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Abstract—In Advanced Persistent Threats (APTs), an adver-
sary targets network components such as switches and middle
boxes as well as end hosts to exfiltrate sensitive information out
of the network. We propose Alcatraz, a new corporate network
architecture to prevent data exfiltration. Alcatraz ensures path
integrity, packet integrity, and packet confidentiality to prevent
a malicious network component from extracting, altering, or
maliciously forwarding any network packet.

Alcatraz leverages Trusted Execution Environments (TEE)
created by Intel SGX to protect modules providing these
security properties. To achieve exfiltration resilience, our ar-
chitecture ensures that sensitive information is only processed
within a TEE, from the sender to the receiver and along
all network nodes. Although our architecture requires many
changes, it explores the design space of what level of security
can be achieved today with commodity hardware. Through
our software switch implementation, we demonstrate that the
performance is already viable for a corporate environment
with high security requirements. Our results suggest that an
optimized hardware implementation could satisfy also higher
performance requirements.

Keywords-network security; trusted computing; exfiltration
resilience

I. INTRODUCTION

Enterprise and data center networks are targets of Ad-
vanced Persistent Threats (APTs)—highly sophisticated and
targeted attacks, which surreptitiously take control of end
hosts and network nodes, and which can go undetected
for years [1]. Although APTs have predominantly targeted
end hosts, recently disclosed network vulnerabilities [2]–
[6] suggest that adversaries will increasingly compromise
network nodes because they offer an ideal vantage point to
monitor traffic, to alter packets, to exfiltrate data, and to
attack connected hosts. Traditional defense strategies (e.g.,
intrusion detection and prevention systems, firewalls) have
proved insufficient to address recently disclosed attacks [1],
[7]–[9].

In this paper we study how trusted computing tech-
nologies can be leveraged to build secure networks that
can effectively defend data centers and enterprises against
APTs, while retaining the flexibility of modern software
defined networking (SDN). We assume that all end hosts
and network nodes provide secure trusted execution envi-
ronments (TEEs) with remote attestation capabilities, for
instance by supporting Intel Software Guard eXtensions
(SGX) [10], [11], a new technology that is already avail-
able on commodity Intel processors. Although a strong
assumption for current networks, we expect that the next

generation of network devices can be equipped with trusted
computing technology. Initially, the most likely adopters of
such a solution would be data centers and corporations with
strong security and exfiltration-resiliency requirement, such
as governmental, financial and military institutions, as well
as cloud providers catering to the needs of such institutions.

We thus propose Alcatraz, a radical new approach to
counter APT-based data exfiltration. Unlike previous work,
Alcatraz is designed to provide security in a constructive
way, rather than by trying to detect and remove intrusions.
TEEs on network devices and end hosts ensure that the
confidentiality and integrity of all packets is maintained even
in the presence of compromised network nodes and (with
some constraints) compromised end hosts by constructing a
trusted logical path from end to end through each traversed
TEE. At the same time, Alcatraz enables secure inspection
and modification of packets within TEEs on network nodes.

APTs are complex and involve multiple aspects and layers
of systems and networks, so we do not expect Alcatraz to
eliminate the risk posed by them entirely. Instead, we aim to
clearly identify the guarantees and limitations of our system,
and we strive for a design that is sufficiently generic and flex-
ible to allow integration with other solutions. Such a design
also allows Alcatraz to be adapted to different requirements
and technologies: for instance, while for our evaluation and
for many examples we assume an instantiation of Alcatraz
based on SGX and a standard SDN model with centralized
control plane, it would be possible to adapt Alcatraz to work
with another trusted computing technology, and a logically
distributed control plane.

The main contributions of this paper are as follows.

• We design Alcatraz, an architecture to protect against
data exfiltration by APTs. Alcatraz provides path in-
tegrity, application-bound packet integrity, and packet
confidentiality. Alcatraz allows packet modifications,
even for middleboxes and SDN switches.

• We implement Alcatraz using SGX, a new technology
that allows the construction of lightweight and flexible
TEEs. We minimize the amount of trusted software that
is run within these TEEs.

• We analyze the security guarantees offered by our
system, showing that the use of SGX allows us to
provide strong guarantees not achieved by previous
work.



II. BACKGROUND

A. Intel SGX

Intel has recently proposed a new technology (a successor
to the Intel Trusted eXecution Technology (TXT) [12]),
which ensures runtime integrity for code and confidentiality
for its data, called Intel SGX [10], [11]. This technology
creates a TEE called an enclave on an untrusted platform.
Specifically, the CPU creates an isolated memory space
containing heap, stack, and program code. When the en-
clave is executed, SGX performs access control so that the
processes outside of the enclave cannot access its contents.
Moreover, SGX performs memory encryption to defend
against a compromised memory bus or DRAM. Therefore,
even if the BIOS, OS, and applications are compromised, the
security-sensitive data (e.g., password and encryption keys)
and program logic inside the enclave are protected. Since
SGX runs in userspace (i.e., without kernel privileges), it
can also be executed by virtual machines.

SGX also supports remote attestation. Remote attestation
allows a remote verifier to ensure that the enclave is actually
running on the correct CPU with the expected code and
inputs. More precisely, the attestation is made by SGX by
measuring the code (i.e., computing a hash over it) to-
gether with initial parameter and potentially additional data.
This measurement is then cryptographically authenticated by
SGX in a way that is verifiable based on an Intel certificate.

B. SDN and OpenFlow

Software Defined Networking (SDN) is a networking
paradigm that enables dynamic adaptation of network con-
figurations by software controlled by a logically central-
ized controller. OpenFlow [13] is a standardized protocol
which realizes SDN functionalities by specifying a vendor-
independent interface for network devices (switches) which
can be invoked by the controller to configure and manage
the devices. Generally, the first packet of a flow is forwarded
by the switch to the controller with a Packet-In message,
and the controller may then set up a suitable flow entry using
Flow-Mod messages. A flow entry typically comprises a
match field specifying a matching condition on incoming
packets, and an action field specifying actions such as
how the packets should be forwarded or modified. The
OpenFlow switch has flow tables to store the flow entries,
and it performs a table lookup when it receives a packet.
Additionally, the controller can order a switch to send a
packet using a Packet-Out message.

III. PROBLEM DESCRIPTION

Our high-level goal is assurance of confidentiality of
network traffic, as well as packet and forwarding integrity
in the presence of compromised switches. We now describe
more in detail what setting we assume in terms of network
structure, we state our goals and requirements, and we define
our threat model and limitations.

Hosts Nodes

Edge node
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node
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Figure 1: A possible network structure which illustrates our
terminology.

A. Network setting

We consider a set of devices (programmable switches,
routers, middleboxes, etc.), which we generically call nodes,
interconnected to form a network with an arbitrary topology
(however, the network graph is connected). A subset of these
nodes, which we refer to as edge nodes, are connected to end
hosts (or simply hosts). The network can include one or more
gateway nodes connecting the internal corporate network to
the Internet, through which remote hosts can be reached.
This network model is shown in Figure 1. We assume that
all nodes and all hosts have hardware supporting TEEs such
as SGX enclaves.

This model can also capture multi-tenancy, which is
common in data centers. In this case, a host is an end point
controlled by one tenant, and can represent either a physical
single-tenant end host, or a virtual machine (VM) assigned
to a tenant, running on top of a hypervisor (SGX enclaves
can be run by VMs, see Section II-A).

B. Rules

We assume that nodes forward and modify packets ac-
cording to rules, which we intend as a generalization of
OpenFlow’s flow entries (see Section II-B). The rules on a
node fully specify how incoming packets should be handled.
In particular, when a host communicates with another host,
the rules on the nodes determine the path that the individual
packets traverse, where we define a path as the sequence
made of the originating host (the source), all the traversed
nodes, and the receiving host (the destination). A path may
also end at an intermediate node in case a rule on that node
specifies that the packet should be dropped.

As for switches in OpenFlow and for firewalls and middle-
boxes, we assume that an administrator—which in practice
could be an automated set of controllers, but also more
simply a human—specifies a set of rules for each node,
which we call trusted rules of that node: as we explain in
more detail in Section IV-E, these rules are authenticated by
the administrator in such a way that each TEE can verify
them, and can verify that they are meant for itself and not
another TEE.



C. Security Goals

Our high-level security goal is exfiltration prevention.
However, for reasonable definitions of the threat model
there are always scenarios in which data exfiltration may
still be possible even when using Alcatraz. For this reason,
instead of imposing artificial constraints on the adversary’s
capabilities, we formulate lower level security goals of net-
work hardening that hold under a strong adversary without
unreasonable restrictions, and in our security analysis (Sec-
tion V) we discuss under which circumstances exfiltration
prevention can be formally guaranteed. With the assumptions
stated in the sections above, these security goals are the
following.

• Packet integrity. Packets are only modified within
TEEs by approved code; TEEs only modify packets
according to trusted rules.

• Path integrity. Packets are forwarded according to the
trusted rules that apply to them, which means that they
traverse the network according to the path the trusted
rules determine.

• No packet injection. Packets can be created and sent
freely only by hosts. Nodes can send packets only
when authorized by their TEE, which could be either
in response to a received packet (for instance for man-
agement purposes) or because the node is instructed to
send a new packet by a trusted rule (see Section VI).

• Packet confidentiality. The contents of a packet (pay-
load) should be accessible only at the sender, within
the TEEs on the path, and at the packet’s destination.

The path integrity property cannot be guaranteed uncon-
ditionally: for instance, a compromised operating system on
a node may drop and/or incorrectly forward packets (see
Section III-D below). Therefore our secondary goal is fault
localization: if path integrity is violated, i.e., if a packet is
dropped (or reordered1), the offending link can be identified
by an administrator.

Fault reporting: The TEEs in Alcatraz should be able
to report faults to the control plane, together with informa-
tion about the faults’ type. How the control plane handles
these reports is outside the scope of this paper. Deciding how
to react to fault reports is not a trivial problem, especially
because some of them (e.g., packet dropping) could be due
to non-adversarial causes. We point out, however, that even
in the extreme case where faults are completely ignored
Alcatraz would still provide the properties listed above, in
particular packet confidentiality and integrity, and injection
prevention, while malicious packet drops, modifications and
re-routing would simply constitute DoS attacks.

1Packet dropping cannot be distinguished from reordering within a
fixed amount of time, so reordering is also treated as a fault. In our
implementation we adopt mechanisms to tolerate reordering within a time
window.
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Figure 2: End-to-end architecture overview.

D. Threat Model

We consider an adversary that can compromise a set of
nodes, taking full control of their operations (except for the
code running within TEEs). Furthermore, we assume that
the adversary can also control a set of hosts, either because
of compromise or because, in a multi-tenant setting, the
adversary registers as one or more tenants, controlling thus
all the hosts belonging to those tenants.

However, we assume that SGX can be trusted, implying
that the adversary cannot obtain the secrets contained in
a TEE. For this assumption to hold the adversary cannot
be allowed invasive physical access to hosts or nodes for
extended periods of time, which can be achieved through
physical access control and surveillance systems. The as-
sumption also requires that the hardware implementation
of SGX itself be correct, and that Intel’s private signing
key remain uncompromised. The issue of SGX security is
orthogonal to this work (cf. Costan and Devadas [11]).

In our threat model we also assume that administrators are
trusted: a malicious administrator can always install compro-
mised keys on nodes and hosts, which would provide a trivial
way to break the security goals of our system. In practice,
this limitation can be easily mitigated by having multiple
administrators which oversee each other’s operations, and
by enforcing separation of duty where possible.

IV. ALCATRAZ ARCHITECTURE

We first provide a high level overview of Alcatraz, and
afterwards we explain the details of host and node setup,
of packet sending and processing, and of the reporting of
detected faults.

A. Architecture overview

With our network model defined in Section III-A, we
consider a source host communicating with a destination
host through a sequence of nodes. As an example we
consider the path for this communication as depicted in
Figure 2, with two intermediate nodes. Hosts and nodes
run TEEs (SGX enclaves) which store shared keys that
allow secure communication with neighboring TEEs. The
TEEs also store encryption keys that allow encryption and
decryption of packet payloads.

When the source S wants to send a packet p, S first
passes p to its local TEE, which encrypts p using a key
shared among all TEEs for confidentiality, and then adds a



Message Authentication Code (MAC) using the key shared
with the first node’s TEE, to guarantee that the packet was
indeed generated on that host. Once the enclave returns the
encrypted and authenticated packet, the source sends it to
the first switch. When a switch receives a packet, it looks
up what rule applies to the packet, and then passes the packet
and the rule to the local TEE, together with the information
about which host or node the packet came from. The TEE
first verifies that the packet is authentic by checking its MAC
with the key shared with the previous hop (host or node). It
then checks that the rule is trusted (see Section III-C, con-
cretely this means verifying an authentication tag attached to
the rule, generated with a trusted key by the administrator).
The TEE then verifies that the rule matches the given packet,
and if all checks hold then it applies the rule to the packet.
Through the rule the TEE learns which host or node the
packet should be forwarded to (unless the packet is to be
dropped), and computes a new MAC over the packet with
the key shared with the next hop. When the packet reaches
the destination, it is passed to the destination’s TEE which
checks the packet integrity and decrypts the packet.

In addition to these steps, nodes and hosts also use
counters in a way that allows detection of packet replay
and dropping. We describe the details of this process in
Section IV-C. If any fault is detected, e.g., a packet with an
incorrect MAC is received, then depending on the network
different actions can be taken, such as secure logging of the
incident, or immediate communication to an SDN controller.

B. Setup and key management

To setup a node or host, the administrator establishes a
TEE on it, and verifies it through attestation. After successful
attestation the administrator provides the TEE with the
keying material required for its operation, and with a list of
neighboring devices. After the setup, the device can begin
to operate.

Attestation: At creation, the TEE is given the long-
term public key of the administrator Kadmin , a short-
term public key Ksetup created by the administrator
for the setup, and a new identifier IDdev (unique in
the network). The TEE generates a public-private key
pair Kdev ,K

−1
dev , and then produces an attestation to

the administrator which includes its own public key
Kdev and the two public keys of the administrator:
attest(enclave code,Kdev ,Kadmin ,Ksetup , IDdev).

Once the administrator has verified the attestation, she
has the guarantee that an enclave is running on the device
with the expected code, and that this enclave has generated
the public key Kdev . The administrator can thus establish
a secure channel to the enclave (using the enclave’s public
key and her own temporary private key), and through this
secure channel she sends a master key MK (which is the
same for all devices)2 and a neighbor list to the enclave.

2This design choice helps minimizing the trusted computing base.

Key derivation: The enclave uses the master key MK
as input to a key derivation function kdf to generate a set of
keys. These are the universal control-plane authentication
key, used by the administrator and the switches to make
universal claims such as neighboring statements (see below),
defined as CAK = kdf (MK , “CAK”); the TEE-specific
control plane authentication key relative to a device x,
used by the administrator to authenticate device-specific
rules, defined as CAKx = kdf (MK , “CAK”, IDx); the data-
plane confidentiality key, used to encrypt and decrypt the
contents of data packets in end-to-end communications,
defined as DCK = kdf (MK , “DCK”); and the data-plane
authentication key, used for authentication of data packets
on individual links (see Section IV-C1), defined as follows
(for any pair of devices x, y):

DAKx,y =

{
kdf (MK , “DAK”, IDx, IDy), if IDx > IDy

kdf (MK , “DAK”, IDy, IDx), if IDx < IDy

The latter is specific to a pair of neighboring devices x and y,
and is computed using their identifiers. Note that according
to the definition, DAKx,y = DAKy,x.

Neighbor list: The neighbor list consists of a set of
neighboring statements, which are device identifier pairs
authenticated by the administrator using the CAK key. Once
set up, the device’s TEE forwards each neighboring state-
ment to the respective neighbor: this allows dynamic and
automatic additions of devices to a network without the need
of manually updating the neighbor list of all neighboring
devices.

1) SGX-protected master key management: Given the
sensitivity of the master key MK , we design an admin
TEE to carry out the task of generating and distributing MK .
In particular, the admin TEE (which should run on a single-
purpose computer used by the administrator) will provide
MK to TEEs on nodes and hosts only after successfully
verifying their integrity through attestation.

Externally the correctness of the entire process can be
verified in two steps. First the verifier requests an attestation
of the admin TEE, which includes a value v derived from
the master key as follows:

v = h(kdf (MK , “verification”)) (IV.1)

Then the verifier can check any device by requesting an
attestation from it including value v (which the device can
generate). If both checks are verified then the device is
running a TEE with the correct code and is using a master
key which was securely generated inside an admin TEE (also
running the correct code) and has only been shared with
other correct TEEs.

C. TEE components
Every TEE, on both hosts and nodes, contains a moni-

toring module, which is responsible for the communication
with neighboring TEEs, and in particular for ensuring that
communications are correctly authenticated. Additionally,
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Figure 3: Node structure showing the way packets are
processed sequentially by the TEE modules.

TEEs on nodes (see Figure 3) include a rule verification
module to verify that provided rules are trusted and that they
apply to the given data packet, and a packet modification
module to modify packets according to the rules if required.
All TEEs also include a key management module, which
carries out the setup operations described in Section IV-B.

1) Monitoring module: A monitoring module stores two
monotonic counters for each neighbor x: one for incoming
packets from that neighbor (N r

x ), and one for outgoing
packets to that neighbor (N s

x ). These counters are initially
set to 0. When a TEE y sends a packet to a neighbor x, its
monitoring module increases the current send counter for
neighbor x (N s

x := N s
x + 1) and appends it to the packet,

and computes a MAC over the packet and the counter. The
receiving TEE x verifies the MAC and then checks that the
counter in the packet Npkt is greater than the current receive
counter for its neighbor y (N r

y ). If not, i.e., if Npkt ≤ N r
y ,

then the packet is considered a replay and is dropped, and
a fault is reported for that neighbor. If the counter in the
packet is greater by one (Npkt = N r

y + 1), then the packet
is regular and the local counter is increased by one. If the
counter is greater by more than one (Npkt > N r

y + 1), a
dropping or reordering fault is reported, but the packet is
still considered valid and the local counter is updated to
match the counter in the packet (N r

y := Npkt). We present
the details of fault reporting in Section IV-E2.

2) Rule verification module: For higher performance and
to minimize the trusted computing base (TCB) we keep
the rule database and the rule matching functionality of
nodes outside the TEE (hosts do not need these components
since they do not forward nor modify packets). To ensure
that packet and path integrity are guaranteed nonetheless,
the TEE contains a rule verification module which checks
whether the rules provided together with an incoming packet
are trusted (authenticated with the TEE-specific authenti-
cation key CAKx), and whether they actually apply to the

packet.
In our design we assume that the rule database has been

created to contain only non-overlapping rules (i.e., only a
single rule can match a packet). While this process increases
the size of the database, the size will be upper-bounded by
the number of flows, which is supported by today’s devices:
indeed, in SDN per-flow rules are common in network
applications such as load balancing, where the controller
has to decide on the routing of each flow.

3) Packet modification module: A rule may require a
node x to modify a packet. This modification is carried out
by the TEE using the packet modification module. Once
the rule verification module has checked that a given rule
is trusted (i.e., correctly authenticated with key CAKx) and
that it applies to the given packet, if the rule requires a
packet modification then the rule and the packet are passed
to the packet modification module, which updates the packet
and returns it to the monitoring module. The monitoring
module then re-authenticates the packet, thus guaranteeing
that the modification was carried out within the protected
environment of the TEE, and then forwards the packet to
the next hop.

4) Differences for host TEE structure: The TEEs on
hosts do not strictly need the rule verification module nor
the packet modification module, since they do not need
to change/forward packets. However, a rule verification
module might still be included to enforce certain host-based
rules that, e.g., restrict sending rate or the allowed set of
destinations. While these restrictions could also be enforced
on the edge node to which the host is connected, applying
them on the hosts reduces the computational load on the
edge nodes.

Furthermore, the TEEs on hosts need a confidentiality
module, which is responsible for encrypting outgoing pack-
ets and decrypting incoming packets. TEEs on hosts can
also include deep packet inspection (DPI) functionalities,
which in Alcatraz do not need to be centralized. This allows
content inspection right at the source, reducing the overhead
imposed on the network. With the use of TEEs, DPI becomes
straightforward, and does not require complex cryptographic
constructions used by previous proposals [14].

D. Data-plane operations

Packet sending: To send a packet, a source host x
passes the packet to the local TEE. The TEE proceeds
to encrypt the packet using key DCK and an initializa-
tion vector (nonce) constructed as the concatenation of the
identifier of the sending TEE and a monotonic counter.
The construction of the initialization vector guarantees that
although all hosts within the network use the same key for
encryption no two packets are ever encrypted with the same
initialization vector. After packet encryption the host’s TEE
adds the packet counter corresponding to the next hop (see
Section IV-C1), authenticates the packet with the key DAKxy

shared with the edge node y to which the host is connected,



and returns the result, which the host can send out to the
next hop (i.e., the first node on the path).

Packet forwarding: When a node receives a packet, it
looks up what rule should be applied to it, then passes the
packet together with the matching rule and the information
about what neighbor sent the packet to the local TEE. The
TEE processes the packet as described in Section IV-C, and
then returns the potentially modified packet with updated
counter and MAC together with the next-hop information
(unless the rule specifies that the packet is to be dropped, in
which case the TEE returns a notification accordingly).

Packet receiving: When the destination host receives
a packet, it passes it to its local TEE which verifies the
packet’s integrity in the monitoring module analogously to
the processing done by the intermediate nodes. If the packet
is considered valid, it is decrypted using key DCK and
returned to the application.

E. Control-plane operations
Control-plane messages sent by the administrator (or

also by the controller, in the SDN case) include a global
sequence number to prevent replay attacks. During the TEE
initialization (see Section IV-B) the TEE stores the current
sequence number, and later with every valid control-plane
message received it updates the sequence number. If the TEE
receives a message with a sequence number smaller or equal
to the locally stored one, it discards the message and reports
a fault (see below).

When receiving control-plane messages (e.g., new neigh-
boring statements or neighbor revocations), TEEs are ex-
pected to reply with an acknowledgment containing the hash
of the original message. The sequence numbers included
in the original message protect the acknowledgments to
control-plane messages sent by the administrator against
replay attacks. To achieve replay protection for control
messages sent by TEEs on nodes and hosts, these TEEs add a
nonce to the messages. Acknowledgments are authenticated
with a MAC using a TEE-specific authentication key CAKx.

One important use of key CAKx is for the authentication
of rules by the administrator, and also for the issuance of
commands to revoke rules. Because of the authentication of
these rules and commands through message authentication
codes, the TEE x will only accept valid rules and commands,
and thus always store the correct set of trusted rules (see
Section III-B). Thanks to the acknowledgments sent by the
TEE, the administrator is able to ensure that the rules are
installed/removed correctly.

1) Neighbor synchronization: At regular intervals, TEEs
on nodes and hosts send out synchronization request mes-
sages to their neighbors. When a TEE x receives such a
message from a neighbor y, x is expected to reply with a
message containing N s

y , the current value of the counter
of packets sent from x to y. This reply message is also
an acknowledgment to the synchronization request message,
i.e., it contains a hash of the request (see above). The reply
allows y to ensure that it has been receiving the most recent

messages sent by x. Since some messages may still be in
transit, the reported counter is not expected to exactly match
y’s local counter N r

x , and instead a configurable tolerance
threshold α is set as the maximum allowed drift. If the
drift is higher than α, a fault is reported. Otherwise, if the
counters do not match exactly (N r

x < N s
y ), then the value

of the neighbor’s counter, N s
y is stored, and at the next

synchronization node y ensures that the local counter has
reached that value, or else a fault is reported.

The process of synchronization described so far hides
one complication, which is the fact that in a compromised
environment the TEE does not have access to reliable timing
information. The solution to this problem is for a TEE to
count the number of operations it performs (e.g., sending
and receiving packets) and use this count as a lower bound
on the amount of time passed. Another factor that is used
as a lower bound for timing estimation are synchronization
request messages sent by neighbors. Note that this is done
in addition to considering the timing provided by the device
on which the TEE is running, i.e., on an honest device the
TEE sends out synchronization requests regularly, even if no
packets are sent or received.

2) Fault reporting: When a TEE detects a fault (e.g.,
data packet replay, data packet dropping/reordering, missing
acknowledgment for a control packet) it can handle this
exceptional condition in various ways, depending on the
concrete system and its requirements. The best option we
envision, viable in particular for software defined network-
ing, is that the faults are directly reported to the controller
(see Section VI), which can take immediate action such
as the rerouting of flows in order to avoid a faulty link.
Another simple alternative solution is local logging, which
thanks to SGX can be done in a tamper-evident manner (in
an analogous way as what is done for instance by Parno
et al. [15]). The administrator could regularly collect the
logs from all devices and check them for reported faults:
if a fault is found, it may be investigated, and the possibly
compromised or defective devices reset or replaced.3

V. SECURITY ANALYSIS

We now analyze the security of our system to show that
our security goals outlined in Section III-C are satisfied
by our architecture. To this end we first show that the
secret keying material used by the TEEs is never leaked
outside the TEEs, then we investigate what properties the
system achieves in terms of protection against denial of
service (DoS) attacks, and finally we show, based on these
properties, that our security goals are met. Finally, we show
in what circumstances achieving the security goals also
implies protection against data exfiltration.

3If it is necessary to reset the TEE on a device, the new TEE will generate
a new key and thus it will have a new identifier, requiring an update to the
neighbor list.



A. Keys and cryptographic operations
Once the integrity of the TEEs of devices and of the admin

TEE has been verified, we have the guarantee that the master
key MK and the keys derived from it are never sent out, and
that they are used only in a cryptographically sound way.
Two keys deserve to be analyzed with more detail. First,
the data-plane confidentiality key DCK is used by multiple
hosts to encrypt, so to be secure typically a stream cipher
would be used with an initialization vector (nonce) that is
never used to encrypt two different packets. We ensure this
by constructing this nonce out of the ID of the host and a
monotonic counter provided by SGX which cannot be reset.
Second, the verification key (kdf (MK , “verification”), see
Section IV-B1) may be leaked if the hash function used to
compute v in Eq. (IV.1) were not secure. However, this key
is never used for other operations, and assuming that the key
derivation function kdf is cryptographically secure, the key
can be considered independent from the master key and the
other keys from it.

Other processes and physical security measures should
be in place to prevent the possibility that an adversary may
get physical access to the hardware of the network devices
and the machine running the admin TEE, especially not for
extended periods of time and outside the premises of the
enterprise. This is, however, outside the scope of this paper.

B. Synchronization and DoS
We described neighbor synchronization in Section IV-E1.

The following Lemma shows the main property it achieves.
Lemma V.1 (Synchronization). As long as at least one
device (host or node) in the network is honest, synchro-
nization messages are sent regularly between every pair of
neighboring TEEs, or else a fault is reported.

Proof: An honest device has correct timing information
and thus sends out synchronization requests regularly to
its neighbors. If any neighbor does not reply with a valid
acknowledgment, the device reports a fault. If no fault is
reported, all neighbors of the honest device receive regular
synchronization messages, and since these are used as lower
bound on the timing, it follows that all neighbors will have
approximately correct timing information and will thus also
send out synchronization requests regularly. By induction it
follows therefore that either in the entire network (which
we assume to be connected, see Section III-A) all pairs of
devices exchange synchronization messages regularly, or at
some point a fault is reported.

Note that a fully compromised network is out of the
scope of our threat model, since it is impossible to resist
an adversary that has full control of all end hosts and
all devices. In the rest of this section we will therefore
always assume that the network is not fully compromised.
Synchronization also allows the detection of DoS attacks, as
the following shows.
Lemma V.2 (DoS detection). If any packet sent out by a
TEE is not delivered to the intended neighbor, a fault will

be reported.
Proof: For control-plane packets, acknowledgments are

expected, and if they are not received within a certain
time interval a fault is reported (timing is guaranteed by
synchronization). A data-plane packet p sent by TEE x to
neighbor y includes a counter Np, and y will update its
local counter of packets received from x, N r

x , to match the
one in p. If packet p is not received by y, then either a
subsequent packet sent by x is received, in which case a
fault for packet dropping/reordering is reported by y, or x
will eventually detect through the synchronization messages
that y has not received p, and will report a packet dropping
fault.

C. Path and packet integrity
The following Lemmata show the integrity properties

for packet delivery between two neighbors and for packet
processing on one TEE.
Lemma V.3 (1-hop integrity). If a TEE x sends a packet p,
either p arrives without modification at the TEE y on the
next hop on the path, or a fault is reported.

Proof: If packet p is not delivered to y a fault is
reported, as shown in Lemma V.2. If the packet is delivered
but it has been tampered with, the MAC verification on y
will detect the integrity violation, and y will report a fault.

Lemma V.4 (Forwarding integrity). If a TEE receives a
valid packet p, it will process p according to the trusted
rules that apply to it, and will therefore correctly determine
the next hop on the path to which p should be forwarded.
If the TEE is not allowed to complete the processing, or
if invalid rules are provided for the packet, then a fault is
reported either by the TEE or by its neighbors.

Proof: This follows directly from the specification of
the TEE and from the code execution guarantees of SGX.
In case the TEE’s execution is blocked, the neighbors will
detect this as a DoS attack, see Lemma V.2.

We can now state the main result for path and packet
integrity.
Theorem V.1 (End-to-end integrity). If a new packet on a
host is provided to the host’s TEE, then either that packet
is correctly forwarded according to the packet integrity and
path integrity properties (Section III-C), eventually reaching
the correct destination, or else a fault is reported.

Proof: Follows from inductively applying Lemma V.3
and Lemma V.4 to all TEEs on the path of the packet.

D. Packet confidentiality
It is straightforward to see that packet confidentiality holds

if our assumptions that the source and destination hosts are
not compromised holds. In particular, once the source passes
a new packet to its local TEE, the packet will be encrypted
and sent out by the source in this form. No TEE on the
nodes on the path will ever output a packet in decrypted form
(assuming that the TEE code is correct), and the TEE on the
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Figure 4: Two simple scenarios in which exfiltration is
possible (nodes circled in red are compromised). The lower
scenario shows exfiltration in a multi-tenant case: exfiltration
for information belonging to the purple tenant is possible
through the orange tenant.

destination will only decrypt the packet if it was forwarded
correctly (see Theorem V.1). This means, in particular, that
only the correct destination can decrypt the packet.

E. Exfiltration protection

Unfortunately the properties presented so far cannot un-
conditionally guarantee exfiltration prevention. For instance,
in the extreme case where all devices (hosts and nodes)
are compromised, and at least one of these as unrestricted
access to the Internet, it is impossible to defend the system
against data exfiltration. For a more precise understanding
of the problem, it is useful to give a more detailed definition
of the threat model. We consider nodes and hosts to be
either honest (will behave according to specification) or
fully compromised (the adversary completely controls the
behavior).
Definition V.1. With respect to the full network graph,
the set of compromised devices induces a subgraph which
we call the compromised network graph; we refer to each
connected component in this graph as badnet.

Any device inside a badnet has access to the informa-
tion known by all other devices in the badnet. However,
the adversary does not automatically learn the information
acquired by a badnet: the adversary is able to access this
information if and only if the badnet includes a host with the
capability of communicating openly with the Internet (e.g.,
a gateway node or a remote host). Additionally, two badnets
can exchange information if both contain compromised hosts
(in case of multi-tenancy, hosts belonging to the same
tenant4). Two examples in which exfiltration is possible are
shown in Figure 4.

To have additional protection in such scenarios, additional
measures have to be taken that go beyond securing network-
ing devices. We list the main possibilities.

• Resilient topology design. The network could be
structured in a way that requires multiple nodes to
be traversed before the gateway is reached. Hosts

4Consider two hosts belonging to different tenants that belong to separate
badnets: since the badnets are separate, on any path between them there is
an honest node, which will guarantee that tenant isolation is preserved.
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Figure 5: Alcatraz packet structure.

belonging to different tenants could be connected to
different nodes.

• Restricted remote hosts. Remote hosts should be de-
nied free Internet access, their communications should
be restricted to those to the gateway node if possible.

• Trusted applications. Particularly sensitive applica-
tions could be contained within special TEEs, which
will only communicate with the local TEE through an
encrypted channel. This option is out of the scope of
this paper and subject of future work.

VI. ALCATRAZ SDN IMPLEMENTATION

Alcatraz is a generic network architecture, so for our
implementation we apply Alcatraz to SDN, in particular to
OpenFlow (OF). We first show Alcatraz packet structure and
implementation with Open vSwitch. Then, we discuss OF
extensions for key distribution and rule authentication.

A. Alcatraz packet structure
An Alcatraz packet requires that three fields be added

compared to traditional packets (see Figure 5). These fields
are hop-by-hop, and they consist in an 8-byte Counter field
used for packet drop and reordering detection, a 2-byte
Thread ID field for supporting multi-threaded enclaves,5 and
a 16-byte MAC field which protects the integrity of the entire
packet. We note that, conceptually, Alcatraz can for this
reason be seen as a layer 21/2 protocol on the dataplane.

B. Implementation with Open vSwitch
We implement our prototype using Open vSwitch 2.5.0

and Intel SGX SDK for Linux 1.5 to implement the modules.
Open vSwitch and an SGX application with an enclave
are implemented as different processes communicating with
each other using a Unix domain socket. We run Open
vSwitch in user mode (using netdev data-plane) to avoid
the interface between a kernel module of Open vSwitch and
the enclave in user mode. In particular, the SGX enclave is
only allowed to run in user mode to protect the OS from
user-defined enclaves.

To pass the packet to the enclave, we modify a function
of the Open vSwitch data-plane to capture packets when
the OF action is Output. Then, using the Unix domain
socket, the packet and the matched flow entry are sent to the
SGX application, which calls the enclave passing the packet
and flow entry to it. Finally, the SGX application receives
a modified packet from the enclave and returns it to the

5We omit a discussion on multi-threaded enclaves in our treatment for
lack of space, but in our implementation we have to use per-thread counters,
to avoid the performance loss incurred by using a shared counters. This
requires the Thread ID field.



Open vSwitch process using the socket. For cryptographic
operations we use the functions provided by the SGX
SDK. In particular, we use an AES CBC-MAC function for
computing a MAC.

The Alcatraz switch is connected with Ryu [16], which
is a Python-based OF controller, and we run an L2 switch
application on the controller. We also deploy two LXC [17]
containers corresponding to end hosts and their virtual NICs
connected with Open vSwitch.

C. OpenFlow extensions
We next discuss how the OF protocol, controller, and

switches are extended regarding the key distribution and the
authentication of rules (flow entries).

Switch setup: We extend the OF protocol to distribute
a master key MK from the OF controller to enclaves of OF
switches. Specifically, after exchanging Hello messages,
the OF controller and the OF switch exchange attestation
reports generated by SGX to perform remote attestation. If
the remote attestation succeeds, the controller encrypts the
master key using the public key of the enclave of the switch
and sends MK to the switch. Specifically, when the OF
switch receives a Set-Master-Key message, which is a
new OF message, the switch gives the master key to the
enclave. The controller also sends the neighbor list to the
switch.

Distribution of flow entries: As we discuss in Section
IV-C2, the controller adds a MAC to flow entries so that
the switch enclave can verify them. To this end, we extend
the Flow-Mod message structure to carry the MAC of the
flow entry. We also extend the flow tables of the switches
to store flow entries with the MACs.

MAC verification: To perform the packet forwarding
described in Section IV-D, the packet forwarding engine of
the OF switch calls the enclave when the action matching an
incoming packet is one of the following: Output, Drop,
Push-Tag, Pop-Tag, Set-Field. OF supports multiple
actions for a single flow entry. The packet modification
module performs all actions modifying the packet, then the
monitoring module performs each of the Output actions.
Specifically, the monitoring module duplicates the packet
and updates the MAC on the basis of the next switch
specified by each of the Output actions. Alcatraz can thus
support multicast.

In the enclave, a MAC of a packet is calculated from
packet header (H), packet payload (P ), and counter (C)
using data-plane attestation key shared between switch x
and y (DAKx,y): MAC =MACDAKx,y (H||P ||C).

In order to compute DAKx,y , the monitoring module
needs to know the identifier of the next switch y, but in
the OF protocol the flow action specifies an egress interface
of the switch. Therefore, to allow the monitoring module
to compute the new MAC, the monitoring module needs to
be able to map the egress interface specified in the rules
to an identifier. To create this mapping, we extend the
neighboring statements provided by the administrator (see

Section IV-B) with the interfaces of both neighbors in all
neighboring statements. Note that for the identifiers defined
in Section IV-B we use the data-path IDs (switch IDs) of
the OF protocol.

Packet injection: The OF protocol supports a
Packet-Out message that makes a switch send a packet.
The packet sent by this message should also have a MAC
so that the next switch can verify it. To allow this function,
the controller is treated as a special neighbor switch so that
no additional functionality is required by the enclave. In
particular, the packet is encrypted by the controller using
DCK and sent from to switch x via the control-plane
network.

Report to the controller: We also extend the OF pro-
tocol to allow the enclaves to send a statistics report to the
controller, which includes the reported faults. In existing
OF, the packet forwarding engine reports the statistics.
In Alcatraz the monitoring module sends the report in
authenticated form to the controller so that a malicious
forwarding engine cannot tamper with them. Note that
the report messages are authenticated using the per-switch
control-plane authentication key CAKx.

Verification of rule cache: Open vSwitch [18], [19]
performs packet forwarding in two stages to improve per-
formance. In the first stage, the switch checks a cache that
performs exact matching using a hash of the flow. For the
first packet, the cache entry does not exist, thus the switch
performs full-matching and sends the generic rule containing
wildcards to the enclave. Then the rule verification module
verifies the rule and generates a MAC of the exact match
rule. The generated MAC is stored in the cache together with
the cache entry. For the subsequent packets belonging to the
same flow, the cache entry is found, and the switch calls the
enclave with the cache entry, its MAC, and the packets.

VII. EVALUATION

We evaluate Alcatraz performance to answer the following
research questions:

• How fast can enclave(s) process packets? What is the
bottleneck of the enclaves? We measure the enclave
throughput and also conduct micro benchmark analysis
(Section VII-A).

• Is an Alcatraz switch viable for a corporate network?
We measure its throughput and show that the per-
formance is sufficient for a high-security corporate
network (Section VII-B).

• Is the bandwidth overhead of data-plane and control-
plane acceptable? We examine the overhead for typical
packet sizes (Section VII-C).

A. Enclave performance
To measure the performance, we use a machine with an

Intel Core i7-6600U CPU (2.6 GHz, two physical cores
with hyper threading) and 8 GB memory. First, we measure
the throughput of the enclave containing the monitoring
module and the rule verification module. Note that these



Figure 6: Micro-benchmark of an enclave.

Figure 7: Throughput of enclaves.

measurements are only of the enclave’s performance, i.e., the
packet forwarding engine is not included. Figure 7 shows the
throughput when varying packet size from 64 B to 1500 B
and varying the number of enclaves from one to four (note
that our CPU has four logical cores). Large packets get better
performance and the throughput reaches a maximum of 4.5
Gbps when the packet size is 1500 B and four enclaves are
running simultaneously.

We also conduct a micro-benchmark analysis to identify
the bottleneck of the enclave. Figure 6 shows the breakdown
of the processing time. Context switch shows the processing
time when the enclave does nothing and Packet MAC verifi-
cation, Packet MAC update and Rule MAC verification show
additional measurements when each function is enabled. For
small packets, the context switch is the heaviest operation,
causing over 50% of the total processing time. Therefore,
processing time is almost the same for 64 B and 128 B
packets. The processing time of MAC calculation is propor-
tional to packet size, and it becomes a significant factor for
large packets.

B. Alcatraz switch and end-to-end performance

Next, we measure throughput and latency of an Alcatraz
switch and end-to-end communication between the Alcatraz
switch and an Alcatraz host. We deploy two SGX machines;
one is an Alcatraz switch and another is an Alcatraz host
corresponding to both source and destination. To measure
their performance, the host sends packets to the switch, then

Figure 8: End-to-end throughput.

Figure 9: End-to-end latency.

the switch just sends packets back to the host.
Figure 8 shows the end-to-end throughput from host

to host when traversing a single switch. We measure the
throughput with and without encryption. Figure 8 also shows
the throughput of a single Alcatraz switch (without the
processing of the hosts) and the throughput of a plain Open
vSwitch process (software switch) for comparison. We send
UDP packets from the hosts by varying the packet size from
128 B to 1500 B and measure the average bandwidth during
120 seconds.

The throughput of the end-to-end communication reaches
300 Mbps for maximum size packets, and the comparison
with the case of the single switch shows that the inter-
mediate switch constitutes the performance bottleneck. By
comparing to Open vSwitch, we see that the throughput is
reduced by 26%, which is due to the packet verification
overhead. This overhead is significant, but we believe that it
is nonetheless viable for corporate networks and data centers
requiring high security due to the sensitivity of the stored
information. Since our prototype is still in the early stages
of development, we expect higher performance to be easily
attainable through various optimizations.

Figure 9 shows latency for the same setting as for
Figure 8, i.e., latency of the end-to-end communication as
well as latency of a single Alcatraz switch and of an Open
vSwitch switch. The latency is mostly unaffected by the
packet size. Theoretically, one would expect the latency
of Alcatraz communication to depend on the packet size
because the Alcatraz switch and the host need to calculate



a MAC over the entire packet. However, the latency caused
by the other length-independent operations dominates the
delay introduced by the MAC calculation. We can thus
conclude that in practice the latency caused by Alcatraz’s
cryptographic operations can be ignored when compared to
the latency of packet transportation.

C. Bandwidth overhead
As we have shown in Figure 5, Alcatraz requires addi-

tional 16 bytes for a MAC, 8 bytes for a counter, and 2
bytes for the thread ID. Assuming an average packet size of
850B [20], the bandwidth overhead is 3%, which should be
tolerable in most deployment scenarios.

Alcatraz also increases the rule size by 16 bytes due to
the addition of the MAC to the rule. Assuming an OpenFlow
1.0 flow_mod message specifying a match conditions of
source/destination Ethernet addresses and Vlan, the message
size is 72 bytes, thus our extension increases the message
size by 22%. However, the bandwidth overhead of the
control-plane is less critical since the number of messages
exchanged is limited

VIII. RELATED WORK

Trustworthy Computing in Networks: Relatively few re-
searchers have so far studied the application of Trustworthy
Computing in networking contexts, but we believe that this
will change due to the emergence of SGX technology that
provides much stronger security properties than the previous
TPM-based technologies.

The closest related work is TrueNet [21] which performs
fault localization based on TEEs executing on network
nodes. TrueNet enforces forwarding integrity, and detects
malicious nodes that drop or alter packets. In contrast,
Alcatraz provides exfiltration resilience, which is a much
stronger property, by exploring the design space of TEE-
based computation on hosts and nodes. TrueNet, for in-
stance, cannot achieve packet confidentiality nor prevent
packet injection. Moreover, Alcatraz can support secure
packet updates by deploying a modification module within
the TEE. This module accepts trusted rules and can veri-
fiably modify packets before forwarding them. Thanks to
this mechanism, Alcatraz can support middleboxes and even
software defined networking (SDN) switches which need to
be able to inspect and modify packets.

Recently, Kim et al. [22] have proposed to use SGX
for networking applications such as software-defined inter-
domain routing and in-network TLS inspection. While there
are some points in common between this proposal and ours,
Alcatraz has a stricter set of goals which provide higher
security and more flexibility, such that the functionalities
proposed by Kim et al. can be realized as special case in
Alcatraz, which is however significantly more general.

We briefly discuss other works that use trustworthy com-
puting in networking, however, they are weakly related as
they seek different properties than Alcatraz. NetQuery [23]
is a network knowledge plane that relies on trustworthy

computing for verifying the correctness of shared informa-
tion. BIND [24] proposes an attestation approach for linking
distributed computations together to achieve trustworthy
distributed operation. The Assayer [25] system performs
attestation on end host code to prove the benign nature of
requests to networked services.

Securing SDN: Some mechanisms to enhance security
of SDN have been proposed. Jacquin et al. have proposed
an integrity measurement system of OpenFlow switches
[26]: specifically, each switch has a TPM and performs
measured boot. However, such a system has a very large
computing base, and if a vulnerability is found, e.g., in the
operating system, then the system cannot guarantee security.
SDNsec [27] provides functionalities of path enforcement
and validation for SDN. Unfortunately, SDNsec does not
provide packet confidentiality, nor does it meet the require-
ment that packet can be modified by intermediate network
nodes.

As for the control-plane security, many mechanisms to
protect the controller have been proposed. FortNox [28] per-
forms authentication of SDN application and solves conflicts
of rules based on roles of the applications. PermOF [29]
isolates SDN applications and enforces policies that specify
operations allowed to the applications. Klaedtke et al. have
proposed access control based on ownership of the flow
entries [30]. Moreover, several architectures [31], [32] that
can virtualize/isolate the control-plane to confine a compro-
mised controller. Security of the controller is out of scope
of Alcatraz, thus Alcatraz can be used together with these
mechanisms to enhance controller security.

IX. CONCLUSION

We have proposed a new network architecture named Al-
catraz that can prevent data exfiltration caused by malicious
end hosts and network components. Alcatraz provides strong
path integrity through rule verification in a TEE created by
Intel SGX, which ensures that packets are forwarded and
modified according to legitimate rules. Moreover, Alcatraz
guarantees packet integrity and packet confidentiality by
performing verification and encryption in the TEE. We have
presented its design and initial implementation using Open
vSwitch. The main remaining challenge for Alcatraz is the
improvement of the performance, but we believe that this
can be achieved with relative ease through optimization in
the implementation, as well as (in the longer term) through
the improvements in trusted computing technologies and the
implementation in hardware on a commercial router. For the
most security-critical environments the performance of our
prototype may indeed already be practical.
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