PRISM: Enabling Personal Verification of Code Integrity,
Untampered Execution, and Trusted 1/O on Legacy Systems
or
Human-Verifiable Code Execution

Jason Franklin -~ Mark Luk Arvind Seshadri Adrian Perrig

February 3, 2007
CMU-CyLab-07-010

CyLab
Carnegie Mellon University
Pittsburgh, PA 15213

PRISM: Enabling Personal Verification of Code Integrity,
Untampered Execution, and Trusted I/O on Legacy Systems
or
Human-Verifiable Code Execution

Jason Franklin Mark Luk Arvind Seshadri Adrian Perrig
Carnegie Mellon University

Abstract complex comparisons.” [7].

Today’s computer users receive few assurances thafVe Present a first step towards enabling a user

their software executes as expected. The problenid@ersonally verify the execution of software, with-

that legacy devices do not enable personal verificddt the assistance of specialized hardware or an ad-

tion of code execution. In addition, legacy devicdlitional trusted computational device. Enabling a

lack trusted paths for secure user I/O making it diffluman to personally verify which code is execut-
cult to ensure the privacy of data. ing on a device is an important problem. Cur-

We present PRISM, a software-only humafently proposed attestation technology, for example

verifiable code execution system that temporally seg=C [29], requires that a trusted device is used to
arates a legacy computer system into a trusted colgrify an untrusted device. In this scenario and in
ponent and an untrusted component. PRISM enabflégSt approaches to the untrusted computer prob-
a user to securely interact with applications by e [2,8,10,12,20, 22], the a priori existence of a
tablishing a trusted path and enables personal vef[USted device is assumed. However, techniques to
fication of untampered application execution. |n|.t|aI|_ze trust in a device are rare, maklng the a pri-
PRISM enables the development of a new cld¥} existence of a trusted device questionable. By
of applications which we term personally verifiabli€Veraging personal verification of code execution,

applications (PVAs). PVAs have the property th4f€ can overcome these problems: a trained user can

a user can both securely interact with and execufditialize trust by personally verifying a device, then

these applications even in the face of a kernel-leVdilizing this newly trusted device to verify other de-
compromise. We develop a personally verifiable digces: Hence, personally verifiable code execution
ital signature application that assures the user th&ddresses the problem of how nétialize trust

the password-protected private key is not misused! NiS Paper presents PRISM, a software-only ver-
and that neither the private key nor the password alféPle code execution system that enafpessonal
disclosed to malware on the device. We describe ificationof untampered code execution. PRISM
implementation of this application on a personal g&nables the creation of a trusted path completely in

vice, and evaluate the usability of our approach wifPftware, making it possible to ensure the integrity,
a user study. authenticity, and confidentiality of user input and

output (I/0) on legacy devices.

PRISM builds on tamper-evident software prim-
An open research challenge is how to empower htives [13, 24, 25]. These primitives enable run-
mans topersonally verifywhat code is executing ontime tamper-evidence througbptimality and en-
their computational devices. Even trusted computifigrced atomicity Tamper-evident software provides
hardware cannot provide this property - as Balachsfifficient information in the form of output and tim-
et al. state in their book on TCG technology: “Uning for a verifier to detect tampering during exe-
fortunately, the [code verification] mechanisms ameition, however, they require extensions to enable
inherently complex, and cannot be directly used ljwiman-verifiable guarantees and trusted /O func-
people — they require cryptographic operations atidnality. Recent work has proven the existence of

1 Introduction

secure tamper-evident functions based on the cdinious patches. Malware could capture the password
cepts of optimality and enforced atomicity [13]. Thased to decrypt the private key, capture the unen-
proof is architecture-dependent and based on a strypted private key in memory, or sign an entirely
ple micro-controller. However, the result suggestsfferent file. How can Alice obtain assurance that
that secure tamper-evident functions exist for otheone of these malicious activities have occurred? By
simple devices. This paper assumes the existenceisihg a personally verifiable digital signature appli-
a secure tamper-evident function for our architecturation in conjunction with PRISM, Alice can obtain
and provides a proof-of-concept implementation aguarantee that the correct signature application has
Appendix A. executed without the intervention of any malware

PRISM enables an important class of applicthat may be present on her device. PRISM provides
tions which we ternpersonally verifiable applica- these properties even if the OS kernel is compro-
tion (PVAs). PVAs are applications which protecmised.

sensitive data and computation by utilizng persor@immary of Contributions. We design, imple-

verification of application execution and leveragingient, and evaluate PRISM, a software-only human-
a software-only trusted path. We develop an exairifiable code execution system which allows a hu-
ple digital signature PVA. The digital signature PVAnan to personally verify untampered code execution.

uses a software-only trusted path to maintain the c@R|SM includes a software-only trusted path for user
fidentiality of program 1/O and uses personal exgo.

cution verification to ensure the authenticity and in-

tegrity of user input. 2 PRISM System Architecture and Protocol
Usage Scenario. We detail a particular scenario Design

where the infrequent execution of security-critical

applications merits the use of a PVA. Consider Alicd© Personally verify code execution on a computing

the administrator for a security conscious organiz%‘—av'ce’ We propose th_qt the user underta_lke the role
the verifier in a verifiable code execution proto-

tion such as a government national laboratory. P8t

of Alice’s daily tasks include sending email notifica‘—:o" Before presenting the details of our design, we

tions concerning the latest security patches relevalfile our assumptions and threat model, and describe

to her clients. As part of this task, Alice composevse”f'able code execution.

an email including a hyper-_link to th(_a appropriatg_1 Assumptions
patches, signs the email with her private key, and
transmits the message. Upon receiving the messaffe, assume that the hardware of the computing de-
Alice’s clients verify its signature and now, trustingice is not malicious and that it matches the manu-
that Alice indeed sent the message, follow the ifacturer specification. We assume that the comput-
cluded link to download and install the latest patcheag device has a single CPU without virtualization
Alice uses a digital signature application to sigsupport and that the interrupt handlers we install dur-
her message. Her private key is stored in a file aimd) the process of verifiable code execution are free
encrypted under a password. She invokes the appfi-any software vulnerabilities. We assume that the
cation and passes the file to sign as an argument. Toheputing device can be prevented from asking a
application prompts for a password, decrypts the pfaster computing platform (proxy) to perform com-
vate key, and signs the file. Trusting that her softutation on its behalf by disabling wired (disconnect-
ware operates as expected, Alice transmits her sigiveglcables) and wireless network connections (by re-
message. Even though Alice uses encryption andhaving cards). Devices with built-in wireless com-
password to protect her private key, malware on haunication interfaces cannot be used with PRISM
device can compromise her security in a number whless the wireless interface can be disabled in a ex-
ways. ternally verifiable manner (e.g., power button). We
Malware on Alice’s device might attempt to capassume that the user has access to trusted challenge-
ture her private key or sign arbitrary messages, pesponse pairs for their device; we discuss their gen-
tentially modifying the included link to point to ma-eration and management in Section 2.7.

2

2.2 Threat Model execute concurrently with the target code.

We consider a strong active adversary who may have! N€ Verifier can use the integrity guarantee of the
complete control over all software on the devid@'9€t code image to ensure that the target code im-

and complete control of the highest privilege Ievéige was not modified before invocation for execu-
including control over the OS. The attacker, ho/{ioN- The guarantee of what other code can execute

ever, does not modify the hardware of the devicgPncurrently with the target code can be used by the

For example, the adversary does not load malicioW’nsriﬁ_er to decide whether or npt any concur_rently ex-
firmware on peripherals to perform malicious pDmAcuting code could. tamper with the execution of the
writes to the memory region containing the PvA@rget code. Inconjunction, these two guarantees en-
Also, the adversary does not program a benign)le the verifier to determine whether or not the ex-

ripheral device to overwrite PVA memory via a I:)MAecution of the target code on the device will be un-
write tampered by malicious code.

Consider an execution agent that exists on the de-
2.3 Background: Verifiable Code Execution yice and constructs the above two guarantees. The
Verifiable code execution is a challenge-responggecution agent on the device sendtegrity mea-
protocol between an externakrifier and an un- surementof the target code and all other code that
trusted device. Through the protocol, the verifier osan execute concurrently with the target code to the
tains the guarantee that an arbitrary piece of codeyifier. The integrity measurements need to be com-
called thetarget code on the device executes unputed as a function of an unpredictable challenge
tampered from any malicious software that may Isent by the verifier to prevent pre-computation and
present on the device. replay attacks.

Malicious software can tamper with the execution An integrity measurement of a piece of code is ei-
of the target code in two ways: (1) it can modify théher a cryptographic hash or a checksum of the ex-
target code image before the target code is invokeeutable image of the code. The integrity measure-
for execution, and (2) it can modify the executiofent constitutes a signature unique to the measured
state of the target code, or the target code image cofgle image. Therefore, the verifier can use the in-
both while the target code is executing. tegrity measurements both to determine what other

To obtain the guarantee of verifiable code execgede on the device can execute concurrently with the

tion, the verifier needs to be able to detect if the efarget code, and to determine if the integrity of the
ecution of the target code is tampered using attadR&get code is intact.
(1) or (2). Attack (1) can be detected by asking the In the rest of this section we give a detailed de-
device for a guarantee of integrity of the target coggription of how the execution agent generates the
image before the target code is invoked for executidw0 guarantees required for verifiable code execu-
For detecting Attack (2), it is sufficient if the devicdion. Readers who are familiar with earlier work

provides to the verifier a guarantee of what code c@f Software-based verifiable code execution [24],
namely the concept of an Untampered Execution En-

DMA write .attacks are easily dealt with on most person%ronment (UEE), may wish to skip directly to Sec-
computing devices, which are the target of PRISM. Such de-

vices use low-end CPUs whose cache controllers do not prov RN 2.4. .
cache coherency for DMA writes. That is, the cache controllers There are two questions that need to be answered
do not automatically update the cache contents when ther¢gsconstruct the required guarantees: one, how can

a DMA write to the corresponding location in main memoryye make an exhaustive list of all software on the
Since DMA writes do not propagate into the CPU caches, w,

can defend against DMA write attacks by ensuring that thereqe?wce that can execute concurrently with the target

at least one piece of the PVA which is loaded into the cache at #2d€, and two, how is the execution agent on the de-
start of execution and never leaves the cache till the executionvige protected from malicious code?

the PVA finishes. This piece can be used to load other piecesuqﬁtampered Execution Environment. To make

the PVA into the cache from main memory, and to measure thei . .
integrity. We do not discuss this approach further in this papesrlr,t] exhaustive list of all code that can execute con

since the focus of the paper is not on designing primitives f6HTently on a device with a single CPU, we exam-
externally-verifiable code execution. ine how multiple threads can execute concurrently

on a single CPU. A single CPU can support only vihandlers have been replaced by self-contained han-
tual concurrency, wherein the execution of differediers anuntampered execution environmehiEE).
threads are time multiplexed on the CPU. The tingetting up the UEE involves modifying the device’s
multiplexing is accomplished with the help of interCPU state to disable maskable interrupts and mod-
rupts. Once a thread of execution starts to execifigng the Interrupt Vector Table (IVT) of the CPU
on the CPU, the only way the thread relinquishes its replace non-maskable interrupt handlers with the
control of the CPU is due to an interrupt, delivereself-contained handlers. The UEE limits what other
either synchronously or asynchronously with respeside on the device can execute concurrently with the
to the thread’s execution. If, before invoking the tatarget code. By doing so, the UEE allows us to pre-
get code for execution, we modify all the interruptisely determine the trusted computing base required
handlers on the device so that they (A) do not cdtir untampered execution.
any other code on the device to handle the interrupamper-Evident Function. To operate correctly,
and (B) transfer control back to the target code onttee execution agent on the device must be protected
they finish handling the interrupt, then the interruftom malicious tampering. Various options exist to
handlers are the only pieces of code that can execpitetect the execution agent, for example, the execu-
concurrently with the target code. We call interrupion agent can be protected by specialized hardware.
handlers that satisfy the conditions (A) and @Jf- This, however, prevents verifiable code execution on
contained handlersince their execution is guaranlegacy machines, which is why we utilize a software-
teed to not invoke any other code on the device. only approach. Unfortunately, a software execution
Once we replace all interrupt handlers with sel&kgent can be tampered with by malicious code on the
contained handlers, we can guarantee that no otevice. To guarantee verifiable code execution of the
code on the device can execute concurrently with ttagget code, the verifier requires a guarantee of verifi-
target code other than the self-contained handlemble code execution for the software execution agent
Therefore, the execution agent on the device oritgelf. To address this cyclic-dependence, we build
needs to send to the verifier integrity measuremeatsamper-evident function into the execution agent
of the target code and the self-contained handlersahbich constructs a proof of its own integrity (check-
prove untampered execution of the target code, alagn of its instructions), proof of the integrity of the
with a proof that all interrupt handlers have been reest of the execution agent (checksum of the rest of
placed by self-contained handlers. the execution agent image), and proof that the UEE
Two types of interrupts exist on any device: masks correctly set up (CPU state required for UEE set
able and non-maskable. Maskable interrupts cap).
be disabled by software whereas non-maskable inWe implement our tamper-evident function as an
terrupts cannot be disabled. In our implementatidterative checksum function which constructs the
of verifiable code execution, instead of installingEE, and then computes a checksum over its instruc-
self-contained handlers for all interrupts, we masion sequence, the instructions of the rest of the ex-
all the maskable interrupts and only replace tleeution agent, CPU state which needs to the modi-
non-maskable interrupt handlers with our own sefied to create the UEE, and the self-contained han-
contained handlers. This is an optimization that rdlers. This checksum is computed as a function of a
duces the size of the trusted computing base (cadadom challenge that is sent by the verifier to pre-
that can execute concurrently with the target codspnt pre-computation and replay attacks. The result-
For this optimization to be secure, we impose amg checksum is a probabilistic argument that (1) the
additional restriction on the self-contained handlersode of the checksum function and the rest of the
that they do not enable maskable interrupts wherecution agent are unmaodified, (IlI) the CPU state
they execute; otherwise an unmeasured maskablefar-creating the UEE is correctly set up, and (ll1) the
terrupt handler could obtain control of the CPU duself-contained handlers are unmodified.
ing the execution of the self-contained handlers. An attacker can attempt to forge the checksum re-
We call an environment in which maskable intesult when conditions (1), (I1), or (lll) do not hold.
rupts are disabled and the non-maskable interrgé design our checksum function such that if an at-

4

tacker attempts to forge the checksum, the executimaximum allowed time for the checksum function
time of each checksum iteration is increased. In otherrun before the user declares the checksum invalid
words, we use time as a side channel to detect che&ection 2.6 describes the details on hbws de-
sum forgery attacks. Since the checksum functionriged). The user employs a timer (e.g., their wrist-
iterative, the time overhead of a checksum forgewatch) to measure the execution time. We design our
attack is directly proportional to the number of iteehecksum function to exhibit a high run-time over-
ations performed by the checksum function. Therkead if the execution is tampered by malicious code,
fore, the time overhead can be increased or decreasech that a user can detect the delayed checksum
depending on the requirements of the verifier. computation based on a coarse-grained time mea-
If the checksum code is the fastest (time-optimayirement. On our implementation platform, the best
code which fulfills the required conditions, then angnown software attack on the checksum computation
modification of the code which also fulfills the reexperiences at least a 33% slowdown over the legiti-
quired conditions will require more time to exemate checksum, as we describe in Appendix A.
cgte_. If the verifier receives th_e correct gh_ecksugys PRISM Details
within the expected amount of time, then it is guar-
anteed that conditions (1), (I1), and (1) above holdn this section, we describe the PRISM protocol
Thereby, the verifier knows that the execution agehit is executed by the user and the computing de-
on the device will execute untampered_ vice. Figure 1 shows the memory Iayout of the ex-
After computing the checksum, the executiopcution agent and the PVA on the computing de-
agent computes a cryptographic hash of the targ&e. The execution agent consists of six parts: the
code, returns the hash value to the verifier, and ifferative checksum functiorr, a functionO that
mediately invokes the target code by jumping to ifVrites output to the display, a hash functieh a
The target code in turn inherits the UEE of the exec{inction P that sets up a trusted I/O path for the
tion agent. Once the verifier obtains the correct haBlYA, K a self-contained keyboard interrupt handler
value, it obtains the guarantee that the target codfed device driver, andl the self-contained handler
image is unmodified and that the target code will ef@r all non-maskable interrupts. The self-contained
ecute in the UEE on the device. In this manner, th@ndler is a dummy interrupt handler, consisting of

verifier obtains the guarantee of verifiable code ex@i Nt errupt - r et ur n instruction, that uncondi-
cution of the target code. tionally returns control every time itis invoked. Hav-

ing a simple dummy handler for non-maskable in-
terrupts makes it easy to verify that the handlers are
To verify code execution on a computing device, weelf-contained and also reduces the size of the TCB
propose that the user undertake the role of the verifier untampered code execution.

in a verifiable code execution protocol. Several chal-Figure 2 presents an overview of the PRISM pro-
lenges need to be addressed: (1) users cannot tweel. The user holds a list of challenge-response
ate random challenges, (2) users cannot computepags and uses a wristwatch to measure the execu-
correct checksum, (3) users cannot accurately titen time of the checksum function. The list contains
the checksum computation, and (4) users cannot 8& detection thresholt and pairgC;, R;), whereC;
curely interact with an application without a trusteis a challenge value arfg| is the expected checksum
I/O path. value.

We propose the following design to address theseTo verifiably execute a PVA, the user starts PRISM
challenges. We provide the user with access lig passing a pointer to the PVA to the execution
trusted random challenges and their correspondimgent. The execution agent sets up memory as Fig-
responses (Section 2.7 describes the details of hawe 1 shows, placing the PVA adjacent to itself in
these trusted challenge-response pairs are gemsemory. The execution agent then prompts the
ated). The user uses one challenge-response pairwdex to enter a challenge. The user picks a fresh
time to verify untampered code execution. The usehallenge-response pd(t;, R)) from the list, enters
also knows thaletection threshold Dwhich is the the challengeC; into the computing device via the

2.4 Design Challenges and PRISM Overview

5

Execution Agent

K—//%
F |0 H P K I PVA code image S Reg
\ :
Measured by checksum fn Measured by hash function

Figure 1. Memory layout of the execution agent and PYAIs the iterative checksum functio@®, writes
data to the displayl is a hash functionR is the function that sets up a trusted 1/O paths the keyboard
driver, | is the self-contained interrupt handler, memory area S is the PVA's hahgptack, and Res is the
memory region where the PVA stores its results. The memory region from #uksiim function to the
self-contained handler is checked by the checksum while the hashsctieclPVA code image. The PVA
arguments and results are not checked.

A: ty < current timepick(C;,R;, D)
1. A—-U: (G)
2. U: R« ChecksuniC;, Exec Agen
(Device) 3 U—A: (R)
~xecution Aggn A: t, « current time
1. Challenge |_| Ghecksum | | A: if (t,—t; >DVR #R) Failure
E E 3. Response : -, 4 U: h— HashPVA)
@ — —| _5.Hash Value 0 5. U—A: (b
§ A: verify measurement resuit
25 a. Hasb ¢6.Invoke(’§ 6. U: Invoke PVA.
. Secure Inpu &
8. Secure Outpdt 3 7. A—U: (Secure Inpyt
U 8. U—A: (Secure Output

(a) Functional diagram. (b) Protocol diagram. A represents user Alice, and U represents
the untrusted device.

Figure 2: Overview of PRISM’s execution. The numbers represertethporal ordering of events.

device’s keyboard, and records the current time the checksum function has executed untampered.

Note that interrupts are enabled when the user enterg ey displaying the checksun® invokesH to
Ci. Therefore, the user can interact with the deVi%%mpute the hash of the PVA. Aftef computes the
via the keyboard as usual. hash of the PVAQ displays the hash value. The user
As soon a<; is entered, the execution agent incerifies that the hash value displayed matches the ex-
vokes# with G as input.# sets up the UEE by dis-Pected value. After displaying the hash of the PVA
abling the maskable interrupts and replacing the ndf-the userQ invokesP to set up a trusted 1/O path
maskable interrupt handlers with the self-contain@gtween the PVA and the user.
handlers, as described in Section 2.3. Thentera- The trusted I/O path guarantees that no software
tively computes a checksum over the memory region the device other than that which has already been
of the execution agent and the CPU state necessamnasured will handle the 1/0 between the PVA and
create the UEE, seeded with the challe@geUpon the user, and provides confidentiality and authentic-
completion of the checksum computatignjnvokes ity of all 1/O between the user and the PVA. The
Oto display the checksuiR on the device’s screentrusted I/O path uses the device’s screen for output
Writing to the display does not require interrupts tand the keyboard for input. It us€sto display out-
be enabled since it can be accomplished by writipgt to the device’s screen. Unlike displaying infor-
the output directly to the video framebuffer. Whemation on the screen, which can be done efficiently
the user seeR, she notes the current tinig and without interrupts, using the keyboard requires in-
verifies that the elapsed tinig—t; is less than the terrupts to be enabled for efficiency. Assuming that
detection threshol®, and that the displayed checkmaskable interrupts cannot be selectively reenabled,
sumR is equal to the expected res@#t If R = R using the keyboard for trusted input requires that all
andt, —t; < D, the user receives the guarantee thataskable interrupts be reenabled and that a mea-

6

sured interrupt handler exist for the keyboard inter- _ 26 As T i
rupt. The functiorP registers the self-contained key- | L \

board interrupt handleK and device driver that is et " =
part of the execution agent to handle the keyboard in- S o =
terrupt. It also registers the self-contained handller, .

as thrc)a interrupt t?andler for all other maskable inter- (&) Upper bound on detection threshald
rupts. P then reenables all maskable interrupts and 479? ><Aj< ,,,,,,,,,,, - ><AP>
invokes the PVA for execution. There now exists a _| L |
trusted I/O path through which the user can interact ‘to ‘ts ‘te ‘tf ‘tp t
with the PVA. S o =

After the PVA terminates, it returns control back
to the execution agent. The execution agent enters

the clean-up phase, overwriting all PVA and execfii9ure 3: Timing diagramsto andte represent the

tion agent memory, except the memory region Re%‘,"‘rt and end time for entering the challenge value,

to protect potentially sensitive PVA data and restorE&SPectively. ts andt, represent the start and stop
the CPU of the device to its original state. times for the timer.t; represents the finish time for

the checksum function. Given these timings, we ob-
2.6 Timing Considerations tain As = ts—te andAp = t, — ty.

(b) Lower bound on detection threshdd

Given the hardware configuration of the compuivhich we write as maf\s), and thatAp = 0, such
ing device (i.e., processor and clock speed), the that the perceived time duration for the checksum
quired number of iterations is selected such thatcamputation is minimal. Figure 3(a) depicts this
compromised checksum function exhibits a humacase. (This is quite a pessimistic estimate, since in
detectable slowdown. The detection threshblis reality, As is very small [the user types the last char-
thus picked as described in this section. Tdie the acter of the challenge value at the same time as get-
running time of the checksum function and Tétbe ting the time] and the value & is large due to the
the running time of the fastest malicious checksunser’s reaction time.) HencB, < T’ — maxAs).
function, wherel’ = (1+8)T andd is the minimum To derive a lower bound on the detection threshold
performance overhead of a compromised checksbnwe need to ensure that false positives are infre-
function (on our implementation platform,= 0.33 quent. A false positive is the event that a legitimate
as we describe in Appendix A). checksum function had been perceived to be mali-

Let Ag be the time required for the user to entamious. This could happen if a legitimate checksum
the challenge valués be the time required to get thdunction’s perceived runtime is longer than the de-
current time (this could be negative if the user notésction threshold. Thus,D cannot be less than a
the current time before entering the final charactermfalistic estimate of the longest perceived execution
the challenge value), anty be the time to get thetime of a legitimate checksum.
time after the device displays the response. Figure 3n the worst case, we need to assume thats
depicts these events and time durations. at the maximum value (m&&p)) and thatAg is at

To derive an upper bound on the detection threghe minimum value, which can be a negative value
old D, we need to ensure that no false negatives &mein(As)), i.e., the user has a slow reaction time but
possible. A false negative is the event that a mafietes the time before entering the last character of
cious checksum function had been accepted by the challenge value. Figure 3(b) depicts this case.
user as being legitimate. This could happen if théence,D > T + max(Ap) + |Min(As)|.
perceived execution time of the malicious checksumSince T’ = (1+ 8)T, where & is the perfor-
function is less than the detection threshbldThus, mance overhead of the malicious checksum func-
the detection threshol® cannot be greater than dion, we obtain the following inequality for the detec-
realistic estimate of the shortest perceived executitton thresholdD by combining the upper and lower
time of a malicious checksum function. In the wordtound: T +maxAp) + |min(As)| <D < (1+98)T —
case, we need to assume a maximum valuAHf maxAs)

7

Since As and Ap depend on the user, we willpair, and if it verifies correctly, the user has a guaran-
need to sef appropriately to enable a solutioll. tee that the challenge-response pair generation pro-
depends on the number of iterations of the chealram is executing in an untampered execution envi-
sum loop, thus, we need to iterate the checksuonment. Any newly generated challenge-response
loop sufficiently many times to satisfy the inequapairs can be displayed to the user from within the
ity. Although we could optimiz& based on the useruntampered execution environment with trusted out-
for simplicity we have chosen to use a conservatipeit. These challenge-response pairs can be trusted,
value that covers the majority of users. As we dand can be used later to bootstrap future challenge-
scribe in our implementation section, we have choesponse pair generation.
sen a value foiT that can handle miif\s) = —1s, Trusted manufacturer generates initial pair. The
max(As) = 1s, and maidp) = 2s, which suffices for scheme of extending challenge-response pairs still
user reaction times of maximally 2 seconds. Frorequires the existence of one authentic challenge-
our implementation we obtaid = 0.33 and derive response pair in the beginning. We propose to have
from the inequality thaflT = 12s, T’ = 16s, and a trusted manufacturer provide unique challenge-
D = 14s. Given the magnitude of these timing vatesponse pairs. The manufacturer could distribute
ues, differences in temperature that affect the clogkirs along with the device or provide a telephone
speed of the device add negligible variance. or fax service. Defending against eavesdropping at-
dtacks is beyond the scope of the paper.

We note that trusting the manufacturer does not
require trusting additional entities. We already trust
In this section we discuss how the user obtainsif manufacturer to guarantee the hardware configu-
trusted list of challenge-response pairs. The requitgtion of the device. We do require the user to now
ments for a trusted pair are that the challenge valygst the manufacturer to create secure challenge-
is unpredictable, and that the challenge-response ¥akponse pairs. A potential scenario for challenge-
ues remain secret. Two main security vulnerabilitigssponse pair generation follows. Each manufacturer
exist in this context: (1) the pair creator itself couldoy|d utilize a dedicated device equipped with a field
be malicious, and generate challenge-response pgisgrammable secure co-processor system like the
for malicious code, and (2) a legitimate challenggsm 4758 [11]. Such devices would be disconnected

response pair had been leaked to the device, perhggm the network and would not interact with any
by eavesdropping on the channel by which the ch@kher machines or execute any other programs ex-
lenge is delivered. cept the challenge-response pair generation program.

All techniques to generate challenge-respons@rthermore, since there are very few of these ded-
pairs must rely on some initial trust assumptiongated machines, it is plausible to physically secure
Our approach to challenge-response pair generatigém (i.e., inside a locked room). This approach re-
is as follows. First, we discuss how we can use offices the trusted computing base for pair-generation
trusted challenge-response pair to securely bootstfghese few challenge-response pair generators.
generation of new pairs. This reduces the problem
significantly. Instead of requiring the user to gain at-
cess to a list of challenge-response pairs, we only e describe the implementation of the execution
quire the user to gain access to one such pair. Nexdent and the digital signature PVA. A detailed de-
we discuss different methods of providing the usggription of the implementation can be found in Ap-
with the initial challenge-response pair, in such gendix A.
way to minimize the trusted computing base.
Extending lists of pairs. The user can use on
challenge-response pair to generate new challengée implement the execution agent on the Sharp Za-
response pairs. This can be achieved by includiogus SL6000 Personal Digital Assistant (PDA). This
the challenge-response pair generation program &A has a 400 MHz Intel XScale-PXA255 proces-
PVA. The user issues the initial challenge-responser, 64 MBytes of memory, and runs the XScale port

2.7 Challenge-Response Pair Generation an
Management

Implementation

e3.1 PRISM Implementation

8

of version 2.4.18 of the Linux Kernel. The XScalgrivate key to digitally sign the message. Without
PXA255 is a 32-bit RISC processor, with 16 generlahowing the password, an attacker is unable to sign
purpose registers (including a program counter), aarbitrary messages.

two processor status (flags) registers [28]. Many avenues of attack exist. Malware can at-
Checksum Function. Our checksum functionf, tempt to steal the password used to decrypt the pri-
is an iterative function that uses all general-purpogate key, or capture the decrypted private key in
registers of the PXA255 to generate a 68-byte checkemory, or even pass a different message to be
sum, which we represent as a vector of seventeen Sgned. In current computer systems, when we use
bit checksum pieces. Each checksum piece uses sneh an application, we can never be sure that the
32-bit CPU register. Each iteration of our checksuaorrect message has been signed and that none of
code performs the following: (1) derives a pseudthese attacks has occurred. By implementing the sig-
random number using a 32-bit T-function [18], (2)ature application as a PVA, we guarantee to the user
reads the memory word based on a PC-relative dldat none of these attacks has occurred.

dress generated by the pseudo-random number, bnglementation Details. The digital signature ap-
(3) updates one checksum piece based on the mefication consists of two modules: an AES-CBC
ory word read and CPU state information from th@odule and an RSA module. The AES module de-
CPU status (flags) registers. crypts the private key file, while the RSA module

We implement the execution agent as a Linux kegenerates digital signatures. For this prototype im-
nel module. The checksum functiom,, is written plementation, both modules were implemented in-
in assembly, while the rest of the execution agentdile the same kernel module as the checksum code.
written in C. The user invokes PRISM by running The protocol proceeds as follows. Before invok-
a shell script that loads the kernel module. Afténg PRISM, the user specifies the filename of the
the kernel module loads, the script prompts the heRcrypted private key and the filename of the mes-
man for the challenge, which is an 80-bit nonce, #age to be signed. Initialization code loads these files
the form of 16 alphanumeric characters. The 80-bito memory and makes the corresponding memory
nonce is used to seed the T-function, and to initialip@ges available to the PVA as illustrated in Figure 1.
the seventeen checksum pieces. The kernel modigxt, the user initiates PRISM and loads the corre-
then executes the PRISM protocol on the Zaurus ggonding digital signature PVA into memory. If the
described in Section 2.5. user is satisfied with the computation time and re-

If the protocol terminates successfully, the humaponse of PRISM, the user would interact with the
obtains the guarantee of untampered execution of gfigital signature application and enter the password
PVA and can interact with the PVA via a trusted I/@0 decrypt the RSA private key stored on the device.
path. The private key is encrypted under a 128-bit AES key
that is derived from a hash of the password.

Next, the user specifies the message to be digitally
signed by typing the message in its entirety or using
We now describe an implementation of a PVA in thide previously loaded file. To ensure that the correct
context of a secure digital signature application thaiessage is being signed, the application displays the
provides the guarantee that only the correct specifid@éssage before generating the signature. The PVA
message is signed by the user’s private key. To ahen stores the digital signature in the memory re-
tain this guarantee, the digital signature applicatigion Res as shown in Figure 1. Finally, the clean-up
executes as a PVA in the untampered code executdrase of the signature application overwrites all in-
environment instantiated by PRISM. termediate state information, such as the password

In this application, a user stores a private signatuard the decrypted private key.
key encrypted under a password on the file systemAs previously described, the TP/UEE module en-
To digitally sign a message, the user starts the sigsares that the untampered execution environment has
ture application, enters the password to decrypt theen correctly set up and that malware cannot gain
private key, and the application uses the decryptedntrol to tamper with the execution of the signature

3.2 Personally Verifiable Digital Signature Ap-
plication

9

application. The keystrokes are read in entirely leforek,. In the worst case, the user deldygsx be-
verified handlers, thus, malicious code cannot eaveégeen each keypress and the attacker needs to guess
drop them. Since no malicious code can interfese= (%‘X} keypresses. Given possible characters
with the execution, the private key will remain se€or each keypress, the attacker succeeds with proba-
cret, and only the desired message will be signed.bility é

A promising defense against probabilistic guess-
ing attacks is to perform mandatory postcomputation
The security analysis in this section encompassgifer each keypress. This postcomputation would
only the extensions to tamper-evident software prinike as input the partially input challenge and pro-
itives required to enable personal verification. A gedluce a value which is input to the subsequent post-
eral security analysis of tamper-evident primitivesomputation after a specified amount of time. The
can be found in previous work [13, 24, 25]. intuition behind this defense is that minimizing the
time available to the attacker increases the number
o o o of keystrokes ahead that are required to be guessed.
To attack timing verification, malicious code on thg e perform Ty seconds of mandatory post com-
user's computing device attempts to guess possip|gation after keystrokek, ko, . ..,kr_1, the attack

challenge values based on the user’s partially typeflist guess’ = [—22_] keypresses. Since the at-

. . . Tmax—Tpc
challenge. By precomputing with possible valuegckers usable time for computation is reduced, the

the malicious code hopes to gain a time advantagiescker’s probability of success is correspondingly
that would allow for the execution of malicious codg,qyced »[0017 wheres > s.
within the detection threshold. The probability of a successful guessing attacks
There exist multiple ways for an attacker t0 gueggy also be decreased by increasing the rate of user
possible challenge values. One possible techniqygyt. |f a human user types in a challenge arbitrar-
is for an attacker to star'F a thread fqr_ each possnﬂgg slowly (Tmax tends to), the attacker’s precom-
challenge value. Each time an additional charaCi§itation advantage can be unbounded. In protocols
of the challenge is input, the attacker can kill threa%ich rely on time, even coarse-grained timing like
that correspond to challenge values that do not majgh of pRISM, the user must enter the characters of

the real challenge. Each additional character of thg, challenge at a reasonable rate to minimize the
challenge reduces the search space by a factor of|{R&ihood of a successful guessing attack.
number of possible values for a single character of

the challenge values, resulting in an exponentiaffy2 Attacks on Challenge-Response Verification

decreasing search space. The end result is thatthe security of our scheme relies on the assump-
attacher obtains an early start on computing the ¥@m that the challenge-response pairs used to check
sSponse. a computing device are fresh. In addition, the chal-
If the malicious code correctly guesses the change must be kept secret until input into the device,
lenge withina seconds of the input of the final charand the response must be kept secret until the check-
acter of the challenge, then the attacker has gairggn function finishes executing and displays a re-
an precomputation advantageaf This precompu- sponse. If these assumptions are violated, the un-

tation advantage is only useful in masking executigietectable execution of malicious code is possible.

tampering if it meets or exceeds the overhead of the ,

malicious checksum function. Otherwise, the exec‘t"f—3 Attacks on User Attention

tion tampering will be detected. Humans are susceptible to coercion and confusion.
Let k; denote theth challenge character keypres#\ malicious device may attempt to confuse users in

When a user inputs amcharacter challenge, we oba number of ways. For example, a malicious device

tain a sequencky, ko,...,ky. Assume we are ablemay attempt to gain a precomputation advantage by

to bound the time between keypresses below Ry requiring a user to presset ur n after entering the

and above byTnax and the attacker needs to corhallenge or by displaying prompts requesting spuri-

rectly guess the correct challenge valheseconds ous user input. A malicious device may also attempt

4 Security Analysis of Human Factors

4.1 Attacks on User Timing Verification

10

to delay the start of the timer by explicitly instructto the two incorrect execution agents. We purposely
ing the user to start timing, or may signal the conavoid a one-to-one correspondence in an effort to
pletion of the checksum function early as a way fwevent the user from guessing which script invokes
minimize perceived execution time. Social engineeshich execution agent via a process of elimination.
ing attacks like these are common in protocols whichThe four test scripts are presented to the user in
involve humans [16]. Since PRISM targets sophist-pre-determined order. The user is asked to deter-
cated users like administrators, the impact of thesgne the correspondence between the test scripts and
attacks can likely be countered with appropriate ugte execution agent based on two factors. One, the
training or other verification mechanisms [16]. Aexecution time as recorded by the watch, and two,
open research is to increase the robustness of humalnether the sixteen character checksum response
in-the-loop protocol robustness to such attacks. matches with the response on the printed sheet. The
user is asked to perform two trials for each test script
using a different challenge each time.
In this section, we evaluate the PRISM design amtocedure. Before the experiment begins, we ex-
the usability of PVAs. Our user study evaluates thpgained to the users the purpose of our study, and en-
usability of the personal verification process. couraged them to think aloud and voice their opin-
ions on any features. Then, each user is presented
with the PDA and a watch. We present to the user
Our user study evaluates the following user errotge following scenario where she needs to input her
a device returns an incorrect response and the ysgssword in a secure manner in order to securely sign
fails to correctly verify the response; the checksugimessage. Next, the four test programs are executed
computation is delayed, but the user fails to identifyith fresh challenge-response pairs randomly drawn.
the delay. Finally, we asked the user to complete a brief demo-
52 User Study graphic survey and solicited _for general commen_ts.
In some cases, we would redirect the user’s attention

Participants. We tested the digital signature PVAg portions of the interface that she may have over-
on a total of 12 users. Other than the prerequisjiked during testing.

of having some level of experience with mobile des—
vices, we recruited users from a diverse technica
background and age range. Seven users were nydfeconsider the trial to be a false positive if the user

and five were female. There were five undergradugerceived the device to be malicious even though the
students, three graduate students, three staff and e®gect execution agent was executed: false positives
faculty. Five users were between 18 and 22 yearsasf not endanger the secrecy of the password or pri-
age, five were between 23 and 30 years of age, aade key, however they negatively affect the user ex-

two were older than 31 years. Among the users, tperience. As we see from our results, we achieve a
currently use a PDA, and ten do not. false positive rate of 0.

Experiment Setup. Each user was given a Sharp

5 Usability Analysis

5.1 Potential User Errors

|3 Experimental Results

Error Type Rate

Zaurus PDA, a watch, and a sequence of challenge- — ggsitive | 0724
response pairs printed on a sheet of paper. False Negative (delayed executioan 0/12
Three verification functions are present on the Za- False Negative (incorrect checksum)l / 12
urus, one correct one and two malicious ones. One Figure 4: Results of user study

malicious function displays an incorrect checksum A false negative occurs when the user fails to de-

within the detection thresholD, while another dis- tect the execution of a malicious execution agent.

plays the correct checksum but takes longer thanThe false negative rate is more important because a

to execute. single case could potentially leak the secrecy of the
There are a total of four test scripts presented password and/or private key.

the user. Two of them correspond to the correct exe\We implemented two malicious execution agents:

cution agent, while the other two scripts correspoiiglayed execution with correct checksum output, and

11

on-time execution with incorrect checksum outpufation, but before it is invoked for execution, would
A false negative in the former implies an error in theemain undetected.
user's measurement of the execution time, whileVerifiable Code Execution. Several methods exist
false negative in the latter implies that the user failéd support verifiable code execution by an external
to recognize the incorrect checksum response. device, however, none of them can be easily used by
our user study shows, none of the twelve users hmduman. AMD’s Pacifica [1] and Intel's LT [14]
any problem with the maliciously delayed responsare two next-generation hardware platforms which
while one user failed to verify the checksum. provide the guarantee of verifiable code execution.
Our most important task is to study whether useféiey allow a computing device to prove to an ex-
are able to use our scheme to verify software iternal verifier that a particular executable had been
tegrity. As our results show, our users were able ittvoked for execution. Unfortunately, Pacifica and
successfully classify whether or not the program wh§ are inadequate for our needs because the external
malicious in 47 out of 48 tests despite the users’ lagkrifier cannot be a human. Balacheff et al. propose
of familiarity and minimal training. a mechanism for verifying that the correct document
Out of our 48 tests, the only error occurred whea being signed by a private key [6]. They suggest
a user failed to realize that the 16 character ched®-leverage a special TPM with a secure path to the
sum response was different from the correspondidigplay as well as a secure link to a smart card. The
challenge-response pair. All other test cases, includ®M would then display a secretimage on the screen
ing all test cases relying on time-delayed executidn, indicate to the user that the secure output mode
were correctly answered. This finding supports th& on and display the message to be signed within
use of time as a side-channel to verify software atftht image. Chen and Morris propose Cerium, an
that the detection threshold we calculated is reas@pproach that relies on a physically tamper-resistant
able. The only error was due to a human error in véePU with an embedded public-private key pair and
ifying a sixteen character checksum. A potentially micro-kernel that runs from the CPU cache to pro-
alternative to character checksum verification wouliide a remote host with the guarantee of verifiable
be to use a visual hash function [21] to simplify thisode execution [9]. Shi et al. propose BIND as a
task. technique to verifiably bind the output of a code to
After the user study, we asked our participantstiie code that generated it [27]. BIND uses LT or
they would in fact use such a verification system fétacifica-style CPU extensions to obtain an assurance
their security-sensitive tasks. Half of the responderifigt a Secure Kernel (SK) was correctly loaded into
responded that they would happily use PRISM,raemory. BIND then uses the SK to obtain a guar-
promising percentage! Amongst negative responsagtee of what code was executed to generate a given
the long execution time was cited as the most signéfutput.
icant drawback. Attacks on Software-based Integrity Mechanism.
Genuinity is software-based attestation techniques
6 Related Work that relies on a verification function to generate a
Related work falls into three categories: load-timghecksum of the memory contents [17]. The verifi-
attestation, verifiable code execution, and attacks eation function is designed so that if an attacker tam-
software-based integrity mechanisms. pers with the checksum computation, the time taken
Load-time Attestation. Load-time attestation [3—to compute the checksum increases. Genuinity is
5,17,19, 23, 25, 29] is a primitive that allows an exalnerable to a data-substitution attack described by
ternal verifier to verify the integrity of the memoryShankar et al. [26]. The Split-TLB attack is a pow-
contents of an untrusted platform. In general, loadrful attack against software-based integrity mech-
time attestation primitives cannot be used for verifsnisms such as self-checksumming software primi-
able code execution because of the time-of-check-tiwes [30]. Since self-checksumming code reads its
time-of-use (TOCTTOU) problem. Since load-timewn instructions as data, during execution the I-TLB
attestation only provides load-time guarantees, anatd D-TLB point to the same physical page. The
tacker who modifies the target executable after attestacker sets up the TLB such that the same virtual

12

address points to two different physical address®RISM enables important functionality which im-
Since only the virtual address is used in the chegk:oves the security of systems even in the face of a
sum computation, malicious code can execute aketnel-level compromise. As evidence of user inter-
still produce the correct checksum. Our implementest, half of the users in our user study stated they
tion defends against the Split-TLB as we describewould be happy to use PRISM for their security-
Appendix A. sensitive tasks. To improve the usability of PRISM
and better understand the concerns of users, we in-
tend to further study the feedback of users who felt
We address a number of potential concerns whige overhead of PRISM outweigh its benefit.

may remain. Widespread Adoption. This paper does not eval-
Applicability. ~ We have described only a narrowjate if PRISM will achieve widespread adoption nor
well-motivated application of PRISM. This is in parimake any such claims. We believe that this question
to convince the reader that there is an important s¢ggifficult to predict and hence cannot be a necessary
nario where the assumptions that underly PRISMgiteria for research. The primary goal of this paper
design are fulfilled. Numerous additional applicas to develop reasonable techniques to allow humans
tions exist that satisfy our assumptions, in particulas personally verify code execution, a task which was
whenever a trusted personal device is required gsidviously difficult. We believe PRISM is a promis-

can be disconnected from the network. ing approach to enable new opportunities to improve
Human Intelligence. PRISM is a human-in-the-the security of systems.
loop protocol which relies on the intelligence of the
user. Humans, however, are not perfect and user%r-
ror is inevitable. With this in mind, it is importantPRISM is a first step towards the goal of human-
to note that while user verification errors reduce therifiable code execution on legacy devices. Much
security of PRISM, the reduction only returns th@&ork remains including an extended user study and a
user to the security level they were at before usitigorough evaluation of PRISM’s applicability, practi-
PRISM. cality, and potential for widespread adoption. These
Practicality. We do not claim that our system is assessments are not likely to be successful without
panacea for human assessment of the trustworthinggsrototype implementation and preliminary eval-
of a system. Today’s users have few techniquesuation, which is exactly what this paper provides.
evaluate the untampered execution of code on theRISM and our PVA are available for download at:
devices. PRISM provides this ability as a techniqurtp://www.ece.cmu.edw/mluk/hvce.taz
to initialize trust in personal devices.

) .) : 9 Acknowledgments
Security. It is not a goal of this paper nor is there
sufficient space to reproduce the security analy§igst and foremost, we thank John Bethencourt for
done in previous work [24]. Instead, we specificallyseful discussion early in the design of PRISM. We
treat the human factor-based extensions made to phenk Sachin Kulkarni for designing and implement-
vious work and provide a proof-of-concept impleghg an early version of the verification function for
mentation in Appendix A. the XScale architecture. We also appreciate the use-
Simplicity. PRISM is a simple protocol; this sim-ful feedback of Michael Bailey, Dan Boneh, Evan
plicity is necessary when imposing verification on @ooke, Virgil Gligor, Jason Hong, Yoshi Kohno, Jon
human. Even if the reader disagrees with the ddcCune, Robin Sommers, and Nick Weaver.
proach descrlb_ed in this paper, the contrlbutlops Rfeferences
PRISM are not just its realization, but also the princi-
ples and ideas this paper develops in relation to tru
and what we believe is a unique perspective on the] T
positoning of humans in rustworthy computing. % eI Seadt Wiree! Putovs, Crares e,
Usability. Using PRISM imposes a greater burden yjith smart-cards. Science of Computer Programming
on the user than not using PRISM at all, however 21(2):91-113, October 1993.

7 Concerns

Conclusion

Secure virtual machine architecture reference manual.
AMD Corp., May 2005.

13

(3]

(4]

(5]

(6]

(7]

(8]

El

[10]

[11]

[12]

[13]

[14]

[15]

[16]

William A. Arbaugh, David J. Farber, and Jonathan M17]
Smith. A reliable bootstrap architecture.Rnoceedings of

the IEEE Symposium on Research in Security and Privacy
pages 65-71, May 1997.

William A. Arbaugh, Angelos D. Keromytis, David J. Far-[18]
ber, and Jonathan M. Smith. Automated recovery in a se-
cure bootstrap process. Rroceedings of the Symposium
on Network and Distributed Systems Security (NDSS)
pages 155-167, March 1998. [19]

Reflection as a Mechanism for Software Integrity Verifica-
tion. Diomidis spinellis. InProceedings of ACM Trans-
actions on Information and System Security, Vol. 3, No. 1,
February 2000. [20]

Boris Balacheff, Liqun Chen, David Plaquin, and Graeme
Proudler. A trusted process to digitally sign a document.
In Proceedings of Workshop on New Security Paradigms
pages 79-86, 2001.

Boris Balacheff, Liqun Chen, David Plaquin, Graeme
Proudler, and Siani PearsonTrusted Computing Plat-
forms: TCPA Technology In Contex®rentice Hall, 2002.
ISBN 0-13-009220-7.
[22]

Dirk Balfanz and Edward W. Felten. Hand-held comput-
ers can be better smart cards. Rroceedings of the 8th
USENIX Security Symposiurashington, D.C., USA,

August 1999. USENIX. 23]

B. Chen and R. Morris. Certifying program execution with
secure procesors. Proceedings of HotOS [X2003.

Dwaine Clarke, Blaise Gassend, Thomas Kotwal, Matt
Burnside, Marten van Dijk, Srinivas Devadas, and Ronald
Rivest. The untrusted computer problem and camelg4]
based authentication. International Conference on Per-
vasive Computing?002.

Joan Dyer, Mark Lindemann, Ronald Perez, Reiner Sailer,
Leendert van Doorn, Sean W. Smith, and Steve Weingart.
Building the IBM 4758 Secure CoprocessdEEE Com- [
puter, 34(10):57-66, 2001.

Howard Gobioff, Sean Smith, J.D. Tygar, and Bennet Yee.
Smart cards in hostile environments. MPmoceedings of 26]
the 2nd USENIX Workshop on Electronic Comme@ak-
land, California, November 1996. USENIX.

Vanessa Gratzer and David Naccache. Alien vs. quine, the
vanishing circuit and other tales from the industry’s cryp[27]
In Proceedings of Eurocrypt 200&1ay 2006.

Intel Corp.LaGrande Technology Architectural Overview
September 2003.

R. Joshi, G. Nelson, and K. Randall. Denali: a goa[-zs]
directed superoptimizer. IRroceedings of ACM Confer-
ence on Programming Language Design and Implemen{a9]
tion (PLDI), 2002.

Chris Karlof, Naveen Sastry, and David Wagner. Cryptd30]
graphic voting protocols: A systems perspective Pho-
ceedings of the Fourteenth USENIX Security Symposium
(USENIX Security '05)2005.

14

Rick Kennell and Leah H. Jamieson. Establishing the
genuinity of remote computer systems. Pnoceedings

of the 12th USENIX Security Symposjuyages 295-308.
USENIX, August 2003.

A. Klimov and A. Shamir. A new class of invertible
mappings. InProceedings of International Workshop on
Cryptographic Hardware and Embedded Systems (CHES)
2003.

Jr. Nick L. Petroni, Timothy Fraser, Jesus Molina, and
William A. Arbaugh. Copilot, a coprocessor-based ker-
nel runtime integrity monitor. IfProceedings of the 13th
USENIX Security Symposiyu2004.

Alina Oprea, Dirk Balfanz, Glenn Durfee, and D. K. Smet-
ters. Securing a remote terminal application with a mobile
trusted device. 1120th Annual Computer Security Appli-
cations Conference (ACSAC’'Q£004.

21] Adrian Perrig and Dawn Song. Hash visualization: A

new technique to improve real-world security.Rroceed-
ings of the 1999 International Workshop on Cryptographic
Techniques and E-Commerce (CrypTEC ;9%3ges 131—
138, July 1999.

Andreas Pfitzmann, Birgit Pfitzmann, Matthias Schunter,
and Michael Waidner. Trusting mobile user devices and
security moduleslEEE Computer30(2):61-68, February
1997.

Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leen-
dert Van Doorn. Design and implementation of a TCG-
based integrity measurement architecturePloceedings

of the 13th USENIX Security SymposiudS8ENIX, Au-
gust 2004.

Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig,
Leendert van Doorn, and Pradeep Khosla. Pioneer: Verify-
ing integrity and guaranteeing execution of code on legacy
platforms. InProceedings of ACM Symposium on Operat-
ing Systems Principles (SOSBages 1-15, October 2005.

] Arvind Seshadri, Adrian Perrig, Leendert van Doorn, and

Pradeep Khosla. SWATT: Software-based attestation for
embedded devices. Proceedings of the IEEE Symposium
on Security and PrivagyMay 2004.

Umesh Shankar, Monica Chew, and J.D. Tygar. Side
effects are not sufficient to authenticate software. In
Proceedings of the 13th USENIX Security Symposium
USENIX, August 2004.

E. Shi, A. Perrig, and L. van Doorn. BIND: A fine-grained
attestation service for secure distributed system®rdrc.

of the IEEE Symposium on Security and Privapgges
154-168, 2005.

A. Sloss, D. Symes, and C. WrighARM System Devel-
oper’s Guide Morgan Kaufmann Publishers, 2004.

Trusted Computing Group (TCG). htt ps:// wnw.
trust edconputi nggroup. org/, 2003.

G. Wurster, P.C. van Oorschot, and A. Somayaji. A

Generic Attack on Checksumming-Based Software Tam-
per Resistance. IRroceedings of the 2005 IEEE Sympo-

sium on Security and Privaciay 2005.

A Implementation Details Checksum Design

We have implemented PRISM on the Sharp Zaurage checksum cod.e negds .to be congtructed n S.UCh
way that tampering with its execution would ei-

SL6000 Personal Digital Assistant (PDA). This PD i
er generate the wrong checksum or a runtime delay.

has a 400 MHz Intel XScale-PXA255 processor, hT _ he check ¢ ion is (1) a 68-b
64 MBytes of RAM, and runs a 2.4.18 Linux Ker- "€ Iput to the checksum function is (1) a 68-byte

nel specialized for embedded devices. The PXAZ%tDUt generated by feeding the typed challenge into

processor is based on the ARM Version 5TE arclﬂ_pseudo-random nhumber generator and (2) a mem-

tecture, excluding float point instructions. ory region to verify (which is the execution agent,
as Figure 1 shows). The checksum code computes

_ _ a checksum over the specified memory region, and
A.1 Design and Implementation of Checksum yetyrms a 68-byte response.

Code on XScale Our checksum code is a time-optimal iterative

We b checksum code on previ workin VfL#nction that uses all general-purpose registers on
i ebl ase gu chec fu cotheo 8%6 Oﬁ_f f 2 ur platform (15 in our case), and generates a 68-
hable co e_ execuition on the x86 architecture [yte checksum, which we represent as a vector of
However, differences between the XScale and x

. . .seventeen 32-bit checksum pieces. Each checksum
required that we completely redesign the executlgpece uses one CPU register: twelve in general pur-

ose registers, and five in status registers.Each iter-

atibn of our checksum code performs the following:

agent. We first describe the design of our CheCkSLi derive a pseudo-random number, 2) read the mem-

_code.' T_hen, we (_axplam hOW. an advers_ary tamp%r—y word based on PC-relative address, 3) update one
ing with its execution would either result in a wrong

hecksum piece based on the memory word read and

checksum or a noticeable time delay. Finally, we dlgfher state variables, 4) update program state. Below,

cuss how we set up an untampered execution envi- .
A P P we explain the purpose of each step.

Initialization. Before checksumming begins, we

Architecture Primer. The XScale PXA255 is afirst initialize the checksum with the challenge. This
32-bit RISC processor, with 16 general purpose reg-to prevent the adversary from pre-computing the
isters (including a Program Counter), and two prehecksum.

cessor status registers [28]. The two status regifiep 1) The first operation in a checksum loop is to
ters are the current process status regis&psr, generate a pseudo-random memory address to per-
and the saved process status regisipsr . There form g pC-relative memory read. The key insight
are seven processor modes in total: six privileggdhing this pseudo-random memory traversal is that
modes @bort, fast interrupt request, interrupt re-yp aitacker cannot predict what memory location will
quest, supervisor, system, and undefjned one e read next. Thus, if the attacker alters the memory,
non-privileged modeuses). it would need to check whether the current memory

There are significant differences between the X8gccess falls within the modified region. Even if the
cale architecture and the x86 architecture that #@&acker only modified one byte, the increased run-
particularly relevant to crafting the checksum cod#éme of the memory check will be noticeable.

In XScale, the general purpose registers are orth@ep 2) We derive the 32-bit address of the memory
onal. This means the user can write and read the BCation based on the output of a 32-bit T-function,
(r 15) like any other general purpose register, which= x + (x? v 5) mod 2", whereV is the bitwise or
greatly simplifies the checksum code. Also, the wayperator [18]. A T-function is a function from n-
the processor manages different privilege levels abid words to n-bit words that has a cycle length of
interrupts is very different from the x86 architectur@". Such a function acts as a pseudo-random num-
and a thorough understanding of its intricacies welber generator. The T-function’s initial value as well
needed to set up the untampered execution enviras-initial checksum value are derived from the chal-
ment. lenge issued by the user.

15

Step 3) The checksum function updates one chec#tittack, the attacker sets up the TLB such that the
sum piece based on the pseudo-random memorydame virtual address points to two different physical
cation and other state variables. State variables addresses. As illustrated in Figurevaddr in the
clude the address of the memory read, the curr@TLB points to the correct code at physical page
PC, and number of words read so far. paddr, while vaddn in the I-TLB points to mali-
Step 4) Finally, the state variables are updated, agtbus code apaddrp. Executing the malicious code
the process iterates for a different checksum piegéelds the correct checksum, since only the virtual
The small code size of the checksum loop is requiraddressaddr is used in the checksum computation.
in order for the addition of instructions to exhibit a For ease of exposition, we present our defense
noticeable runtime overhead. against the Split-TLB attack in three phases, with in-
The checksum code needs to run at the higheggasing attack overhead.
privilege level with maskable interrupts disabled. On In our first defense, we augment the self-
the XScale platform, the checksum code will run ghecksumming loop with self-modifying code. The
supervisomode. This information is included in thgntuition behind this defense is to force the attacker
checksum by incorporating the status registesr into additional computation since it needs to modify
into the checksum. two physical pages instead of one. Under normal cir-
cumstances, self-modifying code modifies one phys-
ical page, and both the I-TLB and D-TLB point to
We implemented the entire system as a kernel mabe same page. Under the Split-TLB attack, self-
ule on the Sharp Zaurus PDA. The checksum logfodifying code would only modify one physical
itself was written in assembly, while the remaindgrage (e.g.paddnr from D-TLB). Therefore, the at-
of the execution agent was written in C. In an effothcker needs to perform an additional write to its ma-
to strive for time optimality in the actual implementicious code residing irpaddr. This also requires
tation, we unrolled the checksum loop twelve timean additional entry in the D-TLB such that a differ-
such that one unrolled loop modifies one checksumt virtual address;addp, points topaddr.
register. Self-modifying code does defend against the Split-
Defense Against the Memory Copy Attack.Inthe TLB attack, since for every iteration, the attacker
memory copy attack, the attacker uses a maliciowseds to perform an additional write. Unfortunately,
checksum function to compute the checksum ovetha time overhead is not sufficiently high to be de-
good copy of the checksum function as describedtictable by a human. An additional write manifests
the Pioneer work [24]. The XScale CPU permits ug about 2 extra cycles per iteration, or an 8% over-
ing the the PC as a general purpose register in aritlead. This is a far cry from the 33% overhead we
metic and logic instructions and has PC-relative adehieved in the memory copy attack. Therefore, to
dressing mode. Therefore, the memory copy attad&fend against the Split-TLB attack, we need to mag-
can be detected by reading data using PC-relative aily this time overhead.
dressing and incorporating the PC in the checksum. In addition to self-modifying code, the second de-
Defense Against Split-TLB Attack. The Split- fense uses up all TLB entries, which forces the at-
TLB attack is a powerful attack against selftacker's one additional TLB entry to experience a
checksumming software primitives [30] that allow$LB miss. We alias 32 different virtual addresses
an attacker to setup the TLB in order to forge theaddr, vaddep, ... vaddg; to all point to the same
checksum. By virtue of the fact that the selfpaddn such that all 32 entries in the I-TLB and D-
checksumming code reads its own instructions BB are filled. The attacker needs its malicious?33
data, executing such functions imply that the I-TLB-TLB entry, which causes the D-TLB to experience
and D-TLB are pointing to the same physical pag€LB misses.
For example, under normal circumstances, the vir-Unfortunately, the attack overhead is not signifi-
tual addressraddnr has an entry in the I-TLB ascantly higher than before. Since the attacker has 31
well as D-TLB, both of which are pointing to theavailable D-TLB entries for 32 different virtual ad-
same physical pagpaddr. Under the Split-TLB dresses, the expected number of TLB misses an at-

Checksum Implementation

16

tacker faces per iteration is 1/32. The amount of tina¢tacker's expected number of TLB misses per it-
to load in a TLB entry is around 4 cycles. Thus, theration is 2/34, while the expected number of TLB
expected time overhead per iteration is 2 cycles framisses by the legitimate function is 1/33. Since TLB
the first defense, plus 4/32 cycles from this defensmisses are not predictable, the attacker has no trivial
way of forging the performance counter aside from

D-TLB simulating the entire TLB in software. In this way,
\‘//:ggg the Split-TLB attack is detected.
vaddr A final note to this defense is that an attacker may
vaddy, avoid TLB misses completely to gain a time advan-
paddy | tage. The attacker achieves this by creating 1 MB
vaaﬁfm pages instead of the default 4K pages. Therefore, the
Vaddg attacker only needs 1 TLB entry to map alh@iddn,
I-TLB vaddp, ... vaddgs to paddn, in addition to one ma-
vaddn licious TLB entry. Since the attacker only requires
xgggz two TLB entries, he does not experiences any TLB
vaddiy misses, and gains an expected time advantage of 4/33
: paddnp, | cycles per iteration. However, this time advantage is
: insignificant since the attacker still cannot predict the
sarid correct number of TLB misses experienced by a le-

Figure 5:Split-TLB attack and defense.To defend gitimate checksum function. The attacker still needs
against the Split-TLB attack, we fill all 32 entrieso simulate the entire TLB in software, which would
in both the D-TLB and I-TLB to point to the sameaequire more than 4/33 cycles per iteration.
physical page. A Split-TLB attacker would setup theseudo-code and assembly code. Figure 6(a)
TLB in a way such that the same virtual page poinghows the pseudo-code of our checksum code. Fig-
to two physical pagepaddn and paddr. Because ure 6(b) shows one unrolled loop of the checksum
of self-modifying code, the attacker also needs to femnction. The code shown is not the optimized ver-
place one TLB entry in the D-TLB with a malicioussion, but a verbose version to aid readability.
entry fromvaddiyg to paddr. Therefore, the num- Each iteration of our checksum code has 24 as-
ber of TLB misses are different between a legitimagembly instructions and takes 28 CPU cycles. Be-
checksum function and a malicious checksum funcause of the small code size and the regular in-
tion employing the Split-TLB attack. struction set architecture of the XScale processor,
The insight behind our final defense is that thge were able to hand-optimize our checksum code
number of TLB misses experienced by an attacker obtain the assurance of having the fastest possi-
is different than that experienced by a legitimatsle implementation. In our future work we plan to
checksum function. This can be exploited by includlemonstrate code optimality through the use of auto-
ing the performance counter of TLB misses into thaated optimization tools such as Denali [15].
checksum. Since the performance counter is incre- . .
mented automatically by hardware upon each TL'%2 Empirical Analysis of Attack Overhead
miss, a software-based attacker cannot tamper withthis section, we analyze different attacks against
this counter. the execution agent and show why these attacks sig-
According to our second defense, the legititificantly slow down the checksum computation.
mate checksum function experiences 0 TLB miss&enefits of XScale Architecture. First, because
An attacker would simply replace the performana#d the inherent properties of the XScale architecture,
counter reads with an immediate of 0. The solutiaitacks based on the properties of the x86 platform
is to induce TLB misses even in legitimate verificaare no longer possible. For example, multiproces-
tion functions. Therefore, we setup 33 TLB aliasers and hyper-threading remain as possible attacks
vaddn, vadde, ... vaddgs. The attacker still needsagainst any software-based attestation work on PCs.
its additional malicious 34 D-TLB entry. Thus the The absence of such capabilities on the XScale archi-

17

Assembly Instruction
smulbb r11, r10, r10

add r3, r3, r2

/Nnput: y number of iterations of the checksum function ~ eorr3, r3,rl

//Output: Checksur@ orrrll, r11, #0x5

Il daddr- address of current memory access addsr10, r10, r11

1l X - value of T function eorrll, r9, r10, LSR #27

I status- status register addr3,r3, r11

for | =yto0do and r11, r11, #0xfffffffc
/IT function updatex where 0< x < 2" Idr rl1, [r11]
X X+ (x> V5) mod 2! add r3, r3, 10
/IModifiesdaddrbased on PC anxifrom T function eorr3, r3, rl5
daddr— PC+x[4: (] addr3, r3,rll

/IRead from memory addredsiddr, modify checksum. mrs r11, cpsr

//Let C be the checksum vector aride the current index. eorr3,r3, rl4
Cj—Cj+Cj-18Cj_2+Cj_3®Cj_4+Cj_58Cj_s+ addr3,r3,r13
Ci7@Cjg+Cj_9g®Cj_10+Cj_11 ®PC+ daddre eor r3, r3,r9

menjdaddy & statust | add r3,r3,r8
Cj < rotateright(Cj) eorr3, 13,17
//Update checksum index add r3,r3, r6
j < (j+1)modl2 eorr3, r3, 5
end for) addr3,r3,r4
(a) Checksum Function Pseudocode eorr3, 13, r12

add r3, r11, r3, ROR #1

subsri2, r12, #1
(b) Checksum Assembly Code. r3 is the current checksum reg-
ister.

Figure 6: Implementation of checksum function.

tecture rules out these attacks. Moreover, the absesgm code occupies all 15 CPU general purpose reg-
of an System Management Mode (SMM) or dynamisters (12 for the checksum, one for the loop counter,
clock scaling on the XScale processor greatly simptine for the data offset from the PC and one for the T-
fies the design and results in a more robust and seduirection), and 6 status registers. Hence, the attacker
system. has no free registers to implement their attacks. The
Best Known Attack: Checksum Forgery. Other only way the attacker can obtain registers is to keep
than hardware attacks, the best known attacks agagwne of the checksum computation state in memory.
the execution agent are checksum forgery attadkswever, accessing memory is slow. As we show,
carried out in software. In a checksum forgery astow memory accesses are the reason why such at-
tack, the attacker manipulates the checksum compacks achieve a detectable time overhead.
tation to generate the correct checksum even thougln addition to performing memory access to free
the attacker has modified the execution agent. \l registers, the attacker often needs to access cer-
now discuss why such attacks result in a high rutain immediate values to implement its attacks. The
time overhead. attacker has two ways to do so: 1) store and load
Checksum forgery attacks can be classified irdach values from memory, or 2) encode immediate
data substitution attackand memory copy attacks operands within the instruction. On the XScale ar-
In a data substitution attack, the attacker modifiechitecture, immediate operands are encoded within
certain memory region, and redirects memory reaglach instruction, and can only be 8 bits in length be-
for this region to another location that contains a carause all instructions have a fixed length of 32 bits. If
rect copy the data. A description of memory copy program wants to operate on immediate operands
attacks and a novel defense has been previously tlist are longer than 8 bits, the program first has to
cussed. We describe the overhead of such attanksve the immediate from memory into a register and
below. then operate on the register. Thus, any attack where
Intuition behind Attack Overhead. Our check- the attacker needs to use immediates that are longer

18

than 8 bits will experience a dramatic slowdown. A.3 Untampered Code Execution Environment

Data Substitution Attack. To perform a data sub- ¢ d cod tion b i
stitution attack, the attacker must check every meW—e ensure untampered code execution Dy Setting

ory read by the checksum code to detect if the read &" untampered execution environment. The key

is accessing modified memory locations. This is dﬁgmt Is thatwe do not execute code unless it has been

é/l%r_ified. The only exception is when we execute the

ory in a pseudo-random manner. The compare I%t]ecksum code itself. Instead of verifying before ex-

struction modifies the state of the CPU'’s status reg%c_utmn, the user executes the checksum code, and

ter. Since we incorporate the status register into t}ﬁ%”f'es its execution based on whether it generates

checksum, the attacker has to save the status re hlg_correctchecksum in the expected amount of time.

ter before the compare instruction, and use the savefigure 7 shows how the untampered execution en-
copy of the status register to compute the checksufffonment is setup in three phases. In the verifica-

Furthermore, the compare instruction needs anotfi@f Phase, we receive the challenge from the user
operand—a register that contains the address of &t run the execution agent. In the setup phase, we
malicious content. This requires the attacker to ofyin the code required to establish a trusted path and

tain an immediate value, which we already show> up the untampered execution environment. At the
to be slow. end of the setup phase, the response is printed to the

Memory Copy Attack. Performing a memory SCT€en. The runtime measured by the user consists
copy attack on the XScale is also expensive. To Jf-summation of the verification and setup phases. In
fend against this attack, we incorporate both the piee execution stage, after the user verifies the check-
and the random offset from the PC used to read d&t§" @nd runtime, she may run the verified applica-

into the checksum. This requires the attacker to for§&n-
either one of these values. Verification Phase. During verification, we ensure
The attacker can forge the PC value by using #@t the checksum loop is the only code running by
immediate or by keeping the correct PC value ﬁ?(pllCltly dlsabllng all maskable interrupts and exe-
memory. To forge the random offset, the attacker heigting in supervisormode. This is signified in Fig-
to use a memory location. ure 7 by the symbol-. We verify this by incorporat-
Evaluation of Attack Overheads. When we im- ing the CPU status registecffsr) into our check-
plemented the different checksum forgery attack§m. The status register has an interrupt-enable bit.
mentioned above, we found the fastest checksdius, if the attacker runs our checksum code without
forgery attack to be the memory copy attack Whereﬁiﬁab“ng interrupts, the interrupt enable bit would be
the attacker forges the PC using a value in memo#@jfferent and hence the checksum will be incorrect.
This attack has an overhead of 33% per iteration 850, thecpsr encodes the processor mode in its
the checksum loop in contrast to the 2% per iterati¢@st significant five bits, preventing an attacker from
of the checksum loop overhead in previous workinning our code in a different processor mode.
There are two reasons for the significantly higher We also prevent malicious exception and non-
overhead in our case. One, the number of CPU awaskable interrupt handlers from tampering with the
cles per iteration for our checksum code is mue@xecution of the execution agent by implicitly dis-
smaller than previous work (28 cycles versus 52 cgbling them, signified in Figure 7 by the symbeol
cles) due to the absence of pseudo-random jumpdghis is done on the XScale by tlsg@sr trick. The
our code. Two, the lack of x86-style segmentatidy insight is that during an exception or interrupt,
support in the XScale architecture and the limit dhe processor automatically switches processor mode
the size of immediates that can be used in instruzased on the cause of exception, and savesjiise
tions limits the attacker’s flexibility in constructingto the bankedpsr of the exception mode. This is
memory copy attacks. These two restrictions fordene by the hardware, and cannot be prevented by
the attacker to use memory operands for performitige attacker. Thus, if we store checksum pieces onto
memory copy attacks, increasing the attacker’s tirttee bankedspsr registers of all five possible ex-
overhead. ception modesUndef, IRQ, FIQ, Abort, and super-

19

visor), an exception or unmaskable interrupt would Next, we address the unmaskable interrupts and

corrupt the checksum. exceptions. Thepsr trick only temporarily pro-

tects against exceptions and unmaskable interrupts,
Verify Setup Exe since no protection is guaranteed once the check-

SETECEZL:S;LOOF) E E Y/ x sum is returned to the user. Therefore, during
Trusted Path _ E v | E v | this phase, we need to replace the unmaskable in-

Maskable Int - - - terrupt/exception handlers with a return instruction.

Unmask. Int/Expt.| ~ ~ V| E V| Thisis accomplished as follows. In the XScale ar-
PVA VI]E v chitecture, the processor services interrupts and ex-

Figure 7: Verify, Setup, and Exe represents the thrggntions by walking a 32 byte Interrupt Vector Table

chronological time periods: verification phase, thgq executing the instruction present in the table en-

Untampered Execution set up code, and executigfithat corresponds to the number of the interrupt of

of the PVA. The rows represent different pieces @kception. This instruction is typically an uncondi-

code that could be executell.means this code mayional branch to the corresponding interrupt or excep-

execute at this time.V means this code had beefon handler. There are two Interrupt Vector Tables

verified to be correct— means this code is explic—(at addresse©x00000000 and Ox FFFF0000),

itly disabled to run at this time (i.e., interrupts turnegnd the processor decides which one to use based on

off). ~ means this is implicitly disabled (i.e., it may, certain bit in the status register. Our checksum code

execute, but will return incorrect response). modifies both Interrupt Vector Tables so that every
At the end of the 12 unrolled loops of the checlentry is a return instruction. If any interrupt or ex-

sum function, we select one of these five process@ption occurs after this point, control returns back

modes and update their corresponding barsdqesir directly to the running code. Thus, malicious excep-

based on the current checksum. Banked registerstisa and interrupt handlers never get a chance to ex-

hidden from all other modes except for the correcute. In order words, exceptions and unmaskable

sponding mode. Thus, we need to explicitly switdhterrupts are merely dropped. Hence, such faking

into the mode by writing to the corresponding bits ian part of the attacker will either lead to an incorrect

cpsr . Then, we modify the checksumapsr, and checksum value or a longer checksum computation

switch back tosupervisormode to continue regulartime. After the untampered execution environment

checksum computation. is set up, the response is displayed to the user via the

Setup Phase. After the verification phase, we setrusted path previously established.

up the trusted path and the untampered execution ERecution Phase. In the final phase, the only code

vironment. Note that we can trust the code to shiat could possibly execute are: the PVA, the key-

up the untampered execution environment becatlmmrd/display driver, and the “return” instruction that

this code had been incorporated into the checkswecurs upon an exception or unmaskable interrupt.

in the first phase. From this point on, we wouldll such code had been previously verified. Thus, we

like to enable two interrupts that are needed for tlaehieve a environment free of unverified malicious

trusted path: keyboard interrupt and display intezede.

rupt. We replace the interrupt handler for the key-

board and display driver with our own self-contained

interrupt handler that has been previously verified.

This is accomplished by freeing the corresponding

IRQ handler and registering our own with the IRQ

number of the keyboard and display driver. All other

interrupts remain disabled by writing the correspond-

ing bits into the Interrupt Mask Register (ICMR). In

other words, we have selectively enabled only the

keyboard and display interrupts as a means to estab-

lish a trusted path for user 1/0.

20

