
SAGE: Software-based Attestation for GPU Execution

Andrei Ivanov
ETH Zürich

Benjamin Rothenberger
ETH Zürich

Arnaud Dethise
KAUST

Marco Canini
KAUST

Torsten Hoefler
ETH Zürich

Adrian Perrig
ETH Zürich

Abstract
With the application of machine learning to security-critical
and sensitive domains, there is a growing need for integrity
and privacy in computation using accelerators, such as GPUs.
Unfortunately, the support for trusted execution on GPUs
is currently very limited – trusted execution on accelerators
is particularly challenging since the attestation mechanism
should not reduce performance.

Although hardware support for trusted execution on GPUs
is emerging, we study purely software-based approaches for
trusted GPU execution. A software-only approach offers dis-
tinct advantages: (1) complement hardware-based approaches,
enhancing security especially when vulnerabilities in the
hardware implementation degrade security, (2) operate on
GPUs without hardware support for trusted execution, and
(3) achieve security without reliance on secrets embedded in
the hardware, which can be extracted as history has shown.

In this work, we present SAGE, a software-based attesta-
tion mechanism for GPU execution. SAGE enables secure
code execution on NVIDIA GPUs of the Ampere architecture
(A100), providing properties of code integrity and secrecy,
computation integrity, as well as data integrity and secrecy
– all in the presence of malicious code running on the GPU
and CPU. Our evaluation demonstrates that SAGE is already
practical today for executing code in a trustworthy way on
GPUs without specific hardware support.

1 Introduction
Fueled by recent trends such as machine learning and the
declining yields from Moore’s Law, the use of accelerators to
process the vast volumes of data is becoming indispensable.
In fact, it is expected that the majority of compute cycles in
public clouds will be executed on accelerators [29].

With the application of machine learning to security-critical
or sensitive domains such as healthcare or financial model-
ing, there is a growing need for a mechanism that maintains
integrity and secrecy for both code and data despite the com-
putation being offloaded to the GPU.

With the wide-spread deployment of trusted execution envi-
ronments (TEEs), e.g., Intel SGX [4] and ARM TrustZone [2],
an important question is how security-sensitive computation
tasks can be accomplished on GPUs. While first hardware-
based TEEs on GPUs are starting to emerge [13,20,24,27,46,
49], how can we execute code securely on GPUs in current
environments? As we have witnessed from the introduction of
hardware-based TEEs on x86 platforms, it took over a decade
until it became possible to fully and widely utilize these mech-
anisms. At the same time, technology progress in this space
is a moving target as new attacks (among other factors) force
vendors to phase out one specific hardware-based technology
in favor of more robust successors (such as with the case of
the deprecation of Intel SGX [39]). Given the importance of
software executing on GPUs, it is clear that we need to find
approaches to speed up the long lag time between deployment
and wide-spread utilization.

A promising approach for bridging this gap is a software-
only approach to trusted execution. In the context of CPU-
based execution, a rich research field has contributed numer-
ous approaches [8, 32, 33, 48]. The basic idea of the prior
software-based or timing-based attestation approaches was to
design a verification function that would run on an untrusted
system and compute a checksum over itself – where both the
correctness of the checksum and the time duration are mea-
sured by a trusted verifier. A correct checksum value that is
returned before a threshold point in time, indicated to the veri-
fier that the TEE was correctly set up and that the correct code
is now executing (code integrity and launch point integrity).
In combination with a system for control-flow verification,
control-flow integrity can also be achieved.

The challenge of such software-based TEE establishment
approaches lies in the creation of a verification function that
will slow down noticeably or produce an incorrect checksum,
if an adversary attempts to tamper with its execution.

The creation of a verification function for GPU environ-
ments poses numerous research challenges, which may be
the reason why it has so far not been achieved, to the best
of our knowledge. First and foremost, achieving (1) code se-

crecy and integrity, and (2) data secrecy and integrity, (3) in
the presence of a malicious OS, (4) malicious code on GPU,
and (5) a malicious CPU-GPU interconnect is a formidable
challenge. Other challenges that we have to overcome include
the absence of a true random number generator on the GPU,
the lack of documentation from GPU vendors for a specific
target architecture, no toolchain support to write native GPU
microcode, and the difficulty in achieving optimal GPU uti-
lization.

We design the SAGE system, which establishes a TEE on
NVIDIA GPUs of the Ampere architecture (A100). SAGE
utilizes an SGX enclave running on the host to act as a local
verifier, and to bootstrap the software primitive to establish a
dynamic root-of-trust (RoT) on the GPU. RoT establishment
ensures either that the state of an untrusted system contains
all and only content chosen by a trusted local verifier and
the system code begins execution in that state, or that the
verifier discovers the existence of unaccounted content. SAGE
also sets up a shared secret key between the verifier and the
GPU, which can be used to establish a secure channel to
achieve integrity and secrecy for code and data transferred.
Our results indicate that after a successful invocation of SAGE,
the verifier obtains assurance that: (1) the user kernel on the
untrusted device is unmodified; (2) the user kernel is invoked
for execution on the untrusted GPU device; and (3) the user
kernel is executed untampered, despite the potential presence
of a malicious actor.

This paper presents the following contributions:
• We design a software-based attestation mechanism

for GPU execution that enables secure code execution on
NVIDIA Ampere GPUs, providing code integrity and secrecy,
computation integrity, as well as data integrity and secrecy.

• We implement the race-condition TRNG and Verification
Function used as basic security components in the software
TEE. This requires an understanding of the GPU architecture
and the format of the instructions used in the microcode,
which we derive from our decoding and instruction generation
framework.

• Through a proof-of-concept implementation on the
NVIDIA A100 platform, we demonstrate the technical feasi-
bility of the approach. Our implementation is publicly acces-
sible at https://github.com/spcl/sage.

2 Background: GPU Fundamentals

In the following, we describe the fundamentals of NVIDIA
GPUs and their programming model (CUDA) to illustrate
how compute tasks are offloaded and executed on the GPU.

The GPU is connected via the PCI control engine to the
host CPU and uses an internal bus for communication between
its core components. The core components are the command
processor, compute and DMA engines, and the memory sys-
tem, consisting of a memory controller, registers, on-chip and
device memory.

L2 Cache

Device Memory

192KB

 40MB

256KB Registers

SM

L1 Sh. Mem

Registers

SM

L1 Sh. Mem

Registers

SM

L1 Sh. Mem...

Figure 1: Memory hierarchy of a GPU with memory sizes of
NVIDIA A100 GPU.

Controlling the GPU. Commands to the GPU are trans-
mitted using a set of command queues known as channels.
The GPU’s command processor receives these commands and
forwards them to the corresponding engines.

Data transfer to the GPU. GPU programming inevitably
incurs data transfers between host and device memory. This
is handled using direct memory access (DMA). The copy
engine is responsible for handling DMA commands and their
corresponding memory accesses.

GPU execution. The GPU’s compute engine contains
multiple Processor Clusters (PCs), each containing multiple
Streaming Multiprocessors (SMs). SMs are partitioned into
multiple processing blocks, each containing specialized pro-
cessing cores (e.g., INT32 cores), a scheduler and a dispatch
unit. GPU kernels to be executed on the GPU are sched-
uled to SMs and specify the number of threads to be created.
These threads are organised in thread blocks and grids. Thread
blocks are divided into warps. Each warp is a group of 32
parallel threads and gets scheduled by a warp scheduler.

Modern GPUs have multiple processing pipelines [23]
for different data types. The FMA pipeline executes 32-bit
floating point instructions and integer multiply and add (IMAD).
The ALU pipeline executes 32-bit integer, logical, binary, and
data movement operations. In addition, there are pipelines for
64-bit and 16-bit floating point, and Tensor core operations.

GPU memory system. The memory system on GPUs con-
sists of a memory controller and different memory levels. The
memory levels are associated to the compute system as fol-
lows (see Figure 1). Each processing block includes an L0
instruction cache and a register file. The combined process-
ing blocks of a SM share a combined L1 data cache/shared
memory that can be partitioned depending on the workload.
Multiple SMs share an L2 cache before pulling data from
global (off-chip) GDDR memory. Registers are a shared re-
source and are allocated among the thread blocks executing on
a SM. Accessing a register consumes zero extra clock cycles
per instruction, but delays may occur due to register read-
after-write dependencies and register memory bank conflicts.
In case a thread requires more registers than available, the
data contained in the registers is spilled into shared memory.
Shared memory is not only used for register spilling, but also
enables communication and memory reuse between threads
in a block.

https://github.com/spcl/sage

3 Problem Definition
We first describe the design goals we strive to achieve, as well
as the assumptions and the adversary model we consider.

3.1 Design Goals
Verifiable code execution on the GPU. Verifiable code ex-
ecution describes the problem in which a verifier wants a
guarantee that some arbitrary code has executed untampered
on an untrusted platform, despite the potential presence of a
malicious entity (e.g., malicious software) [32]. This problem
is typically approached by verifying code integrity through
root of trust attestation, setting up an untampered code execu-
tion environment, and then executing the code.

Data integrity and confidentiality. In addition to code in-
tegrity also the integrity and/or confidentiality of the data
executed on the GPU must be ensured. Specifically, we aim
to guarantee that the adversary cannot observe or tamper with
data transferred to/from the GPU by a trusted application that
runs in a CPU TEE.

Dynamic root of trust without hardware support. Dynamic
root of trust establishment denotes the problem of dynamically
setting up a trusted computing base (TCB) on an untrusted
platform without hardware support. All code contained in the
dynamic root of trust is guaranteed to be unmodified and it can
thus be used to provide externally verifiable code execution.

3.2 Assumptions
Verifier and GPU on the same machine. We assume that the
verifier is executed on the same machine as the GPU we want
to attest. The GPU is directly connected to the host CPU over
a bus (e.g., PCIe with a latency of ~500 ns [18]).

GPU hardware configuration. We assume that the verifier
knows the exact hardware configuration of the GPU, including
the GPU model, the number of cores, the memory architec-
ture, and the GPU clock speed. This assumption is practical
when the hardware configuration is managed by the user or a
trusted cloud provider. The machine owner has knowledge of
the hardware configuration, which cannot be altered by soft-
ware. In this configuration, we aim to protect against remote
attackers who may arbitrarily modify software.

3.3 Threat Model
In the following, we discuss the threat model by defining the
trusted compute base (TCB) and outlining the capabilities of
an adversary. The TCB of a system refers to all hardware and
software components that are critical to its security, in the
sense that bugs or vulnerabilities occurring inside the TCB
might jeopardize the security properties of the entire system.

Trusted compute base (TCB). We assume that the remote
adversary has full control over the software of the untrusted
host system. In other words, the adversary has administrative
privileges, can tamper with the operating system, or the guest
operating system and the hypervisor in case of virtualization.
However, we assume that the hardware primitives of the CPU

Bus

Trusted Application
(Verifier)

External
Challenger

Verification Function

GPU

CPU

Untrusted Host
Platform

Figure 2: Abstract system model.

and GPU, including firmware are contained in the TCB. Since
SAGE uses Intel SGX, it inherits the TCB of SGX (which
includes the CPU package, trusted libraries, etc.).

Capabilities. Considering these capabilities, an adversary
can read and tamper with code or data of any victim process,
and can access or modify data in DMA buffers or commands
submitted to the GPU. Furthermore, the adversary could inject
packets in arbitrary locations on the I/O communication path
between the host and the GPU. This gives the adversary con-
trol over attributes, such as the address of GPU kernels being
executed and parameters passed to the kernels. The adversary
may also access device memory directly over MMIO, or map
a user’s GPU context memory space to a channel controlled
by the adversary. In GPUs that support multi-tasking, mali-
cious kernels can be dispatched to the GPU, thereby accessing
memory belonging to a victim’s GPU context.

Out of scope. Since this work tackles the problem of trusted
execution on the GPU, we do not consider attacks that target
SGX, such as physical attacks to the CPU package or side-
channel attacks on SGX. In addition, we do not consider
system availability attacks that prevent the execution of our
process, as an adversary with the described capabilities can
always prevent the deployment of computing tasks on the
GPU. We assume that the adversary is not capable of using
undocumented GPU capabilities to execute an attack. We
believe that it is the responsibility of the manufacturer to
ensure that such attacks are not possible, since the details of
hardware and driver implementations are hidden from users.

4 SAGE Overview

SAGE addresses the problem of verifiable code execution on
a GPU without hardware support, in which the verifier wants a
guarantee that the user kernel has executed untampered on an
untrusted GPU platform, even in the presence of an adversary.
Figure 2 illustrates the abstract system model we consider.

SAGE comprises two main components. The first compo-
nent is the verifier, which runs as a trusted application on the
host CPU (e.g., using Intel SGX [4]) and is attested by an
external challenger. The second component is the verification
function (VF), which runs on the the untrusted GPU. The VF
computes a checksum over its own code, and is constructed
in an intricate way such that if a change is applied to the
VF then either the execution will slow down in an externally

Bus

Host

SGX

Application
code

submit commands

Verifier

Device

SAGE kernel

2. Checksum Checksum function

Key establishment

Kernel caller
allocate memory

transfer code/data
call code

exit

app code

app
data

1. Challenge

3. skVD
Key establishment

A. cmd/code/dataencrypt
auth

decrypt
auth

B. data encrypt
auth

decrypt
auth

Figure 3: Overview of SAGE. The numbers represent temporal
ordering of events. The letters show repetitive operations.

detectable manner, or the checksum value will be incorrect.
The verifier dispatches to the GPU the VF and then invokes

it with a challenge while measuring the VF execution time.
The VF computes a checksum value and returns it to the
verifier. Using the same VF logic, the verifier independently
computes and verifies the correctness of the checksum value.
If the checksum returned by the VF is correct and it is returned
within the expected time, the verifier obtains a guarantee that
a dynamic root of trust on the GPU was established.

Once the dynamic root of trust has been established, the
VF sets up an untampered execution environment. During
the setup of the execution environment, a shared key between
the verifier enclave and GPU is established; afterwards, only
commands authenticated with this key are accepted, including
the movement of encrypted kernel code and data between host
and GPU. SAGE guarantees execution integrity and memory
protection for the code and data stored in the GPU memory
(see §8). Figure 3 shows an overview of SAGE including a
sequence of events.

5 Verification Function (VF)
The VF that runs on the untrusted GPU is the fundamental
component of SAGE. We now describe in detail these tasks
and the challenges they entail.

5.1 Design Requirements
The VF must be carefully constructed in such a way that if
an adversary were to tamper with the VF or the user kernel,
it would result in either a wrong checksum or a noticeable
time delay. Before offering a concrete design for the VF, we
describe several required properties and outline how these
properties influence the correctness of the checksum or the
VF execution time. We defer our security analysis to §8;
the following properties also account for the attack surface
analyzed therein.

Time-optimal implementation. The implementation of the
VF must be time-optimal. Otherwise, the adversary could use
a faster implementation and use the time saved to forge the
checksum (e.g., by injecting instructions).

Maximize resource usage during checksum computation.

To prevent the adversary from running any other computa-
tion during the checksum computation, the VF maximizes
its resource usage on the GPU by using all available SMs
and avoiding “empty” threads. Moreover, each thread should
use the maximum number of available registers to prevent
the adversary from using those registers. Thus, if a malicious
computation attempts to use more registers than available, the
values of the affected registers are spilled into shared mem-
ory, resulting in a noticeable execution time difference (4- vs.
30-cycle latency for registers and shared memory, resp.).

Predictable execution time. The execution on GPUs is op-
timized to achieve high data throughput with deterministic
latency, but the execution time is non-deterministic (e.g., due
to multi-threaded execution, scheduling, and caching). The
VF execution time should have low variance so that the veri-
fier can predictably determine the execution time.

Challenge-dependent checksums. To prevent the adversary
from pre-computing the checksum before making changes
to the VF, and to prevent the replay of old checksum values,
the checksum needs to depend on an unpredictable challenge
sent by the verifier.

5.2 Concrete VF Design
The VF consists of initialization, self-verifying checksum
function to establish a dynamic root-of-trust, and establish-
ing an untampered execution environment including a key
establishment protocol between the verifier and the GPU.

During the initialization phase, the memory buffer is allo-
cated on the GPU and returned to the verifier. Then the VF
code is copied into the buffer.

5.2.1 Self-Verifying Checksum Function
The checksum function is used to obtain a guarantee that the
integrity of the VF code running on the GPU is unaffected
by an adversary. For this purpose, the checksum function
computes a checksum over the entire VF code. The resulting
checksum can be used as a fingerprint of the VF and enables
detection of changes to the VF code. If an adversary modifies
the VF code, the checksum will differ with high probability.
Thus, once the verifier receives a correct checksum within a
threshold time, it has a guarantee that the VF code running
on the GPU is unmodified.

Since the checksum computation code is part of the VF and
will thus be included in the checksum calculation, the check-
sum function computes the checksum over its own instruction
sequence and verifies itself. This property is further referred
to as self-verification.

Checksum initialization. GPUs contain multiple multipro-
cessors that can be used for parallel execution. To achieve the
maximal computational power of a GPU, the verifier sends
a set of challenges containing a specific challenge value for
each multiprocessor. Upon receiving a set of challenges, each
multiprocessor uses its challenge as a seed value to initialize
all per-thread state with pseudo-random data. Each thread
has its own set of registers which are used to store the run-

ning checksum values and a data pointer. The data pointer
references the VF code in the initially allocated buffer.

Checksum loop. The checksum computation is performed
iteratively. Each iteration executes the same number and type
of instructions and has a constant execution time.

Pseudo-random memory access prevents the adversary
from predicting which instruction will read the potentially-
modified memory location and forces the adversary to mon-
itor every memory read by the checksum code, resulting in
a noticeable time overhead. Indirectly, this process performs
the inclusion of the data pointer in the checksum to prevent
memory copy attacks (see §8).

Update the checksum. The running checksum values are
updated to include the accessed VF code into the checksum
value using a sequence of instructions. To achieve a time-
optimal implementation, we use simple arithmetic and logical
instructions (e.g., +, <<, >>, etc.) that are challenging to im-
plement faster or with fewer operations. Taking inspiration
from the strong ordering in [32], the instructions used to up-
date the checksum alternate between arithmetic and logical
instructions to enforce a strong ordering of the instructions.

Self-modifying code. The instructions of the self-modifying
code fragment depend on current value of the checksum and
are changed in each iteration of the checksum function. In
our case the current value of the checksum function is used as
an immediate value for an instruction (see §6.5 for details).

Checksum epilogue. Since the checksum computation is
conducted using individual threads located on different multi-
processors, the checksum values need to be aggregated before
sending the checksum result back to the verifier. This aggre-
gation is conducted in three steps. First, we aggregate the
checksum per warp. Each of the per-thread checksums is
added pairwise to obtain a warp-level checksum. Second, the
warp-level checksums are aggregated by thread block using
shared memory. Finally, we aggregate the checksum per grid
using global memory. Each of the aggregation steps uses a
pairwise addition (which is mapped to an atomic add instruc-
tion in native assembly). The final result of the checksum
computation is then sent to the verifier.

5.2.2 Untampered Execution Environment
After establishing a dynamic root-of-trust on the device, the
VF sets up an execution environment in which the user kernel
is guaranteed to run untampered. This includes setting up a
shared secret between the verifier and the device, and checking
the authenticity of the user kernel to be executed on the GPU
using a hash function. The shared secret can then be used
to authenticate and encrypt commands and data sent by the
verifier to the device and vice versa.

Key establishment. To establish a shared secret between the
verifier and the device, we rely on the SAKE protocol [31], a
protocol for key establishment between neighboring nodes in
sensor networks without requiring any prior secrets. The pro-
tocol is based on the Diffie-Hellman key exchange protocol

and uses the Guy Fawkes protocol [1] for authentication. The
Guy Fawkes protocol is based on hash chains and relies on
the property that each of the participants needs to authenticate
the other party’s hash chain. In SAKE, this authentication
is achieved using software-based attestation and exploits the
asymmetry in the computing time between the genuine check-
sum function executing on the device and an external entity
computing the checksum value. This allows us to use the
resulting checksum as a short-lived secret. Furthermore, the
SAKE protocol assumes that the adversary does not introduce
any computationally more powerful nodes into the network,
which aligns with the assumptions for SAGE (see §3.2).

To apply the SAKE protocol to SAGE, we change the
protocol as follows: 1) The checksum function in SAKE that
was proposed for the use in sensor networks is replaced with
SAGE’s checksum function. 2) Instead of both participants
acting as challengers, only the host enclave will engage as a
challenger. 3) We replace the cryptographic primitives used
in the protocol with AES-CMAC as the MAC function and
SHA256 as the hash function.

The key establishment protocol in SAGE works as fol-
lows. First, the verifier sets up its own hash chain for the Guy
Fawkes protocols and DH public key as:

V : v0 = ga mod p v1 = H(v0) v2 = H(v1) (1)
where a is a random bitstring a←R {0,1}n Then, it sends v2
to the device and records the current time as t0.

[t0] V→ D : v2 (2)
Upon receiving v2, the device uses it as a challenge for the
checksum function and then uses the computed checksum
and a random value to generate its own hash chain and replies
to the verifier:

D : w0 = H(c ∥ r) w1 = H(w0) w2 = H(w1) (3)
where r is a random bitstring r←R {0,1}n, c is the result of
the checksum computation and ∥ denotes to concatenation.

[t1] D→ V : w2, MACc(w2) (4)
The verifier checks if the measured execution time (t1− t0)
matches the expected execution time and aborts the protocol
otherwise. In the meantime, the device sets up its own DH
public key:

D : b←R {0,1}n k = gb mod p (5)
Then, the verifier and the device gradually disclose the re-
maining of their hash chains to each other:

V→ D : v1 D→ V : w1, k, MACw0(k) (6)
V→ D : v0 D→ V : r (7)

For each message the recipient checks whether the received
value matches the expected hash chain. Finally, the verifier V
and the device D compute the shared secret key skV D:

skV D = ka = (gb)a mod p skV D = vb
0 = (ga)b mod p (8)

After the dynamic RoT has been established on the GPU
and the integrity of the user kernel has been checked, the
host enclave can start transferring code and data to the GPU.
Depending on the sensitivity and security criticality of the do-
mains, the data could be either authenticated and/or encrypted
using the established symmetric key skV D.

Key estab.

Checksum
function

VF impl. Self-mod.
code

time-optimal
checksum

impl.

NVCC

Code
Generation
Framework

patch

PTX SASS

VF
CUDA

Figure 4: Code pipeline to generate the VF microcode. The green
blocks generated using our framework.

6 Implementation
The requirements to achieve a time-optimal (see §5.1) im-
plementation on the Ampere architecture (further discussed
in §6.3) include maximizing GPU utilization, consuming all
available compute resources, optimally filling the processing
pipelines, and optimizing cache usage.

Unlike the higher levels of the CUDA computing platform
such as the CUDA C++ language extension and the parallel
thread execution (PTX) virtual machine and instruction set
architecture, NVIDIA provides very little information about
the hardware-specific instruction sets for a specific target
architecture. Moreover, even if one resorts to write inline
PTX virtual assembly, the Streaming (or Shader) Assembler
(SASS) code emitted by the compiler often does not achieve
the performance of native GPU applications. The execution
of microcode that has been compiled using the regular CUDA
compiler often is on the order of 10x slower compared to
optimized microcode [14, 15]. As a consequence, libraries
used for high-performance computing (e.g., cuBLAS [25])
contain highly optimized microcode tailored to a specific
architecture. In addition to the performance gap to native
GPU code, the user has no control over the translation from
PTX virtual assembly to the SASS assembly for the target
architecture.

To achieve a time-optimal implementation, we needed to
implement a custom instruction generation framework that
allows patching of binary microcode with a highly optimized
version. The implementation of this framework requires un-
derstanding the Ampere architecture and the instruction for-
mat used in microcode. Although our focus in this paper is
on the A100, we expect that small modifications to the code
generator can provide support for the Volta and Turing ar-
chitectures as well. Figure 4 illustrates the pipeline used to
generate the VF. The VF is implemented using CUDA C++
and compiled using NVCC. However, the section containing the
checksum function is patched using an optimized implemen-
tation generated as binary microcode using our framework.

6.1 Instruction Decoding
To understand the instruction format used in the recent
Ampere GPU architectures, we implemented a framework
that allows decoding of instructions using cuobjdump and
nvdisasm [21] by decoding handcrafted code samples and
samples from existing CUDA libraries (e.g., cuBLAS [25]).

Instruction format. NVIDIA’s Ampere architecture adopts
the same general instruction format as its predecessors Turing
and Volta [14, 15]. All these architectures use 128 bits to en-
code both an instruction and its associated scheduling control
information. The encoding that is used in these architectures
is fixed length and uses similar encodings for all instructions.
Figure 5 illustrates a typical instruction encoding.

IADD3 R4, R4, 0x1, RZ ;
(1) (2) (3) (4)

neg
(2)

neg
(4)

neg
(1)

(3)(2)(1)predop

 ctrl info.unused

0 63

64 127

(4)
neg
(3)

Figure 5: Instruction as decoded by nvdisasm and its format.
pred denotes predicates, op refers to the operation code, and
neg allows negating the corresponding parameter.

Control information. The control information section in the
instruction encodes scheduling decisions taken by the com-
piler that the hardware must enforce. The control information
is organized as follows: reuse flags (4 b), wait barrier mask
(6 b), read barrier index (3 b), write barrier index (3 b), yield
flag (1 b), and the number of stall cycles (4 b). The reuse flags
allow data reuse between instructions without accessing any
register ports. The wait barrier mask and indices are used for
instructions with variable latency (e.g., instructions involving
a memory access). These dependency barriers can be used
to enforce the completion of variable-latency instructions.
The yield flag is used to balance the workload assigned to
a processing block. The stall cycles indicate the latency of
the instruction before issuing the next instruction. Jia et al.
present a detailed description of the control information [14].

6.2 Instruction Generation
Understanding the instruction format allows us to generate the
specific instructions we need for our implementation. These
instructions then need to be translated to the correct binary
format. For this purpose, we implement an instruction gen-
eration framework that allows emitting instructions either in
CUDA C++, the virtual assembly language PTX, or as binary
microcode that is natively executed on the GPU.

The instruction can be defined in the following format,
where the section separated using | symbol describes the
control information for the instruction (barrier mask B, read
barrier index R, write barrier index W, yield flag Y, and num-
ber of stall cycles S):
B......|R.|W.|Y1|S1| IMAD.U32 R28, R28, 2048, R28;

Our instruction generation framework then translates the
instruction to the selected target language (CUDA C++, PTX,
microcode). This allows us to rapidly prototype checksum
functions and compare performance between implementa-
tions in each of the languages.

6.3 Time-optimal Technical Requirements
We formulate the following technical requirements for a time-
optimal implementation of the checksum function. These are
subject to characteristics of the target architecture; in our case,
the NVIDIA Ampere architecture.

Maximize resource consumption. To maximize the resource
consumption during the checksum computation, the check-
sum function must use all available compute resources. The
NVIDIA A100 GPU has 108 Streaming Multiprocessors
(SMs) each containing 64 FP32 and 64 INT32 units [19] that
must be used during each clock cycle.

Optimally fill FMA and ALU pipelines. Since both the FMA
and ALU pipelines have an instruction issuing latency of 2
clock cycles, FP32 and INT32 instructions must be interleaved
to fully saturate both pipelines. In addition, instructions that
use registers with a direct dependency must be executed with
a latency of at least 4 clock cycles to avoid pipeline stalls (e.g.,
read-after-write dependency).

Optimal GPU utilization. To achieve full GPU utilization,
the number of threads per thread block needs to be picked
according to the target architecture. The A100 achieves full
GPU occupancy by assigning 2 blocks of size 1024 to all the
108 available SMs (216 total). Each SM has 65,536 32-bit
registers available for threads. To use all registers during the
checksum computation while maintaining full utilization of
the GPU, 32 registers are assigned per thread [22].

Cache size. The code blocks should not exceed the capacity
of L0 and L1 instruction caches (see Figure 1).

6.4 Selection of Optimal Overheads
An optimal implementation of a checksum function should
perform a useful computation step in each clock cycle. In
practice, this requires a highly optimized use of the underlying
hardware. In the following, we show a recipe for building such
a checksum function for the A100 GPU.

Unutilized clock cycles are mainly caused by instruction
cache misses, global memory access latency, pipeline stalls,
and jumps. In the beginning of each clock cycle, the SM
warp scheduler selects a subset of warps (up to S=4 on A100)
from all active warps (up to A=64 on A100) to execute. This
selection mechanism can avoid performance losses if at least
S are ready to execute on each clock cycle.

To analyze the performance of the checksum function, we
use a simplified model of the number of clock cycles per in-
struction. In the following, we will demonstrate that it helps
to reach the performance with the precisely specified number
of clock cycles. We distinguish the total number of useful
clock cycles X and overhead cycles Y, so that the total number
of clock cycles spent by the code using a single thread is
X+Y. For example, with proper instruction ordering to avoid
pipeline stalls, an IMAD instruction has X=1 and Y=0. An in-
struction reading from global memory has X=1 and approxi-
mately Y=250. To prevent attacks on the checksum function
by executing some instruction each clock, the value of Y must

not exceed X(A/S-1). Then, the GPU scheduler will be able
to completely hide the overhead Y so that the actual amount
of time spent will be X.

Integer shifts and multiplications with addition directly
affect the result of the checksum calculation. However, the
instruction to jump from the end of the loop body to its be-
ginning does not change the checksum. The attacker may try
to unroll a few iterations of the loop to save the clock cycles
required to perform this jump (and potentially misuse them
for an attack). To prevent such attacks, we unroll the loops
until it is not possible to unroll them further without caus-
ing instruction cache misses. The target value Y for unrolling
must be so large that one additional instruction cache miss
will increase it to Y’ without the possibility for a hardware
scheduler to compensate for the increase (and potentially hide
it) using scheduling.

In practice, we have noticed that achieving this level of
control over the order of instructions, and the arrangement of
unrolled loops is very difficult without vendor support: the
documentation on SASS and hardware details is deliberately
kept closed to reduce backward-compatibility issues. It is
especially difficult to control instruction cache misses because
of the use of self-modifying code to protect against memory
copy attacks. The only way to invalidate the instruction cache
on the A100 is to overflow it with the block of instructions of
the cache size, so controlling the value of Y by changing the
size of the checksum function is not possible. That leaves only
memory accesses and jumps that can change Y. We assume
that adding an instruction to invalidate the instruction cache
requires minimal (or no) changes to the GPU architecture
because a similar instruction already exists for the data cache
(discard in PTX ISA or CCTL in SASS).

6.5 Implementation of SAGE
Verifier. We implement the verifier enclave using the Intel
SGX SDK [11] and its tcrypto library [10]. The enclave cre-
ates a CUDA context on the GPU, loads the VF as a module,
and calls the VF kernel. To generate nonces in the enclave
that are then transferred to the GPU as challenges, we use
AES-CTR with an IV that has been generated using a TRNG
during the enclave creation.

VF. The VF is implemented in CUDA C++, except the
checksum function component, which is patched by binary
microcode using our framework. The checksum function exe-
cutes a loop containing the following operations.

First, the iteration counter is increased and checked if
the maximum number of iterations is reached. Then the
VF data block D is read from memory from the location
defined by the current checksum value C, used as an off-
set: D=data_ptr+(4×C mod data_size). After the load is
complete, it is included in the checksum C+=D.

The read from main memory may take 250 – 500 cycles
to be completed. The GPU compiler sets a read barrier for
this instruction and the GPU stalls the compute pipeline until

the read has been completed. Instead of the stall, we develop
an instruction pattern that is executed while waiting for the
memory read to complete (“busy waiting”). We use inter-
leaved (see §6.3) X+=X<<N with IMAD (FMA) and X+=X>>N
with LEA.HI (ALU) instructions where X is any of 32 registers.
The security of this computation depends on the existence of
an alternative sequence of instructions which can compute the
result faster. We expect that for some cases of long sequences
or poorly chosen shift amounts, it is possible to find a short-
cut constructed similarly to the jump ahead function in the
xorshift pseudo-random number generator (PRNG) [45]. To
prevent such shortcuts, we partition long sequences by requir-
ing materialization of intermediate values, breaking them with
random memory accesses included in the checksum. We aim
for sequences of such length that the cost of implementing a
shortcut is higher than performing the actual computation.

After updating the checksum function, we compute the
self-modifying code that consists of the following binary in-
struction: C+=C>>N, where the immediate N depends on the
current checksum value. We overwrite immediate parameter
with the current value of the checksum. Thus, the value of N
changes for each iteration and ensures that we are executing
the code that we are verifying. To avoid race conditions when
updating the immediate value of these instructions, these in-
structions are required to be located in different memory areas
for each thread block.

6.6 Random Number Generation on GPUs
For the key establishment protocol based on the modified
SAKE protocol, the GPU needs to be able to generate random
values. Given that the adversary knows the entire code execut-
ing on the GPU, we cannot use a secret provided by verifier
to initialize the PRNG used in the protocol, but instead must
rely on a true random number generator (TRNG).

TRNG implementation on GPUs. Approaches that use
physical unclonable functions (PUFs) to initialize PRNGs on
the GPU [7, 30, 43] are not practical to be used in SAGE as
they either require resetting the GPU or use features that are
under control of the adversary (e.g., voltage supplied to the
GPU). Consequently, we use a TRNG implementation which
is based on race conditions in multi-core environments caused
by simultaneous memory accesses to shared variables. It takes
advantage of uncertainties that arise when cores simultane-
ously access a particular memory location [40]. In our case,
each simultaneous memory access unpredictably flips bits
stored in shared variables. This unpredictability enables the
GPU to generate noise which can be sampled and then used
as an entropy source. We evaluated our implementation using
statistical tests such as NIST SP 800-22 [36], DIEHARD [17],
and ENT [47]. The TRNG implementation passes all standard
tests and achieves a throughput of 4 kB/s on NVIDIA A100
GPUs and thus takes around 8 ms to generate an output of
256 bits. The TRNG provides 7.999 996 bits of entropy per
byte (measured using ENT [47]).

7 Evaluation

Evaluation setup. To evaluate the performance of the check-
sum function, we use a setup based on an ASUS RS720-E10-
RS12E equipped with a A100-PCIE-40GB GPU and Intel
Xeon Gold 6348 CPU [12] which natively supports SGX
instructions. We run the SGX enclave in both native and
simulation mode. To benchmark the execution time of the ver-
ification process and evaluate runtime overheads, we also run
the VF on a dual-socket system with an A100-SXM4-40GB
and AMD EPYC 7742 CPU.

Register consumption. For the execution of the checksum
function, the loop counter, data pointer, and the checksum
result are stored in registers. In addition to those registers, we
use 22 additional registers to store intermediate state during
the computation of the checksum. In total, the checksum
function verifies 524,288 bytes. The beginning of the buffer
contains the checksum function itself, whereas the remainder
is filled with pseudo-randomly generated values.

Experiment Nr. 1 2 3 4

self-modifying code ✗ ✗ ✓ ✓

instructions 428 429 8,342 8,342
iterations 100,000 100,000 1,000 1,000
inner iterations 0 0 0 5000
inner instructions 0 0 0 216

verification (AMD) [s] 21.6 21.6 9.99 497
verification (Intel) [s] 102 102 47.0 2337

runtime Tavg [s] 0.4941 0.4977 0.1309 12.40
% of GPU peak perf. 99 98 75 100

adversarial NOP ✗ ✓ ✗ ✗

runtime σ [s] 0.0009 — — —
runtime Tmin [s] — 0.4966 — —
Tavg +2.5σ [s] 0.4964 — — —

Table 1: Evaluation of checksum implementations.

Summary of results. Table 1 summarizes our experiment
series conducted to evaluate the performance of SAGE’s VF.
We distinguish between two categories depending on whether
the checksum function contains self-modifying code or not.
Depending on the category, the total number of instructions
and number of checksum loop iterations are adapted. For
each experiment, we report the VF’s execution time on the
GPU, the utilization ratio during the checksum execution, the
verification time on the CPU, detection threshold, etc.

Experiment 1 demonstrates our best reference implemen-
tation. Experiment 2 simulates an attack on the checksum
function from the first experiment. In Experiment 3, we show
the effect on the performance of adding self-modifying code
to the reference implementation. Experiment 4 shows a possi-
ble technique to compensate for the loss of performance with
enabled self-modifying code.

7.1 VF Performance
To evaluate the performance of VF, we report its average
runtime and utilization ratio during the checksum execution
(Table 1). As a reference for this ratio, we use the peak GPU
performance, which assumes that the number of warps that
are executed concurrently per clock cycle is 4 (see §6.4).

We compare our reference implementation from Experi-
ment 1 (in SASS) with the same code written in PTX (virtual
assembly), that has been processed using the NVIDIA PTXAS
assembler with the highest possible level of optimization en-
abled. In comparison, the optimized version of the checksum
function that we generated using our instruction generation
framework is around ∼230% faster than an implementation
in PTX.

The checksum functions in Experiments 3 and 4 contain
self-modifying code. This requires triggering cache eviction
of the instruction cache such that the modified instruction gets
updated. To trigger the cache eviction for the L2 instruction
cache (128 kB), the checksum loop is required to be larger
than the cache size. As a consequence, we use 8342 16 B
instructions in the checksum loop. With this cache eviction
strategy, our implementation is able to achieve 75% of the
maximum utilization. Upon closer inspection with a GPU pro-
filer, we find that 99% of all pipeline stalls that happen during
the execution of the checksum function are caused by the fact
that no instructions are available in the instruction cache to be
executed. On average, each warp of this kernel spends 14.1
cycles being stalled due to not having the next instruction
fetched yet. In comparison, reducing the size of the checksum
loop to 6.7 kB (as in Experiment 1), we achieve a utilization
of 99% without triggering cache eviction. This means that
the hardware is unable to load the modified instructions in
time for execution without causing any pipeline stalls. By
comparing the VF’s performance in Experiments 1 and 3, we
can conclude that a higher utilization can be achieved in case
other cache eviction strategies become available (see §6.4).

In addition to the previous experiment, we modified the
checksum function by adding an “inner” loop to the main loop
of the checksum function calculation (Experiment 4). This
effectively hides the performance loss due to cache misses
in the instruction cache and achieves 100% of the GPU peak
performance. However, the time required to verify the code
outside of the nested loop drastically increases and is thus
considered too long to be practical.

7.2 Attack Robustness
To evaluate the robustness of our VF implementation with
regards to attacks, we estimate the number of instructions that
can be injected by an adversary without causing a noticeable
time overhead. For this purpose, we measure the performance
of the checksum function for 100,000 iterations and record
the standard deviation σ of the total execution time based
on 100 runs. We assume that the results of this experiment
series are normally distributed and set the threshold value to

128 256 512 1024 2048 4096 8192 16384 32768 65536 131072
Batch size

0.0

0.5

1.0

1.5

2.0

Ti
m

e
pe

r s
am

pl
e

[u
s] Baseline SAGE

Figure 6: Time per batch sample in MLP.

detect adversarial tampering to be at 2.5 ·σ from the mean.
The probability of a false positive is about 0.5%, in which
case the verification process is restarted. Depending on the
application requirements, the probability of false positives can
be decreased at the expense of a larger number of iterations.

To evaluate the robustness of this approach, we insert one
additional NOP instruction in Experiment 2 (adversarial NOP)
and report the minimum run time Tmin (averaged over 100
runs). Assuming a detection threshold of Tavg +2.5σ, we can
conclude that Tavg +2.5σ < Tmin and thus it is impossible to
insert one or more instruction without detectable overhead.

Time measurement occurs on the CPU, including the time
of communication between the CPU and GPU, in addition
to the checksum computation loop. This raises the question
of performance portability across hardware configurations.
Since the configuration is fixed and assumed to be trusted,
communication adds a constant time that can be measured
offline once and then reused. This approach allows us to
consider only the checksum loop in the detection threshold.

7.3 Memory Region Inclusion Probability
To evaluate how resilient our approach is regarding minor
modifications in memory region containing the VF code (e.g.,
bit flips), we estimate the probability that a particular location
is never included into the checksum result. We assume that
memory accesses are distributed uniformly. Each block con-
tains a single random memory access that loads an aligned
32-bit integer. For 2,500,000 iterations and a total checksum
size of 524,288 integers, the probability that a memory loca-
tion is never included in the checksum result is negligible:

(1−1/524288)2500000 = 0.0085

7.4 Runtime Overheads
Figure 6 shows a performance evaluation of SAGE using a
multilayer perceptron (MLP) as an example. It consists of
two Linear layers with weights of size 784×100 and 100×10,
with a Relu layer in between. As the workload increases, the
overhead associated with the non-standard SAGE communi-
cation protocol becomes less noticeable.

The main sources of overhead are data transfers and kernel
launches. Figure 7 shows that the copy operation requires ad-
ditional time, which is a linear function of the input data size
due to the additional data transfer between the host-accessible
GPU memory and the GPU memory allocated by the SAGE
kernel. SAGE adds less than 5% extra execution time to user

0.0 0.5 1.0 1.5
Input size [GB]

0

1

2

3

Ti
m

e
[m

s]

Copy
-0.10 + 2.21 * x
measured

0 50 100 150 200
Kernel runtime [ms]

0

5

10

15

20

La
un

ch
 o

ve
rh

ea
d

[%
]

0.17 ms

14.24 ms

Kernel

Figure 7: Overheads of data transfers and kernel launches.

kernels, which originally took more than 14.24 ms. Our evalu-
ation does not take into account the overhead associated with
the implementation of the encryption-decryption protocol,
since its choice is left to the user.

7.5 Limitations of the Prototype
The use of self-modifying code requires triggering cache evic-
tion of the instruction cache such that the modified instruction
gets updated. With this cache eviction strategy, our imple-
mentation is able to achieve 75% of the maximum utilization.
This is due to the GPU hardware not being able to load the
required instructions in time for processing after the L2 cache
eviction. If other cache eviction strategies become available to
user code, higher utilization can be achieved. Unfortunately,
triggering cache eviction using a large checksum loop limits
the time difference caused by an adversary inserting instruc-
tions into the checksum loop. We believe that GPU vendors
with in-depth knowledge of GPU architecture would be able
to reduce the checksum loop size and use self-modification.

8 Security Analysis
In the following, we systematically analyze potential attacks
given our threat model (see §3.3).

Pre-computation. The result of the checksum function de-
pends on an unpredictable challenge issued by the verifier
enclave. This prevents pre-computation attacks where the
checksum value or part of the checksum (e.g., intermediate
values) are pre-computed to later run code other than the VF.

Computation optimizations. The checksum function imple-
mentation must be time-optimal as algorithmic optimization
would allow the adversary to find computationally faster or
more efficient way of computing the checksum value (see §6.3
for details). SAGE is designed to prevent optimization, but to
achieve provable guarantees the method of Gligor and Woo
could be applied [8].

Attacks on the host system. The host system is untrusted (ex-
cept for the verifier enclave) and the adversary is assumed to
have administrative control over the system. This enables the
adversary to eavesdrop, intercept, modify, or delay challenges
or checksum results being transmitted between the verifier
and the device. Given that the communication channel during
the checksum computation is unauthenticated, the adversary
could also inject challenges or checksum results. Modifica-
tions to the challenge would lead to a different checksum
result. By injecting challenges the adversary could treat the

orig.
VF

orig.
VF

mal.
VF

mal.
VF

orig.
VF

mal.
VF

orig.
VF

PC

DP

PC

PC

PC
DP

DP

DP

(a) (b) (c) (d)

Figure 8: Memory copy attack variants.

VF as an oracle; however, given the unpredictable challenge
generation, the probability of the verifier reusing the same
challenge value is negligible.

Attacks on the device / Resource takeover. Before running
the verification function, the device is considered untrusted.
An adversary could be present on the device and interfere with
the execution of the VF (e.g., by replacing or reordering in-
structions). This is prevented by the self-verification property
and the strongly-ordered design of the checksum function. A
strongly-ordered function requires the adversary to perform
the same operations on the same data in the same sequence as
the original function to obtain the correct result. Otherwise,
the output differs with high probability if operations that have
dependencies among them are evaluated in a different order.

Our design uses all available SMs simultaneously and max-
imizes thread and register usage. Thus, if an adversary would
run a computation, the checksum computation would be de-
ferred resulting in a considerable time overhead. However, the
execution of a user kernel might not require all available GPU
resources and would allow the adversary to take over these
available resources. To prevent such attacks we require the
user to develop kernels to achieve maximum GPU occupancy.

Memory copy attacks. Seshadri et al. [32,33] specify mem-
ory copy attacks that can be conducted by the adversary in
the following three different ways as illustrated in Figure 8:

(b) The adversary replaces the checksum function with an
altered checksum function and executes it, but computes the
checksum over a correct copy of the checksum function else-
where in memory. Thus, the program counter is correct, but
the data pointer points to the original copy of the checksum
function in a different memory location.

(c) The adversary uses the correct checksum function code
in the original memory location to compute the checksum
value, but executes a modified checksum function elsewhere
in memory. Thus, the data pointer points to the original check-
sum function, but the program counter will be different.

(d) The adversary places both the original checksum func-
tion code and its altered version elsewhere from the memory
locations where the correct checksum code originally resided.
Thus, both the program counter and the data pointer will be
different compared to an execution of the original checksum
function.

To prevent memory copy attacks, both the program counter
and the data pointer need to be included in the computation
of the checksum. The DP is included in each step of the

computation, whereas the PC is indirectly included using self-
modifying code. In addition to these specified attacks, the
attacker could also copy the entire checksum function to a
different location. This will not lead to a successful attack
because the absolute location of the checksum function is
irrelevant to security as long as the function pointer and the
data pointer remain the same relative to the location of the
effective checksum function in memory.

Proxy attacks. We refer to proxy attacks as attacks where
the adversary eavesdrops on the communication and obtains
the challenge sent to the device, sends it to a proxy, computes
the checksum function there and returns the result to the ver-
ifier. We distinguish between the following cases. GPUs on
the same host: we establish (and maintain) root-of-trust in
sequence starting from the most powerful GPU to the least
powerful one. GPUs on a different host: by involving a re-
mote entity, the measured execution time will increase by the
network latency for both sending the challenge and receiving
the response. Tuning the number of checksum iterations to
make the detection threshold smaller than the network latency,
prevents using a more powerful GPU in a remote location.

Time-of-check to time-of-use attacks [5] / Execution en-
vironment takeover. In SAGE, these attacks are considered
because the checksum computation happens prior to the exe-
cution of the user kernel. In particular, the adversary has two
points where it could take over the execution environment set
up by the VF: 1) before the launch of the user kernel, and
2) after the execution of the user kernel has completed. The
former case is prevented by launching the user kernel(s) from
within the VF epilogue. In the latter case, the execution of the
user computation has finished and thus the user is indifferent
whether the dynamic root-of-trust has been compromised. If
the user wants to execute another kernel, the dynamic RoT
needs to be re-established.

Replay attacks. To protect against duplicate transmissions
of encrypted code and data between the SGX enclave and
GPU, we add sequence numbers to each transmission.

Execution integrity and memory protection. While code
and data are encrypted in transit, they have to be decrypted
before use and placed into GPU memory. We control the allo-
cation of memory from the kernel caller by calling malloc()
from the device code. CUDA guarantees that the memory al-
located in this way (unlike cudaMalloc()) is not accessible
from the CUDA runtime or driver API. Therefore, even an
attacker with root access to the operating system will not be
able to access application code and data from such areas.

8.1 Formal Verification of Modified SAKE
To show that our modified SAKE protocol securely estab-
lishes a key between the verifier and the GPU, we have for-
mally modeled the key establishment protocol and verified its
security properties using the Tamarin prover [38] under the as-
sumption that the computed checksum provides a short-lived
secret. To model this property in Tamarin, we use a single-use

authentic channel over which we send w2,MACc(w2). We
show that the established symmetric key remains secret and is
unique, a weak agreement exists between the verifier and the
device, and recent liveness for each run of the protocol [37].

9 Related Work

To support trusted execution on GPUs, the following ap-
proaches were proposed. Graviton [46] specifies an architec-
ture for supporting trusted execution environments on GPUs
by changing the GPU’s command processor to perform re-
mote attestation based on device specific keys and ensure
isolation between multiple processes running on the GPU.
This is achieved by utilizing a set of keys where the root
key gets embedded into the hardware of the device upon its
creation. The latter requires modification to the GPU hard-
ware by modifying the GPU’s internal command processor to
impose a strict ownership discipline.

HIX [13] proposes a heterogeneous isolated execution en-
vironment. HIX does not require modifications to the GPU
architecture to offer an isolated execution environment, but
instead physically modifies the I/O interconnect between the
CPU and GPU and refactors the GPU device driver to work
from within a TEE on the host. The TEE can then allocate
trusted enclaves on the GPU.

HETEE [49] is based on a standalone computing system to
dynamically allocate accelerators (such as GPUs or FPGAs)
for either secure computing, or available to the host OS using
PCIe switches. The security controller (and its software) is as-
sumed to be trusted and interacts with the management CPU
to control PCIe switching. HETEE attempts to provide isola-
tion by selectively making accelerators available to specific
applications by controlling communication to the accelerator
through the security controller.

Telekine [9] illustrates side-channel attacks against TEE
on GPUs based on observing the timing of GPU kernel execu-
tion. It then introduces a GPU stream abstraction that ensures
execution and interaction through untrusted components are
independent of any secret data. Telekine requires a GPU TEE
to be deployed.

Machine learning represents a major use case for using
GPUs as accelerators and can require privacy-preserving ap-
proaches for sensitive data. Slalom [42] uses a combination of
a trusted enclave and untrusted GPU. The system decomposes
the machine learning into two parts, where the control flow
part runs inside the trusted enclave and operations that are
not privacy sensitive (such as convolutions based on matrix
multiplications) are offloaded to the GPU. Unfortunately, the
split results in a decrease of training and inference accuracy.

SOTER [35] relies on the associativity property of oper-
ators present in DNN models. It assumes that the GPU is
untrusted and sends modified parameter data from the SGX
enclave. The output data received from the GPU is converted
again to produce the expected result. To check the integrity of

the result, SOTER creates challenges and expects the GPU to
return a proof of computation. If the integrity is compromised,
the proof will be incorrect.

9.1 Hardware-based Attestation
NVIDIA has introduced a confidential computing [26] feature
in the Hopper architecture. While technical details are cur-
rently scarce, this feature is touted to require no changes to
the application code, while ensuring both the confidentiality
and integrity of data and code running on the device.

With the addition of a vendor-backed hardware TEE solu-
tion, there is a question regarding the relevance of software-
based attestation. While a hardware implementation provides
reasonable levels of security, there have been several examples
where the hardware-based techniques were flawed [6, 28, 44].
In these cases software-based techniques could come to the
rescue. Software attestation can be complementary to the
newly-added confidential computing feature and add another
level of security to achieve defense in depth. Further, since
the software layer doesn’t rely on the private keys embedded
in hardware by the manufacturers, it also reduces the TCB.

The trust required to obtain the properties provided by
attestation is further reduced by combining both hardware-
and software-based approaches. In essence, as long as one
of the attestation methods is secure, the properties obtained
using attestation hold.

9.2 Software-based Attestation
SWATT [33] uses a verification function that is based on
pseudo-random memory traversal to compute the checksum.
The verifier measures the execution time and verifies the
checksum. Malicious code is required to verify each memory
access to replace memory reads of changed locations with ex-
pected content, resulting in detectable time overhead. SWATT
checks the entire memory of a system and its running time
becomes prohibitive on systems with large memories.

PIONEER [32] verifies the integrity and guarantees the
execution of code using a checksum function that is closely
tied to the Pentium 4 architecture. The checksum function
computes a fingerprint of the verification function and sets up
an untampered execution environment. It is constructed such
that manipulations by the adversary will noticeably increase
the computation time.

Kovah et al. [16] and Butterworth et al. [3] extended the
checksum computation to work on a Microsoft Windows
system (CPU only), enabling a remote verifier to attest to a
running system in a corporate environment.

Shaneck et al. [34] describe a software-based approach to
remotely attest the static memory contents of sensors without
requiring any additional hardware on the sensors nor precise
measurements of execution timing. They use self-modifying
code that generates memory read and jump instructions during
the execution of their code.

Gligor and Woo [8] proposed a system that allows to prov-

ably establish a root of trust and provide secure initial states
for all software unconditionally. The authors design a fam-
ily of k-independent (almost) universal hash functions based
on polynomials and use Horner’s rule to show time- and
memory-optimal evaluation of polynomials. An interesting
area of future work is to translate these results to the context
of computation on GPUs.

10 Conclusion

The prospect of software-only trust root establishment and
secure code execution on GPUs offers exciting opportunities:
execution of sensitive GPU code that should not be leaked to
the GPU operator (code secrecy), correct execution of GPU
code in an adversarial environment (code and execution in-
tegrity), preserving data correctness and confidentiality in
the presence of malicious code on the system (data secrecy
and integrity). SAGE represents a first step for achieving
these properties on the NVIDIA Ampere architecture, un-
der the circumstances that the architectural details about the
Ampere architecture are closed-source. Since architectural
knowledge for designing the verification function (VF) is key,
our software-based approach to provide secure code execution
on GPU paves the way forward for GPU vendors: they are
naturally in a position to align the design of the VF to their
architectural knowledge and lead the standardization process
for trust establishment on GPUs.

Remaining open challenges include the design of software-
based secure execution on alternative platforms, improving
the execution speed of the verification function, and extend
the execution model to support libraries that use a hybrid
CPU+GPU compute model (e.g., TensorFlow [41]). Ulti-
mately, an interesting future research question to answer is the
interplay between hardware- and software-based approaches
for trusted execution to achieve the strongest possible security
properties for GPU-based execution.

Acknowledgments

This work was supported by the European Union’s HE re-
search and innovation programme under the grant agreement
No. 101070141 (Project GLACIATION). We thank CSCS for
providing access to compute resources used for this work.

References

[1] Ross Anderson, Francesco Bergadano, Bruno Crispo,
Jong-Hyeon Lee, Charalampos Manifavas, and Roger
Needham. A new family of authentication protocols.
ACM SIGOPS Operating Systems Review, 32(4):9–20,
1998.

[2] ARM. ARM TrustZone technology. https:
//developer.arm.com/ip-products/security-ip/
trustzone, 2021. [Online; accessed 01-Feb-2022].

https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone

[3] John Butterworth, Corey Kallenberg, Xeno Kovah, and
Amy Herzog. BIOS chronomancy: Fixing the core
root of trust for measurement. In Proceedings of ACM
SIGSAC Conference on Computer and Communications
Security (CCS), November 2013.

[4] Victor Costan and Srinivas Devadas. Intel SGX ex-
plained. IACR Cryptol. ePrint Arch., 2016(86):1–118,
2016.

[5] Ivan De Oliveira Nunes, Sashidhar Jakkamsetti, Nor-
rathep Rattanavipanon, and Gene Tsudik. On the TOC-
TOU problem in remote attestation. In Proceedings of
the 2021 ACM SIGSAC Conference on Computer and
Communications Security, pages 2921–2936, 2021.

[6] Mark Ermolov and Maxim Goryachy. How to hack a
turned-off computer, or running unsigned code in Intel
Management Engine. Black Hat Europe, 2017.

[7] Bruno Forlin, Ronaldo Husemann, Luigi Carro, Cezar
Reinbrecht, Said Hamdioui, and Mottaqiallah Taouil. G-
PUF: An intrinsic PUF based on GPU error signatures.
In IEEE European Test Symposium (ETS), pages 1–2,
2020.

[8] Virgil D Gligor and Shan Leung Maverick Woo. Estab-
lishing software root of trust unconditionally. In NDSS,
2019.

[9] Tyler Hunt, Zhipeng Jia, Vance Miller, Ariel Szekely,
Yige Hu, Christopher J Rossbach, and Emmett Witchel.
Telekine: Secure computing with cloud GPUs. In 17th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), pages 817–833, 2020.

[10] Intel. Interface for generic crypto library APIs
required in SDK implementation. https:
//github.com/intel/linux-sgx/blob/master/
common/inc/sgx_tcrypto.h, 2021. [Online; accessed
01-Feb-2022].

[11] Intel. Software Guard Extensions for Linux. https:
//github.com/intel/linux-sgx, 2021. [Online; ac-
cessed 01-Feb-2022].

[12] Intel. Xeon Gold 6348 Processor. https:
//ark.intel.com/content/www/us/en/ark/
products/212456/intel-xeon-gold-6348-
processor-42m-cache-2-60-ghz.html, 2021.
[Online; accessed 01-Feb-2022].

[13] Insu Jang, Adrian Tang, Taehoon Kim, Simha Sethu-
madhavan, and Jaehyuk Huh. Heterogeneous isolated
execution for commodity GPUs. In Proceedings of the
Twenty-Fourth International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems (ASPLOS), pages 455–468, 2019.

[14] Zhe Jia, Marco Maggioni, Jeffrey Smith, and
Daniele Paolo Scarpazza. Dissecting the NVIDIA
Turing T4 GPU via microbenchmarking. arXiv preprint
arXiv:1903.07486, 2019.

[15] Zhe Jia, Marco Maggioni, Benjamin Staiger, and
Daniele P Scarpazza. Dissecting the NVIDIA Volta
GPU architecture via microbenchmarking. arXiv
preprint arXiv:1804.06826, 2018.

[16] Xeno Kovah, Corey Kallenberg, Chris Weathers, Amy
Herzog, Matthew Albin, and John Butterworth. New
results for timing-based attestation. In IEEE Symposium
on Security and Privacy (SP), May 2012.

[17] George Marsaglia. DIEHARD: A battery of tests of
randomness. 1996.

[18] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo,
Yury Audzevich, Sergio López-Buedo, and Andrew W
Moore. Understanding PCIe performance for end host
networking. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication,
pages 327–341, 2018.

[19] NVIDIA. Ampere architecture in-depth.
https://developer.nvidia.com/blog/nvidia-
ampere-architecture-in-depth/, 2020. [Online;
accessed 01-Feb-2022].

[20] NVIDIA. How NVIDIA EGX is forming
central nervous system of global industries.
https://blogs.nvidia.com/blog/2020/05/15/
egx-security-resiliency/, 2020. [Online;
accessed 01-Feb-2022].

[21] NVIDIA. CUDA binary utilities. https:
//docs.nvidia.com/cuda/cuda-binary-
utilities/index.html, 2021. [Online; accessed
01-Feb-2022].

[22] NVIDIA. CUDA occupancy calculator.
https://docs.nvidia.com/cuda/cuda-occupancy-
calculator/index.html, 2021. [Online; accessed
01-Feb-2022].

[23] NVIDIA. INT 32 and FP64 can be used con-
currently in the Volta architecture? https:
//forums.developer.nvidia.com/t/int-32-
and-fp64-can-be-used-concurrently-in-the-
volta-architecture/108729/4, 2021. [Online;
accessed 01-Feb-2022].

[24] NVIDIA. Multi-instance GPU user guide.
https://docs.nvidia.com/datacenter/tesla/
mig-user-guide/, 2021. [Online; accessed 01-Feb-
2022].

https://github.com/intel/linux-sgx/blob/master/common/inc/sgx_tcrypto.h
https://github.com/intel/linux-sgx/blob/master/common/inc/sgx_tcrypto.h
https://github.com/intel/linux-sgx/blob/master/common/inc/sgx_tcrypto.h
https://github.com/intel/linux-sgx
https://github.com/intel/linux-sgx
https://ark.intel.com/content/www/us/en/ark/products/212456/intel-xeon-gold-6348-processor-42m-cache-2-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/212456/intel-xeon-gold-6348-processor-42m-cache-2-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/212456/intel-xeon-gold-6348-processor-42m-cache-2-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/212456/intel-xeon-gold-6348-processor-42m-cache-2-60-ghz.html
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
https://blogs.nvidia.com/blog/2020/05/15/egx-security-resiliency/
https://blogs.nvidia.com/blog/2020/05/15/egx-security-resiliency/
https://docs.nvidia.com/cuda/cuda-binary-utilities/index.html
https://docs.nvidia.com/cuda/cuda-binary-utilities/index.html
https://docs.nvidia.com/cuda/cuda-binary-utilities/index.html
https://docs.nvidia.com/cuda/cuda-occupancy-calculator/index.html
https://docs.nvidia.com/cuda/cuda-occupancy-calculator/index.html
https://forums.developer.nvidia.com/t/int-32-and-fp64-can-be-used-concurrently-in-the-volta-architecture/108729/4
https://forums.developer.nvidia.com/t/int-32-and-fp64-can-be-used-concurrently-in-the-volta-architecture/108729/4
https://forums.developer.nvidia.com/t/int-32-and-fp64-can-be-used-concurrently-in-the-volta-architecture/108729/4
https://forums.developer.nvidia.com/t/int-32-and-fp64-can-be-used-concurrently-in-the-volta-architecture/108729/4
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/

[25] NVIDIA. Basic linear algebra on NVIDIA GPUs.
https://developer.nvidia.com/cublas, 2022. [On-
line; accessed 01-Feb-2022].

[26] NVIDIA. NVIDIA H100 Tensor Core GPU architecture.
https://resources.nvidia.com/en-us-tensor-
core/gtc22-whitepaper-hopper, 2022. [Online;
accessed 12-Dec-2022].

[27] Lena E Olson, Jason Power, Mark D Hill, and David A
Wood. Border control: Sandboxing accelerators. In 48th
Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO), pages 470–481. IEEE, 2015.

[28] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert
Bos, and Cristiano Giuffrida. CrossTalk: Speculative
data leaks across cores are real. In 2021 IEEE Sympo-
sium on Security and Privacy (SP), pages 1852–1867.
IEEE, 2021.

[29] Research and Markets. Data center ac-
celerator market – global forecast to 2026.
https://www.researchandmarkets.com/reports/
5390148/data-center-accelerator-market-
by-processor-type, 2021. [Online; accessed
01-Feb-2022].

[30] André Schaller, Wenjie Xiong, Nikolaos Athanasios
Anagnostopoulos, Muhammad Umair Saleem, Sebas-
tian Gabmeyer, Boris Škorić, Stefan Katzenbeisser, and
Jakub Szefer. Decay-based DRAM PUFs in commodity
devices. IEEE Transactions on Dependable and Secure
Computing, 16(3):462–475, 2019.

[31] Arvind Seshadri, Mark Luk, and Adrian Perrig. SAKE:
Software attestation for key establishment in sensor net-
works. In International Conference on Distributed Com-
puting in Sensor Systems, pages 372–385, 2008.

[32] Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig,
Leendert Van Doorn, and Pradeep Khosla. Pioneer:
Verifying code integrity and enforcing untampered code
execution on legacy systems. In Proceedings of the ACM
symposium on Operating systems principles, pages 1–
16, 2005.

[33] Arvind Seshadri, Adrian Perrig, Leendert Van Doorn,
and Pradeep Khosla. SWATT: Software-based attes-
tation for embedded devices. In IEEE Symposium on
Security and Privacy (SP), pages 272–282, 2004.

[34] Mark Shaneck, Karthikeyan Mahadevan, Vishal Kher,
and Yongdae Kim. Remote software-based attestation
for wireless sensors. In European Workshop on Security
in Ad-hoc and Sensor Networks, pages 27–41. Springer,
2005.

[35] Tianxiang Shen, Ji Qi, Jianyu Jiang, Xian Wang,
Siyuan Wen, Xusheng Chen, Shixiong Zhao, Sen Wang,
Li Chen, Xiapu Luo, Fengwei Zhang, and Heming Cui.
SOTER: Guarding black-box inference for general neu-
ral networks at the edge. In 2022 USENIX Annual Tech-
nical Conference (USENIX ATC 22), pages 723–738,
Carlsbad, CA, July 2022. USENIX Association.

[36] Elaine Barker Smid, Stefan Leigh, Mark Levenson,
Mark Vangel, David Banks, Alan Heckert, James
Dray, and San Vo. A statistical test suite for random
and pseudorandom number generators for crypto-
graphic applications. Special Publication (NIST
SP), National Institute of Standards and Technol-
ogy. https://tsapps.nist.gov/publication/
get_pdf.cfm?pub_id=906762, 2010. [Online;
accessed 01-Feb-2022].

[37] Tamarin Team. Tamarin manual - property specification.
https://tamarin-prover.github.io/manual/
book/007_property-specification.html, 2021.
[Online; accessed 01-Feb-2022].

[38] Tamarin Team. Tamarin prover. https://tamarin-
prover.github.io/, 2021. [Online; accessed 01-Feb-
2022].

[39] TechSpot. Intel’s SGX deprecation impacts
DRM and Ultra HD Blu-ray support. https:
//www.techspot.com/news/93006-intel-sgx-
deprecation-impacts-drm-ultra-hd-blu.html,
2022. [Online; accessed 01-Feb-2022].

[40] Je Sen Teh, Azman Samsudin, Mishal Al-Mazrooie, and
Amir Akhavan. GPUs and chaos: A new true random
number generator. Nonlinear Dynamics, 82(4):1913–
1922, 2015.

[41] Tensorflow. An end-to-end open source machine learn-
ing platform. https://www.tensorflow.org/, 2021.
[Online; accessed 01-Feb-2022].

[42] Florian Tramer and Dan Boneh. Slalom: Fast, verifi-
able and private execution of neural networks in trusted
hardware. arXiv preprint arXiv:1806.03287, 2018.

[43] Pol Van Aubel, Daniel J Bernstein, and Ruben Nieder-
hagen. Investigating SRAM PUFs in large CPUs and
GPUs. In International Conference on Security, Privacy,
and Applied Cryptography Engineering, pages 228–247,
2015.

[44] Jo Van Bulck, Daniel Moghimi, Michael Schwarz,
Moritz Lippi, Marina Minkin, Daniel Genkin, Yuval
Yarom, Berk Sunar, Daniel Gruss, and Frank Piessens.
LVI: Hijacking transient execution through microarchi-
tectural Load Value Injection. In 2020 IEEE Symposium
on Security and Privacy (SP), pages 54–72, 2020.

https://developer.nvidia.com/cublas
https://resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper
https://resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper
https://www.researchandmarkets.com/reports/5390148/data-center-accelerator-market-by-processor-type
https://www.researchandmarkets.com/reports/5390148/data-center-accelerator-market-by-processor-type
https://www.researchandmarkets.com/reports/5390148/data-center-accelerator-market-by-processor-type
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=906762
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=906762
https://tamarin-prover.github.io/manual/book/007_property-specification.html
https://tamarin-prover.github.io/manual/book/007_property-specification.html
https://tamarin-prover.github.io/
https://tamarin-prover.github.io/
https://www.techspot.com/news/93006-intel-sgx-deprecation-impacts-drm-ultra-hd-blu.html
https://www.techspot.com/news/93006-intel-sgx-deprecation-impacts-drm-ultra-hd-blu.html
https://www.techspot.com/news/93006-intel-sgx-deprecation-impacts-drm-ultra-hd-blu.html
https://www.tensorflow.org/

[45] Sebastiano Vigna. Further scramblings of Marsaglia’s
xorshift generators. Journal of Computational and Ap-
plied Mathematics, 315:175–181, 2017.

[46] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno.
Graviton: Trusted execution environments on GPUs.
In USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pages 681–696, 2018.

[47] John Walker. ENT – A pseudorandom number sequence
test program. https://www.fourmilab.ch/random/,
2008. [Online; accessed 01-Feb-2022].

[48] Jun Zhao, Virgil Gligor, Adrian Perrig, and James New-
some. ReDABLS: Revisiting device attestation with
bounded leakage of secrets. In Cambridge International
Workshop on Security Protocols, pages 94–114, 2013.

[49] Jianping Zhu, Rui Hou, XiaoFeng Wang, Wenhao Wang,
Jiangfeng Cao, Lutan Zhao, Fengkai Yuan, Peinan Li,
Zhongpu Wang, Boyan Zhao, et al. Enabling privacy-
preserving, compute-and data-intensive computing us-
ing heterogeneous trusted execution environment. arXiv
preprint arXiv:1904.04782, 2019.

https://www.fourmilab.ch/random/

	Introduction
	Background: GPU Fundamentals
	Problem Definition
	Design Goals
	Assumptions
	Threat Model

	SAGE Overview
	Verification Function (VF)
	Design Requirements
	Concrete VF Design
	Self-Verifying Checksum Function
	Untampered Execution Environment

	Implementation
	Instruction Decoding
	Instruction Generation
	Time-optimal Technical Requirements
	Selection of Optimal Overheads
	Implementation of SAGE
	Random Number Generation on GPUs

	Evaluation
	VF Performance
	Attack Robustness
	Memory Region Inclusion Probability
	Runtime Overheads
	Limitations of the Prototype

	Security Analysis
	Formal Verification of Modified SAKE

	Related Work
	Hardware-based Attestation
	Software-based Attestation

	Conclusion

