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Abstract
Much effort has been spent to reduce the software Trusted
Computing Base (TCB) of modern systems. However, the
hardware TCB remains complex and untrustworthy. Com-
ponents such as memory, peripherals, and system buses may
become malicious via firmware compromise, a malicious
manufacturer, a malicious supply chain, or local physical
tampering. We seek to reduce the hardware TCB to a min-
imal set of hardware components that must be trusted. We
describe the design and implementation of an isolated execu-
tion environment on commodity x86 platforms that only re-
lies on the CPU, without needing to trust the memory, buses,
peripherals, or any other system components.

Categories and Subject Descriptors D.4.6 [Software]: Op-
erating Systems-Security and Protection

General Terms Security, Systems

Keywords TCB reduction, Secure Execution, On-die Exe-
cution, Cache-as-RAM

1. Introduction
Much effort has been spent to reduce the software Trusted
Computing Base (TCB) of modern systems. However, there
remains a large and complex hardware TCB, including
memory, peripherals, and system buses. There are many re-
alistic adversary models where this hardware may be ma-
licious or compromised. Thus, there is a practical need to
determine whether we can achieve secure program execu-
tion in the presence of not only malicious software, but also
malicious hardware.
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Attack
Level

Type Description

AL0 Remote Malware in application
AL1 Remote Malware in Operating System
AL2 Remote Malware in devices’ firmware
AL3 Local Physical attachment of malicious peripheral equip-

ment (e.g., FireWire, Thunderbolt, PC Card, or PCIe
card)

AL4 Local Low-speed bus (e.g., LPC bus, 33 MHz) tampering,
e.g., interpositioning or TPM reset attacks [6, 18]

AL5 Local High-speed bus (e.g., memory or PCI bus, 1 GHz or
more) tampering, e.g., eavesdropping to attack data
secrecy, injection to attack code and data integrity

AL6 Local Malicious CPU
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Operating system primitives
Information flow controlled OS Y Y
Verified Kernel Y Y
Programming language primitives
Software Fault Isolation (SFI) Y Y
Sandboxes (NACL) Y Y
Hardware primitives
DRTM (Flicker [11], TV [10]) Y Y Y Y
TRESOR [12] Y Y
Specialized processor (Mon-
driaan [24], Aegis [20],
Cerium [1])

Y Y Y Y Y Y

CARMA (this paper) Y Y Y Y Y Y
Cryptographic primitives
Secure Multi-Party Computa-
tion [25]

Y Y Y Y Y Y Y

Figure 1. Adversary attack levels on commodity x86 plat-
forms and comparison of existing approaches for defending
against them

Specifically, we consider the adversary attack levels as
shown in Figure 1. These attack levels correspond to an
increasing level of attack cost and complexity.

The current frontier in remote attacks (AL2) is to attack
peripheral devices. Arrigo et al. demonstrate how a com-
promised network card can use the GPU via peer-to-peer
PCI communication, creating a botnet node with powerful



computation and communication abilities, completely out of
reach of the OS [22].

For local attacks, simply booting from removable media
or plugging in a malicious device that obtains DMA access
to all of memory (AL3) is feasible without tools and with a
trivial amount of training. More sophisticated attacks require
opening the computer system and directly attaching to a bus,
either by resetting the bus or by interposing on the bus sig-
nals (AL4). The much faster speed of the memory and PCI
buses requires more sophistication in terms of equipment
and attacker skill (AL5). Supply-chain infiltration may be a
more realistic source of such malicious components [13, 23].
While a simple handheld device (e.g., a smartphone) could
be programmed to interface with low-speed buses, special-
ized equipment is needed for the high-speed buses.

Given this framework for increasing attack levels, it is
interesting to consider existing approaches for defending
against these threats. Figure 1 describes categories of cur-
rent defense mechanisms, and which attack levels they are
effective against.

TRESOR [12] is one recent system intended to defend
againt physical cold-boot attacks where memory chips are
frozen and extracted from a running system, by storing cryp-
tographic keys in debug registers within the CPU. However,
TRESOR assumes code integrity (i.e., that the attacker is un-
able to modify the contents of memory while the system is
still running). We grant the attacker this capability in AL3
and above, and seek to achieve code integrity even against
such stronger adversaries.

Secure co-processor hardware achieves strong secrecy
and integrity properties against even malicious peripherals
and buses (up to AL5), but these solutions represent expen-
sive specialized hardware [1, 20, 24].

Secure multi-party communication can address all of our
proposed attack levels, including malicious CPUs (AL6),
and does not require any trusted hardware. However, its
highly inefficient computation (about six orders of magni-
tude slowdown) prohibits viable deployment today [2].

Contributions. The challenge that we tackle in this paper
is how to defend against a sophisticated adversary with phys-
ical access to the host; i.e., AL5. Our goal is to achieve ef-
ficient execution, code integrity, data integrity and secrecy
against a class AL5 attacker on commodity hardware. To-
wards this end we have developed CARMA, a secure exe-
cution primitive that removes system buses and peripherals
from the TCB, requiring us to trust only the CPU and a sim-
ple inexpensive external verification device. We implement
this basic primitive on an off-the-shelf PC (§3).

2. CARMA Design
On current x86 hardware platforms, the TCB for trustworthy
execution primitives includes various low-level system com-
ponents (CPU, memory-controller, IOMMU, TPM, buses).
The goal of CARMA is to achieve code integrity, launch
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Figure 2. CARMA Architecture: A Secure Execution Envi-
ronment, running a Secure Executable Code (SEC) module,
is created entirely within CPU cache. An external Trusted
Device forms the initial root-of-trust to verify environment
instantiation, SEC load, and SEC execution. The TCB in-
cludes only the CPU and the Trusted Device.

point integrity, and data integrity/secrecy, with a dramat-
ically reduced TCB compared to previous work, so that
only the CPU needs to be trusted. Consequently, our desired
properties will hold even if all other hardware components
are malicious, including the TPM, peripherals, memory, etc.
Since the CPU is the primary system component that exe-
cutes instructions, it is natural to trust it for execution.

Figure 2 shows our high-level architecture. Our central
idea is to execute entirely inside the CPU enclosure, lever-
aging a special execution mode called Cache-as-RAM. This
allows the CPU to act as a self-contained computing envi-
ronment, without having to rely on external untrusted RAM.
We use a simple, inexpensive external trusted device (TD) to
act as a root of trust to bootstrap the environment. We em-
ploy a SoftWare-Only Root of Trust (SWORT) mechanism
to verify that the intended code is loaded, and to establish a
shared secret that we use to create a secure communication
channel.

2.1 Background: Cache-as-RAM (CAR)
Commodity CPUs include a cache subsystem to reduce the
average time to access memory (DRAM). The cache is a
smaller, faster, on-die memory which stores copies of the
data from the most frequently used DRAM locations. Most
modern desktop and server CPUs have at least three inde-
pendent caches: an instruction cache to speed up executable
instruction fetch, a data cache to speed up data fetch and
store, and a translation lookaside buffer (TLB) used to speed
up virtual-to-physical address translation for both executable
instructions and data. These caches are usually organized as
a hierarchy of one or more cache levels (L1, L2 and L3).



During system startup, the BIOS first initializes the CPU,
the cache subsystem, the memory controller (DRAM) and
then proceeds to initialize other hardware platform elements
(PCI, SMBus, peripherals, etc.) before transferring control
to the operating system. The BIOS is stored and accessed as
read-only memory on current platforms.1 This presents an
interesting problem to the early stages of the BIOS execu-
tion (CPU, cache and DRAM initialization) which require
a read-write data area and stack.2 To alleviate this problem,
CPUs allow portions of the cache subsystem to be addressed
as though they were DRAM until the DRAM controller is
initialized in the system. This mechanism is dubbed Cache-
as RAM (CAR) and is employed by most BIOSes today [9].

2.2 CARMA Approach
Typical CAR usage today is to instantiate a temporary one-
shot read/write data area during system bootup. However,
we found that by carefully programming the CPU, we can
use the cache as a general-purpose memory area, support-
ing simultaneous code-execution and data read/writes. This
provides us with an isolated execution environment entirely
within the CPU. Our findings also seem consistent with
publicly disclosed high-level information about the dynamic
launch facility in current x86 CPUs employing some form
of reserved memory inside the CPU for authenticated code
modules [4] – indicating that our scheme is general purpose
and applicable to commodity x86 CPUs. More details on the
actual implementation are available in §3.

We design an execution model where a Secure Execution
Environment Loader (SEEL) executes a Secure Executable
Code (SEC) module (Figure 2). The SEEL sets up the CAR
environment within the CPU and loads the SEC into the
CAR region.

The isolated execution environment is not very useful
without some means of communicating securely with an
external entity. In our design, that entity is a simple external
device. We call this device the Trusted Device, or TD. Before
passing control to the SEC module, the SEEL first attests to
the TD that the SEEL has been loaded correctly, and sets up
a secure channel between the SEEL and the TD.

We next describe each step of instantiating, using, and
cleaning up a CARMA session.

Secure Environment Setup. The SEEL and SEC module
are first loaded into the CPU, and the SEEL begins exe-
cuting. The SEEL configures the CPU into Cache-as-RAM
mode, ensuring that subsequent execution will be entirely
within cache and not interact with untrusted RAM.

Attesting to Secure Setup. Since the Secure Environment
Setup was necessarily initiated by untrusted code, and the
SEEL and SEC were loaded across untrusted buses, we

1 Typically EEPROM or Flash memory.
2 Most BIOSes today are byte-addressable as RAM, so execution can pro-
ceed from power-up without the DRAM controller being initialized.

must securely attest the loaded code to the TD. Since the
CPU has no on-board hardware root of trust (e.g., the TPM
is external, across an untrusted bus), we use a SoftWare-
Only Root of Trust [3, 5, 7, 8, 16, 17, 19]. We extend the
Pioneer [15] system, which is an implementation of SWORT
on x86-class systems. In our setting, the TD is aware of the
expected memory content of the cache and sends a challenge
to the SEEL. The checksum function in the SEEL includes
execution state of the CAR environment in the checksum
computation. Any deviation from the expected loaded code
or CPU state will give an incorrect checksum result. As with
all SWORT checksum functions, the function is designed
such that a modified checksum function that attempts to “lie”
will take measurably longer to compute. Consequently, a
correct checksum received before a threshold time indicates
to the TD: the secure CAR environment is correctly set up,
SEEL and SEC code integrity, and SEEL execution integrity.

The typical attack against SWORT is to use a faster pro-
cessor than the target device to calculate the correct check-
sum value. This attack is partially prevented by the SWORT
function being designed such that no other local component
can compute it as quickly as the CPU, exploiting specific
execution capabilities of the CPU. Although a local graphics
card can also execute at high speed with high parallelism,
the sequential nature of the SWORT checksum function and
the optimized implementation for the target CPU precludes
such an attack.

Two stronger assumptions we must make are that the at-
tacker does not use a faster remote system to compute the
checksum, and that the attacker is unable to undetectably
overclock the CPU or replace it with a faster model such
that the “lying” checksum runs as fast as the correct check-
sum function. We could remove the former assumption us-
ing the Viper system proposed by Li et al., which uses sev-
eral short checksum functions instead of a single checksum
function, such that the latency to communicate with a re-
mote faster system would be greater than any computational
advantage [8].

Secure Channel Setup. We adapt the Software-based At-
testation for Key Establishment (SAKE) protocol [14] to
set up a shared secret key between our secure CAR exe-
cution environment and the TD. This shared secret key is
used to derive an encryption and authentication key to pro-
vide secrecy and integrity for all communication. The main
challenge in this context is to prevent a Man-In-The-Middle
(MITM) attack, as the CPU and TD cannot authenticate each
other. The idea that SAKE proposed is to use the checksum
of software-based attestation as a short-lived shared secret
to bootstrap an authentic public key. Since SAKE was de-
signed for sensor nodes, we can take advantage of the pow-
erful CPU to simplify the design. Specifically, the protocol
in CARMA (Figure 3) performs a Diffie-Hellman key ex-
change, where the CPU uses the checksum z computed via
software-based attestation to compute a MAC of its public



TD : a
R← {0, 1}`

c = ga mod p
T1 = Current time

TD → CPU : 〈c〉
CPU : z = checksum over SEEL and SEC

b
R← {0, 1}`

d = gb mod p
CPU → TD : 〈d,MACz(d)〉
TD : T2 = Current time

Verify (T2 − T1) ≤ Time thresh
verify MAC based on correct z
KTD,CPU = da mod p

CPU : KTD,CPU = cb mod p

Figure 3. CARMA Secure Channel Setup uses a slightly
modified SWORT attestation protocol for key establish-
ment [14]. A private Diffie-Hellman key of length ` is chosen
at random for each protocol execution.

key d. Since no other entity can compute z as quickly as the
CPU, z represents a short-lived shared secret.

However, numerous challenges still exist that need to be
addressed.

(1) Authentication of the CPU by the TD is still required;
how can the TD ensure that indeed the result originates from
the local CPU? In SAKE, the checksum computation in-
cludes a unique local value, such as a processor version num-
ber or silicon ID. Since we do not have either reliably avail-
able on current x86 CPUs, we need to resort to a different ap-
proach. We rely on the assumption already discussed in the
secure setup attestation step: that the attacker has no other
device available that can compute the checksum as fast as
the CPU and with sufficiently low communication latency.

(2) An adversary could steal the private key before attes-
tation starts, as it can inspect the state of the random number
generator within the CAR environment, thus predicting the
value of b. To thwart this attack, we make use of a hardware
random number generator within the CPU such as the Intel
Digital Random Number Generator (DRNG) [21]. Without
built-in random numbers, it may be possible to leverage un-
predictability of performance counters as entropy sources.

(3) An adversary would move the expensive computation
of gb before the checksum computation, thus saving time
and achieving faster checksum computation. This attack can
be defeated by performing the checksum computation long
enough such that the time overhead of the fastest adversarial
function would still be above the time threshold.

Secure SEC Execution. Once the secure channel is es-
tablished, the SEEL receives inputs to SEC from TD, exe-
cutes SEC (offering launch point integrity), and returns SEC
outputs to TD. Since the attestation function offers code in-
tegrity and SEEL execution integrity, we obtain the launch
point integrity as the SEC starts execution at the correct lo-
cation with the correct executable. Since the checksum func-

tion also verifiably turns off all interrupts and exceptions, the
execution cannot be disrupted by malware.

Secure Return. After execution, SEEL erases all Cache-
as-RAM execution state and resumes normal execution.

3. Implementation and Evaluation
We have developed a proof-of-concept implementation that
demonstrates the feasibility of realizing our CARMA ap-
proach (§2.2) on a commodity PC platform. Our current pro-
totype implements the secure execution setup, secure SEC
execution and secure Return components of our execution
model (§2.2). We note that the remaining execution model
components, the secure setup attestation and secure channel
setup, have existing stand-alone implementations [14, 15].
Adapting them to our prototype should be relatively straight-
forward based on our design. The CARMA prototype cur-
rently runs on a AMD Family 10h CPU and is implemented
as a custom BIOS. We used a Tyan S2912e motherboard and
coreboot3 as our development platform. We now proceed to
describe the details of our SEEL and the SEC implementa-
tions.

The SEEL runs on the Boot-strap Processor (BSP) and
sets up the L2 cache as general purpose memory (for code
and data read/writes). It first locks the CPU cache subsystem
by preventing write-backs and other out-of-order CPU oper-
ations (e.g., branch prediction and speculative loads). The
SEEL then sets up CPU memory addressing and caching
policies to address the L2 cache and maps the SEC code and
data into the cache, and transfers control to the SEC code
entry-point. When this happens, the SEC code is executing
entirely within the CPU cache along with associated data.

Our Secure Executable Code (SEC) is a simple applica-
tion that prints a ”Hello World!” string through the serial
port by employing the legacy in/out I/O instructions to
communicate with the UART. The SEC contains a SEEL
epilogue code, that it transfers control to, once the SEC is
done with its processing.

The SEEL epilogue code tears down the CAR environ-
ment in a secure fashion and allows normal program ex-
ecution. The SEEL epilogue code first disables the CPU
cache, clears contents of MTRRs and programs the L2
cache-subsystem to the state at reset (i.e., no code caching).
CPU cache-invalidation, out-of-order execution primitives
(branch-prediction, speculative loads and stores) and self-
modifying code logic are then enabled before enabling the
CPU cache and resuming normal execution.

We confirmed the instantiation of the cache-as-RAM
(CAR) environment by removing the DRAM modules from
our prototype system and by setting up a performance
counter to keep track of L2 cache evictions while runnning
our SEC code. For a successful instantiation of the CAR en-
vironment, there must be no L2 cache evictions since the L2

3 http://www.coreboot.org/



cache is being used as memory. Our tests revealed that the
value of the performance counter was always 0 during the
SEC execution. This indicates that there were no cache evic-
tions and confirms that the SEC is executing entirely within
the CAR environment.

4. Conclusions
The lack of isolation mechanisms on modern commodity
systems results in an inherently interconnected system where
a single malicious component can control the other compo-
nents and render the entire system compromised. This raises
the question of whether it is possible to reduce the hardware
trusted computing base (TCB) on such commodity systems.

We demonstrate with the CARMA design that it is in-
deed possible on a commodity system to remove from the
hardware TCB the memory, memory controller, system
buses, and peripherals. This leaves in the hardware TCB
only the CPU itself and a simple external device. The re-
sulting secure execution environment has guaranteed code
integrity, launch point integrity, and data integrity and se-
crecy.

CARMA offers an exciting execution platform for secure
computation that we plan to explore in our future work.
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