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Abstract. Many commodity operating systems and applications be-
come infested with malicious software over time, primarily due to ex-
ploits that take advantage of software flaws and operator errors. In this
paper, we present the salient features of a system design which allows
remote-device authentication by a verifier, reaching malware-free sys-
tem states, and trusted application booting in the presence of malicious
software that is controlled by a network adversary. Our system design
revisits the notion of device attestation with bounded leakage of secrets
(DABLS), and illustrates both the significant challenges of making it
work in practice and how to overcome them.

1 Introduction

During the past decade, Professor Moriarty, the fictitious genius and evil ad-
versary, has acquired new attack capabilities and now poses an unprecedented
challenge for the wizards of the Security Protocols Workshop (SPW). Not only
can he fully control communication networks (e.g., in man-in-the-middle style)
connecting remote devices with device-attestation hosts, but also he can now
inject malware into those devices, making them behave in a Byzantine manner
and/or leak their secrets. In the past, the wizards were able to counter either
one of these attack capabilities or the other, but not both together.

For example, if Moriarty controls all network communications but not end
hosts and devices, the wizards of SPW could deploy secret encryption keys in the
commodity cryptographic modules; e.g., the Trusted Platform Modules (TPMs)
[10] of remote hosts and devices, and take advantage of Moriarty’s bounded com-
putational power to counter his attestation attacks with provable-secure proto-
cols. Or, if he could only insert malware in some of the remote devices but not
control any network communications, remote connections to devices could be
authenticated without device secrets; e.g., by using network front-ends, which
remain beyond the reach of device malware, for remote devices. In this setting,
the wizards could deploy sufficiently many additional devices beyond Moriarty’s
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reach to detect Byzantine misbehavior by the malware-infected ones, and en-
able host reliance only on clean devices. The strategy of relying on secret keys
could be safely foregone and the significant challenge of secure, remote key man-
agement on malware controlled commodity hardware1 avoided, in this setting.
However, if use of secret keys would still be desired, each device could store a key
fragment and rely on threshold cryptography - with the appropriate assumptions
– to assemble a shared secret key that Moriarty could not obtain from the set
of devices he controls.

Three of the questions faced in designing attestation protocols for remote
devices are as follows.

(1) How could a host authenticate a remote device, when adversary Moriarty
controls both the communication network (i.e., via network adversary Mout) and
the remote device software (i.e., via device malware Min), but not its commodity
hardware (e.g., physical device configuration, components, channel bandwidth)?
Clearly, device authentication requires that a device’s secret be protected, and if
secrets protected by commodity hardware could be discovered by Moriarty’s mal-
ware Min and exported to his network adversary Mout, he could then use his own
bogus device to masquerade as the authentic remote device. Could we exploit
hardware architecture features to perform software-based device authentication
without depending on long-lived, hardware-protected secrets; e.g., without phys-
ically unclonable functions (PUFs) [1, 4], TPMs?

(2) How could a remote device prove that it has reached a malware-free state
to an attestation host after Moriarty has inserted malware Min into that device?
Remotely re-booting device software and initializing a malware-free state could
not be performed with significant assurance since malware Min itself could com-
promise the reboot operation. Even if device authentication could be performed
in the presence of malware Min (e.g., by using special hardware, such as PUFs),
proving the establishment of a malware-free state on a commodity device to
an attestation host remains a challenge. Is there a way to clean up the device
remotely and eliminate malware Min despite the network adversary Mout?

(3) How could a remote device prove that it has performed a trusted boot
of application software to an attestation host? Notice that between the time
that a malware-free device state is demonstrated to an attestation host and the
time that trusted boot of application software is completed, the device could be
compromised by Moriarty’s malware Min again. Could a proof of correct device
authentication be composed with one of malware-free state establishment and
further with one of trusted boot of application software?

In this paper, we provide preliminary answers to the above questions in the
context of commodity devices, without assuming that malware is prevented from

1 For example, a secure key update in response to side-channel attacks – as prescribed
by leakage-resilient cryptography – could not be performed with significant assur-
ance, even if a host could reach a remote device using secure network communication
channels, now assumed to be beyond an adversary’s control. Device malware could
always respond correctly to key update commands using the already captured device
key.
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accessing secrets stored on commodity devices and communicating with an exter-
nal network adversary which controls it. Instead, we present a system that limits
the bandwidth of the device’s output channel to Dban bits per second, updates
secrets periodically and prevents the leakage of an entire pool of secrets. In effect,
our system confines malware Min sufficiently to enable a remote verifier estab-
lished the three desirable properties outlined above, namely (1) remote-device
authentication, reaching malware-free device states, and trusted (re)boot of ap-
plication software. Specifically, we revisit the notion of device attestation with
bounded leakage of secrets (DABLS) and system description provided by Tran [9],
and provide new operating conditions and modes, called ReDABLS, which ap-
pear to be practical for large classes of different system types and configurations.
In particular, we argue that in contrast to the overhead rates of DABLS, which
make it impractical for large classes of intuitive operating conditions, ReDABLS
can yield much lower overhead rates, particularly when acceptable probabilistic
upper bounds are found for an adversary’s success in attacking it.

ReDABLS also differs from the better-known software-only root of trust
(SWORT) mechanisms [2, 3, 5–8] in three ways. First, SWORT mechanisms do
not provide device authentication directly since they have been introduced to
achieve only authentication of program execution on any device of the same type
and configuration. Second, without additional mechanisms, SWORT does not
usually guarantee uninterruptable composition of malware-free state establish-
ment and trusted boot of application software; i.e., malware could re-install itself
into the device after the establishment of a malware-free state and trusted soft-
ware boot. Third, the ReDABLS verifier would be less susceptible to timing
variations in the speed of the computing device (e.g., processor speed), since it
would have to tolerate larger (e.g., network) delays, by design. For these rea-
sons, practical answers to the three questions posed for ReDABLS above would
provide stronger, more robust guarantees than SWORT.

We envision the use of ReDABLS for several applications that require peri-
odic attestation of malware-free state and secure initialization for (1) hypervisors
of remote devices, (2) control software of autonomous devices, and (3) software
of unattended smart-grid devices (e.g., smart meters).

2 A Brief Overview of DABLS

In DABLS, a remote device is initialized with a device-unique, large pool of se-
crets S comprising N blocks of b bits each, prior to deployment;2 viz., Fig. 1. The
pool is updated from Si−1 to Si by using a device local function f(ni−1, Si−1) in
response to a nonce ni−1 sent by a remote Verifier, in every Ts seconds, where Ts
represents the device computation time dedicated to application execution. The
time used for updating the N blocks of the pool and responding to the Verifier is
denoted by Tup. At the end of each update time, Tup, the device sends response

2 The initialization of pool S is done using a pseudo-random number generator, PRNG,
which yields statistically unique pool values for reasonable sizes of N and b.
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Fig. 1. A snapshot of the DABLS operation.

Ri = y(f(ni−1, Si−1), constant) to the Verifier, where y is a message authenti-
cation code function based on the updated secret pool state Si = f(ni−1, Si−1).
Failure to respond by the end of Tup or to produce an incorrect response Ri
causes the Verifier to signal an exception. As a result of pool initialization to
state S0, and subsequent updates, the secret pool goes through a number of
device unique states S0, S1, · · · , Si−1, unless a Verifier exception interrupts this
sequence and causes re-initialization. A snapshot of the DABLS operation is il-
lustrated in Fig. 1, and the device-authentication request and response over time
are illustrated in Fig. 2.

We note that pool update function can use a variety of cryptographic primi-
tives, such as pseudo-random functions (PRFs) and one-way functions (OWFs),
to ensure that entire past pools can be computed and future pools cannot be
anticipated unless all pool blocks of a given state are available, except with neg-
ligible probability. Let the speed of the cryptographic primitive used by the pool
update function f(n, S) be Cp seconds per pool block. The overhead rate of the
update operation is Tup/Ts, and the system feasibility condition is Tup/Ts < 1.

In this paper we argue that the overhead rate has a lower bound N × Cp ×
Dban/b, for a large class of pool update functions. We illustrate one of the chal-
lenges posed by the design of DABLS by showing that intuitively efficient pool
update functions – not just those initially considered for DABLS [9] – fail to
satisfy the system feasibility condition. This motivates our introduction of prob-
abilistic pool update functions and additional operating modes for ReDABLS;
viz., Section 4 below.
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Fig. 2. The device-authentication request and response over time.

2.1 The Original Pool Update Function

DABLS presents a pool update function f1 by using a non-invertible pseudo-
random function (PRF) as the basic tool. Let P be a family of non-invertible
PRFs. A particular non-invertible PRF Pn is selected from that family by using
the nonce n; i.e., P : {0, 1}|n| → Pn. An instance Pn takes as input k blocks of
size b bits, and produces one block of output; namely, Pn : {0, 1}k·b → {0, 1}b.

A secret pool S is broken into N blocks of size b bits: S[0], S[1], . . . , S[N −1].
S[i] is referred to as block i of the pool S, where 0 ≤ i ≤ N − 1. As specified by
Equation (1), the recursive function g takes an index i as input and produces
a single block gi as output. gi equals S[i] for 0 ≤ i ≤ N − 1, and is computed
by inputting the N previous blocks gi−j |j=N,N−1,...,1 to the PRF Pn for i ≥ N .
Finally, f1 is realized according to Equation (2) below, where λ ≥ N .

gi =

{
S [i] , for 0 ≤ i ≤ N − 1,

Pn(gi−N ||gi−(N−1)|| . . . ||gi−1), for i ≥ N .
(1)

f1(n, S) = gλ||gλ+1|| . . . ||gλ+N−1. (2)

2.2 DABLS Fails the Feasibility Condition

With f1 used as the pool update function in DABLS, a necessary condition for
preventing the external adversary Mout from obtaining a complete secret pool is
(Ts + Tup)Dban < N × b, which leads to Ts < N × b/Dban. Let CPn be the time
cost to compute Pn on each input block. Then Tup = N×λ×CPn . Therefore, the
overhead rate Tup/Ts > λCPnDban/b ≥ NCPnDban/b. However, as illustrated in
Table 1, this lower bound NCPnDban/b of Tup/Ts is greater than 1 for typical
devices, rendering DABLS infeasible in practice.
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Table 1. Examples of system parameters. Pn uses AES as the block cipher and the
CBC-MAC-like as the mode of encryption, as illustrated by DABLS [9].

|S| (MB) b (bits) N Dban (MB/sec) b/CPn (MB/sec) Tup/Ts

0.16 128 104 0.001 1.2 (on ARM 1176-482MHz) > 8.3
1.6 128 105 0.01 107 (on Intel Core 2-1.83 GHz) > 9.3

Several possible approaches to reduce the lower boundNCPnDban/b of Tup/Ts
are available. For example, to decrease CPn , Pn could use a 5 − 8 times faster
primitive; e.g., XoR-universal hash functions. Furthermore, given a fixed |S|, the
block size b could be set larger to decrease N . Finally, commodity hardware front
ends or network interfaces that remain beyond the reach of device malware could
be used to effectively decrease the outbound network bandwidth limit of the de-
vice depending on other system parameters; e.g., an increased Ts, a decreased
pool size |S|.

3 The New Pool Update Functions for ReDABLS

DABLS fails to provide a feasible pool update function for achieving the three
desirable security properties discussed in the Introduction; i.e., remote-device
authentication, reaching malware-free device states, and trusted boot of appli-
cation software. In ReDABLS, we rely on similar protocols as those in DABLS
but introduce new pool update functions in an attempt to make the system
overhead rate practical.

The challenge one faces in designing new pool update functions is that in-
tuitive optimizations do not necessarily work. For example, one could attempt
to use smaller input sizes than that of f1(n, S) without compromising update
security; i.e., the number of input blocks could be smaller than N . However,
this would not necessarily decrease the overhead rate; viz., function f2 below.
Another way would be to also use more efficient cryptographic primitives for
the function implementation. Although, this could decrease the overhead rate,
it would not necessarily satisfy our feasibility condition; viz., function f3 below.
For these reasons, we introduce probabilistic update functions (viz., f4 and f5
below), which can reduce the overhead rates of update functions such as f2 and
f3 to feasible levels.

3.1 The Pool Update Function f2

We assume that N is a product of two positive integers q and m; i.e., N = qm,
where m ≥ 2. Now we explain how f2(n, S) is computed given a nonce n and a
secret pool S. S consists of N blocks: S[0], S[1], . . . , S[N − 1]. gi is updated as
follows. gi equals S[i] for 0 ≤ i ≤ N − 1, and is computed by inputting (q + 1)
blocks gi−jm|j=q,q−1,...,1 and gi−1 to the PRF Pn for i ≥ N ; namely,

gi =

{
S[i], for 0 ≤ i ≤ N − 1,

Pn
(
gi−qm||gi−(q−1)m|| . . . ||gi−m||gi−1

)
, for i ≥ N.

(3)
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Finally, similar to the design of f1, the function f2 is still defined as the last N
blocks after computing λ blocks of g; i.e., f2(n, S) is set by

f2(n, S) = gλ||gλ+1|| . . . ||gλ+N−1. (4)

With function f2 used as the pool update function, we have derived a set of
conditions which are both necessary and sufficient for preventing the external
adversary from obtaining a complete secret pool. (A detailed analysis of these
conditions is provided in Appendix A.) The set of conditions indicates that
the overhead rate Tup/Ts is at least NCPnDban/b, the same lower bound as
in the case where f1 is used as the pool update function. Therefore, a system
implemented with f2 would also fail the feasibility condition Tup/Ts < 1. Note
that function f1 can be regarded as a special case of function f2 with q = N .

3.2 The Pool Update Function f3

Consider a pool update from a secret pool S to the next secret pool f3(n, S).
S consists of N blocks: S[0], S[1], . . . , S[N − 1]; f3(n, S) consists of N blocks:
y0, y1, . . . , yN−1. For i = 0, 1, . . . , N − 1, block yi is computed by inputing to
PRF Pn w blocks with a sliding window of length w; specifically,

yi = Pn(zj+i||zj+i+1|| . . . ||zj+i+(w−1)),

where j ∈ {0, 1, . . . , N − 1} is determined by the nonce n and block zt is defined
by

zt =

{
S[t], for 0 ≤ t ≤ N − 1,

yt−N , for t ≥ N.

Here we set Pn as the MD5 hash function, whose computation cost on an
input block is lower than that of CBC-MAC-AES.

With f3 used as the pool update function, we have also proved that a neces-
sary condition for preventing the external adversary from obtaining a complete
secret pool is Tup/Ts ≥ NCPnDban/b. (The proof is omitted due to space limita-
tions.) If Pn is implemented with the MD5 function, f3 also fails the feasibility
condition Tup/Ts < 1, as illustrated in Table 2.

Table 2. Examples of system parameters. Pn is the MD5 hash function.

|S| (MB) b (bits) N Dban (MB/sec) b/CPn (MB/sec) Tup/Ts

0.16 128 104 0.001 2 (on ARM 1176-482MHz) > 5
1.6 128 105 0.01 268 (on Intel Core 2-1.83 GHz) > 3.7
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3.3 The Probabilistic Pool Update Functions f4 and f5

We consider probabilistic pool update functions and show that they can reduce
the overhead rates of the three non-probabilistic functions discussed above to
feasible levels.

Random Permutation. The idea of using a random permutation is that, given
a random nonce, we can derive a permutation from the nonce that will change
the ordering of the N blocks of the old secret pool randomly before the pool
update. The intuition behind the overhead rate Tup/Ts reduction is that the
external adversary Mout still cannot obtain a complete secret pool even though
the internal adversary Min leaks more blocks per epoch than in the three cases
above where a random permutation is not used. This is the case because Min

can no longer be sure which pool blocks will be useful as the input for the update
function in future epochs. Instead, the external adversary Min has to predict the
usefulness of blocks in future epochs.

We introduce a pool update function f4, which is the random permutation
version of function f2, as shown below. Given a secret pool S, we now explain
the computation of f4(n, S). S consists of N blocks: S[0], S[1], . . . , S[N − 1].
Then, based on the external nonce n, blocks S[0], S[1], . . . , S[N−1] are randomly
permuted to blocks S′[0], S′[1], . . . , S′[N − 1], which are inputs to the recursive
block computation. Similar to (3), we define gi as follows:

gi =

{
S′[i], for 0 ≤ i ≤ N − 1,

Pn
(
gi−qm||gi−(q−1)m|| . . . ||gi−m||gi−1

)
, for i ≥ N.

Then the same as (4), f4(n, S) is set by

f4(n, S) = gλ||gλ+1|| . . . ||gλ+N−1.

With f4 used as the pool update function in ReDABLS, one can prove that
the overhead rate is reduced by a constant factor that depends on system archi-
tecture (e.g., the ratio of the local memory size over the pool size |S|), compared
with the case where f2 is the pool update function.

Partial Pool Update. Consider a pool update from secret pool Si to Si+1. A
fixed number of blocks in Si are propagated to Si+1 without any change, while
the remaining blocks in Si are updated. The purpose of partial pool update is to
reduce the number of blocks in each pool update to be updated by Pn, and thus
to reduce Tup, which helps decrease the overhead rate Tup/Ts. Also, we need to
enforce that the external adversary Mout still can obtain a complete secret pool
with only a negligible probability.

We introduce a pool update function f5, which is the partial pool update
version of function f3, as detailed below. In computing f5(n, S), let the number
of propagated blocks in S be G. The G blocks are randomly selected based on
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the nonce n and are uniformly distributed among the N blocks of S. Without
knowing the nonce n, the attacker cannot predict the G blocks.

The maximal number of blocks leaked or saved blocks in any epoch should
be less than the sliding window w; otherwise, Mout could splice these leaked
or saved blocks and update them, obtaining at least w blocks of secret pool S0

at the end of epoch 0, at least (w + 1) blocks of secret pool S1 at the end of
epoch 1, . . ., and a complete secret pool Si at the end of epoch (N − w). We
denote that number by (w − h) since it is less than w, where h ≥ 1. Clearly,
(w − h) is at least TsDban/b, the maximal number of blocks leaked within Ts.
Then Ts ≤ (w−h)b/Dban. Noting that Tup = (N −G) ·w ·CPn , we finally obtain

Tup/Ts ≥
1−G/N
1− h/w

×NCPnDban/b.

The goal is to let the probabilistic-update factor 1−G/N
1−h/w be small and have a

negligible probability for Mout succeeding in obtaining a complete secret pool.

First, to ensure 1−G/N
1−h/w ≤ 1, it follows that G ≥ h.

Given the leaked or saved (w− h) blocks in an epoch and the G propagated
blocks, if there are at least w consecutive blocks among them, then Mout succeeds
in splicing the w blocks. Consider that the (w−h) blocks have i (resp., j) number
of the G propagated blocks to their immediate left (resp., right), where i, j ≥ 0.
Mout succeeds in splicing if i+ j ≥ h.

We have

Pr[(i ≥ h) ∩ (j ≥ 0)] =

(
N − h
G− h

)/(
N

G

)
,

and for t = h− 1, h− 2, . . . , 0,

Pr[(i ≥ t) ∩ (j ≥ h− t)] =

(
N − h− 1

G− h

)/(
N

G

)
.

Then

Pr[Mout succeeds in obtaining a complete secret pool]

≤ Pr[i+ j ≥ h]

=

(
N − h
G− h

)/(
N

G

)
+ h ·

(
N − h− 1

G− h

)/(
N

G

)
≤ (h+ 1)× (G/N)h.

Table 3 presents examples of system parameters.
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Table 3. Examples of system parameters. The units of |S|, b, Dban and b/CPn are
MB, MB/sec, bits and MB/sec, respectively. Pn is the MD5 hash function; and Pr∗ is
Pr[Mout succeeds in obtaining a complete secret pool].

|S| b N Dban b/CPn G w h Tup/Ts Pr∗

0.161281040.001 2 (on ARM 1176-482MHz) 9N/10 10N/11N/11> 0.562.3× 10−39

1.6 128105 0.01 268 (on Intel Core 2-1.83 GHz)29N/3030N/31N/31> 0.131.0× 10−45

4 Additional Operational Modes for ReDABLS

In this section, we briefly outline two additional operational modes intended to
enhance the usability of ReDABLS.

First, a commodity network-interface device that is beyond the reach of
malware Min can be connected to the remote application device to limit the
malware’s output bandwidth independent of any length of Ts. All other hard-
ware communication channels of the application device are disabled so that the
network-interface device provides the only Internet connection service for the
remote application device. We denote by D′ban the effective outbound network
bandwidth limit of the device enforced by the interface device. D′ban can be set to
be much smaller than Dban, the device D’s maximum outbound network band-
width in the absence of the interface device. This means that Ts can be increased
and/or |S| decreased more than before to ensure a small overhead rate.

Second, ReDABLS can have an infrequent-activation mode based on a sepa-
rate private but slow/expensive channel between the verifier and a remote human
operator who would be located in the vicinity of the device and could visually
identify it. The verifier-operator channel is secure, since it connects the veri-
fier to an operator’s phone via an encrypted cellular network connection, which
remains beyond the reach of the network adversary Mout. That is, we assume
that the network adversary Mout does not control the cellular communications,
and the device owner’s phone or any potential malware on it. For example, this
operational mode could consist of the following specific steps.

1) The verifier sends a short secret seed over the secure channel to the device
owner’s phone. Note that this channel would be expensive to use for the
direct transfer of the entire secret pool S from the verifier to the remote
device. Instead, the secret seed is used to generate the pool on the device
owner’s phone.

2) The device owner’s phone generates a secret pool S by seeding a PRNG with
the short secret, and sends S to the device via a fast private channel (e.g.,
through a USB cable connecting the phone to the device).

3) The verifier can now authenticate the remote device, enable a multi-epoch
establishment of malware-free state, and perform a trusted boot.
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Note that this operational mode would be used only infrequently. Thus even
if its overhead rate would be high, the overall overhead would be acceptable
because it would be chargeable only to a small portion of the device operation.
This operational mode also offers an opportunity to optimize |S|, the size of
pool S. On the one hand, |S| cannot be very large since S is generated on a
phone with limited battery power, and on the other, |S| cannot be very small
because, otherwise, secret pool S could be leaked to the network adversary Mout

by malware Min before it gets updated.

5 Conclusions

In earlier work, Tran [9] presented DABLS – a system that attempts to achieve
remote-device authentication, reaching malware-free device states, and trusted
boot of application software, in the continuous presence of device malware that
can access device secrets and leak them to a network adversary. However, DABLS
was infeasible in practice, leaving us with the substantial challenge of designing
new operating conditions and modes for bounding the leakage of device secrets
in a practical manner. To this end, we introduced a set of probabilistic update
functions that decrease the update overhead rates in ReDABLS, and outlined
new modes of operation to further decrease the relative system overhead. We
now believe that the feasibility of device attestation with bounded leakage of
secrets can be established conclusively.
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A Analysis of ReDABLS with Pool Update Function f2

In this appendix, we provide a detailed analysis of ReDABLS only for the pool
update function f2.3

A.1 Minimum Amount of Leakage Necessary

In this update function, we enforce the condition

λ ≥ N +m− 1 (5)

to ensure that any block of the updated pool f(n, S) ultimately needs all N
blocks of previous secret pool S as inputs. If this condition is satisfied, then the
internal adversary (i.e., malware) Min needs to leak at least N = m · q blocks to
succeed in leaking an entire secret pool.

Let S be the concatenation of N blocks xD+i|i=0,1,...,N−1, where D ≥ 0.
For j = 0, 1, . . . ,m − 1, we define Yj := {xD+j+`m}|`=0,1,...,m−1. Clearly, the
computation of block xD+N+j needs xD+N+j−1 and all blocks in Yj . Therefore,
by a recursive analysis, the condition j ≥ m − 1 is necessary and sufficient to
ensure that block xD+N+j ultimately needs all blocks in

⋃m−1
j=0 Yj .

We denote the initial secret pool by S0 and denote the N blocks of S0 by
x0, x1, . . . , xN−1. Let the secret pool obtained in the ith pool update be Si.
In the ith pool update for i ≥ 1, pool Si−1 is updated to Si. We let Ai be
the set of blocks computed by the update. Then for i ≥ 1, set Ai consists
of all λ blocks with indices at least (i − 1)λ + N and at most iλ + N − 1;
i.e., Ai = {x(i−1)λ+N |j=0,1,...,λ−1.}. We also define A0 as the set of N blocks
x0, x1, . . . , xN−1; i.e., A0 = {xj |j=0,1,...,N−1.}. Note that blocks in Ai can only
be leaked after time iTs for i ≥ 0.

A.2 Preventing the Leakage of N Contiguous Blocks

Another necessary condition for attack success is for the external adversary Mout

to obtain an arbitrary group of N contiguous blocks among the blocks leaked

3 For simplicity, we sometimes drop the subscript of f2 and just use f to denote f2.
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by malware Min. (Note that we do not consider brute-force attacks whereby the
adversary attempts to discover a few pool bits that are not available in the leaked
blocks). We call a leaked block x “useful” in satisfying the contiguity condition,
if x is used in at least one intermediate computation to obtain one of the final
N desired blocks or if x itself is one of the final N desired blocks. Without loss
of generality, we only consider attacks in which all the leaked blocks are useful.
The index stretch of an attack is defined as the result of the highest index of
useful leaked blocks minus the lowest index of useful leaked blocks.

For the external adversary Mout to obtain the final N consecutive blocks, the
internal adversary Min has to leak at least N blocks. For any successful attack
with a certain number of useful leaked blocks, we derive the maximal index
stretch of the attack to see how Min might be able to spread the leaked blocks
in multiple epochs so that only a small number of blocks needs to be leaked in
each epoch. To this end, we establish Theorem 1. Preventing the maximal index
stretch will deny Min the opportunity to leak useful blocks.

Theorem 1 The maximal index stretch of a successful attack with a fixed num-
ber M of useful leaked blocks is (M −N)m+ qm2 − 2m+ 1, where M ≥ N .

We use the following Lemmas 1-4 in the proof of Theorem 1. The proofs of
Theorem 1, and Lemmas 1-4 are given in Section A.5 of the appendix.

Lemma 1 The maximal index stretch of a successful attack with N useful leaked
blocks is qm2 − 2m+ 1.

Lemma 2 For the external adversary Mout to obtain J blocks out of N con-
secutive blocks xG+i|i=0,1,...,N−1, where G ≥ 0 and 1 ≤ J ≤ N , the internal
adversary Min has to leak at least J blocks with indices at most G+N − 1.

Lemma 3 Consider the following attack with M leaked blocks, where M ≥ N .
With y := (M −N) mod q and a := M −N − qm, the internal adversary Min

leaks the following M blocks:

xA−ym−iqm+jm|i=0,1,...,a;
j=0,1,...,q−1

, xA+im|i=q−y+1,...,q−1,

xA−ym−iqm+qm−1|i=0,1,...,a, xA+iqm−i+jm|i=1,...,m−1;
j=0,1,...,q−1.

Then the external adversary Mout can obtain any block with index at least qm2−
qm− 2m+ 2; and the index stretch of this attack is (M −N)m+ qm2− 2m+ 1.

Lemma 4 If adversary Mout obtains blocks xA+iqm−i−(
∑i
`=1 β`)m+jm|j=0,1,...,q−1

and xA+(i+1)qm−(i+1)−(
∑i
`=1 β`)m

for i = 0, 1, . . . , r, where r ≥ 1, then adversary

Mout can acquire blocks in

Bi :

= {xA+iqm−i−(
∑i
`=1 β`)m+zm|z=0,1,...,(r+1)q−iq−

∑r
`=i+1 β`

}, (6)

for i = 0, 1, . . . , r.
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A.3 Non-circumventable Time-Space Tradeoff

Internal adversary (i.e., malware) Min faces a space-time tradeoff in its attempts
to leak N contiguous pool blocks to Mout, whenever the output bandwidth Dban

prohibits the transfer of all N block in a single epoch. This is the case because
Min would either have to save the blocks not leaked in an epoch in freely usable
system memory, denoted by Lmem below, for leakage in future epochs or perform
the pool update computation using fewer than N blocks, or both. Hence, either
(1) the memory size of Lmem is large enough to hold most, if not all, the blocks
not leaked in an epoch or (2) Min would have to use extra update computation
time, if not enough memory space is available in Lmem. In the latter case, some
of the N pool blocks would have to remain unused during the update, and
thus extra computation time would be needed. However, if both Lmem and the
pool update time Tup are upper-bounded by appropriately small values, Min

will either not have enough memory space to leak all blocks or will exceed the
update time and be detected by the verifier. We call this the space-time tradeoff
faced by Min. If Min cannot circumvent this tradeoff, it could not leak all the
contiguous N blocks of any complete secret pool S.

Upper bound on memory freely usable by malware. We derive the upper
bound on Lmem, the amount of memory freely usable by malware Min, so that
it cannot circumvent the time-space tradeoff.

From Theorem 1, for any successful attack with (N+y) leaked blocks, where
y ≥ 0, its index stretch is no greater than (qm2 − 2m + 1 + ym). Recall that
Ai = {x(i−1)λ+N+j |j=0,1,...,λ−1.} and |Ai| = λ for i ≥ 1, A0 = {xj |j=0,1,...,N−1.}
and |A0| = N . Therefore, the (N + y) blocks leaked by Min fall in at most(⌊

qm2−2m+ym
λ

⌋)
+ 2 (denoted by L hereafter) number of successive sets among

Ai|i=0,1,..... Assume the (N+y) leaked blocks fall in h successive sets AH , AH+1,
. . . , AH+h−1, where 1 ≤ h ≤ L. Let Fi be the set of bits which are leaked by
Min and are among the bits in blocks of Ai, for i = H,H + 1, . . . ,H + h − 1.
Recall that blocks in Ai can only be leaked after time iTs for i ≥ 0. We actually
give adversary Min more power by assuming that Min can leak blocks in Ai at
any time instance immediately after time iTs, since the computations of blocks
in Ai start from time iTs and finish before iTs + Tup.

After time HTs, adversary Min can leak bits in FH . At time (H + 1)Ts, the
number of bits in FH that Min has not leaked is at least max{|FH |−TsDban, 0} ≥
|FH | − TsDban. After time (H + 1)Ts, adversary Min can leak bits in FH+1 or
leak those bits in FH that has not been leaked. At time (H + 2)Ts, the bits in
FH ∪ FH+1 that Min has not leaked is at least max{max{|FH | − TsDban, 0} +
|FH+1| − TsDban, 0} ≥ |FH |+ |FH+1| − 2TsDban.

This process continues iteratively. Then, at time (H + h)Ts, the bits in⋃
FH+j |j=0,1,...,h−1 that Min has not leaked is at least

∑
j=0,1,...,h−1 |FH+j | −

hTsDban. From time (H+h)Ts to (H+h)Ts+Tup, the pool SH+h−1 is updated to
SH+h; and the set of computed blocks is AH+h. At time (H+h)Ts+Tup, the bits
in
⋃
FH+j |j=0,1,...,h−1 that Min has not leaked is at least

∑
j=0,1,...,h−1 |FH+j |−
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(hTs +Tup)Dban. If all blocks of SH+h are in the memory, Lmem is the available
space to store the bits in

⋃
FH+j |j=0,1,...,h−1 that has not been leaked. There-

fore, to ensure that malware Min cannot circumvent the space-time tradeoff and
leak all bits in

⋃
FH+j |j=0,1,...,h−1, we impose the condition

h−1∑
j=0

|FH+j | − (hTs + Tup)Dban > Lmem (7)

Given
∑h−1
j=0 |FH+j | = (N+y)b and 1 ≤ h ≤ L, where L =

(⌊
qm2−2m+ym

λ

⌋)
+2,

then we obtain

L.H.S. of (7)

≥ (N + y)b−
[(

qm2 − 2m+ ym

λ
+ 2

)
Ts + Tup

]
Dban (8)

R.H.S. of (8) increases as y increases if

bλ ≥ mTsDban. (9)

Therefore, we enforce (9) and

N · b−
[(

qm2 − 2m

λ
+ 2

)
Ts + Tup

]
Dban > Lmem, (10)

so that (7) follows for any y ≥ 0 and h = 1, 2, . . . , L.

Computation Cost of Pool Update. Using the terminology of DABLS [9], we
call the case when all |S| bits of memory are used for the computation of f(n, S),
the benign case, and the case when fewer than |S| bits of memory are used for
computation, the malicious case. The following theorem gives the computation
cost of f(n, S) in both the benign and malicious cases.

Theorem 2 For a pool update f(n, S) in the benign case, the computation cost
is λ(q+1)CPn . For a pool update f(n, S) in the malicious case, if λ ≥ N +m− 1
and c blocks of memoization cache [9] are used, where c < N , then the compu-

tation cost is at least [2d
λ−1−c
m e−2m(m+ 1)(q + 1) + c(q + 1)]CPn .

The proof of Theorem 2 is given in Section A.5 of this appendix.

Remark 1 If q is a constant and does not scale with N , then the computation
cost in the benign case is linear with λ.

When |S|−1 bits are used, this leaves c = N−1 blocks to cache intermediate
blocks. Given c = N − 1 and Theorem 2, we enforce the relation:

λ(q + 1)CPn < Tup < [2d
λ−N
m e−2m(m+ 1)(q + 1) + (N − 1)(q + 1)]CPn . (11)
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A.4 Summary of ReDABLS Parameter Conditions for f2(n, S)

From the above analysis, the required parameter conditions are (5), (9), (10),
and (11), whenever N = m · q and m ≥ 2.

A.5 Proof of Theorems 1, 2 and Lemmas 1-4

Proof of Theorem 1. Among the successful attacks with a fixed number M of
useful leaked blocks, where M ≥ N , let AM be an attack which maximizes the
index stretch and IM be the index stretch of AM . As explained in Section A.2,
all leaked blocks in AM are “useful.” We regard M ≥ N + 1 below.

Let xB+j |j=0,1,...,N−1 be theN consecutive blocks that the external adversary
Mout finally obtains. Note that Mout can further use xB+j |j=0,1,...,N−1 to get any
block with an index of at least B. Denote the useful block with the lowest index in
attack AM by xA. To make xA useful, the external adversary Mout should obtain
xA+jm|j=0,1,...,q−1, xA+qm−1 to compute xA+qm. Since xA is the useful block with
the lowest index, all of xA+jm|j=0,1,...,q−1, xA+qm−1 can only be leaked instead of
being computed, given the fact that if at least one of xA+jm|j=1,2,...,q−1, xA+qm−1
is computed, then at least one block with an index lower than A should be leaked.
Clearly, xA is not used in computation(s) other than that of xA+qm.

We note that the highest index among the leaked blocks is B+N−1 since any
block with index greater than B+N−1 is useless in inducing xB+j |j=0,1,...,N−1.
Then the index stretch IM is at most B + N − 1 − A. Lemma 3 presents a
successful attack with a fixed number M of useful leaked blocks and with an
index stretch of qm2 − 2m+ 1 + (M −N)m. Hence, it follows that

B +N − 1−A ≥ IM ≥ qm2 − 2m+ 1 + (M −N)m. (12)

Given M ≥ N + 1, N = qm and (12), it holds that for i = 1, 2, . . . ,m− 1,

B > A+ iqm− i. (13)

Consequently, block xA+iqm−i is not one of the final desired blocks xB+j |j=0,1,...,N−1
for each i = 1, 2, . . . ,m− 1.

We have the following observation. If xA+qm−1 is used in computations in
addition to that of xA+qm, then there exists β1 ∈ {0, 1, . . . , q−1} such that adver-
sary Mout obtains xA+qm−1−β1m+jm|j=0,1,...,q−1 and xA+2qm−2−β1m, which are
together used to compute xA+2qm−1−β1m. If xA+2qm−2−β1m is used in computa-
tions in addition to that of xA+2qm−1−β1m, then there exists β2 ∈ {0, 1, . . . , q −
1} such that adversary Mout obtains xA+2qm−2−(β1+β2)m+jm|j=0,1,...,q−1 and
xA+3qm−3−(β1+β2)m, which are together used to compute xA+3qm−2−(β1+β2)m.

This process continues iteratively. Then we have the following two cases. 1)
There exist β` ∈ {0, 1, . . . , q−1} for ` = 1, 2, . . . ,m−1 such that xA+iqm−i−(

∑i−1
`=1 β`)m

is used in computations in addition to that of xA+iqm−(i−1) for i = 1, 2, . . . ,m−1.
2) There exist γ ∈ {1, 2, . . . ,m−1} and β` ∈ {0, 1, . . . , q−1} for ` = 1, 2, . . . , γ−1
such that xA+iqm−i−(

∑i−1
`=1 β`)m

is used in computations in addition to that of
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xA+iqm−(i−1)−(
∑i−1
`=1 β`)m

for i = 1, 2, . . . , γ−1; and xA+γqm−γ−(
∑γ−1
`=1 β`)m

is not

used in any computation other than that of xA+γqm−(γ−1)−(
∑γ−1
`=1 β`)m

.

We first consider case 1). Defining
∑i
`=1 β` = 0 for i = 0, then by an

iterative analysis, we know that for i = 0, 1, . . . ,m − 1, adversary Mout has
xA+iqm−i−(

∑i
`=1 β`)m+jm|j=0,1,...,q−1. and xA+(i+1)qm−(i+1)−(

∑i
`=1 β`)m

, and use

them to compute xA+(i+1)qm−i−(
∑i
`=1 β`)m

. From Lemma 4, adversary Mout fur-

ther acquires all blocks in ∪m−1i=0 Bi, where Bi is defined by (6). Define

T := A+ (m− 1)qm− (m− 1)−

(
m−1∑
`=1

β`

)
m (14)

Then given β` ∈ {0, 1, . . . , q− 1} for ` = 1, 2, . . . ,m− 1, the lowest index among

the blocks in Bi is A+iqm−i−
(∑i

`=1 β`

)
m, which is at least T+(m−i−1); and

the highest index among the blocks in Bi is A+mqm− i−
(∑m−1

`=1 β`

)
m, which

equals T + qm+ (m− i− 1). Therefore, for i = 0, 1, . . . ,m− 1, adversary Mout

obtains at least all the blocks whose indices modulo m give (T−i−1) mod m and
whose indices are at least T+(m−i−1) and at most T+qm+(m−i−1). In other
words, adversary Mout obtains at least all the blocks whose indices are at least
T and at most T + qm+m− 1. Clearly, Mout acquires blocks xT+j |j=0,1,...,qm−1
without leaking without leaking xi for any i > T + qm − 1. Given obtained
xT+j |j=0,1,...,qm−1, Mout can further compute xi for any i > T + qm− 1. Then
Mout obtains any block with index at least T . From (13), B > T follows. Hence,
Mout gets the final desired N blocks xB+j |j=0,1,...,N−1 without leaking xi for
any i > T + qm − 1. Then it further follows that IM (i.e., the index stretch of
attack AM ) is at most T + qm − 1 − A, which is at most qm2 − m given the
definition of T in (14) and β` ≥ 0 for ` = 1, 2, . . . ,m− 1. This contradicts with
(12) which shows that IM is at least qm2 − 2m + 1 + (M − N)m and thus at
least qm2 −m+ 1, given M ≥ N + 1. Hence, case 1) does not hold.

Then we consider case 2). Noting
∑i
`=1 β` = 0 for i = 0, we know that for

i = 0, 1, . . . , γ− 1, adversary Mout has xA+iqm−i−(
∑i
`=1 β`)m+jm|j=0,1,...,q−1. and

xA+(i+1)qm−(i+1)−(
∑i
`=1 β`)m

, and use them to compute xA+(i+1)qm−i−(
∑i
`=1 β`)m

.

Note that given βi ∈ {0, 1, . . . , q−1}, block xA+(i+1)qm−(i+1)−(
∑i
`=1 β`)m

belongs

to xA+(i+1)qm−(i+1)−(
∑i+1
`=1 β`)m+jm|j=0,1,...,q−1.. We define T as the N consecu-

tive blocks with indices starting from A + (γ − 1)qm + 1 − (
∑γ−1
`=1 β`)m and

ending with A + γqm − (
∑γ−1
`=1 β`)m. Let T1 be the set of blocks which belong

to T and whose indices modulo m give (A − i) mod m for i = 0, 1, . . . , γ − 1.
Then |T1| = γq. From Lemma 4, adversary Mout obtains at least all blocks in T1.
Other than xA+γqm−γ−(

∑γ−1
`=1 β`)m

and the blocks in T1, among the blocks in T ,

let T2 be the set of remaining blocks that adversary Mout obtains. Then among
the blocks in T , adversary Mout obtains T∗ := T1∪T2∪{xA+γqm−γ−(

∑γ−1
`=1 β`)m

}.
From Lemma 2, to acquire T∗, adversary Min has to leak at least T∗ blocks with
indices at most A+ γqm− (

∑γ−1
`=1 β`)m.
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We refer attack AM as A∗M when Min leaks exactly the following T∗ = (γq+

|T2|+ 1) blocks among the blocks with indices at most A+ γqm− (
∑γ−1
`=1 β`)m:

xA+iqm−i−(
∑i
`=1 β`)m+jm|i=0,1,...,γ−1;

j=0,1,...,q−1.
(15)

xA+γqm−γ−(
∑γ−1
`=1 β`)m

, and all blocks in T2. (16)

Then the number of leaked blocks with indices at most A+γqm−(
∑γ−1
`=1 β`)m in

any instance of AM is at least that in any instance of A∗M . Therefore, considering
that (a) the number of leaked blocks with indices greater than A + γqm −
(
∑γ−1
`=1 β`)m in any instance of AM is at most that in any instance of A∗M as the

total number of leaked blocks is M for both AM and A∗M ; and (b) for both the
instance of AM and the the instance of A∗M , T∗ is the set of all obtained blocks
in the N consecutive blocks T , we know an instance of A∗M which maximizes
the index stretch is also an instance of AM which maximizes the index stretch.
Hence, we can just let AM be A∗M in the analysis. Accordingly, we can assume
the (|T1|+ |T2|+ 1) blocks given by (15) (16) are leaked in attack AM .

Given attack AM , we construct attack AM−1 as follows. The (γ + 1) blocks
xA+iqm−i−(

∑i
`=1 β`)m

|i=0,1,...,γ leaked in AM are not leaked in AM−1. The γ

blocks xA+iqm−(i−1)−(
∑i−1
`=1 β`)m

|i=1,2,...,γ not leaked in AM are leaked in AM−1.

Other than the (2γ+ 1) blocks mentioned above, the remaining blocks leaked in
AM are still leaked in AM−1. Then the blocks which are leaked in AM−1 and
have indices at most A+ γqm− (

∑γ−1
`=1 β`)m constitute the set

{xA+iqm−i−(
∑i
`=1 β`)m+jm|i=0,1,...,γ−1;

j=1,...,q−1.
}

∪ {xA+iqm−(i−1)−(
∑i−1
`=1 β`)m

|i=1,2,...,γ.} ∪ T2
= {xA+iqm−i−(

∑i
`=1 β`)m+jm+m|i=0,1,...,γ−1;

j=0,1,...,q−1.
} ∪ T2. (17)

Therefore, each block given by (15) and leaked in AM is now replaced with a
block with index adding m in AM−1. Similar to the proof of Lemma 4, we can
show by mathematical reduction that in AM−1, with leaked blocks

xA+iqm−i−(
∑i
`=1 β`)m+jm+m|i=0,1,...,γ−1;

j=0,1,...,q−1.
, (18)

adversary Mout can obtain all the blocks whose indices modulo m give (A −
i) mod m and whose indices are at least A + iqm − i − (

∑i
`=1 β`)m + m and

at most A + γqm − i − (
∑γ−1
`=1 β`)m. Then (a) in attack AM−1, among the

blocks in T , adversary Mout obtains T1 ∪ T2. It’s straightforward to see that
any block given by (18) is useful in inducing T1 ∪ T2. Then since all the M
blocks in attack AM are useful, all the (M − 1) blocks in attack AM are also
useful. (b) Recall that in attack AM , among the blocks in T , adversary Mout

obtains T1∪T2∪{xA+γqm−γ−(
∑γ−1
`=1 β`)m

}, but xA+γqm−γ−(
∑γ−1
`=1 β`)m

is not used

in any computation other than that of xA+γqm−(γ−1)−(
∑γ−1
`=1 β`)m

, which is also

a block in T and is leaked in AM−1. Note that (c) in attacks AM and AM−1,
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the leaked blocks with indices greater than A + γqm − (
∑γ−1
`=1 β`)m (i.e., the

highest block index of T ) are the same. Therefore, from (a) and (b) and (c),

among the blocks with indices greater than A + γqm − γ − (
∑γ−1
`=1 β`)m, the

blocks that Mout can obtain in attacks AM and AM−1 are the same. From (13),
the lowest block index (i.e., B) among the final desired blocks xB+j |j=0,1,...,N−1
is greater than A+ γqm− γ − (

∑γ−1
`=1 β`)m. Then since adversary Mout obtains

xB+j |j=0,1,...,N−1 in attack AM , Mout also obtains xB+j |j=0,1,...,N−1 in attack
AM−1. Because xA is the leaked block with the lowest index in AM ; block xA+m

is leaked in AM−1; and the highest block index in AM−1 is no less than that
in AM , then the index stretch of attack AM minus m. Recall that (M − 1)
blocks are leaked in attack AM−1; and IM−1 is the maximal index stretch of a
successful attack with (M − 1) useful leaked blocks. Therefore, for M ≥ N + 1,
it follows that IM−1 ≥ IM −m, which together with Lemma 1 and (12), leads
to IM = qm2 − 2m+ 1 + (M −N)m. ut

Proof of Lemma 1. Here we also let xB+j |j=0,1,...,N−1 be the final N consec-
utive blocks that the external adversary Mout wants to obtain. Given N =
mq, we divide {xB+j |j=0,1,...,N−1} into m sets Ri|i=0,1,...,m−1, where Ri :=
{xB+jm+i|j=0,1,...,q−1} for i = 0, 1, . . . ,m − 1. We will prove that for adversary
Mout to acquire xB+j |j=0,1,...,N−1, the internal adversary Min has to leak at least
N blocks in the union ofm setsGi|i=0,1,...,m−1, withGi := {xαim+jm+i|j=0,1,...,q−1},
where αi is a positive integer, for i = 0, 1, . . . ,m−1. Given i = 0, 1, 2, . . . ,m−1,
if all blocks of Ri are leaked, we just set Gi as Ri. Then we consider that at least
one block (denoted by xI hereafter) of Ri is not leaked given i = 0, 1, 2, . . . ,m−1,
where I mod m = i. Computing block xI needs blocks xI−jm|j=q,q−1,...,1, xj−1.
If the q blocks xI−jm|j=q,q−1,...,1 are all leaked, xI−jm|j=q,q−1,...,1, then we set
Gi as xI−jm|j=q,q−1,...,1. If there exists a j∗ such that xI−j∗m is not leaked, the
analysis continues iteratively as computing block xI−j∗m needs blocks
xI−j∗m−jm|j=q,q−1,...,1, xj−1. Therefore, at the end Min should always leak Gi
to let Mout get Gi.

To maximize the index stretch, we consider the m sets Gi|i=0,1,...,m−1 do
not “cross” with each other. In other words, there exist distinct i0, i1, . . . , im−1
which are from {0, 1, . . . ,m − 1} such that the highest block index of Gij−1

is
less than the lowest block index of Gij , where j = 1, 2, . . . ,m − 1. Then it’s
straightforward to see

(αijm+ ij)−[αij−1m+ (q − 1)m+ ij−1]

= m− 1,∀j = 1, 2, . . . ,m− 1, (19)

so that adversary Mout can use {xαij−1
m+`m+i|`=0,1,...,q−1} and xαijm+ij to

compute xαijm+ij+1. Given (19), with A := αi0m+ i0, adversary Mout leaks the

following N blocks: xA+iqm−i+jm|i=0,1,...,m−1;
j=1,2,...,q−1.

. With xA+iqm−i+jm|i=0,1,...,m−1;
j=0,1,...,q−1.

,

adversary Mout can further acquire any block with index at least qm2 − qm −
2m+2. In addition, any leaked block is useful in obtaining N consecutive blocks



20 Jun Zhao, Virgil Gligor, Adrian Perrig, and James Newsome

with indices at least qm2 − qm− 2m+ 2. The index stretch of this attack is

(m− 1)qm− (m− 1) + (q − 1)m = qm2 − 2m+ 1.

ut

Proof of Lemma 2. The J blocks that adversary Mout wants to obtain can be
divided into m sets Li|i=0,1,...,m−1, where Li consists of blocks which are part
of the J blocks and whose indices modulo m all give i, for i = 0, 1, . . . ,m − 1.
Note that |Li| ≤ q. We show that for Mout to obtain Li, Min has to leak at least
|Li| blocks whose indices modulo m all give i. This is true when all blocks of Li
are leaked, and is also true in the case where at least one block (say block x)
of Li is computed instead of being leaked because in that case, at least q blocks
whose indices modulo m all give i should be leaked to compute block x. Hence,
to obtain J blocks out of xG+i|i=0,1,...,N−1, adversary Min has to leak at least
J blocks with indices at most G+N − 1. ut

Proof of Lemma 3. First, given xA−ym−iqm+jm|i=0,2,...,a;
j=0,1,...,q−1

, xA−ym−iqm+qm−1|i=0,2,...,a

and xA+im|i=q−y+1,...,q−1, adversary Mout can obtain xA+jm|j=0,1,...,q−1.. Then
as explained in the proof of Lemma 1, with xA+iqm−i+jm|i=0,1,...,m−1;

j=0,1,...,q−1.
, adver-

sary Mout can further acquire any block with index at least qm2− qm− 2m+ 2.
In addition, any leaked block is useful in obtaining N consecutive blocks with
indices at least qm2− qm− 2m+ 2. It’s straightforward to derive that the index
stretch of this attack is (M −N)m+ qm2 − 2m+ 1. ut

Proof of Lemma 4. We prove that adversary Mout can get Bi for i = 1, 2, . . . , r
by mathematical reduction with the following two steps ¬ and ­. ­ Given
i = 1, . . . , r, if Mout obtains the blocks in Bi, then Mout can further get the
blocks in Bi−1.

¬ We show how adversary Mout acquires the blocks in Br. Given
xA+rqm−r−(

∑r
`=1 β`)m+jm|j=0,1,...,q−1 and xA+(r+1)qm−(r+1)−(

∑r
`=1 β`)m

, adver-
sary Mout can calculate
xA+(r+1)qm−r−(

∑r
`=1 β`)m

. Therefore, adversary Mout have all the blocks in Br.
Second, to prove ­, we demonstrate that given i = 1, . . . , r, if Mout gets all

the blocks in Bi, then Mout can also acquire all the blocks in Bi−1. We first prove
that adversary Mout gets xA+iqm−(i−1)−(

∑i−1
`=1 β`)m+zm|z=0,1,...,(r+1)q−iq−

∑r
`=i β`.

also by mathematical reduction with the following two steps ¶ and ·. ¶ For
z = 0, adversary Mout uses xA+iqm−i−(

∑i−1
`=1 β`)m

in Bi and

xA+(i−1)qm−(i−1)−(
∑i−1
`=1 β`)m+jm|j=0,1,...,q−1 to calculate xA+iqm−(i−1)−(

∑i−1
`=1 β`)m

.

· Let adversaryMout obtain xA+iqm−(i−1)−(
∑i−1
`=1 β`)m+zm|z=0,1,...,z∗., where z∗ ∈

{0, 1, . . . , (r + 1)q − iq −
∑r
`=i β` − 1}. From the condition, Mout also gets

xA+(i−1)qm−(i−1)−(
∑i−1
`=1 β`)m+jm|j=0,1,...,q−1

= xA+iqm−(i−1)−(
∑i−1
`=1 β`)m+zm|z=−q,−(q−1),...,−1.
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Hence, Mout has xA+iqm−(i−1)−(
∑i−1
`=1 β`)m+zm|z=−q,...,z∗.. It’s straightforward to

see block xA+iqm−i−(
∑i−1
`=1 β`)m+(z∗+1)m belongs to Bi. Then Mout utilizes

xA+iqm−i−(
∑i−1
`=1 β`)m+(z∗+1)m and

xA+iqm−(i−1)−(
∑i−1
`=1 β`)m+zm|z=−q+z∗+1,−q+z∗+2,...,z∗.

= xA+(i−1)qm−(i−1)−(
∑i−1
`=1 β`)m+(z∗+1)m+jm|j=0,1,...,q−1

to compute xA+iqm−(i−1)−(
∑i−1
`=1 β`)m+(z∗+1)m. Owing to ¶ and · above, Mout

acquires

xA+iqm−(i−1)−(
∑i−1
`=1 β`)m+zm|z=0,1,...,(r+1)q−iq−

∑r
`=i β`.

,

which with xA+(i−1)qm−(i−1)−(
∑i−1
`=1 β`)m+jm|j=0,1,...,q−1 also obtained by Mout

compromise set Bi−1.
The result follows given ¬ and ­. ut

Proof of Theorem 2. Let Cben and Cmal be the computation time for a pool
update in the benign case and in the malicious case, respectively.

It is straightforward to derive Cben = λ(q + 1)CPn .
Then we compute Cmal in the malicious case.
For i ≥ 0, we also use Ci to denote the time cost in the malicious case to

compute the unmemoized block gnS(N + c+ i). For −N ≤ i < 0, we define Ci as
0 only for ease of notation. Note that for −N ≤ i < 0, Ci is not the time cost in
the malicious case to compute the unmemoized block gnS(N + c + i). We have
for i ≥ 0,

Ci = Ci−1 +

j=q∑
j=1

Ci−jm + (q + 1)CPn . (20)

From (20), we obtain Ci ≥ 2Ci−m for i ≥ m and Ci = (i + 1)(q + 1)CPn for

0 ≤ i ≤ m− 1. Then for i ≥ 0, it follows that Ci ≥ 2b
i
m c[(i mod m) + 1](q + 1).

The total cost Cmal equals the cost to compute gnS(N + i)|0≤i≤c−1, plus the
cost to compute unmemoized blocks gnS(N+c+i)|max{λ−N−c,0}≤i≤λ−1−c. Then

Cmal = c(q + 1)CPn +

λ−1−c∑
i=max{λ−N−c,0}

Ci

≥ [2d
λ−1−c
m e−2m(m+ 1)(q + 1) + c(q + 1)]CPn .

ut


