

PRISM: Enabling Personal Verification of Code Integrity,
Untampered Execution, and Trusted I/O on Legacy Systems

or
Human-Verifiable Code Execution

Jason Franklin Mark Luk Arvind Seshadri Adrian Perrig

February 3, 2007
CMU-CyLab-07-010

CyLab
Carnegie Mellon University

Pittsburgh, PA 15213

PRISM: Enabling Personal Verification of Code Integrity,
Untampered Execution, and Trusted I/O on Legacy Systems

or
Human-Verifiable Code Execution

Jason Franklin Mark Luk Arvind Seshadri Adrian Perrig
Carnegie Mellon University

Abstract

Today’s computer users receive few assurances that
their software executes as expected. The problem is
that legacy devices do not enable personal verifica-
tion of code execution. In addition, legacy devices
lack trusted paths for secure user I/O making it diffi-
cult to ensure the privacy of data.

We present PRISM, a software-only human-
verifiable code execution system that temporally sep-
arates a legacy computer system into a trusted com-
ponent and an untrusted component. PRISM enables
a user to securely interact with applications by es-
tablishing a trusted path and enables personal veri-
fication of untampered application execution.

PRISM enables the development of a new class
of applications which we term personally verifiable
applications (PVAs). PVAs have the property that
a user can both securely interact with and execute
these applications even in the face of a kernel-level
compromise. We develop a personally verifiable dig-
ital signature application that assures the user that
the password-protected private key is not misused
and that neither the private key nor the password are
disclosed to malware on the device. We describe an
implementation of this application on a personal de-
vice, and evaluate the usability of our approach with
a user study.

1 Introduction

An open research challenge is how to empower hu-
mans topersonally verifywhat code is executing on
their computational devices. Even trusted computing
hardware cannot provide this property - as Balacheff
et al. state in their book on TCG technology: “Un-
fortunately, the [code verification] mechanisms are
inherently complex, and cannot be directly used by
people – they require cryptographic operations and

complex comparisons.” [7].
We present a first step towards enabling a user

to personally verify the execution of software, with-
out the assistance of specialized hardware or an ad-
ditional trusted computational device. Enabling a
human to personally verify which code is execut-
ing on a device is an important problem. Cur-
rently proposed attestation technology, for example
TCG [29], requires that a trusted device is used to
verify an untrusted device. In this scenario and in
most approaches to the untrusted computer prob-
lem [2, 8, 10, 12, 20, 22], the a priori existence of a
trusted device is assumed. However, techniques to
initialize trust in a device are rare, making the a pri-
ori existence of a trusted device questionable. By
leveraging personal verification of code execution,
we can overcome these problems: a trained user can
initialize trust by personally verifying a device, then
utilizing this newly trusted device to verify other de-
vices. Hence, personally verifiable code execution
addresses the problem of how weinitialize trust.

This paper presents PRISM, a software-only ver-
ifiable code execution system that enablespersonal
verificationof untampered code execution. PRISM
enables the creation of a trusted path completely in
software, making it possible to ensure the integrity,
authenticity, and confidentiality of user input and
output (I/O) on legacy devices.

PRISM builds on tamper-evident software prim-
itives [13, 24, 25]. These primitives enable run-
time tamper-evidence throughoptimality and en-
forced atomicity. Tamper-evident software provides
sufficient information in the form of output and tim-
ing for a verifier to detect tampering during exe-
cution, however, they require extensions to enable
human-verifiable guarantees and trusted I/O func-
tionality. Recent work has proven the existence of

1

secure tamper-evident functions based on the con-
cepts of optimality and enforced atomicity [13]. The
proof is architecture-dependent and based on a sim-
ple micro-controller. However, the result suggests
that secure tamper-evident functions exist for other
simple devices. This paper assumes the existence of
a secure tamper-evident function for our architecture
and provides a proof-of-concept implementation in
Appendix A.

PRISM enables an important class of applica-
tions which we termpersonally verifiable applica-
tion (PVAs). PVAs are applications which protect
sensitive data and computation by utilizng personal
verification of application execution and leveraging
a software-only trusted path. We develop an exam-
ple digital signature PVA. The digital signature PVA
uses a software-only trusted path to maintain the con-
fidentiality of program I/O and uses personal exe-
cution verification to ensure the authenticity and in-
tegrity of user input.
Usage Scenario. We detail a particular scenario
where the infrequent execution of security-critical
applications merits the use of a PVA. Consider Alice,
the administrator for a security conscious organiza-
tion such as a government national laboratory. Part
of Alice’s daily tasks include sending email notifica-
tions concerning the latest security patches relevant
to her clients. As part of this task, Alice composes
an email including a hyper-link to the appropriate
patches, signs the email with her private key, and
transmits the message. Upon receiving the message,
Alice’s clients verify its signature and now, trusting
that Alice indeed sent the message, follow the in-
cluded link to download and install the latest patches.

Alice uses a digital signature application to sign
her message. Her private key is stored in a file and
encrypted under a password. She invokes the appli-
cation and passes the file to sign as an argument. The
application prompts for a password, decrypts the pri-
vate key, and signs the file. Trusting that her soft-
ware operates as expected, Alice transmits her signed
message. Even though Alice uses encryption and a
password to protect her private key, malware on her
device can compromise her security in a number of
ways.

Malware on Alice’s device might attempt to cap-
ture her private key or sign arbitrary messages, po-
tentially modifying the included link to point to ma-

licious patches. Malware could capture the password
used to decrypt the private key, capture the unen-
crypted private key in memory, or sign an entirely
different file. How can Alice obtain assurance that
none of these malicious activities have occurred? By
using a personally verifiable digital signature appli-
cation in conjunction with PRISM, Alice can obtain
a guarantee that the correct signature application has
executed without the intervention of any malware
that may be present on her device. PRISM provides
these properties even if the OS kernel is compro-
mised.

Summary of Contributions. We design, imple-
ment, and evaluate PRISM, a software-only human-
verifiable code execution system which allows a hu-
man to personally verify untampered code execution.
PRISM includes a software-only trusted path for user
I/O.

2 PRISM System Architecture and Protocol
Design

To personally verify code execution on a computing
device, we propose that the user undertake the role
of the verifier in a verifiable code execution proto-
col. Before presenting the details of our design, we
state our assumptions and threat model, and describe
verifiable code execution.

2.1 Assumptions

We assume that the hardware of the computing de-
vice is not malicious and that it matches the manu-
facturer specification. We assume that the comput-
ing device has a single CPU without virtualization
support and that the interrupt handlers we install dur-
ing the process of verifiable code execution are free
of any software vulnerabilities. We assume that the
computing device can be prevented from asking a
faster computing platform (proxy) to perform com-
putation on its behalf by disabling wired (disconnect-
ing cables) and wireless network connections (by re-
moving cards). Devices with built-in wireless com-
munication interfaces cannot be used with PRISM
unless the wireless interface can be disabled in a ex-
ternally verifiable manner (e.g., power button). We
assume that the user has access to trusted challenge-
response pairs for their device; we discuss their gen-
eration and management in Section 2.7.

2

2.2 Threat Model

We consider a strong active adversary who may have
complete control over all software on the device
and complete control of the highest privilege level
including control over the OS. The attacker, how-
ever, does not modify the hardware of the device.
For example, the adversary does not load malicious
firmware on peripherals to perform malicious DMA
writes to the memory region containing the PVA.
Also, the adversary does not program a benign pe-
ripheral device to overwrite PVA memory via a DMA
write.1

2.3 Background: Verifiable Code Execution

Verifiable code execution is a challenge-response
protocol between an externalverifier and an un-
trusted device. Through the protocol, the verifier ob-
tains the guarantee that an arbitrary piece of code,
called thetarget code, on the device executes un-
tampered from any malicious software that may be
present on the device.

Malicious software can tamper with the execution
of the target code in two ways: (1) it can modify the
target code image before the target code is invoked
for execution, and (2) it can modify the execution
state of the target code, or the target code image, or
both while the target code is executing.

To obtain the guarantee of verifiable code execu-
tion, the verifier needs to be able to detect if the ex-
ecution of the target code is tampered using attacks
(1) or (2). Attack (1) can be detected by asking the
device for a guarantee of integrity of the target code
image before the target code is invoked for execution.
For detecting Attack (2), it is sufficient if the device
provides to the verifier a guarantee of what code can

1DMA write attacks are easily dealt with on most personal
computing devices, which are the target of PRISM. Such de-
vices use low-end CPUs whose cache controllers do not provide
cache coherency for DMA writes. That is, the cache controllers
do not automatically update the cache contents when there is
a DMA write to the corresponding location in main memory.
Since DMA writes do not propagate into the CPU caches, we
can defend against DMA write attacks by ensuring that there is
at least one piece of the PVA which is loaded into the cache at the
start of execution and never leaves the cache till the execution of
the PVA finishes. This piece can be used to load other pieces of
the PVA into the cache from main memory, and to measure their
integrity. We do not discuss this approach further in this paper,
since the focus of the paper is not on designing primitives for
externally-verifiable code execution.

execute concurrently with the target code.
The verifier can use the integrity guarantee of the

target code image to ensure that the target code im-
age was not modified before invocation for execu-
tion. The guarantee of what other code can execute
concurrently with the target code can be used by the
verifier to decide whether or not any concurrently ex-
ecuting code could tamper with the execution of the
target code. In conjunction, these two guarantees en-
able the verifier to determine whether or not the ex-
ecution of the target code on the device will be un-
tampered by malicious code.

Consider an execution agent that exists on the de-
vice and constructs the above two guarantees. The
execution agent on the device sendsintegrity mea-
surementsof the target code and all other code that
can execute concurrently with the target code to the
verifier. The integrity measurements need to be com-
puted as a function of an unpredictable challenge
sent by the verifier to prevent pre-computation and
replay attacks.

An integrity measurement of a piece of code is ei-
ther a cryptographic hash or a checksum of the ex-
ecutable image of the code. The integrity measure-
ment constitutes a signature unique to the measured
code image. Therefore, the verifier can use the in-
tegrity measurements both to determine what other
code on the device can execute concurrently with the
target code, and to determine if the integrity of the
target code is intact.

In the rest of this section we give a detailed de-
scription of how the execution agent generates the
two guarantees required for verifiable code execu-
tion. Readers who are familiar with earlier work
on software-based verifiable code execution [24],
namely the concept of an Untampered Execution En-
vironment (UEE), may wish to skip directly to Sec-
tion 2.4.

There are two questions that need to be answered
to construct the required guarantees: one, how can
we make an exhaustive list of all software on the
device that can execute concurrently with the target
code, and two, how is the execution agent on the de-
vice protected from malicious code?
Untampered Execution Environment. To make
an exhaustive list of all code that can execute con-
currently on a device with a single CPU, we exam-
ine how multiple threads can execute concurrently

3

on a single CPU. A single CPU can support only vir-
tual concurrency, wherein the execution of different
threads are time multiplexed on the CPU. The time
multiplexing is accomplished with the help of inter-
rupts. Once a thread of execution starts to execute
on the CPU, the only way the thread relinquishes its
control of the CPU is due to an interrupt, delivered
either synchronously or asynchronously with respect
to the thread’s execution. If, before invoking the tar-
get code for execution, we modify all the interrupt
handlers on the device so that they (A) do not call
any other code on the device to handle the interrupt,
and (B) transfer control back to the target code once
they finish handling the interrupt, then the interrupt
handlers are the only pieces of code that can execute
concurrently with the target code. We call interrupt
handlers that satisfy the conditions (A) and (B)self-
contained handlerssince their execution is guaran-
teed to not invoke any other code on the device.

Once we replace all interrupt handlers with self-
contained handlers, we can guarantee that no other
code on the device can execute concurrently with the
target code other than the self-contained handlers.
Therefore, the execution agent on the device only
needs to send to the verifier integrity measurements
of the target code and the self-contained handlers to
prove untampered execution of the target code, along
with a proof that all interrupt handlers have been re-
placed by self-contained handlers.

Two types of interrupts exist on any device: mask-
able and non-maskable. Maskable interrupts can
be disabled by software whereas non-maskable in-
terrupts cannot be disabled. In our implementation
of verifiable code execution, instead of installing
self-contained handlers for all interrupts, we mask
all the maskable interrupts and only replace the
non-maskable interrupt handlers with our own self-
contained handlers. This is an optimization that re-
duces the size of the trusted computing base (code
that can execute concurrently with the target code).
For this optimization to be secure, we impose an
additional restriction on the self-contained handlers:
that they do not enable maskable interrupts when
they execute; otherwise an unmeasured maskable in-
terrupt handler could obtain control of the CPU dur-
ing the execution of the self-contained handlers.

We call an environment in which maskable inter-
rupts are disabled and the non-maskable interrupt

handlers have been replaced by self-contained han-
dlers anuntampered execution environment(UEE).
Setting up the UEE involves modifying the device’s
CPU state to disable maskable interrupts and mod-
ifying the Interrupt Vector Table (IVT) of the CPU
to replace non-maskable interrupt handlers with the
self-contained handlers. The UEE limits what other
code on the device can execute concurrently with the
target code. By doing so, the UEE allows us to pre-
cisely determine the trusted computing base required
for untampered execution.
Tamper-Evident Function. To operate correctly,
the execution agent on the device must be protected
from malicious tampering. Various options exist to
protect the execution agent, for example, the execu-
tion agent can be protected by specialized hardware.
This, however, prevents verifiable code execution on
legacy machines, which is why we utilize a software-
only approach. Unfortunately, a software execution
agent can be tampered with by malicious code on the
device. To guarantee verifiable code execution of the
target code, the verifier requires a guarantee of verifi-
able code execution for the software execution agent
itself. To address this cyclic-dependence, we build
a tamper-evident function into the execution agent
which constructs a proof of its own integrity (check-
sum of its instructions), proof of the integrity of the
rest of the execution agent (checksum of the rest of
the execution agent image), and proof that the UEE
is correctly set up (CPU state required for UEE set
up).

We implement our tamper-evident function as an
iterative checksum function which constructs the
UEE, and then computes a checksum over its instruc-
tion sequence, the instructions of the rest of the ex-
ecution agent, CPU state which needs to the modi-
fied to create the UEE, and the self-contained han-
dlers. This checksum is computed as a function of a
random challenge that is sent by the verifier to pre-
vent pre-computation and replay attacks. The result-
ing checksum is a probabilistic argument that (I) the
code of the checksum function and the rest of the
execution agent are unmodified, (II) the CPU state
for creating the UEE is correctly set up, and (III) the
self-contained handlers are unmodified.

An attacker can attempt to forge the checksum re-
sult when conditions (I), (II), or (III) do not hold.
We design our checksum function such that if an at-

4

tacker attempts to forge the checksum, the execution
time of each checksum iteration is increased. In other
words, we use time as a side channel to detect check-
sum forgery attacks. Since the checksum function is
iterative, the time overhead of a checksum forgery
attack is directly proportional to the number of iter-
ations performed by the checksum function. There-
fore, the time overhead can be increased or decreased
depending on the requirements of the verifier.

If the checksum code is the fastest (time-optimal)
code which fulfills the required conditions, then any
modification of the code which also fulfills the re-
quired conditions will require more time to exe-
cute. If the verifier receives the correct checksum
within the expected amount of time, then it is guar-
anteed that conditions (I), (II), and (III) above hold.
Thereby, the verifier knows that the execution agent
on the device will execute untampered.

After computing the checksum, the execution
agent computes a cryptographic hash of the target
code, returns the hash value to the verifier, and im-
mediately invokes the target code by jumping to it.
The target code in turn inherits the UEE of the execu-
tion agent. Once the verifier obtains the correct hash
value, it obtains the guarantee that the target code
image is unmodified and that the target code will ex-
ecute in the UEE on the device. In this manner, the
verifier obtains the guarantee of verifiable code exe-
cution of the target code.

2.4 Design Challenges and PRISM Overview

To verify code execution on a computing device, we
propose that the user undertake the role of the verifier
in a verifiable code execution protocol. Several chal-
lenges need to be addressed: (1) users cannot cre-
ate random challenges, (2) users cannot compute the
correct checksum, (3) users cannot accurately time
the checksum computation, and (4) users cannot se-
curely interact with an application without a trusted
I/O path.

We propose the following design to address these
challenges. We provide the user with access to
trusted random challenges and their corresponding
responses (Section 2.7 describes the details of how
these trusted challenge-response pairs are gener-
ated). The user uses one challenge-response pair at a
time to verify untampered code execution. The user
also knows thedetection threshold D, which is the

maximum allowed time for the checksum function
to run before the user declares the checksum invalid
(Section 2.6 describes the details on howD is de-
rived). The user employs a timer (e.g., their wrist-
watch) to measure the execution time. We design our
checksum function to exhibit a high run-time over-
head if the execution is tampered by malicious code,
such that a user can detect the delayed checksum
computation based on a coarse-grained time mea-
surement. On our implementation platform, the best
known software attack on the checksum computation
experiences at least a 33% slowdown over the legiti-
mate checksum, as we describe in Appendix A.

2.5 PRISM Details

In this section, we describe the PRISM protocol
that is executed by the user and the computing de-
vice. Figure 1 shows the memory layout of the ex-
ecution agent and the PVA on the computing de-
vice. The execution agent consists of six parts: the
iterative checksum functionF , a function O that
writes output to the display, a hash functionH, a
function P that sets up a trusted I/O path for the
PVA, K a self-contained keyboard interrupt handler
and device driver, andI the self-contained handler
for all non-maskable interrupts. The self-contained
handler is a dummy interrupt handler, consisting of
aninterrupt-return instruction, that uncondi-
tionally returns control every time it is invoked. Hav-
ing a simple dummy handler for non-maskable in-
terrupts makes it easy to verify that the handlers are
self-contained and also reduces the size of the TCB
for untampered code execution.

Figure 2 presents an overview of the PRISM pro-
tocol. The user holds a list of challenge-response
pairs and uses a wristwatch to measure the execu-
tion time of the checksum function. The list contains
the detection thresholdD and pairs〈Ci ,Ri〉, whereCi

is a challenge value andRi is the expected checksum
value.

To verifiably execute a PVA, the user starts PRISM
by passing a pointer to the PVA to the execution
agent. The execution agent sets up memory as Fig-
ure 1 shows, placing the PVA adjacent to itself in
memory. The execution agent then prompts the
user to enter a challenge. The user picks a fresh
challenge-response pair〈Ci ,Ri〉 from the list, enters
the challengeCi into the computing device via the

5

F O H P K I PVA code image S Res

Measured by checksum fn Measured by hash function

Execution Agent

Figure 1: Memory layout of the execution agent and PVA.F is the iterative checksum function,O writes
data to the display,H is a hash function,P is the function that sets up a trusted I/O path,K is the keyboard
driver, I is the self-contained interrupt handler, memory area S is the PVA’s heap and stack, and Res is the
memory region where the PVA stores its results. The memory region from the checksum function to the
self-contained handler is checked by the checksum while the hash checks the PVA code image. The PVA
arguments and results are not checked.

1. Challenge

2.
C

hecksum

3. Response

4. Hash

5. Hash Value

6.Invoke

8. Secure Output
7. Secure Input

Device
Execution Agent

Checksum

Hash Fn

PVA

(a) Functional diagram.

A : t1← current time,pick〈Ci ,Ri ,D〉
1. A→U : 〈Ci〉
2. U : R′← Checksum(Ci ,Exec Agent)
3. U → A : 〈R′〉

A : t2← current time
A : if (t2− t1≥ D∨R′ 6= Ri) Failure

4. U : h← Hash(PVA)
5. U → A : 〈h〉

A : verify measurement resulth
6. U : Invoke PVA.
7. A→U : 〈Secure Input〉
8. U → A : 〈Secure Output〉

(b) Protocol diagram. A represents user Alice, and U represents
the untrusted device.

Figure 2: Overview of PRISM’s execution. The numbers represent thetemporal ordering of events.

device’s keyboard, and records the current timet1.
Note that interrupts are enabled when the user enters
Ci . Therefore, the user can interact with the device
via the keyboard as usual.

As soon asCi is entered, the execution agent in-
vokesF with Ci as input.F sets up the UEE by dis-
abling the maskable interrupts and replacing the non-
maskable interrupt handlers with the self-contained
handlers, as described in Section 2.3. Then,F itera-
tively computes a checksum over the memory region
of the execution agent and the CPU state necessary to
create the UEE, seeded with the challengeCi . Upon
completion of the checksum computation,F invokes
O to display the checksumR′ on the device’s screen.
Writing to the display does not require interrupts to
be enabled since it can be accomplished by writing
the output directly to the video framebuffer. When
the user seesR′, she notes the current timet2, and
verifies that the elapsed timet2− t1 is less than the
detection thresholdD, and that the displayed check-
sumR′ is equal to the expected resultRi . If R′ = Ri

andt2− t1 < D, the user receives the guarantee that

the checksum function has executed untampered.

After displaying the checksum,O invokesH to
compute the hash of the PVA. AfterH computes the
hash of the PVA,O displays the hash value. The user
verifies that the hash value displayed matches the ex-
pected value. After displaying the hash of the PVA
to the user,O invokesP to set up a trusted I/O path
between the PVA and the user.

The trusted I/O path guarantees that no software
on the device other than that which has already been
measured will handle the I/O between the PVA and
the user, and provides confidentiality and authentic-
ity of all I/O between the user and the PVA. The
trusted I/O path uses the device’s screen for output
and the keyboard for input. It usesO to display out-
put to the device’s screen. Unlike displaying infor-
mation on the screen, which can be done efficiently
without interrupts, using the keyboard requires in-
terrupts to be enabled for efficiency. Assuming that
maskable interrupts cannot be selectively reenabled,
using the keyboard for trusted input requires that all
maskable interrupts be reenabled and that a mea-

6

sured interrupt handler exist for the keyboard inter-
rupt. The functionP registers the self-contained key-
board interrupt handlerK and device driver that is
part of the execution agent to handle the keyboard in-
terrupt. It also registers the self-contained handler,I ,
as the interrupt handler for all other maskable inter-
rupts. P then reenables all maskable interrupts and
invokes the PVA for execution. There now exists a
trusted I/O path through which the user can interact
with the PVA.

After the PVA terminates, it returns control back
to the execution agent. The execution agent enters
the clean-up phase, overwriting all PVA and execu-
tion agent memory, except the memory region Res,
to protect potentially sensitive PVA data and restores
the CPU of the device to its original state.

2.6 Timing Considerations

Given the hardware configuration of the comput-
ing device (i.e., processor and clock speed), the re-
quired number of iterations is selected such that a
compromised checksum function exhibits a human-
detectable slowdown. The detection thresholdD is
thus picked as described in this section. LetT be the
running time of the checksum function and letT ′ be
the running time of the fastest malicious checksum
function, whereT ′ = (1+δ)T andδ is the minimum
performance overhead of a compromised checksum
function (on our implementation platform,δ = 0.33
as we describe in Appendix A).

Let ∆E be the time required for the user to enter
the challenge value,∆S be the time required to get the
current time (this could be negative if the user notes
the current time before entering the final character of
the challenge value), and∆P be the time to get the
time after the device displays the response. Figure 3
depicts these events and time durations.

To derive an upper bound on the detection thresh-
old D, we need to ensure that no false negatives are
possible. A false negative is the event that a mali-
cious checksum function had been accepted by the
user as being legitimate. This could happen if the
perceived execution time of the malicious checksum
function is less than the detection thresholdD. Thus,
the detection thresholdD cannot be greater than a
realistic estimate of the shortest perceived execution
time of a malicious checksum function. In the worst
case, we need to assume a maximum value of∆S,

t

∆E ∆S

D

T ′

t0 tste

t f

tp

(a) Upper bound on detection thresholdD.

t

∆E ∆S T ∆P

D

t0 ts te t f tp

(b) Lower bound on detection thresholdD.

Figure 3: Timing diagrams.t0 and te represent the
start and end time for entering the challenge value,
respectively. ts and tp represent the start and stop
times for the timer.t f represents the finish time for
the checksum function. Given these timings, we ob-
tain ∆S = ts− te and∆P = tp− t f .

which we write as max(∆S), and that∆P = 0, such
that the perceived time duration for the checksum
computation is minimal. Figure 3(a) depicts this
case. (This is quite a pessimistic estimate, since in
reality,∆S is very small [the user types the last char-
acter of the challenge value at the same time as get-
ting the time] and the value of∆P is large due to the
user’s reaction time.) Hence,D < T ′−max(∆S).

To derive a lower bound on the detection threshold
D, we need to ensure that false positives are infre-
quent. A false positive is the event that a legitimate
checksum function had been perceived to be mali-
cious. This could happen if a legitimate checksum
function’s perceived runtime is longer than the de-
tection thresholdD. Thus,D cannot be less than a
realistic estimate of the longest perceived execution
time of a legitimate checksum.

In the worst case, we need to assume that∆P is
at the maximum value (max(∆P)) and that∆S is at
the minimum value, which can be a negative value
(min(∆S)), i.e., the user has a slow reaction time but
notes the time before entering the last character of
the challenge value. Figure 3(b) depicts this case.
Hence,D > T +max(∆P)+ |min(∆S)|.

Since T ′ = (1 + δ)T, where δ is the perfor-
mance overhead of the malicious checksum func-
tion, we obtain the following inequality for the detec-
tion thresholdD by combining the upper and lower
bound:T +max(∆P)+ |min(∆S)|< D < (1+δ)T−
max(∆S)

7

Since ∆S and ∆P depend on the user, we will
need to setT appropriately to enable a solution.T
depends on the number of iterations of the check-
sum loop, thus, we need to iterate the checksum
loop sufficiently many times to satisfy the inequal-
ity. Although we could optimizeT based on the user,
for simplicity we have chosen to use a conservative
value that covers the majority of users. As we de-
scribe in our implementation section, we have cho-
sen a value forT that can handle min(∆S) = −1s,
max(∆S) = 1s, and max(∆P) = 2s, which suffices for
user reaction times of maximally 2 seconds. From
our implementation we obtainδ = 0.33 and derive
from the inequality thatT = 12s, T ′ = 16s, and
D = 14s. Given the magnitude of these timing val-
ues, differences in temperature that affect the clock
speed of the device add negligible variance.

2.7 Challenge-Response Pair Generation and
Management

In this section we discuss how the user obtains a
trusted list of challenge-response pairs. The require-
ments for a trusted pair are that the challenge value
is unpredictable, and that the challenge-response val-
ues remain secret. Two main security vulnerabilities
exist in this context: (1) the pair creator itself could
be malicious, and generate challenge-response pairs
for malicious code, and (2) a legitimate challenge-
response pair had been leaked to the device, perhaps
by eavesdropping on the channel by which the chal-
lenge is delivered.

All techniques to generate challenge-response
pairs must rely on some initial trust assumptions.
Our approach to challenge-response pair generation
is as follows. First, we discuss how we can use one
trusted challenge-response pair to securely bootstrap
generation of new pairs. This reduces the problem
significantly. Instead of requiring the user to gain ac-
cess to a list of challenge-response pairs, we only re-
quire the user to gain access to one such pair. Next,
we discuss different methods of providing the user
with the initial challenge-response pair, in such a
way to minimize the trusted computing base.
Extending lists of pairs. The user can use one
challenge-response pair to generate new challenge-
response pairs. This can be achieved by including
the challenge-response pair generation program as a
PVA. The user issues the initial challenge-response

pair, and if it verifies correctly, the user has a guaran-
tee that the challenge-response pair generation pro-
gram is executing in an untampered execution envi-
ronment. Any newly generated challenge-response
pairs can be displayed to the user from within the
untampered execution environment with trusted out-
put. These challenge-response pairs can be trusted,
and can be used later to bootstrap future challenge-
response pair generation.
Trusted manufacturer generates initial pair. The
scheme of extending challenge-response pairs still
requires the existence of one authentic challenge-
response pair in the beginning. We propose to have
a trusted manufacturer provide unique challenge-
response pairs. The manufacturer could distribute
pairs along with the device or provide a telephone
or fax service. Defending against eavesdropping at-
tacks is beyond the scope of the paper.

We note that trusting the manufacturer does not
require trusting additional entities. We already trust
the manufacturer to guarantee the hardware configu-
ration of the device. We do require the user to now
trust the manufacturer to create secure challenge-
response pairs. A potential scenario for challenge-
response pair generation follows. Each manufacturer
could utilize a dedicated device equipped with a field
programmable secure co-processor system like the
IBM 4758 [11]. Such devices would be disconnected
from the network and would not interact with any
other machines or execute any other programs ex-
cept the challenge-response pair generation program.
Furthermore, since there are very few of these ded-
icated machines, it is plausible to physically secure
them (i.e., inside a locked room). This approach re-
duces the trusted computing base for pair-generation
to these few challenge-response pair generators.

3 Implementation

We describe the implementation of the execution
agent and the digital signature PVA. A detailed de-
scription of the implementation can be found in Ap-
pendix A.

3.1 PRISM Implementation

We implement the execution agent on the Sharp Za-
urus SL6000 Personal Digital Assistant (PDA). This
PDA has a 400 MHz Intel XScale-PXA255 proces-
sor, 64 MBytes of memory, and runs the XScale port

8

of version 2.4.18 of the Linux Kernel. The XScale
PXA255 is a 32-bit RISC processor, with 16 general
purpose registers (including a program counter), and
two processor status (flags) registers [28].
Checksum Function. Our checksum function,F ,
is an iterative function that uses all general-purpose
registers of the PXA255 to generate a 68-byte check-
sum, which we represent as a vector of seventeen 32-
bit checksum pieces. Each checksum piece uses one
32-bit CPU register. Each iteration of our checksum
code performs the following: (1) derives a pseudo-
random number using a 32-bit T-function [18], (2)
reads the memory word based on a PC-relative ad-
dress generated by the pseudo-random number, and
(3) updates one checksum piece based on the mem-
ory word read and CPU state information from the
CPU status (flags) registers.

We implement the execution agent as a Linux ker-
nel module. The checksum function,F , is written
in assembly, while the rest of the execution agent is
written in C. The user invokes PRISM by running
a shell script that loads the kernel module. After
the kernel module loads, the script prompts the hu-
man for the challenge, which is an 80-bit nonce, in
the form of 16 alphanumeric characters. The 80-bit
nonce is used to seed the T-function, and to initialize
the seventeen checksum pieces. The kernel module
then executes the PRISM protocol on the Zaurus as
described in Section 2.5.

If the protocol terminates successfully, the human
obtains the guarantee of untampered execution of the
PVA and can interact with the PVA via a trusted I/O
path.

3.2 Personally Verifiable Digital Signature Ap-
plication

We now describe an implementation of a PVA in the
context of a secure digital signature application that
provides the guarantee that only the correct specified
message is signed by the user’s private key. To ob-
tain this guarantee, the digital signature application
executes as a PVA in the untampered code execution
environment instantiated by PRISM.

In this application, a user stores a private signature
key encrypted under a password on the file system.
To digitally sign a message, the user starts the signa-
ture application, enters the password to decrypt the
private key, and the application uses the decrypted

private key to digitally sign the message. Without
knowing the password, an attacker is unable to sign
arbitrary messages.

Many avenues of attack exist. Malware can at-
tempt to steal the password used to decrypt the pri-
vate key, or capture the decrypted private key in
memory, or even pass a different message to be
signed. In current computer systems, when we use
such an application, we can never be sure that the
correct message has been signed and that none of
these attacks has occurred. By implementing the sig-
nature application as a PVA, we guarantee to the user
that none of these attacks has occurred.
Implementation Details. The digital signature ap-
plication consists of two modules: an AES-CBC
module and an RSA module. The AES module de-
crypts the private key file, while the RSA module
generates digital signatures. For this prototype im-
plementation, both modules were implemented in-
side the same kernel module as the checksum code.

The protocol proceeds as follows. Before invok-
ing PRISM, the user specifies the filename of the
encrypted private key and the filename of the mes-
sage to be signed. Initialization code loads these files
into memory and makes the corresponding memory
pages available to the PVA as illustrated in Figure 1.
Next, the user initiates PRISM and loads the corre-
sponding digital signature PVA into memory. If the
user is satisfied with the computation time and re-
sponse of PRISM, the user would interact with the
digital signature application and enter the password
to decrypt the RSA private key stored on the device.
The private key is encrypted under a 128-bit AES key
that is derived from a hash of the password.

Next, the user specifies the message to be digitally
signed by typing the message in its entirety or using
the previously loaded file. To ensure that the correct
message is being signed, the application displays the
message before generating the signature. The PVA
then stores the digital signature in the memory re-
gion Res as shown in Figure 1. Finally, the clean-up
phase of the signature application overwrites all in-
termediate state information, such as the password
and the decrypted private key.

As previously described, the TP/UEE module en-
sures that the untampered execution environment has
been correctly set up and that malware cannot gain
control to tamper with the execution of the signature

9

application. The keystrokes are read in entirely by
verified handlers, thus, malicious code cannot eaves-
drop them. Since no malicious code can interfere
with the execution, the private key will remain se-
cret, and only the desired message will be signed.

4 Security Analysis of Human Factors

The security analysis in this section encompasses
only the extensions to tamper-evident software prim-
itives required to enable personal verification. A gen-
eral security analysis of tamper-evident primitives
can be found in previous work [13,24,25].

4.1 Attacks on User Timing Verification

To attack timing verification, malicious code on the
user’s computing device attempts to guess possible
challenge values based on the user’s partially typed
challenge. By precomputing with possible values,
the malicious code hopes to gain a time advantage
that would allow for the execution of malicious code
within the detection threshold.

There exist multiple ways for an attacker to guess
possible challenge values. One possible technique
is for an attacker to start a thread for each possible
challenge value. Each time an additional character
of the challenge is input, the attacker can kill threads
that correspond to challenge values that do not match
the real challenge. Each additional character of the
challenge reduces the search space by a factor of the
number of possible values for a single character of
the challenge values, resulting in an exponentially
decreasing search space. The end result is that the
attacher obtains an early start on computing the re-
sponse.

If the malicious code correctly guesses the chal-
lenge withinα seconds of the input of the final char-
acter of the challenge, then the attacker has gained
an precomputation advantage ofα. This precompu-
tation advantage is only useful in masking execution
tampering if it meets or exceeds the overhead of the
malicious checksum function. Otherwise, the execu-
tion tampering will be detected.

Let ki denote theith challenge character keypress.
When a user inputs ann character challenge, we ob-
tain a sequencek1,k2, . . . ,kn. Assume we are able
to bound the time between keypresses below byTmin

and above byTmax and the attacker needs to cor-
rectly guess the correct challenge value∆A seconds

beforekn. In the worst case, the user delaysTmax be-
tween each keypress and the attacker needs to guess
s = ⌈ ∆A

Tmax
⌉ keypresses. Givenc possible characters

for each keypress, the attacker succeeds with proba-
bility 1

cs .
A promising defense against probabilistic guess-

ing attacks is to perform mandatory postcomputation
after each keypress. This postcomputation would
take as input the partially input challenge and pro-
duce a value which is input to the subsequent post-
computation after a specified amount of time. The
intuition behind this defense is that minimizing the
time available to the attacker increases the number
of keystrokes ahead that are required to be guessed.
If we performTpc seconds of mandatory post com-
putation after keystrokesk1,k2, . . . ,kn−1, the attack
must guesss′ = ⌈ ∆A

Tmax−Tpc
⌉ keypresses. Since the at-

tacker’s usable time for computation is reduced, the
attacker’s probability of success is correspondingly
reduced to1

cs′ wheres′ > s.
The probability of a successful guessing attacks

can also be decreased by increasing the rate of user
input. If a human user types in a challenge arbitrar-
ily slowly (Tmax tends to∞), the attacker’s precom-
putation advantage can be unbounded. In protocols
which rely on time, even coarse-grained timing like
that of PRISM, the user must enter the characters of
the challenge at a reasonable rate to minimize the
likelihood of a successful guessing attack.

4.2 Attacks on Challenge-Response Verification

The security of our scheme relies on the assump-
tion that the challenge-response pairs used to check
a computing device are fresh. In addition, the chal-
lenge must be kept secret until input into the device,
and the response must be kept secret until the check-
sum function finishes executing and displays a re-
sponse. If these assumptions are violated, the un-
detectable execution of malicious code is possible.

4.3 Attacks on User Attention

Humans are susceptible to coercion and confusion.
A malicious device may attempt to confuse users in
a number of ways. For example, a malicious device
may attempt to gain a precomputation advantage by
requiring a user to pressreturn after entering the
challenge or by displaying prompts requesting spuri-
ous user input. A malicious device may also attempt

10

to delay the start of the timer by explicitly instruct-
ing the user to start timing, or may signal the com-
pletion of the checksum function early as a way to
minimize perceived execution time. Social engineer-
ing attacks like these are common in protocols which
involve humans [16]. Since PRISM targets sophisti-
cated users like administrators, the impact of these
attacks can likely be countered with appropriate user
training or other verification mechanisms [16]. An
open research is to increase the robustness of human-
in-the-loop protocol robustness to such attacks.

5 Usability Analysis

In this section, we evaluate the PRISM design and
the usability of PVAs. Our user study evaluates the
usability of the personal verification process.

5.1 Potential User Errors

Our user study evaluates the following user errors:
a device returns an incorrect response and the user
fails to correctly verify the response; the checksum
computation is delayed, but the user fails to identify
the delay.

5.2 User Study

Participants. We tested the digital signature PVA
on a total of 12 users. Other than the prerequisite
of having some level of experience with mobile de-
vices, we recruited users from a diverse technical
background and age range. Seven users were male
and five were female. There were five undergraduate
students, three graduate students, three staff and one
faculty. Five users were between 18 and 22 years of
age, five were between 23 and 30 years of age, and
two were older than 31 years. Among the users, two
currently use a PDA, and ten do not.
Experiment Setup. Each user was given a Sharp
Zaurus PDA, a watch, and a sequence of challenge-
response pairs printed on a sheet of paper.

Three verification functions are present on the Za-
urus, one correct one and two malicious ones. One
malicious function displays an incorrect checksum
within the detection thresholdD, while another dis-
plays the correct checksum but takes longer thanD
to execute.

There are a total of four test scripts presented to
the user. Two of them correspond to the correct exe-
cution agent, while the other two scripts correspond

to the two incorrect execution agents. We purposely
avoid a one-to-one correspondence in an effort to
prevent the user from guessing which script invokes
which execution agent via a process of elimination.

The four test scripts are presented to the user in
a pre-determined order. The user is asked to deter-
mine the correspondence between the test scripts and
the execution agent based on two factors. One, the
execution time as recorded by the watch, and two,
whether the sixteen character checksum response
matches with the response on the printed sheet. The
user is asked to perform two trials for each test script
using a different challenge each time.
Procedure. Before the experiment begins, we ex-
plained to the users the purpose of our study, and en-
couraged them to think aloud and voice their opin-
ions on any features. Then, each user is presented
with the PDA and a watch. We present to the user
the following scenario where she needs to input her
password in a secure manner in order to securely sign
a message. Next, the four test programs are executed
with fresh challenge-response pairs randomly drawn.
Finally, we asked the user to complete a brief demo-
graphic survey and solicited for general comments.
In some cases, we would redirect the user’s attention
to portions of the interface that she may have over-
looked during testing.

5.3 Experimental Results

We consider the trial to be a false positive if the user
perceived the device to be malicious even though the
correct execution agent was executed: false positives
do not endanger the secrecy of the password or pri-
vate key, however they negatively affect the user ex-
perience. As we see from our results, we achieve a
false positive rate of 0.

Error Type Rate
False Positive 0 / 24
False Negative (delayed execution) 0 / 12
False Negative (incorrect checksum)1 / 12

Figure 4: Results of user study
A false negative occurs when the user fails to de-

tect the execution of a malicious execution agent.
The false negative rate is more important because a
single case could potentially leak the secrecy of the
password and/or private key.

We implemented two malicious execution agents:
delayed execution with correct checksum output, and

11

on-time execution with incorrect checksum output.
A false negative in the former implies an error in the
user’s measurement of the execution time, while a
false negative in the latter implies that the user failed
to recognize the incorrect checksum response. As
our user study shows, none of the twelve users had
any problem with the maliciously delayed response,
while one user failed to verify the checksum.

Our most important task is to study whether users
are able to use our scheme to verify software in-
tegrity. As our results show, our users were able to
successfully classify whether or not the program was
malicious in 47 out of 48 tests despite the users’ lack
of familiarity and minimal training.

Out of our 48 tests, the only error occurred when
a user failed to realize that the 16 character check-
sum response was different from the corresponding
challenge-response pair. All other test cases, includ-
ing all test cases relying on time-delayed execution,
were correctly answered. This finding supports the
use of time as a side-channel to verify software and
that the detection threshold we calculated is reason-
able. The only error was due to a human error in ver-
ifying a sixteen character checksum. A potentially
alternative to character checksum verification would
be to use a visual hash function [21] to simplify this
task.

After the user study, we asked our participants if
they would in fact use such a verification system for
their security-sensitive tasks. Half of the respondents
responded that they would happily use PRISM, a
promising percentage! Amongst negative responses,
the long execution time was cited as the most signif-
icant drawback.

6 Related Work

Related work falls into three categories: load-time
attestation, verifiable code execution, and attacks on
software-based integrity mechanisms.
Load-time Attestation. Load-time attestation [3–
5, 17, 19, 23, 25, 29] is a primitive that allows an ex-
ternal verifier to verify the integrity of the memory
contents of an untrusted platform. In general, load-
time attestation primitives cannot be used for verifi-
able code execution because of the time-of-check-to-
time-of-use (TOCTTOU) problem. Since load-time
attestation only provides load-time guarantees, an at-
tacker who modifies the target executable after attes-

tation, but before it is invoked for execution, would
remain undetected.
Verifiable Code Execution. Several methods exist
to support verifiable code execution by an external
device, however, none of them can be easily used by
a human. AMD’s Pacifica [1] and Intel’s LT [14]
are two next-generation hardware platforms which
provide the guarantee of verifiable code execution.
They allow a computing device to prove to an ex-
ternal verifier that a particular executable had been
invoked for execution. Unfortunately, Pacifica and
LT are inadequate for our needs because the external
verifier cannot be a human. Balacheff et al. propose
a mechanism for verifying that the correct document
is being signed by a private key [6]. They suggest
to leverage a special TPM with a secure path to the
display as well as a secure link to a smart card. The
TPM would then display a secret image on the screen
to indicate to the user that the secure output mode
is on and display the message to be signed within
that image. Chen and Morris propose Cerium, an
approach that relies on a physically tamper-resistant
CPU with an embedded public-private key pair and
a micro-kernel that runs from the CPU cache to pro-
vide a remote host with the guarantee of verifiable
code execution [9]. Shi et al. propose BIND as a
technique to verifiably bind the output of a code to
the code that generated it [27]. BIND uses LT or
Pacifica-style CPU extensions to obtain an assurance
that a Secure Kernel (SK) was correctly loaded into
memory. BIND then uses the SK to obtain a guar-
antee of what code was executed to generate a given
output.
Attacks on Software-based Integrity Mechanism.
Genuinity is software-based attestation techniques
that relies on a verification function to generate a
checksum of the memory contents [17]. The verifi-
cation function is designed so that if an attacker tam-
pers with the checksum computation, the time taken
to compute the checksum increases. Genuinity is
vulnerable to a data-substitution attack described by
Shankar et al. [26]. The Split-TLB attack is a pow-
erful attack against software-based integrity mech-
anisms such as self-checksumming software primi-
tives [30]. Since self-checksumming code reads its
own instructions as data, during execution the I-TLB
and D-TLB point to the same physical page. The
attacker sets up the TLB such that the same virtual

12

address points to two different physical addresses.
Since only the virtual address is used in the check-
sum computation, malicious code can execute and
still produce the correct checksum. Our implementa-
tion defends against the Split-TLB as we describe in
Appendix A.

7 Concerns

We address a number of potential concerns which
may remain.
Applicability. We have described only a narrow
well-motivated application of PRISM. This is in part
to convince the reader that there is an important sce-
nario where the assumptions that underly PRISM’s
design are fulfilled. Numerous additional applica-
tions exist that satisfy our assumptions, in particular,
whenever a trusted personal device is required and
can be disconnected from the network.
Human Intelligence. PRISM is a human-in-the-
loop protocol which relies on the intelligence of the
user. Humans, however, are not perfect and user er-
ror is inevitable. With this in mind, it is important
to note that while user verification errors reduce the
security of PRISM, the reduction only returns the
user to the security level they were at before using
PRISM.
Practicality. We do not claim that our system is a
panacea for human assessment of the trustworthiness
of a system. Today’s users have few techniques to
evaluate the untampered execution of code on their
devices. PRISM provides this ability as a technique
to initialize trust in personal devices.
Security. It is not a goal of this paper nor is there
sufficient space to reproduce the security analysis
done in previous work [24]. Instead, we specifically
treat the human factor-based extensions made to pre-
vious work and provide a proof-of-concept imple-
mentation in Appendix A.
Simplicity. PRISM is a simple protocol; this sim-
plicity is necessary when imposing verification on a
human. Even if the reader disagrees with the ap-
proach described in this paper, the contributions of
PRISM are not just its realization, but also the princi-
ples and ideas this paper develops in relation to trust
and what we believe is a unique perspective on the
positioning of humans in trustworthy computing.
Usability. Using PRISM imposes a greater burden
on the user than not using PRISM at all, however

PRISM enables important functionality which im-
proves the security of systems even in the face of a
kernel-level compromise. As evidence of user inter-
est, half of the users in our user study stated they
would be happy to use PRISM for their security-
sensitive tasks. To improve the usability of PRISM
and better understand the concerns of users, we in-
tend to further study the feedback of users who felt
the overhead of PRISM outweigh its benefit.
Widespread Adoption. This paper does not eval-
uate if PRISM will achieve widespread adoption nor
make any such claims. We believe that this question
is difficult to predict and hence cannot be a necessary
criteria for research. The primary goal of this paper
is to develop reasonable techniques to allow humans
to personally verify code execution, a task which was
previously difficult. We believe PRISM is a promis-
ing approach to enable new opportunities to improve
the security of systems.

8 Conclusion

PRISM is a first step towards the goal of human-
verifiable code execution on legacy devices. Much
work remains including an extended user study and a
thorough evaluation of PRISM’s applicability, practi-
cality, and potential for widespread adoption. These
assessments are not likely to be successful without
a prototype implementation and preliminary eval-
uation, which is exactly what this paper provides.
PRISM and our PVA are available for download at:
http://www.ece.cmu.edu/∼mluk/hvce.taz

9 Acknowledgments

First and foremost, we thank John Bethencourt for
useful discussion early in the design of PRISM. We
thank Sachin Kulkarni for designing and implement-
ing an early version of the verification function for
the XScale architecture. We also appreciate the use-
ful feedback of Michael Bailey, Dan Boneh, Evan
Cooke, Virgil Gligor, Jason Hong, Yoshi Kohno, Jon
McCune, Robin Sommers, and Nick Weaver.

References
[1] Secure virtual machine architecture reference manual.

AMD Corp., May 2005.

[2] Martı́n Abadi, Michael Burrows, Charles Kaufman,
and Butler Lampson. Authentication and delegation
with smart-cards. Science of Computer Programming,
21(2):91–113, October 1993.

13

[3] William A. Arbaugh, David J. Farber, and Jonathan M.
Smith. A reliable bootstrap architecture. InProceedings of
the IEEE Symposium on Research in Security and Privacy,
pages 65–71, May 1997.

[4] William A. Arbaugh, Angelos D. Keromytis, David J. Far-
ber, and Jonathan M. Smith. Automated recovery in a se-
cure bootstrap process. InProceedings of the Symposium
on Network and Distributed Systems Security (NDSS),
pages 155–167, March 1998.

[5] Reflection as a Mechanism for Software Integrity Verifica-
tion. Diomidis spinellis. InProceedings of ACM Trans-
actions on Information and System Security, Vol. 3, No. 1,,
February 2000.

[6] Boris Balacheff, Liqun Chen, David Plaquin, and Graeme
Proudler. A trusted process to digitally sign a document.
In Proceedings of Workshop on New Security Paradigms,
pages 79–86, 2001.

[7] Boris Balacheff, Liqun Chen, David Plaquin, Graeme
Proudler, and Siani Pearson.Trusted Computing Plat-
forms: TCPA Technology In Context. Prentice Hall, 2002.
ISBN 0-13-009220-7.

[8] Dirk Balfanz and Edward W. Felten. Hand-held comput-
ers can be better smart cards. InProceedings of the 8th
USENIX Security Symposium, Washington, D.C., USA,
August 1999. USENIX.

[9] B. Chen and R. Morris. Certifying program execution with
secure procesors. InProceedings of HotOS IX, 2003.

[10] Dwaine Clarke, Blaise Gassend, Thomas Kotwal, Matt
Burnside, Marten van Dijk, Srinivas Devadas, and Ronald
Rivest. The untrusted computer problem and camera-
based authentication. InInternational Conference on Per-
vasive Computing, 2002.

[11] Joan Dyer, Mark Lindemann, Ronald Perez, Reiner Sailer,
Leendert van Doorn, Sean W. Smith, and Steve Weingart.
Building the IBM 4758 Secure Coprocessor.IEEE Com-
puter, 34(10):57–66, 2001.

[12] Howard Gobioff, Sean Smith, J.D. Tygar, and Bennet Yee.
Smart cards in hostile environments. InProceedings of
the 2nd USENIX Workshop on Electronic Commerce, Oak-
land, California, November 1996. USENIX.

[13] Vanessa Gratzer and David Naccache. Alien vs. quine, the
vanishing circuit and other tales from the industry’s crypt.
In Proceedings of Eurocrypt 2006, May 2006.

[14] Intel Corp.LaGrande Technology Architectural Overview,
September 2003.

[15] R. Joshi, G. Nelson, and K. Randall. Denali: a goal-
directed superoptimizer. InProceedings of ACM Confer-
ence on Programming Language Design and Implementa-
tion (PLDI), 2002.

[16] Chris Karlof, Naveen Sastry, and David Wagner. Crypto-
graphic voting protocols: A systems perspective. InPro-
ceedings of the Fourteenth USENIX Security Symposium
(USENIX Security ’05), 2005.

[17] Rick Kennell and Leah H. Jamieson. Establishing the
genuinity of remote computer systems. InProceedings
of the 12th USENIX Security Symposium, pages 295–308.
USENIX, August 2003.

[18] A. Klimov and A. Shamir. A new class of invertible
mappings. InProceedings of International Workshop on
Cryptographic Hardware and Embedded Systems (CHES),
2003.

[19] Jr. Nick L. Petroni, Timothy Fraser, Jesus Molina, and
William A. Arbaugh. Copilot, a coprocessor-based ker-
nel runtime integrity monitor. InProceedings of the 13th
USENIX Security Symposium, 2004.

[20] Alina Oprea, Dirk Balfanz, Glenn Durfee, and D. K. Smet-
ters. Securing a remote terminal application with a mobile
trusted device. In20th Annual Computer Security Appli-
cations Conference (ACSAC’04), 2004.

[21] Adrian Perrig and Dawn Song. Hash visualization: A
new technique to improve real-world security. InProceed-
ings of the 1999 International Workshop on Cryptographic
Techniques and E-Commerce (CrypTEC ’99), pages 131–
138, July 1999.

[22] Andreas Pfitzmann, Birgit Pfitzmann, Matthias Schunter,
and Michael Waidner. Trusting mobile user devices and
security modules.IEEE Computer, 30(2):61–68, February
1997.

[23] Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leen-
dert Van Doorn. Design and implementation of a TCG-
based integrity measurement architecture. InProceedings
of the 13th USENIX Security Symposium. USENIX, Au-
gust 2004.

[24] Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig,
Leendert van Doorn, and Pradeep Khosla. Pioneer: Verify-
ing integrity and guaranteeing execution of code on legacy
platforms. InProceedings of ACM Symposium on Operat-
ing Systems Principles (SOSP), pages 1–15, October 2005.

[25] Arvind Seshadri, Adrian Perrig, Leendert van Doorn, and
Pradeep Khosla. SWATT: Software-based attestation for
embedded devices. InProceedings of the IEEE Symposium
on Security and Privacy, May 2004.

[26] Umesh Shankar, Monica Chew, and J.D. Tygar. Side
effects are not sufficient to authenticate software. In
Proceedings of the 13th USENIX Security Symposium.
USENIX, August 2004.

[27] E. Shi, A. Perrig, and L. van Doorn. BIND: A fine-grained
attestation service for secure distributed systems. InProc.
of the IEEE Symposium on Security and Privacy, pages
154–168, 2005.

[28] A. Sloss, D. Symes, and C. Wright.ARM System Devel-
oper’s Guide. Morgan Kaufmann Publishers, 2004.

[29] Trusted Computing Group (TCG). https://www.
trustedcomputinggroup.org/, 2003.

[30] G. Wurster, P.C. van Oorschot, and A. Somayaji. A
Generic Attack on Checksumming-Based Software Tam-
per Resistance. InProceedings of the 2005 IEEE Sympo-
sium on Security and Privacy, May 2005.

14

A Implementation Details

We have implemented PRISM on the Sharp Zaurus
SL6000 Personal Digital Assistant (PDA). This PDA
has a 400 MHz Intel XScale-PXA255 processor, has
64 MBytes of RAM, and runs a 2.4.18 Linux Ker-
nel specialized for embedded devices. The PXA255
processor is based on the ARM Version 5TE archi-
tecture, excluding float point instructions.

A.1 Design and Implementation of Checksum
Code on XScale

We base our checksum code on previous work in ver-
ifiable code execution on the x86 architecture [24].
However, differences between the XScale and x86
required that we completely redesign the execution
agent. As we detail below, the simplicity of XS-
cale made it easier to implement a secure execution
agent. We first describe the design of our checksum
code. Then, we explain how an adversary tamper-
ing with its execution would either result in a wrong
checksum or a noticeable time delay. Finally, we dis-
cuss how we set up an untampered execution envi-
ronment.

Architecture Primer. The XScale PXA255 is a
32-bit RISC processor, with 16 general purpose reg-
isters (including a Program Counter), and two pro-
cessor status registers [28]. The two status regis-
ters are the current process status registers,cpsr,
and the saved process status register,spsr. There
are seven processor modes in total: six privileged
modes (abort, fast interrupt request, interrupt re-
quest, supervisor, system, and undefined), and one
non-privileged mode (user).

There are significant differences between the XS-
cale architecture and the x86 architecture that are
particularly relevant to crafting the checksum code.
In XScale, the general purpose registers are orthog-
onal. This means the user can write and read the PC
(r15) like any other general purpose register, which
greatly simplifies the checksum code. Also, the way
the processor manages different privilege levels and
interrupts is very different from the x86 architecture,
and a thorough understanding of its intricacies were
needed to set up the untampered execution environ-
ment.

Checksum Design

The checksum code needs to be constructed in such
a way that tampering with its execution would ei-
ther generate the wrong checksum or a runtime delay.
The input to the checksum function is (1) a 68-byte
output generated by feeding the typed challenge into
a pseudo-random number generator and (2) a mem-
ory region to verify (which is the execution agent,
as Figure 1 shows). The checksum code computes
a checksum over the specified memory region, and
returns a 68-byte response.

Our checksum code is a time-optimal iterative
function that uses all general-purpose registers on
our platform (15 in our case), and generates a 68-
byte checksum, which we represent as a vector of
seventeen 32-bit checksum pieces. Each checksum
piece uses one CPU register: twelve in general pur-
pose registers, and five in status registers.Each iter-
ation of our checksum code performs the following:
1) derive a pseudo-random number, 2) read the mem-
ory word based on PC-relative address, 3) update one
checksum piece based on the memory word read and
other state variables, 4) update program state. Below,
we explain the purpose of each step.
Initialization. Before checksumming begins, we
first initialize the checksum with the challenge. This
is to prevent the adversary from pre-computing the
checksum.
Step 1) The first operation in a checksum loop is to
generate a pseudo-random memory address to per-
form a PC-relative memory read. The key insight
behind this pseudo-random memory traversal is that
an attacker cannot predict what memory location will
be read next. Thus, if the attacker alters the memory,
it would need to check whether the current memory
access falls within the modified region. Even if the
attacker only modified one byte, the increased run-
time of the memory check will be noticeable.
Step 2) We derive the 32-bit address of the memory
location based on the output of a 32-bit T-function,
x = x+ (x2∨ 5) mod 2n, where∨ is the bitwise or
operator [18]. A T-function is a function from n-
bit words to n-bit words that has a cycle length of
2n. Such a function acts as a pseudo-random num-
ber generator. The T-function’s initial value as well
as initial checksum value are derived from the chal-
lenge issued by the user.

15

Step 3) The checksum function updates one check-
sum piece based on the pseudo-random memory lo-
cation and other state variables. State variables in-
clude the address of the memory read, the current
PC, and number of words read so far.
Step 4) Finally, the state variables are updated, and
the process iterates for a different checksum piece.
The small code size of the checksum loop is required
in order for the addition of instructions to exhibit a
noticeable runtime overhead.

The checksum code needs to run at the highest
privilege level with maskable interrupts disabled. On
the XScale platform, the checksum code will run at
supervisormode. This information is included in the
checksum by incorporating the status registercpsr
into the checksum.

Checksum Implementation

We implemented the entire system as a kernel mod-
ule on the Sharp Zaurus PDA. The checksum loop
itself was written in assembly, while the remainder
of the execution agent was written in C. In an effort
to strive for time optimality in the actual implemen-
tation, we unrolled the checksum loop twelve times,
such that one unrolled loop modifies one checksum
register.
Defense Against the Memory Copy Attack. In the
memory copy attack, the attacker uses a malicious
checksum function to compute the checksum over a
good copy of the checksum function as described in
the Pioneer work [24]. The XScale CPU permits us-
ing the the PC as a general purpose register in arith-
metic and logic instructions and has PC-relative ad-
dressing mode. Therefore, the memory copy attack
can be detected by reading data using PC-relative ad-
dressing and incorporating the PC in the checksum.
Defense Against Split-TLB Attack. The Split-
TLB attack is a powerful attack against self-
checksumming software primitives [30] that allows
an attacker to setup the TLB in order to forge the
checksum. By virtue of the fact that the self-
checksumming code reads its own instructions as
data, executing such functions imply that the I-TLB
and D-TLB are pointing to the same physical page.
For example, under normal circumstances, the vir-
tual addressvaddr1 has an entry in the I-TLB as
well as D-TLB, both of which are pointing to the
same physical pagepaddr1. Under the Split-TLB

attack, the attacker sets up the TLB such that the
same virtual address points to two different physical
addresses. As illustrated in Figure 5,vaddr1 in the
D-TLB points to the correct code at physical page
paddr1, while vaddr1 in the I-TLB points to mali-
cious code atpaddr2. Executing the malicious code
yields the correct checksum, since only the virtual
addressvaddr1 is used in the checksum computation.

For ease of exposition, we present our defense
against the Split-TLB attack in three phases, with in-
creasing attack overhead.

In our first defense, we augment the self-
checksumming loop with self-modifying code. The
intuition behind this defense is to force the attacker
into additional computation since it needs to modify
two physical pages instead of one. Under normal cir-
cumstances, self-modifying code modifies one phys-
ical page, and both the I-TLB and D-TLB point to
the same page. Under the Split-TLB attack, self-
modifying code would only modify one physical
page (e.g.,paddr1 from D-TLB). Therefore, the at-
tacker needs to perform an additional write to its ma-
licious code residing inpaddr2. This also requires
an additional entry in the D-TLB such that a differ-
ent virtual address,vaddr2, points topaddr2.

Self-modifying code does defend against the Split-
TLB attack, since for every iteration, the attacker
needs to perform an additional write. Unfortunately,
the time overhead is not sufficiently high to be de-
tectable by a human. An additional write manifests
in about 2 extra cycles per iteration, or an 8% over-
head. This is a far cry from the 33% overhead we
achieved in the memory copy attack. Therefore, to
defend against the Split-TLB attack, we need to mag-
nify this time overhead.

In addition to self-modifying code, the second de-
fense uses up all TLB entries, which forces the at-
tacker’s one additional TLB entry to experience a
TLB miss. We alias 32 different virtual addresses
vaddr1, vaddr2, ... vaddr32 to all point to the same
paddr1 such that all 32 entries in the I-TLB and D-
TLB are filled. The attacker needs its malicious 33rd

D-TLB entry, which causes the D-TLB to experience
TLB misses.

Unfortunately, the attack overhead is not signifi-
cantly higher than before. Since the attacker has 31
available D-TLB entries for 32 different virtual ad-
dresses, the expected number of TLB misses an at-

16

tacker faces per iteration is 1/32. The amount of time
to load in a TLB entry is around 4 cycles. Thus, the
expected time overhead per iteration is 2 cycles from
the first defense, plus 4/32 cycles from this defense.

vaddr1

vaddr1

vaddr2

vaddr2

vaddr3

vaddr3

vaddr4

vaddr4

vaddrmal

vaddr32

vaddr32

paddr1

D-TLB

I-TLB

paddr2

Figure 5:Split-TLB attack and defense.To defend
against the Split-TLB attack, we fill all 32 entries
in both the D-TLB and I-TLB to point to the same
physical page. A Split-TLB attacker would setup the
TLB in a way such that the same virtual page points
to two physical pagespaddr1 andpaddr2. Because
of self-modifying code, the attacker also needs to re-
place one TLB entry in the D-TLB with a malicious
entry fromvaddrmal to paddr2. Therefore, the num-
ber of TLB misses are different between a legitimate
checksum function and a malicious checksum func-
tion employing the Split-TLB attack.

The insight behind our final defense is that the
number of TLB misses experienced by an attacker
is different than that experienced by a legitimate
checksum function. This can be exploited by includ-
ing the performance counter of TLB misses into the
checksum. Since the performance counter is incre-
mented automatically by hardware upon each TLB
miss, a software-based attacker cannot tamper with
this counter.

According to our second defense, the legiti-
mate checksum function experiences 0 TLB misses.
An attacker would simply replace the performance
counter reads with an immediate of 0. The solution
is to induce TLB misses even in legitimate verifica-
tion functions. Therefore, we setup 33 TLB aliases
vaddr1, vaddr2, ... vaddr33. The attacker still needs
its additional malicious 34th D-TLB entry. Thus the

attacker’s expected number of TLB misses per it-
eration is 2/34, while the expected number of TLB
misses by the legitimate function is 1/33. Since TLB
misses are not predictable, the attacker has no trivial
way of forging the performance counter aside from
simulating the entire TLB in software. In this way,
the Split-TLB attack is detected.

A final note to this defense is that an attacker may
avoid TLB misses completely to gain a time advan-
tage. The attacker achieves this by creating 1 MB
pages instead of the default 4K pages. Therefore, the
attacker only needs 1 TLB entry to map all ofvaddr1,
vaddr2, ... vaddr33 to paddr1, in addition to one ma-
licious TLB entry. Since the attacker only requires
two TLB entries, he does not experiences any TLB
misses, and gains an expected time advantage of 4/33
cycles per iteration. However, this time advantage is
insignificant since the attacker still cannot predict the
correct number of TLB misses experienced by a le-
gitimate checksum function. The attacker still needs
to simulate the entire TLB in software, which would
require more than 4/33 cycles per iteration.
Pseudo-code and assembly code. Figure 6(a)
shows the pseudo-code of our checksum code. Fig-
ure 6(b) shows one unrolled loop of the checksum
function. The code shown is not the optimized ver-
sion, but a verbose version to aid readability.

Each iteration of our checksum code has 24 as-
sembly instructions and takes 28 CPU cycles. Be-
cause of the small code size and the regular in-
struction set architecture of the XScale processor,
we were able to hand-optimize our checksum code
to obtain the assurance of having the fastest possi-
ble implementation. In our future work we plan to
demonstrate code optimality through the use of auto-
mated optimization tools such as Denali [15].

A.2 Empirical Analysis of Attack Overhead

In this section, we analyze different attacks against
the execution agent and show why these attacks sig-
nificantly slow down the checksum computation.
Benefits of XScale Architecture. First, because
of the inherent properties of the XScale architecture,
attacks based on the properties of the x86 platform
are no longer possible. For example, multiproces-
sors and hyper-threading remain as possible attacks
against any software-based attestation work on PCs.
The absence of such capabilities on the XScale archi-

17

//Input: y number of iterations of the checksum function
//Output: ChecksumC
// daddr - address of current memory access
// x - value of T function
// status- status register
for l = y to 0do

//T function updatesx where 0≤ x≤ 2n

x← x+(x2∨5) mod 2n

//Modifiesdaddrbased on PC andx from T function
daddr← PC+x[4 : 0]
//Read from memory addressdaddr, modify checksum.
//Let C be the checksum vector andj be the current index.
Cj ← Cj +Cj−1⊕Cj−2 +Cj−3⊕Cj−4 +Cj−5⊕Cj−6 +
Cj−7 ⊕ Cj−8 + Cj−9 ⊕ Cj−10 + Cj−11 ⊕ PC + daddr⊕
mem[daddr]⊕status+ l
Cj ← rotate right(Cj)
//Update checksum index
j ← (j +1)mod12

end for
(a) Checksum Function Pseudocode

Assembly Instruction
smulbb r11, r10, r10
add r3, r3, r2
eor r3, r3, r1
orr r11, r11, #0x5
adds r10, r10, r11
eor r11, r9, r10, LSR #27
add r3, r3, r11
and r11, r11, #0xfffffffc
ldr r11, [r11]
add r3, r3, r0
eor r3, r3, r15
add r3, r3, r11
mrs r11, cpsr
eor r3, r3, r14
add r3, r3, r13
eor r3, r3, r9
add r3, r3, r8
eor r3, r3, r7
add r3, r3, r6
eor r3, r3, r5
add r3, r3, r4
eor r3, r3, r12
add r3, r11, r3, ROR #1
subs r12, r12, #1

(b) Checksum Assembly Code. r3 is the current checksum reg-
ister.

Figure 6: Implementation of checksum function.

tecture rules out these attacks. Moreover, the absence
of an System Management Mode (SMM) or dynamic
clock scaling on the XScale processor greatly simpli-
fies the design and results in a more robust and secure
system.
Best Known Attack: Checksum Forgery. Other
than hardware attacks, the best known attacks against
the execution agent are checksum forgery attacks
carried out in software. In a checksum forgery at-
tack, the attacker manipulates the checksum compu-
tation to generate the correct checksum even though
the attacker has modified the execution agent. We
now discuss why such attacks result in a high run-
time overhead.

Checksum forgery attacks can be classified into
data substitution attacksandmemory copy attacks.
In a data substitution attack, the attacker modifies a
certain memory region, and redirects memory reads
for this region to another location that contains a cor-
rect copy the data. A description of memory copy
attacks and a novel defense has been previously dis-
cussed. We describe the overhead of such attacks
below.
Intuition behind Attack Overhead. Our check-

sum code occupies all 15 CPU general purpose reg-
isters (12 for the checksum, one for the loop counter,
one for the data offset from the PC and one for the T-
function), and 6 status registers. Hence, the attacker
has no free registers to implement their attacks. The
only way the attacker can obtain registers is to keep
some of the checksum computation state in memory.
However, accessing memory is slow. As we show,
slow memory accesses are the reason why such at-
tacks achieve a detectable time overhead.

In addition to performing memory access to free
up registers, the attacker often needs to access cer-
tain immediate values to implement its attacks. The
attacker has two ways to do so: 1) store and load
such values from memory, or 2) encode immediate
operands within the instruction. On the XScale ar-
chitecture, immediate operands are encoded within
each instruction, and can only be 8 bits in length be-
cause all instructions have a fixed length of 32 bits. If
a program wants to operate on immediate operands
that are longer than 8 bits, the program first has to
move the immediate from memory into a register and
then operate on the register. Thus, any attack where
the attacker needs to use immediates that are longer

18

than 8 bits will experience a dramatic slowdown.
Data Substitution Attack. To perform a data sub-
stitution attack, the attacker must check every mem-
ory read by the checksum code to detect if the read
is accessing modified memory locations. This is due
to the fact that the checksum code accesses mem-
ory in a pseudo-random manner. The compare in-
struction modifies the state of the CPU’s status regis-
ter. Since we incorporate the status register into the
checksum, the attacker has to save the status regis-
ter before the compare instruction, and use the saved
copy of the status register to compute the checksum.
Furthermore, the compare instruction needs another
operand—a register that contains the address of the
malicious content. This requires the attacker to ob-
tain an immediate value, which we already showed
to be slow.
Memory Copy Attack. Performing a memory
copy attack on the XScale is also expensive. To de-
fend against this attack, we incorporate both the PC
and the random offset from the PC used to read data
into the checksum. This requires the attacker to forge
either one of these values.

The attacker can forge the PC value by using an
immediate or by keeping the correct PC value in
memory. To forge the random offset, the attacker has
to use a memory location.
Evaluation of Attack Overheads. When we im-
plemented the different checksum forgery attacks
mentioned above, we found the fastest checksum
forgery attack to be the memory copy attack whereby
the attacker forges the PC using a value in memory.
This attack has an overhead of 33% per iteration of
the checksum loop in contrast to the 2% per iteration
of the checksum loop overhead in previous work.
There are two reasons for the significantly higher
overhead in our case. One, the number of CPU cy-
cles per iteration for our checksum code is much
smaller than previous work (28 cycles versus 52 cy-
cles) due to the absence of pseudo-random jumps in
our code. Two, the lack of x86-style segmentation
support in the XScale architecture and the limit on
the size of immediates that can be used in instruc-
tions limits the attacker’s flexibility in constructing
memory copy attacks. These two restrictions force
the attacker to use memory operands for performing
memory copy attacks, increasing the attacker’s time
overhead.

A.3 Untampered Code Execution Environment

We ensure untampered code execution by setting
up an untampered execution environment. The key
point is that we do not execute code unless it has been
verified. The only exception is when we execute the
checksum code itself. Instead of verifying before ex-
ecution, the user executes the checksum code, and
verifies its execution based on whether it generates
the correct checksum in the expected amount of time.

Figure 7 shows how the untampered execution en-
vironment is setup in three phases. In the verifica-
tion phase, we receive the challenge from the user
and run the execution agent. In the setup phase, we
run the code required to establish a trusted path and
set up the untampered execution environment. At the
end of the setup phase, the response is printed to the
screen. The runtime measured by the user consists
of summation of the verification and setup phases. In
the execution stage, after the user verifies the check-
sum and runtime, she may run the verified applica-
tion.

Verification Phase. During verification, we ensure
that the checksum loop is the only code running by
explicitly disabling all maskable interrupts and exe-
cuting in supervisormode. This is signified in Fig-
ure 7 by the symbol−. We verify this by incorporat-
ing the CPU status register (cpsr) into our check-
sum. The status register has an interrupt-enable bit.
Thus, if the attacker runs our checksum code without
disabling interrupts, the interrupt enable bit would be
different and hence the checksum will be incorrect.
Also, thecpsr encodes the processor mode in its
least significant five bits, preventing an attacker from
running our code in a different processor mode.

We also prevent malicious exception and non-
maskable interrupt handlers from tampering with the
execution of the execution agent by implicitly dis-
abling them, signified in Figure 7 by the symbol∼.
This is done on the XScale by thespsr trick. The
key insight is that during an exception or interrupt,
the processor automatically switches processor mode
based on the cause of exception, and saves thecpsr
to the bankedspsr of the exception mode. This is
done by the hardware, and cannot be prevented by
the attacker. Thus, if we store checksum pieces onto
the bankedspsr registers of all five possible ex-
ception modes (Undef, IRQ, FIQ, Abort, and super-

19

visor), an exception or unmaskable interrupt would
corrupt the checksum.

Verify Setup Exe
Checksum Loop E V V
UEE Setup E V V
Trusted Path − E V E V
Maskable Int − − −
Unmask. Int/Expt. ∼ ∼ V E V
PVA V E V

Figure 7: Verify, Setup, and Exe represents the three
chronological time periods: verification phase, the
Untampered Execution set up code, and execution
of the PVA. The rows represent different pieces of
code that could be executed.E means this code may
execute at this time.V means this code had been
verified to be correct.− means this code is explic-
itly disabled to run at this time (i.e., interrupts turned
off). ∼ means this is implicitly disabled (i.e., it may
execute, but will return incorrect response).

At the end of the 12 unrolled loops of the check-
sum function, we select one of these five processor
modes and update their corresponding bankedspsr
based on the current checksum. Banked registers are
hidden from all other modes except for the corre-
sponding mode. Thus, we need to explicitly switch
into the mode by writing to the corresponding bits in
cpsr. Then, we modify the checksum inspsr, and
switch back tosupervisormode to continue regular
checksum computation.
Setup Phase. After the verification phase, we set
up the trusted path and the untampered execution en-
vironment. Note that we can trust the code to set
up the untampered execution environment because
this code had been incorporated into the checksum
in the first phase. From this point on, we would
like to enable two interrupts that are needed for the
trusted path: keyboard interrupt and display inter-
rupt. We replace the interrupt handler for the key-
board and display driver with our own self-contained
interrupt handler that has been previously verified.
This is accomplished by freeing the corresponding
IRQ handler and registering our own with the IRQ
number of the keyboard and display driver. All other
interrupts remain disabled by writing the correspond-
ing bits into the Interrupt Mask Register (ICMR). In
other words, we have selectively enabled only the
keyboard and display interrupts as a means to estab-
lish a trusted path for user I/O.

Next, we address the unmaskable interrupts and
exceptions. Thespsr trick only temporarily pro-
tects against exceptions and unmaskable interrupts,
since no protection is guaranteed once the check-
sum is returned to the user. Therefore, during
this phase, we need to replace the unmaskable in-
terrupt/exception handlers with a return instruction.
This is accomplished as follows. In the XScale ar-
chitecture, the processor services interrupts and ex-
ceptions by walking a 32 byte Interrupt Vector Table
and executing the instruction present in the table en-
try that corresponds to the number of the interrupt of
exception. This instruction is typically an uncondi-
tional branch to the corresponding interrupt or excep-
tion handler. There are two Interrupt Vector Tables
(at addresses0x00000000 and 0xFFFF0000),
and the processor decides which one to use based on
a certain bit in the status register. Our checksum code
modifies both Interrupt Vector Tables so that every
entry is a return instruction. If any interrupt or ex-
ception occurs after this point, control returns back
directly to the running code. Thus, malicious excep-
tion and interrupt handlers never get a chance to ex-
ecute. In order words, exceptions and unmaskable
interrupts are merely dropped. Hence, such faking
on part of the attacker will either lead to an incorrect
checksum value or a longer checksum computation
time. After the untampered execution environment
is set up, the response is displayed to the user via the
trusted path previously established.
Execution Phase. In the final phase, the only code
that could possibly execute are: the PVA, the key-
board/display driver, and the “return” instruction that
occurs upon an exception or unmaskable interrupt.
All such code had been previously verified. Thus, we
achieve a environment free of unverified malicious
code.

20

