Verifiers do not verify flows that have been “whitelisted,”
and a sender does not brief packets unless it is asked by
its accountability delegate under the recursive verification
method (Section 5 in APIP [6]).

the associated challenges, such as certificate management,
and does not consider source accountability.

Data Privacy: Farrell and Tschofenig [1] argue that per-
vasive monitoring—defined as the widespread and often cov-
ert surveillance through intrusive gathering of communica-
tion information—is a widespread attack on privacy. In re-
sponse, Kent [41] proposes pervasive encryption as a coun-
termeasure against pervasive monitoring. In a related effort,
the Let’s Encrypt8 organization encourages the use of en-
crypted web traffic by issuing free TLS certificates for web
servers. Our proposal does not replace transport-layer en-
cryption, but rather promotes pervasive encryption to a fun-
damental design tenet of the network layer. In addition, we
propose a concrete solution for key distribution, establish-
ment, and management.

MinimaLT [42] proposes an architecture that supports per-
vasive data encryption and achieves PFS at low latency; how-
ever, MinimalLT does not consider source accountability. In
Section 4.4.1, we show how our architecture supports data
privacy with PFS while enforcing source accountability.

10. CONCLUSIONS

We propose APNA, an architecture that resolves the account-
ability-privacy tussle by enlisting ISPs as accountability age-
nts and privacy brokers. As accountability agents, ISPs au-
thenticate hosts and their packets; and as privacy brokers,
ISPs anonymize the identities of communicating parties and
assist in the establishment of shared keys for end-to-end data
encryption. Even with additional tasks that an AS has to
perform, we have demonstrated that our architecture can be
implemented on commodity hardware and scale to large net-
works without adding substantial overhead.

By facilitating (and by enabling by default) pervasive en-
cryption between endpoints, APNA can help frustrate ad-
versaries conducting indiscriminate mass surveillance. At
the same time, APNA can assist in lawful, targeted requests
for subscriber communications, since ISPs can comply with
data retention laws by storing customer to EphID bindings as
well as the packets. However, abuse of such requests for in-
formation are minimized due to the perfect forward secrecy
of our scheme.
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