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Abstract—In a public-key infrastructure (PKI), clients must
have an efficient and secure way to determine whether a
certificate was revoked (by an entity considered as legitimate
to do so), while preserving user privacy. A few certification
authorities (CAs) are currently responsible for the issuance of
the large majority of TLS certificates. These certificates are
considered valid only if the certificate of the issuing CA is also
valid. The certificates of these important CAs are effectively
too big to be revoked, as revoking them would result in massive
collateral damage. To solve this problem, we redesign the
current revocation system with a novel approach that we call
PKI Safety Net (PKISN), which uses publicly accessible logs to
store certificates (in the spirit of Certificate Transparency) and
revocations. The proposed system extends existing mechanisms,
which enables simple deployment. Moreover, we present a
complete implementation and evaluation of our scheme.

1. Introduction

The TLS public-key infrastructure (PKI) is an essential
component of today’s Internet, as it enables to use and verify
certificates for secure communications. Certification author-
ities (CAs) are trusted third parties responsible for issuing
and signing digital certificates, which contain authenticated
public keys. To do so, CAs also own certificates. Naturally,
the problem is that private keys can get compromised. As a
consequence, the ability to revoke any certificate (including
a CA certificate) and verify if a given certificate has been
revoked is crucial. This process should be lightweight, se-
cure, and preserve user privacy. To develop a new revocation
scheme, one should also answer the question of who must
be able to revoke a given certificate. The owner, the issuer,
the root CA, intermediate CAs, or a combination of these?

The current revocation schemes simplify many aspects
of the PKI ecosystem. The most striking example is the
following. As any private key can be stolen, it should be
possible to revoke any certificate; however, just like some
corporations are said to be “too big to fail”, the certificates
of some certification authorities are, in practice, too big to
be revoked. A study showed that around 75% of certificates
had been issued by only three different companies, and one
specific GoDaddy CA private key had signed 26% of all
valid certificates in March 2013 [9], [17]. Revoking this
particular certificate, if the corresponding private key were

compromised, would mean that 26% of all websites that use
HTTPS would be unavailable (or accessible only if the se-
curity warning displayed by browsers is ignored). Diginotar
and Comodo are two infamous examples of attacked CAs.
After the breach, while Diginotar had its certificate revoked
and removed from most CA lists [2] (before eventually
declaring bankruptcy), Comodo’s incriminated CA certifi-
cate was not revoked and is still present in CA lists [6]. The
Comodo Group is leading the certificate issuance business
(with a market share of 33.9%, and some single private
keys that have been used to sign the certificates of 5.5%
of all the websites considered in a W3Techs survey from
February 2015 [8]). Consequently, Comodo’s root certificate
could not be revoked without effectively preventing users
from establishing TLS connections with a significant portion
of the Internet. For this reason, we claim that the TLS
revocation system needs to be redesigned to remove the
collateral damage that would be induced by the revocation
of some CA certificates.

We observe that time is a key element in this problem,
as certificates issued before the certification authority was
compromised should not become invalid when the CA cer-
tificate is revoked. Therefore, we suggest that introducing a
timestamp server for certificates and revocations can prevent
invalidating any legitimate certificate. Another problem of
current revocation schemes is that a certificate cannot be
directly revoked by its owner. Our approach, PKI Safety
Net (PKISN), solves this issue. In PKISN, domain owners
can use their private keys to revoke the corresponding certifi-
cates, while CAs can use a dedicated revocation key, which
can be securely stored offline as it is not needed during
normal operation.

The scheme we present is inspired by log-based so-
lutions such as Certificate Transparency (CT), which was
recently introduced and deployed [28]. CT aims to make
the actions of CAs more transparent by introducing a log
that makes certificates publicly visible. However, CT mainly
covers the issuance aspect of the problem. We propose to
improve the system in several ways, in particular, by using
two distinct hash trees (the data structure on which CT
relies) to store not only certificates, but also revocations.
Moreover, PKISN gives CAs the ability to revoke their
own certificates after a certain point in time to ensure that
previously-signed certificates remain valid.



Security breach notification laws require CAs to notify
relevant authorities about a data breach. For example, in the
E.U., this notification must occur within 24 hours. In other
words, certification authorities are compelled by law to take
rapid action to disclose a data breach when it is detected.
This notification should be immediately followed (if not
preceded) by a set of measures that can mitigate the attack,
but it is currently not possible to simply revoke certain
compromised CA certificates without incurring substantial
collateral damage.

The major contributions of this paper are the following.
Through PKISN, we redesign the revocation system to better
express the hierarchical structure of certificates, rebalance
the power of PKI actors, and address the too-big-to-be-
revoked problem. In addition to the existing deployment
plans of CT, we propose and discuss new models that max-
imize privacy and allow to monitor the log in a lightweight
manner, and we show how the log can be designed to handle
these deployment models. We present an evaluation and a
full implementation of our system.

2. Background

2.1. The TLS Public-Key Infrastructure

In TLS, certificates form a chain of trust (certificate
chain) that starts with the root CA’s self-signed certificate
and ends with the server’s certificate. This chain can contain
a number of intermediate CAs and each certificate in the
chain (except the root) is signed by the private key corre-
sponding to the public key of the parent certificate. TLS
clients (e.g., browsers) need a list of root CA certificates
considered trustworthy to initiate the verification of other
certificates. The basicConstraints extension indicates
whether a certificate is a CA certificate. For convenience,
we will use a simple notation to represent the chain of trust
formed by a series of certificates, as follows:

Ca → Cb → · · · → Cc, (1)

where Ca is a root CA certificate, Cb and possibly other
certificates are owned by intermediate CAs, and Cc is an
end-entity (leaf) certificate.

Starting 1 April 2015, certificates must not be issued
with a validity period greater than 39 months [5]. However,
this concerns only leaf certificates, i.e., not CA certificates.
In fact, certain root CA certificates are valid for up to 30
years (e.g., the certificate of CA Disig Root R1, present in
the list provided by Mozilla [6], will be valid until July
2042).

2.2. Desired properties

Here are the properties that we expect of a satisfactory
revocation system:
Efficiency: transmission, computation, and storage over-

heads are reasonable and the deployment of the system
is cost-effective.

Timeliness: the attack window, i.e., the time between the
detection of an attack and the moment when the corre-
sponding certificate is considered invalid by all clients,
is short (ideally, on the order of minutes/hours).

Privacy: clients can obtain certificate-validity information
without sacrificing their privacy. In particular, users
should not be forced to contact any other party than the
server they connect to in order to obtain the certificate
status.

Authenticity: only legitimate parties can create a revo-
cation message for a certificate, but that message is
verifiable by everyone. The set of legitimate parties
depends on a revocation policy.

Independence: the revocation is independent from the cir-
cumstances in which the process takes place (e.g.,
server configuration or the availability of a special third
party). Ideally, whenever an allowed entity has issued a
revocation message, and a certain server is accessible,
then clients of this server should be able to access the
disseminated message. An adversary must not be able
to suppress a revocation.

Complete status information: revocation messages must
provide the status of all certificates in the chain of trust.

Transparency: revocations must be publicly accessible and
persistent, to guarantee to the interested parties that,
when a revocation is successfully issued, it is impossi-
ble to claim that the certificate is still valid.

Backward availability: the revocation system must solve
the too-big-to-be-revoked problem of the current TLS
PKI. In other words, it must be possible to revoke any
CA, without causing collateral damage, i.e., without re-
voking certificates that were legitimately issued before
the CA’s private key got compromised.

(The efficiency of PKISN is evaluated in §7.2, §8.1, and
§8.2, while security properties are discussed throughout §6.)

2.3. The Evolution of Revocation Schemes and
their Drawbacks

The first attempt to address the revocation problem
was realized with Certificate Revocation Lists (CRLs) [13],
published by CAs at CRL distribution points. To verify the
validity of a certificate, the browser downloads a CRL and
checks whether the certificate is listed. Unfortunately, the
CRL approach has many drawbacks: a) It is inefficient, since
the entire CRL must be downloaded to verify a single cer-
tificate (a n-certificate chain requires n connections). b) CAs
can violate the privacy of users by creating a dedicated
distribution point for a target certificate. Whenever a user
connects to this special distribution point, it means that this
user is very likely to visit the website that corresponds to the
target certificate. c) Gruschka et al. [19] reported that, during
a 3-month period, only 86.1% of the CRL distribution points
had been available. Mainly due to efficiency issues, the
usefulness of CRLs was questioned several years ago [22],
[32], [36].

There are many schemes that improve the format of
standard CRLs. For instance, Kocher [24] proposed to use



a Certificate Revocation Tree. This data structure, based on
binary hash trees, allows to efficiently prove that a certificate
is not revoked. Naor and Nissim [34] suggested a similar
solution, and their Authenticated Dictionaries support certifi-
cate insertion and deletion more efficiently. Unfortunately,
these methods have not been adopted.

To address the inefficiency of CRLs, the Online Certifi-
cate Status Protocol (OCSP) [38] was proposed. In OCSP,
clients contact a CA to get the status of a certificate.
However, this solution is still inefficient (the CA may be
under heavy load, and an extra connection is required), and
has a serious privacy issue (the CA learns about the server
that the browser is contacting). OCSP Stapling [35] solves
these problems. In OCSP Stapling, the server periodically
obtains an OCSP response from its CA, and then sends
the response along with the certificate in subsequent TLS
connections. Unfortunately, the deployment and effective-
ness of this technique depend on the server configuration
(e.g., the age of a stapled response can be customized by a
configuration parameter, which may introduce a long attack
window). Liu et al. reported [29] that only 3% of certificates
are served by servers supporting OCSP Stapling. Moreover,
OCSP and OCSP Stapling only return the status of a single
certificate (not the entire chain). To address this problem,
an extension [35] was proposed.

Recently, browser vendors decided to disseminate spe-
cial CRLs (called CRLSets) through software updates [3],
[25]. Such an approach does not require any server re-
configuration, but CRLSets only support certain Extended
Validation (EV) certificates [25]. Such a policy restricts
the deployability and effectiveness of the method, as the
fraction of EV certificates is relatively small [17], [21], and
the revocation process is still conducted through a CA (a
user cannot revoke his own certificate without contacting
the CA). A study showed that Chrome’s CRLSet contains
only 0.35% of all revoked certificates [29].

Short-Lived Certificates (SLCs) [36], [42] solve prob-
lems associated with CRLs and OCSP, by periodically pro-
viding domains with fresh certificates with a limited validity
period. SLCs are designed to be valid for a few days, and
as they are irrevocable, a long attack window exists. SLCs
are intended for leaf certificates, hence intermediate and
especially root certificates cannot benefit from the properties
of SLCs. In addition, their deployment depends on server
configuration.

Another recent approach, called RevCast [39], improves
revocation dissemination through unique properties of radio
broadcast. RevCast proposes an architecture where CAs
broadcast revocation messages and users with radio receivers
can receive them immediately. RevCast employs a blacklist
approach where the user must possess the entire CRL, and
to satisfy this requirement an additional infrastructure must
be provided or users have to continuously listen to broadcast
transmission. RevCast also requires users to purchase and
install radio receivers.

None of the schemes presented above provides the
transparency property. Revocation Transparency [27], which
was proposed as a supplement for Certificate Transparency

(see §2.4), was the first attempt to provide that property.
Unfortunately, due to the introduced data structure, checking
whether a certificate is revoked might be inefficient in prac-
tice. Additionally, Revocation Transparency lacks a detailed
description.

Log-based approaches such as AKI [23], ECT [37],
ARPKI [10], PoliCert [40], and DTKI [43] take the trans-
parency of revocations into consideration. However, AKI,
ECT, and ARPKI do not allow domains to use multiple
certificates (which is a common practice today [4]). In ECT,
only the most recent certificate is considered valid for any
given entity. Similarly, in AKI and ARPKI, a certificate
expresses the domain’s policy, which must be unique. Con-
sequently, these systems are designed in such a way that,
at a given point in time, there can exist only one active
certificate per domain name. To solve this issue PoliCert
decouples policies from certificates. Similarly, DTKI intro-
duces a master certificate and a mapping server, which also
allow a domain to possess multiple certificates. Unfortu-
nately, all these schemes (including PoliCert and DTKI)
simplify the certificate hierarchy by ignoring intermediate
CAs, and consider that certificates are signed directly by
root CAs. Such certificates are unusual in practice, and
taking intermediate CAs into consideration would introduce
a significant complexity to the log and protocol designs. For
instance, to return complete status information, a log would
need to efficiently look up all relevant information about
a particular certificate chain (without performing a linear
search). Furthermore, the previous proposals do not handle
revocation of CA certificates.

Unfortunately, none of the methods proposed in the
literature identifies and solves the too-big-to-be-revoked
problem of the current TLS PKI and would thus create large
collateral damage if a popular CA certificate were revoked.

2.4. Certificate Transparency

The Certificate Transparency (CT) [28] project was ini-
tiated by Google and aims at making the issuance of TLS
certificates accountable and publicly visible. In order to
achieve this goal, log servers are used to collect certificates
that can be submitted by anyone (clients, servers, CAs).

The CT framework relies on the Merkle tree (also called
hash tree) data structure. In the binary Merkle trees used
in CT, leaves are essentially hashes of certificates and the
other nodes are obtained by hashing the concatenation of
their two children. We can distinguish between two types
of Merkle trees. When new leaves are generated, they can
either be appended to the tree (in chronological order) or the
tree can be continuously sorted (in lexicographical order). In
CT, logs use append-only trees sorted in chronological order,
because it can be efficiently proven (with a number of nodes
logarithmically proportional to the number of entries in the
tree) that a certificate is part of the tree and that a given
tree is the extension of another tree. Trees that are sorted in
lexicographical order, on the other hand, allow to efficiently
show that a certain entry is absent from the tree.



When a certificate is submitted to the log for inclusion,
it returns a Signed Certificate Timestamp (SCT), which is
a promise to incorporate the certificate to the tree within
a fixed time period called the Maximum Merge Delay
(MMD). The SCT must be provided by the TLS server to
its clients at every connection, and the documentation [28]
of CT describes three ways to do so: via OCSP Stapling,
via a TLS extension, or via an X.509v3 extension. The last
method is of particular interest as it is CA-driven (i.e., CAs
directly embed the SCT into the certificate at issuance) and
does not require servers to be updated, but it requires that
CAs participate.

2.5. Assumptions

For our revocation system to be operational, we make
the following assumptions:
• It is possible to determine when the private key of a

CA is misused, in particular, by monitoring logs or with
audits. (This is easier to achieve if certificate logging is
mandatory, which is the case for PKISN.)

• CAs can store a special private key offline in a secure
manner.

• Browser software is provided by a single vendor. (This
assumption is introduced for the sake of simplicity and
can be easily relaxed.)

• Browsers have a working software-update mechanism.
• The log server is highly available (for both read and

update operations) to all parties.
• The different parties are loosely time-synchronized (up

to few minutes), and time is expressed in Unix seconds.
• The cryptographic primitives used by PKISN are secure.
• Only one log server exists, but extending PKISN to

multi-log settings is discussed in §9.

2.6. Adversary Model

We consider that an adversary can steal a domain’s
private key to perform a man-in-the-middle attack or a CA’s
private key to issue malicious certificates/revocations, but
an attacker cannot access a CA’s offline (revocation) key,
and cannot access key(s) used for software update. The
adversary can also contact the log (to fetch or submit data)
as any other party. The adversary’s goal can be to: a) cause
collateral damage and make many websites unavailable,
b) violate the revocation policy and convince a client that
a revoked certificate is still valid, or c) revoke a valid
certificate without legitimately owning the appropriate key.

2.7. Notation

Throughout the paper, we use the notation presented in
Table 1.

3. PKISN Overview

This section gives a high-level picture of the overall
system and introduces the entities involved and basic termi-
nology. In PKISN, clients/browsers want to communicate

TABLE 1. NOTATION.

Cx certificate
RCx revocation of certificate Cx

tx timestamp
skx secret key associated with the public key authen-

ticated by Cx

rkx revocation key (stored offline) associated with a
CA certificate Cx

vk key used by the software vendor
klog log key
H(.) cryptographic hash function
Sigk(m) message m signed with key k
∅ null value
‖ concatenation

securely with servers/domains. A server is authenticated
through a certificate chain created by a number of CAs.
All certificates and revocations must be logged by a log
server. At every update time, each log updates its local
database, and the time period between these updates is called
the scheduling period. The log is verified by browsers and
dedicated parties called monitors. CAs must also act as
monitors to verify that no illegitimate certificate (issued on
their behalf) is present in the log.

3.1. The Certificate Log as a Timestamping Service

The main goal of our work is to solve the too-big-
to-be-revoked problem of the current TLS PKI. Namely,
we want to enable revocation of CA certificates without
causing collateral damage. The typical scenario in which
a revocation is required is after a private key compromise.
Currently, revocation of a compromised private key owned
by an important CA, should invalidate all certificates signed
by this key, as the certificates may have been fraudulently
created.

Our main observation is that when a compromised CA
can determine the time of the attack—more precisely, the
time at which an illegitimate action (like certificate issuance
or revocation) was first observed—then the certificates
signed before the attack can still be considered valid. Only
certificates issued after the attack are potentially malicious,
and should not be trusted. It is possible for CAs to determine
the time of that attack as, in the PKISN framework, all
certificates and revocations must be logged before they are
considered valid. Thus, the instant of the first maliciously
registered certificate is the instant of compromise.

As we cannot rely on the creation-time field of a certifi-
cate (because it may be easily predated by the adversary),
the main challenge in resolving the too-big-to-be-revoked is-
sue is the lack of a trusted timestamping service [20]. PKISN
leverages the concept of a certificate log to provide this
service. Depending on the deployment scenario, a domain
or a CA submits the certificate to a log. When the certificate
is accepted, the log returns a chain commitment (CC) and



appends the certificate to the tree in the next update. Ad-
ditionally, all intermediate certificates are added as well (if
they are not already in the log). The returned commitment
includes a list of registration timestamps that specifies when
the non-registered certificates in the chain will be present
in the log (in this case, the timestamp denotes the next
update time) and when the already registered certificates
were appended to the log.

Every new certificate is appended along with its reg-
istration timestamp. Thereafter, anyone with the obtained
commitment can query the log for the presence proof of the
certificate. As a presence proof includes a registration times-
tamp, it is the confirmation that the log contained a given
certificate at a given point in time. Hence, a requester can
assert that the certificate was created before this timestamp.

3.2. Transparent and Persistent Revocation

PKISN also employs a public log for storing revocations.
In order to enhance the transparency of the current PKI
ecosystem, revocations need to be logged. For instance,
whenever a key is compromised or lost, the owner should
have a guarantee that a revocation will be visible for others
at least until the revoked certificate expires. The obligation
of logging certificates also makes CAs more transparent, as
they cannot misbehave by distributing two different CRLs
or two different OCSP responses.

PKISN introduces special types of revocation messages
(see §4.1), and due to the hierarchical nature of the certificate
chain, a given certificate can be revoked by a set of entities
(see PKISN’s revocation policy below).

An authorized entity (usually the owner of a certificate)
who wishes to revoke a certificate can create a special
revocation message. This message is submitted to the log,
which, after verification, returns a revocation commitment
stating that the revocation will be appended to the log in
the next update. When the revocation message is in the log,
the presence proof for the corresponding certificate must
contain this revocation message. To minimize the attack
window, whenever a revocation is pending for addition, the
log can accompany the presence proof of a certificate with
its revocation, without waiting for the end of a scheduling
period.

3.3. Revocation Policy

In the current PKI ecosystem, a certificate can be re-
voked only by two parties, namely the issuer and a software
vendor (e.g., a browser or an OS vendor). Whenever a
domain wishes to revoke its own certificate, the domain
must contact the appropriate CA that will eventually issue
the revocation. Obviously, such a procedure results in a
prolonged attack window and depends completely on the
issuing CA. Alternatively, the software vendor can sim-
ply blacklist certain certificates and propagate the changes
through software updates. In this case, a domain has to
contact the software vendor. This option can be also used
for revoking misbehaving CAs. However, software vendors

are reluctant to use this option, as it renders all servers with
a certificate issued by that particular CA unavailable.

PKISN introduces a revocation policy that reflects the
interactions of the current PKI and the hierarchical struc-
ture of the certificate chain. Specifically, we introduce the
following revocation rules:
The owner of a leaf certificate can revoke this certificate

using the associated private key.1 This option gives
domains the opportunity to revoke, without the need
to contact CAs or a software vendor.

The issuer (or an upper-level issuer, i.e., a CA in the
certificate chain) of a leaf certificate can revoke that
certificate. The revocation message is created by the
issuer’s (i.e., a CA’s) private key and can be performed,
for example, when a domain lost its private key. Note
that a certificate can be revoked directly by a root CA,
without involving intermediate CAs.

CAs can revoke their own certificates and the certificates of
their child CAs from a given point in time called revo-
cation timestamp. This revocation states that certificates
and revocations issued after a revocation timestamp
should be considered invalid and should be ignored
during the certificate-chain validation. The CA’s own
certificates are revoked with a dedicated revocation
key, while child certificates are revoked with a regular
private key. With the revocation key, a CA can prevent
all potentially malicious actions starting from a certain
point in time. A CA can use its revocation key only
once, and as it invalidates the CA’s certificate there is
no need to revoke or update a revocation key. A new
revocation key is generated every time a CA’s certificate
is created.

A software vendor can revoke any certificate, and for CA
certificates, they have to specify a revocation times-
tamp as above. Only child certificates and revocations
issued with the revoked certificate before that times-
tamp are considered valid. Currently, software vendors
effectively have the ability to revoke any certificate,
so this option explicitly reflects their power in the
current TLS PKI ecosystem. Moreover, PKISN holds
their actions accountable and transparent. For the sake
of simplicity, we assume that there is a single software
vendor that issues revocations with a private vendor
key. The corresponding public key is provided to the
clients within the software (like today), and can be
updated with a software update (but cannot be revoked
through PKISN).

Note that we do not allow a revoked (i.e., compromised,
usually) CA to revoke its child certificates, even if the re-
vocation had been legitimate (otherwise an adversary could
cause collateral damage by invalidating certificates with the
already revoked key). In such a case, any non-revoked CA in
the certificate chain can still issue a valid revocation for the
leaf certificate. However, after a CA is revoked, its clients
should be informed that, although their legitimately-issued

1. By associated private key we mean the one corresponding to the public
key that the certificate authenticates.



certificates are still valid and can be used, the CA lost its
revocation ability, and the certificates should be reissued in
the near future (e.g., few days or weeks).

Possible revocation actions for an example certificate
chain are presented in Fig. 1. A single certificate can have
many associated revocations. All these revocations can be
fetched from the log with a presence proof.

Software Vendor

(e.g., Mozilla)

Cb

(inter. CA, e.g.,

Google Internet

Authority G2)

Ca

(root CA, e.g., 

GeoTrust Global CA)

Cc

(server, e.g., 

*.google.com)

revoke
(with ska)

revoke from t 2

(with ska)

revoke
(with skb)

revoke
from t 1

(with rka)

revoke
from t 3

(with rkb)

revoke
(with skc)

revoke from
t 5 (with vk)

revoke from t 4

(with vk)

revoke
(with vk)

Figure 1. All possible revocations for a certificate chain Ca → Cb → Cc,
where Ca and Cb have associated keys ska, rka and skb, rkb, respectively
(standard and revocation private keys), while the leaf certificate is asso-
ciated only with a standard private key skc, and vk denotes the software
vendor key.

3.4. Validation

For a successful validation, a client must be provided
with a certificate chain, a corresponding chain commitment
(CC), and a proof from the log. First, the input data is pre-
validated (for details see §4.4), and verified. This includes a
standard chain validation as executed in modern browsers.
However, the PKISN validation process goes further, as
it determines time periods for which CAs were behaving
legitimately.

As shown in Fig. 1, a single certificate can be revoked by
different entities and through different revocation messages.
Hence, to achieve an unambiguous validation of revocation
messages, priorities must be established. PKISN introduces
the following priorities for revocation messages, from the
highest priority to the lowest:

1) revocations issued by the software vendor,
2) revocations created with a dedicated revocation key

(only applies to non-leaf certificates),
3) revocations issued by parent CAs,
4) revocations created with the standard private key asso-

ciated with the certificate (only applies to leaf certifi-
cates).

To conduct a validation, PKISN introduces the notion
of a legitimacy period, which denotes a time period during

which actions performed by CAs are considered valid. The
legitimacy period is defined between the moment when a
certificate is received by the log for the first time (regis-
tration timestamp) and the moment when it expires or is
legitimately revoked (revocation timestamp). A certificate is
considered valid when it passes the pre-validation and when
all certificates in the chain were issued (and never revoked)
during corresponding legitimacy periods.

An example that illustrates the concept of legitimacy
periods is presented in Fig. 2. In this example, the root
CA certificate Ca gets compromised, but the attack is then
detected and the CA is able to determine the time at which
the attack was performed. In the meantime, the adversary
used the private key to maliciously revoke the certificate
Cb of an intermediate CA.2 In this particular case, the leaf
certificate Cc is valid even though its parent CA certificate
was revoked, as PKISN allows to express the fact that Cb

was maliciously revoked (the revocation was done during
the illegitimacy period of Ca).

Ca’s legitimacy period Ca’s illegitimacy period

t3

DetectedCompromised

t5

t1

t0 t2 t4Revoked from t2

Issued (signed with skb)

Ca

Cb

Cc

(root)

(intermediate)

(leaf)

(self-signed)
Issued

(with rka)

(maliciously with ska)

Revoked

(signed with ska)

Issued

Figure 2. Timelines for a chain of three certificates, with an attack (against
the root CA) and a detection thereof.

3.5. Log Consistency

Periodically, a browser contacts a random monitor to
ensure that they share the same view of the log. As monitors
have a copy of the log, they can inform about historic
versions. To prevent equivocation, browsers can compare
log information obtained during the TLS connections with
corresponding monitor statements. Even if such a proce-
dure does not completely protect against malicious logs, it
enables to detect log misbehavior.

2. Although such an attack was never observed in the real world (to
the best of our knowledge), nothing currently prevents an adversary who
compromised a private key from performing revocations. Therefore, our
new scheme should take this case into account.



4. PKISN Details

4.1. Revocation Messages

PKISN introduces a new dedicated revocation key pair
for CAs. The revocation private key is only used when
a given CA notices that its standard private key (used in
production) has been compromised or lost. As the revocation
key is not used in production, it should be securely stored
offline.

PKISN supports two formats of revocation messages.
The first one is used for invalidating leaf certificates:

RCx
= Sigk(H(Cx),revoke), (2)

where k can be: a) a private key associated with the
authenticated public key in a leaf certificate, b) the private
key of one of the CAs in the certification chain, or c) a
software vendor key. Note that in contrast with the current
revocation system, domains can revoke their own certifi-
cates without any interaction with the issuing CAs. Leaf
certificates do not contain a special revocation key and can
be revoked without a revocation timestamp, as they cannot
cause collateral damage.

Because CA certificates introduce collateral damage,
they are always revoked by the following revocation mes-
sage:

RCx
= Sigk(H(Cx),revoke from rev timestamp),

(3)
where k can be a) the CA’s revocation key, b) the standard
private key of a parent CA, or c) a software vendor key.
This revocation message contains a revocation timestamp,
that indicates a time from which all actions (certificates
and revocations issuances) of the revoked CA must be
considered invalid. This timestamp must be earlier than the
expiration time specified within the revoked certificate.

4.2. Structure of the Log

In PKISN, a log stores all the issued certificates and
revocations, and additionally processes them like a times-
tamping service. On demand, the log can produce efficient
proofs about the stored content. The log is designed to
support the following operations:

1) prove that a given certificate or revocation is in the log
and was appended to the log at a given point in time,

2) prove that a given certificate or revocation was not
appended to the log at a given point in time,

3) with a given chain commitment (CC), prove that all
certificates from the chain were appended correctly
(according to the timestamps of the CC) and show all
revocations associated with these certificates,

4) prove that one snapshot of the log is an append-only
extension of any previous one.

Additionally, relevant information about a particular cer-
tificate chain must be processed efficiently. To provide these

features, the log maintains two hash-tree-based data struc-
tures: a TimeTree and a RevTree (Revocation Tree). Fig. 3
depicts an example of these trees.

The TimeTree contains all objects added to the log in
chronological order. It stores certificates (Cx), revocations
(RCx), and roots of the RevTree. All objects are accom-
panied with a registration timestamp that denotes when the
object was actually appended to the tree. With the TimeTree,
it is possible to prove that a given object is indeed an element
of the log and was inserted at a given registration timestamp.
Additionally, it is possible to prove that one version of the
TimeTree is an extension of the previous TimeTree.

The RevTree consists of sub-trees (it is, in fact, a forest)
that reflect the hierarchical structure of certificate chains.
The RevTree is built after every scheduling period, and the
root of this tree is the last element appended to the TimeTree
in every update of the log. The leaves of every sub-tree
consist of:

• A hash Hx = H(Cx‖tx) that identifies a certificate Cx

and a registration timestamp tx. The leaves of every
sub-tree are sorted in lexicographical order of these
hashes.

• The possible revocation messages of Cx. This may
be ∅ when a certificate has no associated revocation
message. Every revocation RCx

is accompanied with a
registration timestamp, which indicates when the revo-
cation was appended to the log (this is not a revocation
timestamp as in Eq. (3)).

• The root (rx) of the sub-tree (the sub-tree contains
certificates signed with the private key associated to
Cx), that may be ∅ when the certificate does not
have any children (e.g., leaf certificates). For efficiency
reasons, leaves can also store pointers to their sub-trees.

The RevTree’s top sub-tree identifies root certificates, and
every leaf is associated with a sub-tree of its child certifi-
cates. This design allows the log to efficiently: a) prove
that all certificates from a chain were appended to the log
at a given time, and b) show all the revocations associated
with these certificates. As all the leaves of a RevTree’s sub-
trees are sorted in lexicographical order, it is also possible
to prove that a given certificate was not appended to the
tree at a given time. In combination with a TimeTree, a
complete proof contains the information that the RevTree’s
proof comes from the current version of the RevTree, as its
root is the very last element of the TimeTree.

4.3. Interactions with the Log

Certificate Registration. Before a certificate is used it must
be submitted to the log. For instance, a domain with leaf
certificate Cm sends the following certificate chain to the
log:

Ca → Cd → Cm. (5)

To automate this operation, certificates can also be submitted
to the log by CAs, in a similar way as pre-certificates can
be submitted in CT [28]. The log verifies the chain, and
schedules the inclusion of non-appended certificates from
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Figure 3. Example of log trees. The TimeTree stores all objects in chronological order, while the leaves of the RevTree’s subtrees are sorted lexicographically.
The log contains one revocation message RCd

associated with the certificate Cd. Nodes in boxes are needed for the presence proof of certificate chain
Ca → Cd → Cm.

the chain to the TimeTree and the RevTree. Any new certifi-
cate will be appended along with a registration timestamp.
The log returns a Chain Commitment (CC) signed with klog
immediately after verification. The CC consists of:

Sigklog
(H(Cm), tm, td, ta). (6)

It constitutes a promise that Cm will be appended at tm, and
that Cd, Ca are or will be visible after td and ta, respectively.
As each certificate is unique within a log, the registration
timestamps for CA certificates will often be from the past (as
it is likely that these certificates have been submitted before).
The following must always be satisfied: tm ≥ td ≥ ta.
Proof Querying. In the first update time after a successful
submission, the certificate is added to the trees. Thereafter,
anyone can query the log for the presence proof of the
certificate. The internal design of PKISN optimizes the log
for serving presence/absence proofs to a requester with a
certificate chain and a corresponding CC, as this is the most
common interaction with the log.

For instance, with a certificate chain Ca → Cd → Cm

and the corresponding CC from Eq. (6), the following
request is prepared and sent to the log:

H(Cm‖tm), H(Cd‖td), H(Ca‖ta). (7)

Due to the structure of the request, the log can efficiently
locate the requested leaves in the RevTree, and generate a
presence proof, by showing all intermediate nodes necessary
to build the tree root. For instance, for the content presented
in Fig. 3 and the previous request, the log can produce the
presence proof from Eq. (4) (see Fig. 3). Note that whenever
a certificate from the chain has some associated revoca-
tion messages, these messages must be contained within

the proof. It guarantees that a revocation status for every
certificate from the chain is known. The proof is returned
to the requester accompanied with the current signed root:

Sigklog
(root, tx). (8)

The signed root can also be requested separately. In our
setting, the combination of a presence proof and the signed
root is the most important piece of information from a
client’s perspective; it contains almost everything to perform
a certificate validation. However, in PKISN, a log is also
obligated to provide extension proofs between two versions
of the TimeTree (to prove the consistency of two snapshots
of the log).
Certificate Revocation. An entity allowed to revoke a
certificate Cx can create a revocation message from Eq. (2)
or Eq. (3). The revocation message RCx

is sent along with
a certificate chain whose last certificate is intended to be
revoked. The log, after verifying whether the revocation is
legitimate and matches the certificate, schedules the revoca-
tion and returns a message:

Sigklog
(H(RCx), tx), (9)

which states that the revocation will be appended to the log
after time tx. However, during the scheduling period (when
the revocation is not yet appended) the log can attach a
revocation message to every relevant presence proof. This
would reduce the attack window. During the update of the
log, the revocation message is appended to the TimeTree
and is appended to the RevTree’s leaf which corresponds to
the revoked certificate. From that time forward, every pres-
ence proof requested for a chain that contains the revoked
certificate must contain the revocation message.



Monitoring. The role of a monitor is to verify the correct
behavior of a log. Each monitor periodically (after every log
update) contacts the log and downloads the newly appended
objects and the current signed root. Then, the monitor up-
dates its own copy of the log, by appending new certificates
and revocations to the TimeTree, and by introducing all
changes to the RevTree. After that, the monitor puts the
current root of its RevTree as the last leaf into the TimeTree.
Finally, the monitor computes the root of its own copy of the
TimeTree and compares it with the root received from the
log. During this update, the monitor also verifies whether
the certificates and revocations accepted by the log were
legitimate.

Through this periodic update, the monitors can detect
any inconsistency/misbehavior of the log. Anyone can re-
quest signed roots from a monitor, and report a proof of
misbehavior such as:

• an incorrect CC (with incorrect registration timestamps
or absence proof of a certificate that was not appended),

• a revocation that is not appended (showing a message
from Eq. (9), and a proof that the revocation is not in
the log),

• two different roots from the same time period,
• the presence proof of an invalid certificate or revoca-

tion.
The monitor, in such a setting, must replicate the log’s

content. In §5.4, we propose a novel deployment model that
allows to implement a monitor in a lightweight manner.

4.4. Validation

To conduct a certificate validation, a client needs: a) a
certificate chain, b) a chain commitment, c) a proof of
presence, d) and the corresponding signed root. The full
validation is presented in Algorithm 1. This section presents
the different steps. We assume that before validation, the
structure and format of all messages is checked.
Pre-Validation. The first step is to pre-validate the certifi-
cate chain against a given domain name. This is similar
to the standard validation procedure executed by modern
browsers. It encompasses checking whether the leaf cer-
tificate is issued for the given domain, checking whether
the certificate chain is correct and terminates with a trusted
root certificate. Usually, such a pre-validation also includes
expiration checks, but this functionality is enhanced by
PKISN.
Proof Verification. During the next step, the browser ver-
ifies the authenticity and correctness of the obtained log
proofs. First, the match between a proof, a certificate chain,
and a chain commitment is verified. The browser checks
whether the proof contains (in correct locations) the hashes
of all the chain’s certificates concatenated with the corre-
sponding timestamps (from the CC). Then, by hashing the
elements of the proof, a root is computed and compared
with the signed root provided as input. When the roots are
the same, the verification passes, and the signed root can be
kept for further consistency checks and monitoring (§4.3).

Algorithm 1: Complete certificate validation.
root : signed root (TimeTree), e.g., Eq. (8)
proof : presence proof, e.g., Eq. (4)
chain : certificate chain, e.g., Eq. (5)
CC : signed chain commitment, e.g., Eq. (6)
name : name of the contacted domain
tx : registration timestamp of Cx

LP : dictionary that maps certificates to their legitimacy periods
currTime() : returns current time in Unix seconds
preValidate() : returns true ⇔ pre-validation passes
verifyProofs() : returns true ⇔ proof is correct
determineLP() : returns legitimacy period of a certificate
function isValid(root, proof, chain, CC, name)

if not preValidate(chain, name) then
return FAIL;

if not verifyProofs(root, proof, chain, CC) then
return FAIL;

for Cx ∈ chain /*start from root CA*/ do
LP[Cx]← determineLP(LP, Cx, tx, RCx , ...);
if Cx is not a root certificate then

if tx 6∈ LP[Cx.parent] then
return FAIL;

if Cx is a leaf certificate /*last certificate*/ then
if currTime() ∈ LP[Cx] then

return SUCCESS;
else

return FAIL;

Legitimacy-Period Determination. The next step in the
validation procedure is to determine the legitimacy periods
of all certificates in the chain. This procedure slightly differs
depending on the type of certificate (leaf certificates do not
introduce any collateral damage and thus are revoked with-
out specifying a revocation timestamp). Legitimacy periods
are determined as presented in Fig. 4 (for CA certificates)
and as in Fig. 5 (for leaf certificates).

The procedure starts with the first (the root) certificate in
the chain, and is executed for every subsequent certificate.
First, the legitimacy period is set as a time range from
tx (the registration timestamp) to Cx.NotAfter (which
denotes the expiration time specified within the certificate).
If a revocation issued by the software vendor is present, the
legitimacy period of the current certificate is limited by the
time from which the vendor revoked this certificate (i.e.,
up to the revocation timestamp). If a certificate is revoked
with a private key associated with the certificate (rkx for a
CA certificate and skx for a leaf certificate), the legitimacy
period is similarly limited by the revocation timestamp from
the revocation message. The last option is a revocation
realized by parent CAs. Similarly, the legitimacy period can
be restricted, but this revocation message must be issued
during the legitimacy period of the issuer.

The legitimacy period of a leaf certificate can express
two states (revoked or non-revoked), but the processing logic
is similar to the previous case.



During the complete validation procedure (see Algo-
rithm 1), it is also ensured that every certificate from the
chain (except the root) has a registration timestamp within
the legitimacy period of its parent. In the final step of the
validation, it is ensured that the leaf certificate is neither
revoked nor expired.

Figure 4. Legitimacy period determination for CA certificates, where tx
denotes Cx’s registration timestamp. After the algorithm’s execution, the
legitimacy period is expressed as a time range (from begin to end).

Figure 5. Legitimacy period determination for leaf certificates, where tx
denotes Cx’s registration timestamp. After the algorithm’s execution, the
legitimacy period is expressed as a time range (from begin to end).

Log Consistency. After validation succeeded, the client
saves the signed root for future consistency checks. Then
periodically, the client contacts a monitor to compare the
obtained root with the monitor’s version. If two roots with
the same timestamps are different, it means that the log
misbehaved, which can be proved and reported (e.g., to
a software vendor). To strengthen consistency checking,
PKISN can be enhanced by a system such as ARPKI [10],
or by gossip protocols as proposed by Chuat et al. [14].

5. Deployment

The deployability of a system like PKISN depends on
many factors, such as the incentives of the different parties
to adopt the technology and the number of required parties.
CT introduced two ways of providing proofs that a cer-
tificate is logged to clients while preserving privacy [26],
[28]. We describe these models in the context of PKISN
in the following two subsections. We also show that the
deployment of PKISN is challenging with one of the models
introduced by CT, and the main reason for this is that the
ultimate goals of the two systems are different (CT tries to
detect misbehaving CAs, while a revocation system tries to
avoid using invalid certificates). However, we present new
models including a browser-driven deployment that brings
many advantages, and a new lightweight realization of a log
monitor. The presented deployment models can also be used
in conjunction.

5.1. Server-Driven Deployment

In the first deployment scenario, depicted in Fig. 6,
servers are driving the process of proving to their clients
that their certificate is not revoked:

1) The server contacts the log at regular intervals (at least
every scheduling period) to obtain a fresh signed tree
root and a fresh presence proof.

2) The log returns the requested data.
3) Every time a client connects to the server, this data,

together with the certificate chain and the CC, is
transmitted to the client (e.g., via an OCSP-stapling
mechanism).

4) Clients can communicate with monitors to verify that
they share a consistent and compatible vision of the
log.

Log

Client Monitor

Server

1)

2)

3)

4)

Figure 6. Server-driven deployment model. Dotted and dashed lines repre-
sent optional and periodic communications, respectively.

This deployment model is ideal in terms of efficiency
(because only the server needs to periodically perform a few



extra connections and the storage requirements are low) and
privacy (because the client does not need to contact a third
party to verify the validity of a server certificate). However,
this model requires that servers are updated and this is not
likely to happen rapidly for all TLS servers on the Internet.

5.2. ISP-Driven Deployment

As many servers are not updated regularly, the burden
of contacting the log to retrieve the revocation information
could be put on clients, but there is a privacy issue if clients
do so directly. The documentation of CT [26] mentions that
clients could use a modified DNS resolver (provided by their
ISPs) as an intermediary to contact the log. However, this
model is problematic when it comes to revocation, since the
goal is no longer to simply detect attacks in an unspecified
future, but to instantly determine if a certificate can be
considered valid. Moreover, in a revocation system, such
a connection would be required after the certificate chain
is received and before it is accepted (otherwise the client
does not know for which certificate chain a validity message
should be returned), which would increase latency and be
prone to blocking attacks. For these reasons, it would be
challenging to adapt this model in PKISN.

5.3. Browser-Driven Deployment

Since the ISP-driven deployment does not fit the re-
quirements of PKISN, and since we cannot assume that
all servers would quickly be configured to provide fresh
proofs to TLS connections (server-driven model), we seek
an alternative solution. We present a variant of browser-
driven deployment with the goal of providing users with
the minimal information required to ensure that no certificate
(from the chain) is revoked. To achieve this goal, we propose
to extend a browser update mechanism (mentioned in §2.3)
that is already deployed, namely CRLSets.

As in a browser-driven deployment clients are period-
ically provided with revocation messages, it is crucial to
minimize bandwidth and storage overheads. In our deploy-
ment model, vendors employ the log as a source of new
revocations, and they push CRLSets that consist of iden-
tifiers (in our case hashes) of all revoked and non-expired
certificates with their corresponding legitimacy periods (for
CA certificates). Additionally, vendors are obliged to log
every CRLSet before it is propagated to the browsers, and
are obliged to propagate the CRLSet with a commitment (or
presence proof) from the log, indicating that the CRLSet is
accepted by the log and will be visible in the near future. We
call this concept a Transparent CRL (TCRL). On the log-
side, the TCRL is simply appended to the TimeTree. This
deployment model does not provide properties as strong
as the server-driven deployment, but it allows to verify
certificate validity and it enables the audit of TCRLs.

The connection establishment and certificate validation
of this deployment model are presented in Fig. 7 and pro-
ceed as follows:

Browser 

Vendor

Client Monitor

Server

Log
1)

2)

3)
4)

Figure 7. Browser-driven deployment model. Dotted and dashed lines
represent optional and periodic communications, respectively.

1) Periodically, the browser vendor contacts a log to ob-
tain the new revocations (note that a vendor can also
act here as a monitor).

2) The vendor prepares a software update creating a list of
new revocations (TCRL). Then this TCRL is submitted
to the log, which returns a commitment indicating that
the TCRL will be appended to the TimeTree. Finally,
with this commitment (or a presence proof), the vendor
pushes the TCRL to the browsers. Browsers verify
whether log proofs matched the TCRL and accept the
update.

3) During the TLS handshake, the client obtains a certifi-
cate chain along with the corresponding CC.3 Then,
with a locally-stored TCRL, the browser verifies
whether all certificates from the chain have not been
revoked. (As TCRLs provide complete revocation mes-
sages, clients can determine the legitimacy periods.)
The browser continues with a verification similar to
Algorithm 1.

4) The browser can (optionally) contact a monitor, to
verify that the local version of the TCRL (vendor’s
view) is consistent with the monitor’s view. Note that
this communication does not reveal any information on
the domains that the browser has contacted.

5.4. Lightweight Monitoring

Monitors are an integral part of many log-based
schemes. They have the responsibility to constantly monitor
the logs to verify whether they behave correctly. In previous
proposals [10], [23], [26] monitors were implemented as
replicas of the logs that perform some extra checks on
demand (e.g., confirm that their view of the log is consistent
with the root provided by the client). Because of that design,
the bandwidth and storage required to operate a monitor are
significant. In this section, we propose a novel deployment
model that allows to run a lightweight monitoring service.
This model could be used by network devices with security
features or by power-users, for example. Such a service can
assist the clients in additional verification of a connection,
and the required features are:

• confirm the root of the log,
• prove that the log is consistent (i.e., a version of the

log is the extension of a previous one),

3. If a server deploys PKISN, then a proof is sent during the handshake,
and the client validates the certificate chain as in §5.1.



• prove that a given object is in the log.
Our first observation is that the large storage require-

ment of the log is induced by the necessity of storing
entire certificates (a single certificate takes about 2 kB in
PEM format). However, as PKISN clients are provided with
certificate chains and the corresponding information during
TLS connections, monitors need not store actual certificates
but only the corresponding hashes. This is sufficient to
ensure that a certificate is indeed in the log and that the log
is consistent. In our proposal, a lightweight monitor is not
directly equipped with the TimeTree’s leaves, but with their
parent nodes (i.e., hashes) and with revocation messages.
Another observation is that certificates have a standardized
maximum lifetime. Therefore, after some time, the TimeTree
will contain a continuous list of expired certificates and there
is no need to store the hashes of these certificates, unless
they are parts of non-expired chains.
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Figure 8. An example of a TimeTree, where all certificates before t1 are
expired. Only nodes in boxes are stored by the lightweight monitor.

An example of our optimization is depicted in Fig. 8. It
shows the original TimeTree and the values that a monitor
must provide. In this case, a monitor must initially obtain
from the log only the following:

t0 : {Habcd , Hef , Hr0},
t1 : {Hr1},
t2 : {Hh, Hi, Hj , RCf

, Hk, Hl, Hm, Hr2},
{root, t2}klog .

(10)

Then, periodically, a delta update between the current
TimeTree and the monitor’s local list is transferred. Every
update is also accompanied with the corresponding signed
root (Eq. (8)). Such a design allows a monitor to store a
minimized version of TimeTree and to:

• check if every non-expired certificate of the chain is
indeed present in the tree (e.g., on a client’s query),

• check the revocations of certificates and determine
legitimacy periods (e.g., on a client’s query),

• build the TimeTree’s root, and optionally compare it
with other monitors to verify that the view is consistent,

• extend the tree with new hashes,
• verify the proofs received from the clients.
In this setting, a monitor is able to verify millions

of certificates and needs to store only tens of megabytes,
instead of several gigabytes for a complete TimeTree. A
detailed analysis of the required resources is presented in
§8.1. Moreover, such an optimization can be easily applied
to other log-based approaches that employ hash trees.

6. Security Analysis

Our first claim is that PKISN provides authenticity, i.e.,
a non-capturing adversary cannot create any legitimate
revocation message, as long as he cannot forge a digital
signature. An adversary with the private key of the domain
can revoke only the domain’s certificate. However, by this
action, an attacker would reveal that the key is compromised,
as the revocation must be logged.

A more powerful adversary, able to capture a CA’s
private key, can revoke that CA’s certificate, and all its child
certificates. We claim that PKISN provides backward avail-
ability and timeliness, i.e., such an adversary can misbehave
only for a short time period (e.g., by temporarily introducing
collateral damage or malicious certificates). Specifically, that
time period is less than or equal to Td + Ta + Ts + Tp,
where Td is a detection time, i.e., the duration between
the moment when a misbehavior (illegitimate revocation or
certificate issuance) is logged and the moment when the
CA notices that misbehavior. Ta denotes the audit delay,
i.e., the time during which the CA determines when the
first misbehavior was logged, Ts is the scheduling period of
the log (see §3). For existing CT logs a scheduling period
(called in CT MMD) is set between 1-24 hours. Tp stands
for the propagation time, i.e., the time it takes for a new
change to be propagated to clients. This time depends on
a deployment model, however in all presented models (see
§5) we may expect this time to be bounded by a few hours.
Overall, we estimate that it is feasible to conduct the entire
process within several hours.

Let’s consider the extreme case in which such an ad-
versary compromises the root CA’s private key and revokes
all child certificates with a revocation timestamp close to
the creation time of the CA. This would invalidate all the
actions of this CA. With PKISN, these revocation messages
must be submitted to the log. The log accepts them if they
are signed with an authentic key. These revocation messages
will be visible, at the latest, when the log is updated. After
the update, the malicious revocations are noticed by the
CA, which, after an audit procedure, can estimate when the
breach happened, and can revoke its own certificate with
a revocation timestamp set to the breach time, using the
offline revocation key. Thereafter, in the next update of the
log, all malicious revocations will be invalidated, and this
change will eventually be propagated among clients (see §5).
In general Ta > Td, but when a CA is revoked, or many
revocations are submitted with a single key, the log could
inform the CA about these actions before the update. Such
an information would give a CA some time to take actions
in order to completely eliminate the collateral damage.

As explained above, PKISN enables to remove collateral
damage from the TLS PKI, but with the assumption that
the log is not malicious. We stress that the log itself is only
trusted to a certain extent, as it is constantly monitored and
is only supposed to: 1) be append-only, 2) accept object
registrations, 3) return cryptographic evidence about the
content/consistency of the trees. Hence, the log cannot re-
voke certificates by itself, as it requires a private key to sign



appropriate revocation messages. However, a misbehaving
log can block requests (by simply ignoring them), which is
a more generic problem of all log-based schemes.

The combination of a capturing adversary and a mali-
cious log is especially dangerous. Consider the case (similar
to the previous one) in which an important CA is compro-
mised and malicious revocation messages for child certifi-
cates are issued and logged. Then, when the CA wants to
revoke its own certificate, the malicious log can just ignore
the requests. As a consequence, the malicious revocations
will not be invalidated. This attack is simple and severe, but
to succeed, an adversary must compromise the CA and the
log at the same time.

PKISN requires that all actions are signed and logged,
making the parties accountable. Revocations as well as
certificates are transparent and visible, which makes split-
world attacks [31] detectable. Consider the case where
an adversary controls the log and captures a server’s old
revoked key. Now, the adversary can produce a single fake
presence proof, which states that a given certificate is not
revoked for example, and can launch a man-in-the-middle
attack on clients. Then, with such a proof, the adversary
must provide the corresponding signed root to the attacked
client. The attack can succeed, as the client trusts the log,
but the attack is detectable if the client contacts a monitor
(or any other party) which has a different (legitimate) view
of the log. Such an attack is more difficult to conduct with
the deployment scenario sketched in §5.3, as revocations are
stored in the browsers.

PKISN preserves user privacy. In all the presented de-
ployment models (§5), clients receive complete revocation
status either through browser update or directly from the
contacted server. Clients do not contact any third parties to
ensure that a given certificate is valid. Clients obtain signed
roots and extension proofs from the monitors, but this action
also does not reveal any information about websites visited.

7. Realization in Practice

7.1. Implementation

In order to prove the feasibility of PKISN, we imple-
mented the system in Python (2.7.6) and C++ (gcc-4.8.2),
using the M2Crypto, libpki, and OpenSSL (1.0.1f) cryp-
tographic libraries. We modified libpki to add a dedicated
revocation key into the extension field of every CA X509v3
certificate [15]. To minimize overheads we decided to use
the Ed25519 signature scheme, except for the standard keys
of X509v3 certificates where RSA-4096 was used instead.
We used the SHA-256 hash function for both certificates
and the implementation of hash trees.

We wrote a complete log and TLS client that implements
the validation logic from §4.4. For the server side, we
used Nginx, which periodically requests a fresh presence
proof and signed root from the log. For every subsequent
TLS Handshake, the server sends these values (and the
chain commitment) using TLS Certificate Status

Request [38], while the server’s certificate is sent within
a standard ServerHello message. Such a configuration
enables deployment of PKISN without any changes to the
TLS protocol. This setting is specific to the deployment
scenario presented in §5.1.

7.2. Performance

With the setting presented above, we measured the effi-
ciency of our system by conducting a series of experiments.
Every presence proof in our test contained two revocation
messages (pessimistic setting) and every certificate chain
contained three certificates. All results were obtained by
executing a given operation one thousand times on one
Intel i5-3380M core @ 2.90 GHz, on Ubuntu 14.04 with
16 GB of RAM. During one second, the log was able
to register 1907 certificate chains on average. For these
registrations, the log verified the chains and returned signed
chain commitments. To add 10000 new certificate chains to
the trees, and to update the trees, the log needed on average
3.154 seconds. Our client’s implementation conducted a
complete validation within 1.266 ms on average, where the
pre-validation and proofs validations take 0.405 ms and
0.370 ms, respectively. This computational overhead should
be unnoticed by users [41].

8. Evaluation

We evaluate PKISN in terms of storage and bandwidth
overheads and focus on the server-driven deployment model,
the browser-driven model, and the lightweight-monitor pro-
posal. For the server-driven deployment, the information
required to verify a certificate chain is obtained directly
from the TLS Handshake. For the lightweight monitor
deployment, the monitor is provided with a delta update,
as in Eq. (10), which allows the browser to reconstruct
minimized trees. In the browser-driven deployment (TCRL),
the browser receives a delta update from the vendor as
hashes of revoked certificates. Note that these two variants
provide different properties (see §5.3). In our simulations,
we assume that the Ed25519 [12] scheme is used as the
signature scheme and that the hash function produces an
output of 20 bytes (this is a parameter, and second pre-
image resistance is the main property we rely on).

8.1. Storage

The Server-driven deployment does not require any stor-
age on the client-side, and only a small amount of storage on
the server-side: a signed root (88 bytes), a chain commitment
(96 bytes for a chain of three certificates), and a presence
proof (each node takes 20 bytes). In the standard case, this
overhead should be around 1 kB.

To estimate the storage overhead required for the pre-
sented deployment variants, we used data available from
one of CT’s public logs.4 First, we conservatively qual-
ified certificates as valid considering their NotBefore

4. http://ct.googleapis.com/pilot
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Figure 9. Storage overhead required by TCRL-enabled browser (top chart),
and by a monitor with the minimized-trees variant (bottom chart).

and NotAfter validity fields, and found that out of the
7,427,474 certificates in the log, 3,938,656 were valid on 15
May 2015, 12:00:00 UTC (note that certificate chains can
be added to the log only if the root certificate is contained
in a set of acceptable roots that the log maintains). Then,
we simulated storage overheads for the two deployment
variants, depending on the number of certificates and the
fraction of revoked certificates (this fraction in HTTPS was
recently reported as 8% [29]).

As shown in Fig. 9, the results differ significantly de-
pending on the deployment variant. With today’s number
of valid certificates and a 10% revocation rate (which is
considered as high), a browser employing the TCRL mech-
anism needs 8 MB of storage, while, for the same scenario,
a lightweight monitor needs 115 MB, whereas the log in
such a setting stores about 8 GB.

8.2. Bandwidth

We also evaluated PKISN in terms of bandwidth re-
quired, using real-world traces. Zhang et al. [44], using data
gathered by Rapid7,5 collected information about certificates
and the corresponding revocations. The certificates were
filtered to consider only valid ones from the Alexa Top
1 Million global sites.6 For these 628,692 certificates, the
1,386 corresponding CRLs were downloaded and processed.

The dataset we used7 covers a period from 30 October
2013 to 28 April 2014. This period is especially interesting
from our point of view as Heartbleed—a critical vulnerabil-
ity in an OpenSSL extension—was publicly announced in
April 2014. Heartbleed allowed attackers to remotely read
a server’s protected memory including sensitive information
like private keys. As a consequence, in mid-April 2014 we

5. https://scans.io/study/sonar.ssl
6. http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
7. https://ssl-research.ccs.neu.edu/dataset.html
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Figure 10. Bandwidth required by the log to receive certificate registrations
and revocations (top chart), and by the browser to receive daily updates
(bottom chart, note that the y-axis is in logarithmic scale).

observed the highest frequency of certificate re-issuance and
revocation ever. This unique event and its impact on the TLS
ecosystem has been thoroughly analyzed [16], [44].

We evaluated the bandwidth required by PKISN during
normal operations (i.e., a few months before Heartbleed) and
during what we will refer to as the peak time (i.e., right after
Heartbleed was announced). For this test, we used the above-
mentioned dataset to extract all new certificate issuances
and revocations observed over the time period. We assumed
that certificate chains consist of three certificates, as this
is, reportedly, the length of the vast majority (about 98%)
of certificate chains [17], [21]. By fetching all entries from
one of CT’s public logs (as in §8.1), we determined that the
average size of a single certificate is about 1966 bytes. The
setting of cryptographic primitives used here is the same as
in the previous test.

First, we estimated the total bandwidth required by the
log to register all issued certificates and revocations. The
results are presented in Fig. 10. During the normal period
(between November 2013 and March 2014), the log receives
5–13 MB per day. At peak time, the number of certificate
issuances and revocations increases, causing higher demands
on bandwidth. However, even then, the maximum bandwidth
required is less than 35 MB per day.

Second, we estimated the bandwidth required for the
daily update of a browser (TCRL) and a lightweight monitor
(minimized trees). Fig. 10 depicts the results for these two
variants.

In a standard scenario, the daily update for the mini-
mized trees variant is 15–40 kB, but with the increasing
number of revocations caused by Heartbleed, the required
bandwidth increases as well. On 17 April 2014, it reaches
around 1.4 MB, which is the highest number observed. After
this date, the bandwidth required decreases rapidly. In a
similar manner, for the deployment variant using TCRL, the
normal update is below 1 kB, while the update during the



peak reaches 300 kB at most. We believe that such overhead
is acceptable, but we expect that with a higher revocation
rate (which may occur in practice) browser vendors would
reduce the transfer cost through a more efficient encoding
of TCRLs or by limiting the scope of TCRLs (e.g., to EV
certificates only—see CRLSets in §2.3).

In the server-driven deployment, for every TLS connec-
tion, a client is provided with about 1 kB (see §8.1) of
additional data.

8.3. Comparison

We now summarize the above results and compare the
different deployment models of PKISN with competing
revocation schemes. The comparison encompasses storage
and bandwidth overhead on the client-side, as well as the
potential latency introduced by the revocation scheme to
the TLS connection. The results are presented in Table 2.
Depending on the scheme, the revocation information can
be passed through an update (e.g., daily) or during every
TLS Handshake (per connection), which is described in
the Bandwidth column. For PKISN and other log-based
approaches we show the storage required for a revocation
rate of 8% and four million active certificates (see §8.1). The
bandwidth required by PKISN is given as the median value
observed in §8.2, while for CRLSets we used the dataset
provided by Liu et al., and for CRLs we used a dataset
provided by ISC [7].

Besides efficiency, the schemes compared here differ
significantly in the properties they offer (see §2.3 and §5).

8.4. Case Study

GoDaddy is currently one of the largest issuers of TLS
certificates [9]. We take the “Go Daddy Secure Certification
Authority” certificate (serial number 07969287) as an
example in a case study on how effective PKISN could be in
practice. By analyzing the content of Google’s pilot CT log,
we found 139,086 valid certificates (on 19 November 2015)
signed by the aforementioned intermediate CA. The oldest
of these certificates (as indicated by the NotBefore field)
was issued on 29 January 2007, which means that a single
private key was used to sign about 43.25 certificates per
day on average, during more than 8 years. If that key was

TABLE 2. COMPARISON OF REVOCATION SCHEMES.

Scheme Storage Bandwidth Latency

CRL 34 MB 24 kB/conn. increased
OCSP None 0.5 kB/conn. increased
OCSP Stapling None 0.5 kB/conn. unaltered
CRLSet 0.2 MB 0.12 kB/day unaltered
ECT/DTKI None 1 kB/conn. increased
AKI/ARPKI None 0.5 kB/conn. unaltered
PKISN (srv-driven, §5.1)/PoliCert None 1 kB/conn. unaltered
PKISN (browser-driven, §5.3) 6.4 MB 0.7 kB/day unaltered
PKISN (light. monitor, §5.4) 108 MB 39 kB/day unaltered

compromised and the corresponding certificate revoked with
current methods, thousands of websites would be affected.
With PKISN, only a small number of certificates would be
revoked (provided that the detection process is reasonably
fast). For instance, if a misbehavior was detected after one
week, only about 300 certificates would have to be revoked
and re-issued, which constitutes only about 0.2% of all
certificates issued with this key.

9. Discussion

The effectiveness and security of our system depend on
the length of update periods, which introduces an obvious
trade-off between the log’s performance and the size of
the attack window. We believe that a delay of a few hours
between log updates is a good compromise.

One remaining challenge, and a potential subject for
future work, is the multi-log scenario, which is challenging
as synchronization between the logs would be necessary.
One interesting approach to make the multi-log scenario
scalable, is to introduce domain-driven security policies [40]
that would allow domains to specify which logs they trust.
Then, all certificate registrations and revocations could be
submitted only to these logs. Another interesting aspect that
could be investigated relates to the question of how PKISN
can be extended to other trust models, log systems, and their
applications [18], [33]. In particular, PKISN could be com-
bined with ARPKI [10], for example, to provide additional
security properties (such as “connection integrity”). We also
plan to conduct a formal analysis of PKISN.

An open problem, that all new log-based approaches
face, is to find an optimal deployment model and an in-
cremental deployment plan. PKISN can benefit from the
previous works [11], [30], but we plan to investigate and
analyze the proposed deployment models in depth. An ad-
vantage of PKISN is that it can be easily built on the top
of CT, which currently is being deployed.

We believe that the revocation policy employed by
PKISN fits the current TLS ecosystem and reflects the
power of PKI actors and the connections between them.
However, we envision that this policy could be optimized
and standardized by organizations and consortia such as the
CAB Forum [1].

10. Conclusion

The current certificate revocation systems suffer from
many drawbacks such as large attack windows, privacy
issues, and configuration dependencies. In this paper, we
redesigned the current TLS revocation system and presented
PKISN, which resolves several problems that we identified.
The most important advantage of PKISN is that it is the first
system (to the best of our knowledge) to solve the too-big-
to-be-revoked problem of the current PKI. It also enhances
transparency and introduces a novel revocation policy that
reflects the actual interactions within the TLS ecosystem.
Only a few changes are required to deploy PKISN with the



current infrastructure. Moreover, the evaluation and perfor-
mance results of our implementation indicate that PKISN is
viable for use in practice.
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