

MiniBox: A Two-Way Sandbox for x86 Native Code

Yanlin Li, Adrian Perrig, Jonathan McCune, James Newsome, Brandon Baker, Will Drewry

February 21, 2014

CMU-CyLab-14-001

CyLab
Carnegie Mellon University

Pittsburgh, PA 15213

http://www.cylab.cmu.edu/research/techreports/2014/tr_cylab14001.html
http://www.cylab.cmu.edu/

MiniBox: A Two-Way Sandbox for x86 Native Code

Yanlin Li

CyLab/CMU

yanlli@cmu.edu

Adrian Perrig

CyLab/CMU

adrian.perrig@inf.ethz.ch

Jonathan McCune

Google, Inc.

jonmccune@google.com

James Newsome

Google, Inc.

jnewsome@google.com

Brandon Baker

Google, Inc.

bsb@google.com

Will Drewry

Google, Inc.

drewry@google.com

Abstract

This paper presents MiniBox, the first two-way sandbox

for x86 native code. MiniBox not only isolates the mem-

ory space between OS protection modules and an appli-

cation, but also provides a minimized and secure commu-

nication interface between OS protection modules and

the application. MiniBox is cross-platform and can be

applied in Platform-as-a-Service (PaaS) cloud comput-

ing to provide two-way protection between a customer’s

application and the cloud platform OS. We implement a

prototype of MiniBox on both Intel and AMD multi-core

systems and port several applications to MiniBox. Evalu-

ation results show that MiniBox is efficient and practical.

1 Introduction

Platform-as-a-Service (PaaS) is one of the most widely

commercialized forms of cloud computing. In 2012,

there were already 1 million active applications on

Google App Engine [16]. On PaaS cloud computing, it is

critical to protect the cloud platform from the large num-

ber of untrusted applications sent by customers. Thus,

virtualized infrastructure (e.g., Xen [8]) is deployed to

isolate customers’ applications. However, the virtualized

infrastructure has a large Trusted Computing Base (TCB)

and may have vulnerabilities [48, 31]. Once a guest OS is

compromised, the malicious guest OS may in turn com-

promise the hypervisor or other guest OSes. To better

protect the cloud platform, a sandbox (e.g., Java sand-

box [21]) is deployed on cloud platforms to protect the

guest OS from being compromised by untrusted appli-

cations. However, security on PaaS is not only a con-

cern for cloud providers but also a concern for cloud cus-

tomers. As shown in the sandbox architecture in Fig-

ure 1, current sandbox technology provides only one-

way protection, which protects the OS from an untrusted

application. The security-sensitive portion of an applica-

tion, which is untrusted for cloud providers is completely

exposed to malicious code on the OS. Also, current sand-

boxes expose a large interface to the untrusted applica-

OS

Isolation Module

Sandbox

Combination Option A Combination Option B

OS

Sandbox

System call interface

Isolation Module

Attacks:

(1) Iago attacks

(2) Subvert OS

if sandbox is broken

System call interface

(Attack: subvert OS

if sandbox is broken)

OS

Sandbox

TCB

Attacks

(e.g., direct

memory

access)
OS

Isolation Module

Sandbox Architecture

for OS Protection
TrustVisor or SGX Architecture

for App Protection

Security-Sensitive

Portion of App (SSPA)

Non-Sensitive

Portion of App (NSPA)

System call interface

(Attack: subvert OS

if sandbox is broken)
Env switch

Env switch

System call interface

(Attack: subvert OS)

Break

sandbox

Break

sandbox

Break

sandbox

Figure 1: Sandbox architecture, TrustVisor or Intel SGX archi-

tecture, and combination options.

tions, and may have vulnerabilities that malicious appli-

cations can exploit. A malicious application that breaks

out of the sandbox may compromise the OS.

In this paper, we rethink the security model of PaaS

cloud computing and argue that a two-way sandbox is

desired. The two-way sandbox not only protects a be-

nign OS from a misbehaving application (OS protection)

but also protects an application from a malicious OS (ap-

plication protection). Researchers have explored sev-

eral approaches for either protecting the OS from an un-

trusted application [55, 18, 27, 29] or protecting security-

sensitive applications (or the security-sensitive portion of

an application) from a malicious OS [25, 12, 13, 54, 17,

20, 45, 42, 36, 35, 7, 11, 28, 44, 57, 14]. Unfortunately,

none of these schemes provides two-way protection, and

1

it remains quite challenging to design a two-way sand-

box.

TrustVisor [35] and Intel Software Guard Extensions

(Intel SGX) [19, 24, 4] provide efficient memory space

isolation mechanisms to protect the Security-Sensitive

Portion of an Application (SSPA) from a malicious OS

(Figure 1, TrustVisor or Intel SGX architecture). On

TrustVisor or Intel SGX, memory access from the OS to

the SSPA or from the SSPA to the OS is disabled by an

isolation module, which is a hypervisor (on TrustVisor)

or CPU hardware extensions (on Intel SGX). However,

the Non-Sensitive Portion of an Application (NSPA) is

not isolated from the OS, and the NSPA may contain

malware that can compromise the OS.

Google Native Client (NaCl) [55] and Microsoft

Drawbridge [18, 40] are application-layer one-way sand-

boxes for native code. It seems that combining an

application-layer sandbox and an efficient memory space

isolation mechanism is promising for the two-way sand-

box design because such design supports cross platform

and does not require any modifications to the OS. Fig-

ure 1 shows two combination options. In option A, the

SSPA runs in an isolated memory space while a sand-

box confines the NSPA. However, in this design applica-

tion developers need to split the application into security-

sensitive and non-sensitive portions, requiring large port-

ing effort. In option B, the sandbox is also included in-

side the isolated memory space to avoid porting effort.

The isolation module forwards system calls (from the

sandbox) to the OS. However, there are several issues

with this option. First, because the sandbox is complex

and exposes a large interface to the application, a mali-

cious application may exploit vulnerabilities in the sand-

box and in turn subvert the OS. Second, a malicious OS

may be able to compromise the application through Iago

attack [10]. In Iago attack, a malicious OS can subvert

a protected process by returning a carefully chosen se-

quence of return values to security sensitive system calls.

For instance, if a malicious OS returns a memory address

that is in the application’s stack memory for an mmap

system call, the sensitive data (e.g., return address) in

the stack may be overwritten by the mapped data, which

can result in a buffer overflow attack or a return-to-libc

attack. Finally, because the OS is isolated from the sand-

box and the application, it is challenging to support the

application execution in an isolated memory space.

Challenges. In summary, the challenges we need ad-

dress in the two-way sandbox design include:

1. Best combining a memory isolation mechanism and a

sandbox to establish two-way protection.

2. Minimizing and securing the communication inter-

face between OS protection modules and the appli-

cation to reduce attack surfaces.

3. Preventing Iago attack for application protection.

4. Supporting application execution in an isolated mem-

ory space.

In this paper, we present MiniBox, the first two-

way sandbox for native x86 applications. Leveraging

the hypervisor-based memory isolation mechanism (pro-

posed by TrustVisor) and a mature one-way sandbox

(i.e., NaCl), MiniBox provides efficient two-way pro-

tection. MiniBox significantly reduces the interface be-

tween OS protection modules (sandboxing modules) and

the application, exposes a minimized and secure commu-

nication interface between OS protection modules and

the application. MiniBox protects the application against

Iago attack and provides an efficient execution environ-

ment with secure file I/O for the application. The se-

cure file I/O provides not only integrity and confiden-

tiality protection, but also rollback prevention, secure

key management, and access control. Using a special

toolchain, application developers can concentrate on ap-

plication development without bothering with the low-

level protection mechanisms or splitting an application.

We implemented a prototype of MiniBox on both Intel

and AMD multi-core systems, based on the Google Na-

tive Client (NaCl) [55] open source project and the pub-

lic implementation of the TrustVisor hypervisor [35, 47,

46]. We ported several applications to MiniBox. Evalua-

tion results show that MiniBox is practical and provides

an efficient execution environment for isolated applica-

tions.

Contributions.

1. In this paper, we rethink the security model of PaaS

cloud computing and make the first attempt toward a

practical two-way sandbox for native applications.

2. MiniBox provides a minimized and secure communi-

cation interface between OS protection modules and

the application to protect against each other.

3. MiniBox protects the application from Iago attack,

and provides an efficient execution environment with

secure file I/O for the application.

4. MiniBox makes the complex two-way protection

mechanism transparent to application developers,

making porting effort minimal.

5. We implement MiniBox and evaluate MiniBox using

microbenchmarks and macrobenchmarks. Evaluation

shows that MiniBox is practical and efficient.

Organization. The reminder of this paper is organized

as follows: Section 2 briefly introduces the background

knowledge. Section 3 describes our assumptions, adver-

sary model. Section 4 presents the design of MiniBox

in details. MiniBox implementation is described in Sec-

tion 5 and evaluation results are described in Section 6.

Limitations and future work are discussed in Section 7.

Finally, we treat related work in Section 8 and offer con-

2

clusions in Section 9.

2 Background

2.1 TrustVisor

TrustVisor [35] is a minimized hypervisor that isolates

the Security-Sensitive Portion of an Application (SSPA)

from the rest of the system and offers efficient trustwor-

thy computing abstractions (via a µTPM API) to the iso-

lated SSPA with a small TCB.

Memory Protection. TrustVisor isolates the memory

pages containing itself and any registered SSPA from

the guest OS and DMA-capable devices by configuring

nested page tables and the IO Memory Management Unit

(IOMMU). TrustVisor exposes hypercall interfaces for

applications in the guest OS to register and unregister a

SSPA. When the SSPA is registered, information includ-

ing the memory pages of the SSPA is passed to TrustVi-

sor. TrustVisor configures nested page tables to isolate

the memory pages of the SSPA from the guest OS. Any

access from the guest OS to the SSPA or from the SSPA

to the guest OS causes a nested page fault that will be

intercepted by the hypervisor. When a SSPA is unregis-

tered, TrustVisor zeroes the data memory in the SSPA,

and removes the memory protections on the SSPA’s ad-

dress space.

Integrity Measurement. TrustVisor employs a two-

level integrity measurement mechanism for measuring

the integrity of the hypervisor and registered SSPA.

TrustVisor is booted using the Dynamic Root of Trust

and Measurement (DRTM) mechanism [5, 22] available

on commodity x86 processors. The chipset computes an

integrity measurement (cryptographic hash) of the hyper-

visor and extends the resulting hash into a Platform Con-

figuration Register (PCR) in the Trusted Platform Mod-

ule (TPM). TrustVisor computes an integrity measure-

ment for each registered SSPA, and extends that mea-

surement result into the PCR of the SSPA’s µTPM in-

stance. The TPM Quote from the hardware TPM and the

µTPM Quote from the SSPA’s µTPM instance comprise

the complete chain of trust for remote attestation.

2.2 Google Native Client

Google Native Client (NaCl) [55] is a sandbox for x86

native code (called Native Module) using Software Fault

Isolation (SFI) [34, 43, 49].

Validator. To guarantee the absence of privileged x86

instructions that can break out of the SFI sandbox in a

Native Module, a validator in NaCl reliably disassem-

bles the Native Module and validates the disassembled

instructions as being safe to executes.

Runtime Framework. NaCl provides a simple runtime

framework including a context switch function and a sys-

tem call dispatcher to support the execution of a Native

Module. On 32-bit x86, the runtime framework and the

Native Module are isolated by segmentations. NaCl sim-

ulates system calls for a Native Module using a Trampo-

line Table and Springboard. There is a Trampoline Table

in each Native Module, and a 32-byte entry in the Tram-

poline Table for each supported system call. The Google

NaCl toolchain ensures that control transits to one of the

entries in the Trampoline Table, instead of to a tradi-

tional system call. The Trampoline Table entries switch

the active data and code segments, and jump to the con-

text switch function in NaCl. The context switch func-

tion saves the thread context of the Native Module and

transfers control to the system call dispatcher in NaCl.

The system call dispatcher exposes only a closed set of

system call interface to the Native Module, sanitizes the

system calls parameters, conducts access control to con-

strain the file access of the Native Module, and finally

calls the corresponding handler in the OS. After the han-

dler execution completes, the context switch function re-

stores the execution context of the Native Module and

calls the Springboard, which performs the inverse of the

control transitions in Trampoline Table entries.

3 Assumptions and Attacker Model

Assumptions. We assume that the attacker cannot have

physical attacks against the hardware units (e.g., CPU

and TPM). We assume that the attacker cannot break

standard cryptographic primitives and that the small TCB

of MiniBox is free of vulnerabilities.

Attacker Model For Application Protection. We as-

sume that the attacker can execute arbitrary code on the

OS. For example, the attacker can compromise and con-

trol the OS. The attacker that controls the OS may at-

tempt to tamper with the protected application by ac-

cessing the application memory contents or handling the

system calls of the application in malicious ways (i.e.,

Iago attack). The attacker can also inject malicious code

into the application binary or into the service runtime bi-

nary before the application runs in an isolated memory

space. The attacker may also subvert DMA-capable de-

vices (e.g., the network adapter) on the platform in an

attempt to modify memory contents through DMA. The

attacker may also attempt to access security-sensitive

files (e.g., private keys or credentials) of the application.

However, we do not prevent denial of service attacks. For

example, the attacker may prevent the OS from handling

system calls for the application. We do not prevent the at-

tacker from compromising the application through mem-

ory safety bugs (e.g., buffer overflows) or insecure design

in the application. One example of the insecure design is

that an application seeds a pseudo-random number gen-

erator by the return value of a system call handled by the

untrusted OS. It is the developer’s responsibility to take

measures to eliminate memory safety bugs or such inse-

3

CPU

Hypervisor

Hardware

Low-level System

(e.g., Guest OS

or VMM)

Regular Environment (RE)
Mutually Isolated Execution

Environment (MIEE)

x86 Native

Application

Context Switch

Param Marshaling

System Call

Dispatcher

Param Unmarshal

System call

Dispatcher

(param sanitizing,

access control)

Other

Apps

(e.g., a

browser)

Environement

Switch

System

Calls

GDTLDT

API

Thread Scheduler

TPM

uTPM

Hypercalls

Memory Management,

TLS Management,

Multi-threading,

Secure !le IO, uTPM API

Context SwitchProgram

Loader

TCB for

App Protection

Security-Sensitive

Portion of App (SSPA)

Non-Sensitive

Portion of App (NSPA)

App-layer Modules

For OS Protection

Figure 2: MiniBox System Architecture.

cure design, that may leak data or break the control flow

integrity [1, 3, 2] of the application. However, on Mini-

Box, the application can measure the integrity of critical

inputs (i.e., known inputs) and extend the results into the

µTPM PCR for remote attestation. Finally we do not

prevent side-channel attacks [59].

Attacker Model For OS Protection. We assume that

the untrusted application may contain malicious code.

The malicious code may attempt to subvert the OS or

access sensitive files on the OS.

4 System Design

4.1 MiniBox Architecture

We combine TrustVisor hypervisor and NaCl sandbox as

the starting point for MiniBox design. MiniBox splits

NaCl sandbox into OS protection modules and service

runtime modules, and exposes a minimized and secure

interface between OS protection modules and the ap-

plication to protect against each other. Figure 2 shows

the MiniBox architecture. As shown in this figure, a

minimized hypervisor underpins the system. The hy-

pervisor sets up the two-way memory space isolation

between the Mutually Isolated Execution Environment

(MIEE) and the Regular Environment (RE), creates a

GDT and LDT instance, and a µTPM instance for the

MIEE. In the MIEE, beyond the x86 native application

itself, a minimized service runtime is included, contain-

ing: a context switch module that stores and switches

thread contexts between the application and the service

runtime; a system call dispatcher that distinguishes be-

tween regular and sensitive system calls, calls handlers

in the MIEE for sensitive calls, or invokes the parameter

marshaling module for non-sensitive calls; a parameter

marshaling module that prepares parameter information

for non-sensitive calls (for the hypervisor); system call

handlers for handling security-sensitive system calls; and

a thread scheduler that schedules the execution of multi-

ple threads comprising an application. In sensitive call

handlers, the service runtime supports dynamic memory

management, thread local storage management, multi-

threading management, secure file I/O, and µTPM API.

The hypervisor and the minimized service runtime in the

MIEE comprise the TCB for application protection.

In the RE, a user-level program loader sets up the

MIEE and loads the application into the MIEE; a con-

text switch module stores and restores the thread context

of the RE during environment switches between the RE

and MIEE; a parameter unmarshaling model unmarshals

system call parameters; and a system call dispatcher con-

fines the system call interface exposed to the application

(allowing only a closed set of system calls), sanitizes

the system call parameters, conducts access control to

constrain the file access of the application, and forwards

the non-sensitive system calls to corresponding handlers

in the RE. On MiniBox, the program loader, the con-

text switch module, the parameter unmarshaling module,

the system calls dispatcher in the RE and the hypervisor

comprise the TCB for OS protection.

Finally, MiniBox adopts the TrustVisor integrity mea-

surement (recall Section 2.1) to enable a remote verifier

to verify the integrity of the hypervisor, the minimized

service runtime, and the isolated application. In this way,

MiniBox prevents adversaries from injecting malicious

code into the hypervisor, the service runtime or the appli-

cation before the memory isolation is established without

being detected. For example, the integrity measurement

and remote attestation mechanisms can prevent a mali-

cious program loader from injecting malicious code into

the application binary without being detected. This is

also the reason that the program loader is not in the TCB

for application protection.

4.2 Minimized & Secure Communication Interface

Except passing system call information between the

MIEE and the RE, the hypervisor exposes a minimal in-

terface (i.e., several hypercalls) to the rest of the system.

It is reasonable to trust that the minimal hypercall inter-

face is free of vulnerabilities and malicious code in the

RE or the MIEE cannot subvert the hypervisor over the

hypercall interface. However, memory space isolation

itself is insufficient to establish two-way protection be-

cause the communication interface between the RE (OS

protection modules) and the MIEE (the application) may

have vulnerabilities. MiniBox provides a minimized and

secure communication interface between OS protection

modules and the isolated application to protect against

each other. This section first describes the communica-

tion interface between OS protection modules and an iso-

lated application on NaCl, then describes how MiniBox

minimizes and protects the communication interface.

4

The communication interface that NaCl exposes to an

untrusted application includes:

1. In program loading time, the NaCl program loader

exposes an interface to the application binary for ob-

taining section information.

2. The NaCl validator disassembles application binary

and validates all application instructions. Because

x86 instruction set is large and complex, the validator

exposes a large interface to the application. If NaCl

validator is broken, a malicious application will be

able to break out of NaCl sandbox.

3. During runtime, the interface that NaCl exposes to

an isolated application is a closed set of system call

interface.

Minimizing Communication Interface. On Mini-

Box, the communication interface between OS protec-

tion modules and the application consists of only the pro-

gram loader and the system call interface. Because priv-

ileged instructions cannot break out of the nested paged-

based memory isolation, the NaCl validator is not in-

cluded in MiniBox, which significantly reduces the in-

terface exposed to the application. Without the valida-

tor, privileged instructions in the application can break

out of the segmentation-based isolation and compromise

the service runtime in the MIEE. However, a malicious

service runtime in the MIEE cannot break out of the

hypervisor-based memory isolation or compromise the

OS through the thin interface between the MIEE and the

RE.

Secure Communication. On MiniBox, the hypervisor

is the only communication channel between the RE and

the MIEE. Each non-sensitive call causes environment

switches between the MIEE and the RE. For each envi-

ronment switch from the MIEE out to the RE, the param-

eter marshaling module in the MIEE updates the parame-

ter information of the system call that will be used by the

hypervisor for copying parameters between the two en-

vironments. However, the parameter marshaling module

in the MIEE cannot specify where the parameters will

be stored in the RE. The hypervisor copies the system

call parameters to a parameter buffer in the RE, and con-

strains the total data size of system call parameters that

will be copied (to prevent buffer overflow attack). In this

way, malicious code in the MIEE cannot overwrite crit-

ical data (e.g., stack contents) in the RE. To prevent a

misbehaving application from sending arbitrary system

call parameters to the RE, the system call dispatcher in

the RE checks the system call parameters before sending

them to the OS. For example, the system call dispatcher

checks every pointer parameter that it is safe to access

the memory space the parameter points to.

After the system call is handled, the system call dis-

patcher copies return values to the parameter buffer in

the RE and triggers the environment switch back to the

MIEE. When MiniBox switches from the RE back to the

MIEE, the hypervisor uses the same parameter informa-

tion specified by the MIEE to copy parameters from the

parameter buffer in RE to the MIEE. This prevents mal-

ware in the RE from attempting to compromise MIEEs

by manipulating parameter information.

In addition, because all sensitive system calls are han-

dled inside the MIEE, a malicious OS cannot compro-

mise the application by Iago attack. Also, with the secure

I/O provided in the MIEE, sensitive files of the applica-

tion are protected from a malicious OS.

4.3 Service Runtime

4.3.1 Dynamic Memory Management

Typical x86 programs request or remove data memory

through system calls. MiniBox supports three system

calls (i.e., sysbrk, mmap, and munmap) to provide dy-

namic memory management for the application running

inside the MIEE. To prevent the OS from returning ar-

bitrary memory addresses for sysbrk or mmap system

call (i.e., Iago attacks) or removing arbitrary data mem-

ory pages from the MIEE, memory management system

calls are handled in the MIEE.

Design. One naive design is pre-allocating and register-

ing a large amount of data memory in the MIEE as data

memory available for the application. Such a design has

low execution time overhead, but it wastes memory and

is not flexible. Another design is allowing the hypervisor

to allocate memory pages as the application’s data mem-

ory. However, the MiniBox hypervisor does not support

swapping of memory pages to disk, and cannot be sure

that pages marked as unused by the guest OS are actu-

ally present in memory. To resolve this issue, we design

the system call handlers that request more data memory

(i.e., sysbrk and mmap) in two modules: one in each of

the isolated and regular environments. When the appli-

cation requests more data memory (through sysbrk or

mmap) but the requested data memory is not in the MIEE,

the system call handler in the MIEE calls the module in

the RE that allocates the memory page(s) and touches

(i.e., writes zero to) them to ensure that the new memory

page(s) are loaded into physical memory, and then re-

turns to the handler inside the MIEE (note that the mod-

ule in the RE cannot determine the memory address, so

Iago attack are prevented). The system call handler in-

side the MIEE then makes a hypercall to the hypervi-

sor to add the new memory page(s) to the MIEE. The

x86 program invokes the sysbrk system call to set the

program’s break address and request more data memory

for use as heap. When the new break address resides

on a memory page that is already included in the MIEE,

the system call handler within the MIEE simply updates

the memory break address and returns, without a context

5

switch to the RE. The munmap handler inside the MIEE

makes a hypercall to unregister memory from the MIEE.

Hypercall Interface. The hypervisor exposes two hy-

percall interfaces to an MIEE for data page registra-

tion and unregistration. Hypercall Reg Data (used by

sysbrk and mmap) registers additional data pages to an

MIEE while Hypercall UnReg Data (used by munmap)

performs the corresponding unregistration of data pages

from an MIEE.

Security Protection. To prevent Iago attack caused by

mmap or sysbrk, the hypervisor checks that the newly

registered pages are not already registered to the MIEE

(so that the malicious OS cannot overwrite stack con-

tents of the application in the MIEE). To prevent leakage

of sensitive data in either direction, the MiniBox hyper-

visor zeroes memory pages during registration and un-

registration. To prevent a misbehaving or malicious ap-

plication from adding privileged data pages (e.g., kernel

pages) into MIEE, the hypervisor checks that the newly

registered pages are user-level memory pages that are

in ring 3, and correspond to the same OS process that

originally registered the MIEE (i.e., through the value

of CR3). Presently MiniBox does not allow additional

memory to be mapped as executable, as this represents a

challenge for integrity measurement and a significant in-

crease in attack surface. Thus, the hypervisor checks that

the requested memory pages are data pages that are not

executable. In data memory page unregistration, the hy-

pervisor checks that the unregistered memory pages are

data pages that are already registered to the MIEE.

4.3.2 Thread Local Storage Management

Background. On 32-bit Linux, the native code built

with the NaCl Newlib toolchain stores the memory ad-

dress of its Thread Local Storage (TLS) as the base ad-

dress of a segment descriptor in the LDT. During pro-

gram initialization or when a new thread is created,

tls init system call initializes the TLS base address

and updates the appropriate LDT entry. During execu-

tion, the tls get system call is frequently called to get

the TLS base address.

Design. Because the TLS and LDT represent critical

configuration data, MiniBox handles the tls init and

tls get entirely within the MIEE. The MiniBox hy-

pervisor creates an LDT instance for each MIEE and

supports a hypercall interface to the MIEE to handle

tls init system call. MiniBox supports caching the

latest TLS address inside the MIEE, so that the tls get

handler can quickly return the latest TLS base address to

the application without calling the hypervisor.

4.3.3 Multi-threading

Background. NaCl applies a 1:1 thread model (i.e.,

creating a kernel thread for each Native Module user-

level thread) and uses the OS to handle thread-related

system calls (e.g., thread synchronization system calls)

and schedule the execution of Native Module threads.

Design. If MiniBox applies the same multi-threading

mechanism, the OS controls the thread context of the ap-

plication threads. A malicious OS could break the Con-

trol Flow Integrity (CFI) [1, 3, 2] of the isolated applica-

tion by changing the thread context. Also, when the OS

handles all thread synchronization system calls, a mali-

cious OS could break the application CFI by arbitrarily

changing application thread states. To protect the appli-

cation thread context from being accessed by the OS,

MiniBox can store the thread context in the MIEE and

never leak it out of the MIEE. Also, the service runtime

in the MIEE can verify the thread synchronization results

by duplicating all supported thread synchronization sys-

tem call handlers. In this design, all thread context and

the application CFI are protected from a malicious OS.

However, the complexity of this design is comparable to

implementing the multi-threading operations within the

MIEE. Also, if thread-related system calls are handled

by the OS, the environment switches caused by thread-

related system calls will increase the overhead of appli-

cation execution in the MIEE. Thus, to reduce execu-

tion overhead and avoid duplicated operations, Mini-

Box supports multi-threaded application execution via

a user-level multi-threading mechanism entirely within

the MIEE. System calls to create, exit and synchronize

threads are handled in the MIEE. MiniBox also provide

a thread scheduler to schedule the thread execution of an

isolated application in the MIEE.

Thread Scheduler. The thread scheduler is invoked

each time there is a system call. After a system call is

handled, control returns to the thread scheduler inside

the MIEE before the context switch module is invoked

(r-s1 in Figure 3). Before scheduling the execution of

application threads, the thread scheduler first obtains the

thread ID of the thread that made the system call, and

saves the thread context in the corresponding thread con-

text data structure. The scheduler checks the state of each

thread, and schedules the execution of runnable threads

using a round-robin algorithm. The thread scheduler fi-

nally calls the context switch module (r-s2 in Figure 3),

which resumes the execution of the scheduled thread by

restoring the thread context of the scheduled thread and

jumping to the Springboard within the application (r-s3

in Figure 3).

Note that, before calling the thread scheduler, the hy-

pervisor and the parameter marshaling module in the

MIEE have already unmarshaled the system call param-

6

Hypervisor

Regular

Environment (RE)

Mutually Isolated Execution

Environment (MIEE)

x86 Native

Application
Context

Switch

Parameter

Marshalling
Service call

Dispatcher

Context

Switch

Service call

Dispatcher

Operating

System or

Applications

r-s2

r-s1

nested

page

fault

copy parameters

return

Sensitive

System call

Handlers

Thread

Scheduler

r-s3

TCB for

App Protection

Security-Sensitive

Portion of App (SSPA)

Non-Sensitive

Portion of App (NSPA)

App-layer Modules

For OS Protection

Figure 3: application system call return flow.

eters, and copied the returned parameters to the applica-

tion’s stack or data memory.

Limitation. MiniBox does not make the scheduler work

preemptively, so application developers must notice this

and always use supported system calls for thread syn-

chronization (e.g., avoid a situation where a thread per-

forms busy waiting by watching a global variable in a

loop instead of calling a blocking system call). Also,

the application-layer thread scheduler does not support

multi-thread parallel computation to improve the perfor-

mance of a threaded application on multi-core systems.

One design is allowing the hypervisor to conduct thread

scheduling and manage the parallel computation on mul-

tiple cores, which will significantly increases the hyper-

visor complexity. This is also a tradeoff between keep-

ing a small TCB and supporting more functionalities. As

future work we will investigate how to support parallel

computation for a threaded application running inside the

MIEE on multi-core systems.

4.4 MIEE Preemption and Scheduling

As described in Section 4.3.3, MiniBox does not preempt

an application thread running in the MIEE. However, if

an application thread is in an endless loop, the thread

will not freeze the entire system because the MIEE is

preemptive on MiniBox. When system switches into a

MIEE, the hypervisor starts a timer for the MIEE and

preempts the code execution in the MIEE when the timer

expires. After preempting the MIEE, the hypervisor

stores the MIEE context and transfers control to the regu-

lar environment by simulating a special system call (i.e.,

MIEE sleep). The MIEE sleep handler sleeps for a while

and then calls the hypervisor to resume the code execu-

tion in the MIEE. In this way, the hypervisor transfers

the control to the OS, which can schedule the execution

of other processes. When multiple MIEEs are registered

(one MIEE in one process), the OS can implicitly sched-

ule the execution of multiple MIEEs by scheduling pro-

cess execution. However, the question is how much CPU

time (time quantum) should be assigned to each MIEE by

the hypervisor. One design is that the hypervisor exposes

a hypercall interface to the regular environment and the

MIEE to enable the OS and the isolated application in

the MIEE to configure the MIEE process priority. The

hypervisor assigns CPU time to each MIEE based on the

MIEE process priority.

4.5 Secure File I/O

On MiniBox, the application running in the MIEE still

needs to access the file system in the regular environ-

ment, so the file system calls are forwarded to the OS.

However, to protect the file contents and metadata of

an isolated application, MiniBox supports secure file I/O

for applications running in the MIEE through six system

calls: secure write, secure read, secure open,

secure close, create siokey, read siokey. The

six system calls are handled in the MIEE. The secure file

I/O not only protects the integrity and confidentiality of

file contents and file metadata, but also provides rollback

prevention, secure key management, and access control.

Confidentiality and Integrity. secure write encrypts

the data written by the application (with a symmetric se-

cret key) and sends the encrypted data to the general file

I/O, while secure read decrypts the data and returns

the decrypted data to the application in the MIEE. In

secure write and secure read, the data is written or

read by a chain of blocks of a constant size. To protect

the integrity of file contents and file metadata, includ-

ing file name and path, a hash tree is constructed and

computed over the blocks of file contents and file meta-

data in the MIEE (this approach has been demonstrated

in the Trusted Database System [33], VPFS [51] and

jVPFS [52]). A HMAC of the master hash is computed

in the MIEE and stored at the end of the file (as file con-

tents). When a file created by secure file I/O is opened,

secure open reads the HMAC and verifies the integrity

of the file contents and metadata by reconstructing the

hash tree. secure open stores the hash tree in the

MIEE. When a data block is read, secure read verifies

the integrity of the data block based on the stored hash

tree. When file contents are modified, secure write

updates the hash tree stored in the MIEE. When a file is

closed, secure close recomputes the master hash and

the HMAC, and stores the updated HMAC at end of the

file. This allows the integrity of file contents and file

metadata to be verified. The attacker cannot remove, add,

or replace data blocks in the file because any changes will

invalidate the HMAC. The attacker cannot replace the

file with other files that are created by the same applica-

tion running in the MIEE either because file metadata is

also verified.

Rollback Prevention (Freshness). MiniBox adds a

7

counter in each HMAC computation to guarantee fresh-

ness of files stored through the secure file I/O. The

counter is sealed by the µTPM. Because the µTPM can-

not provide freshness for sealed contents, the integrity of

the counter is measured every time the same application

runs in the MIEE (the measurement result is extended

into µPCR for remote attestation). This allows a verifier

to verify the freshness during remote attestation.

Key Management. Before using secure file I/O, the ap-

plication running in the MIEE must call create siokey

to create the secret keys used in secure file I/O

(i.e., a symmetric encryption key and a HMAC key).

The application specifies the file name and file path

for storing the keys when calling create siokey.

Create siokey first checks if the file already exists. If

not, create siokey creates new secret keys, seals the

secret keys with the current µPCR values. Then it stores

the sealed secret keys in the file, and returns the key ID

to application. If the file already exists (i.e., keys are

already created), create siokey reads the sealed keys

from the untrusted file system, unseals the keys and re-

turns the key ID to the application. read siokey reads

the secret keys saved in the MIEE. Thus the application

must call create siokey, which saves the secret keys

in the MIEE, before calling read siokey.

Access Control and Migration. Because the secret

keys are sealed with the current µPCR (i.e., the in-

tegrity measurement of the application), the sealed keys

can only be unsealed by the µTPM when the same ap-

plication runs in the MIEE. Thus, any data encrypted

through secure File I/O can only be decrypted and ver-

ified when the same application runs in the MIEE. To

share the sensitive files with other applications running

in the MIEE (e.g., an updated version of the application),

the application can seal the secret keys with the integrity

measurement result of other applications, and share the

sealed keys to other applications. Then, other applica-

tions running in the MIEE can unseal the secret keys (us-

ing create siokey) and access the secret files.

Cache Buffer. On MiniBox, environment switches be-

tween the MIEE and the RE cause high overhead in file

I/O (Section 6). To reduce the number of environment

switches, MiniBox creates a cache buffer in the MIEE

for each opened file descriptor. Both general file I/O and

secure file I/O benefit from the cache buffer because the

number of environment switches is reduced. However,

the cached data in this cache buffer is still encrypted. An-

other cache buffer can be created in secure file I/O layer

to store decrypted data and improve the secure file I/O

performance.

Limitations. Compared with complex virtual private

file systems (e.g., VPFS [51] and jVPFS [52]), MiniBox

does not provide recoverability. A complete private file

system is beyond the scope of this paper.

4.6 Flexible Parameter Marshaling

On MiniBox, the hypervisor copies system call parame-

ters between the MIEE and the regular environment, and

different system calls have different parameters (number,

type, address, and size of parameters). Some system calls

may have complex parameters (e.g., multi-level pointers

or structures). Thus, MiniBox employs a flexible param-

eter marshaling mechanism for environment switching.

We divide parameters into four types: Integer, Pointer

Out, Pointer In and Pointer OutIn. Integer denotes a na-

tive machine-width integer passed between the two envi-

ronments. The hypervisor copies the value of the integer

parameter between the environments during environment

switches. A Pointer Out parameter is a pointer that points

to a data buffer that is passed from the MIEE to the regu-

lar environment. The buffer size and address are included

in the parameter and passed to the hypervisor. The hy-

pervisor copies the data indicated by this parameter from

the MIEE to the regular environment only when the sys-

tem switches from the MIEE to the regular environment.

Pointer In parameters are the inverse of Pointer Out pa-

rameters: data passes from the regular environment to

the MIEE. The hypervisor copies the data indicated by

this parameter from the regular environment to the MIEE

only when the system switches from the regular environ-

ment to the MIEE. A Pointer OutIn parameter is a pointer

that points to a data buffer that needs to be passed in both

directions. The hypervisor copies the data indicated by

this parameter in both directions.

Marshaling Complex Parameters. For system calls

that accept complex parameters (e.g., multi-level point-

ers or structures), the parameter marshaling module in

the MIEE first serializes parameters (in user-space) into a

format that can be decoded based on included parameter

type information. These serialized parameters are then

used by the hypervisor. The user-level parameter mar-

shaling is transparent to the hypervisor, and thus avoids

adding complexity to the hypervisor.

4.7 Exceptions, Interrupts, and Debug

Exceptions and Interrupts. When system runs in a

MIEE, the processor cannot access exception and inter-

rupt handlers in the OS. Thus, the hypervisor is config-

ured to intercept exceptions (e.g., segment fault, invalid

opcode) and Non-Maskable Interrupts (NMIs) when sys-

tem runs in a MIEE. Maskable interrupts are disabled

when system runs in a MIEE. When NMIs happen, the

hypervisor handles NMIs and resumes the code execu-

tion in the MIEE. When an exception happens, the hy-

pervisor first checks whether the exception is because the

application in the MIEE needs more stack pages. If so,

the hypervisor calls a module in the regular environment

8

to allocate more data pages as stack pages, adds the stack

pages into the MIEE, and resumes the code execution in

the MIEE. If not, the hypervisor terminates the code ex-

ecution in the MIEE by simulating an Exit system call.

The Exit call is forwarded to the program loader, which

unregisters the MIEE from the hypervisor via hypercall.

Debug. Though MiniBox provides compatible execu-

tion environment with NaCl, the NaCl debug tool for

application cannot be directly used on MiniBox because

on MiniBox the OS cannot access the memory contents

in the MIEE. However, MiniBox can be configured in a

debug mode, in which the hypervisor functionalities are

disabled, and an application layer module passes param-

eters between the two environments. In debug model,

memory management and TLS management calls are

handled by the OS. In this way, the memory isolation is

disable and application developers can use NaCl debug

tool for MiniBox application development.

4.8 Program Loader

In MiniBox, a user-level program loader prepares the ser-

vice runtime for the application, loads the application bi-

nary to page-aligned memory, registers the whole thing

as a MIEE through hypercalls, and finally launches the

execution of the application.

Initialization. After loading the application into page-

aligned memory, the program loader initializes the rele-

vant LDT for segments of the application (code, data and

stack), initializes the system call parameter information

for environment switch, and populates the initial thread

context of the application. The program loader allocates

a 32 MB stack section for each application at the high

end of the application’s address space. The application

accepts arguments upon its initial invocation like a typ-

ical process. The program loader copies the arguments

into the application’s stack memory.

MIEE Registration. Before launching the execution of

the application, the program loader registers the MIEE

comprising the service runtime, and the application’s

code, data and stack sections. During registration, the

hypervisor sets up memory protection for the MIEE, in-

stantiates a fresh µTPM instance, instantiates a GDT and

LDT for the MIEE, measures the memory contents of the

MIEE, and extends the measurement results into a PCR

in the µTPM instance for remote attestation. Before reg-

istration, the program loader has full access permissions

to the application and the service runtime. Thus, it could

potentially maliciously modify the contents of the ap-

plication or service runtime. However, any such mod-

ifications or injected malicious contents will cause the

µTPM’s PCR to take on a different value than expected.

As a result, the MIEE will be unable to generate correct

µTPM Quotes in remote attestation or unseal the secret

data that are sealed with the expected µTPM PCR value.

Launching Application. After registration, the pro-

gram loader launches application execution by trigger-

ing the environment switch into the MIEE. Inside the

MIEE, the context switch module initializes the applica-

tion thread context, switches segment selector registers,

and starts application execution.

MIEE Unregistration. After the application completes

its execution it invokes an Exit system call that is for-

warded to the program loader. After receiving this sys-

tem call, the program loader unregisters the MIEE from

the hypervisor via hypercall. The MIEE data memory is

zeroed and the memory protections on the MIEE’s mem-

ory space are removed by the hypervisor.

5 Implementation

We implemented a prototype of MiniBox on both AMD

and Intel multi-core systems, with 32-bit Ubuntu 10.04

LTS as the guest OS. This section describes the MiniBox

implementation in details.

5.1 Hypervisor

The implementation of the MiniBox hypervisor is based

on the public implementation of TrustVisor hypervi-

sor [35, 46] with support for multi-core and both AMD

and Intel processors. We changed the parameter mar-

shaling implementation and added a hypercall interface

for handling sensitive system calls. TrustVisor does not

instantiate an LDT for a registered piece of application

logic. Thus, we also added code to create new GDT en-

tries and instantiate an LDT for every MIEE, and added

code to handle GDT- and LDT-related operations. The

original implementation of TrustVisor hypervisor has

14414 source lines of code (SLoC), computed using the

sloccount tool.1 Our implementation adds an additional

691 SLoC. Figure 4 shows the code size of each module

that we added or modified in TrustVisor hypervisor. Note

that the parameter marshaling module and the extended

hypercall interface are independent of the CPU manufac-

turer, The GDT- and LDT-related module support both

AMD and Intel processors. Thus, as with TrustVisor

hypevisor, the MiniBox hypervisor also works on both

AMD and Intel processors.

MiniBox hypervisor module SLOC

Parameter Marshaling 201

Extended Hypercall Interface and Handlers 230

GDT and LDT-related 260

Total 691

Figure 4: Source Lines of Code (SLOC) added to TrustVisor

hypervisor.

1http://www.dwheeler.com/sloccount/

9

5.2 Program Loader and Service Runtime

We implement the user-level program loader, the mini-

mized service runtime in the MIEE, the context module

and the system call dispatcher in the regular environment

based on the Google Native Client (NaCl) open source

project (SVN revision 7110). We have focused our work

on the 32-bit x86 architecture, though there are no fun-

damental barriers to expanding to 64-bit. In the NaCl

source code, we implement code to conduct MIEE reg-

istration and unregistration (which entails preparing an

MIEE’s sections, and vmcalls to register/unregister the

MIEE) by 299 SLoC. We also implement the minimized

service runtime in the MIEE within the NaCl source

code, adding 3550 SLoC. The secure file I/O module

has a large code base (1065 SLoC) because it contains

cryptographic primitives for AES and HMAC. The im-

plemented service runtime can be configured in debug-

ging mode for application development using the NaCl

debugging tool (recall Section 4.7). The parameter mar-

shaling module in the MIEE has a large codebase be-

cause it needs to be capable of preparing parameter in-

formation for the 42 different system calls that are han-

dled in the RE (23 SLOC for each system call on aver-

age). The sensitive system call handlers we implemented

are mainly for handling thread synchronization (e.g., mu-

texes, semaphores, and condition variables), which re-

sults in a larger codebase than other modules. We use a

custom linker script when building the NaCl ELF loader

to link the service runtime framework in page-aligned

memory pages. Figure 5 summarizes the SLOC added to

Google’s NaCl source code.

Module SLOC

MIEE registration and unregistration 299

Context Switch in regular environment. 29

Total in regular environment. 328

System Call Dispatcher in MIEE 379

Parameter Marshaling in MIEE 970

Thread Synchronization in MIEE 711

Secure File I/O in MIEE 1065

Other Sensitive Call Handlers in MIEE 373

Context Switch in MIEE. 52

Total in MIEE 3550

Figure 5: Source Lines of Code (SLOC) of modules added to

the NaCl source code.

5.3 System Calls

MiniBox adopts NaCl system call interface to expose

a closed set of system call interface to the isolated ap-

plication. MiniBox does not support dynamic code for

the application, so NaCl dynamic code system calls are

removed on MiniBox. However, MiniBox extends the

NaCl system call interface with µTPM API, network I/O

system calls, and secure file I/O calls, supporting a total

of 75 system calls for the application. Figure 6 shows the

system calls supported by MiniBox. The implementation

entails adding header files and statically linked libraries

into the NaCl Newlib toolchain, and modifying the NaCl

source code to (1) add extended system call entries to the

application’s Trampoline Table and add corresponding

parameter marshaling functions. and (2) add correspond-

ing hypercalls to the MiniBox service runtime. MiniBox

supports 17 socket system calls. The network I/O system

calls are forwarded to the regular environment, because

they are treated as part of the untrusted communication

channel. Secure communication (e.g., SSL) can be im-

plemented in the application layer to protect the data in

network I/O.

In the MIEE, the supported thread synchronization

system calls include semaphores, mutexes, and condition

variables, which have the same functionality as the corre-

sponding POSIX APIs. The thread synchronization im-

plementation passes the internal thread synchronization

test suite included in the NaCl source code. The secure

file I/O calls encrypt/decrypt the data using AES with a

128-bit key in CBC mode and computes HMAC-SHA-1

using a 160-bit key.

The µTPM API is exposed to applications through

system calls. The implementation entails adding µTPM

header files and a statically linked µTPM library into the

NaCl Newlib toolchain, and modifying the NaCl source

code to (1) add µTPM API entries to the application’s

Trampoline Table, and (2) add corresponding hypercalls

to the MiniBox service runtime framework.

6 Evaluation

In this section, we present the evaluations including sys-

tem call overhead, file I/O overhead, network I/O, and

application performance in the MIEE on MiniBox. Ex-

periments were conducted on a Dell PowerEdge T105

server with a Quad-Core AMD Opteron Processor run-

ning at 2.3 GHz with 4 GB memory. The operating sys-

tem is Ubuntu 10.04 with 32-bit kernel Linux 2.6.32.27.

To obtain accurate timing results, the hypervisor does not

preempt the MIEE.

Performance Impact. Vasudevan et al. [46] already

presented the performance impact on a guest OS run-

ning on XMHF (e.g., TrustVisor). Since MiniBox hy-

pervisor extends TrustVisor with hypercall interface, and

modified parameter marshaling, neither of which affect

the guest OS performance, we do not evaluate the per-

formance impact on a guest OS in this paper. Yee et

al. [55, 56] evaluated the code size and performance

impact on the application developed using the NaCl

toolchain. MiniBox uses the NaCl Newlib toolchain with

10

Operations System Calls

µTPM∗ µTPM PCR Read, µTPM PCR Extend

µTPM Random, µTPM Seal,

µTPM unSeal, µTPM PCR Quote

Memory∗ sysbrk, mmap, munmap

TLS∗ tls init, tls get

Thread∗ thread create, thread exit, thread nice,

sched yield

Mutex∗ mutex create, mutex lock,

mutex trylock, mutex unlock

Condition∗ cond create, cond wait, cond signal,

cond broad

Semaphore∗ sem create, sem wait, sem post,

sem getvalue

Secure File∗ secure read, secure write, secure open

secure close, create siokey, read siokey

File dup, dup2, open, close, read, write,

lseek, ioctl, stat, fstat

Time time of day, clock, nanosleep

Inter-Module imc bound, imc accept, imc connect,

Communication imc send, imc recv, imc objcreate,

(IMC) [55] imc socket

Socket accept, bind, connect, send, recv, listen

getpeername, getsockname, getsockopt

recvmsg, recvfrom, sendmsg, sendto

setsockopt, shutdown, socket, socketpair

Others nameservice, getdents, exit, getpid

sysconf

Figure 6: System calls supported by MiniBox. Starred calls (∗)

are handled inside the MIEE or hypervisor; the remaining calls

are forwarded to the regular environment and handled by the

OS.

extended API. We do not repeat those evaluations in this

paper.

Porting Effort. The NaCl toolchain is mature. A num-

ber of web applications and open source libs have been

ported to run on NaCl using the NaCl toolchain. Mini-

Box use the NaCl toolchain with extended API for ap-

plication development. It is excepted that the porting ef-

fort on MiniBox is similar to the porting effort on NaCl.

Thus, we do not evaluate the porting effort for legacy

code using the NaCl toolchain in this paper.

6.1 MiniBox Microbenchmarks

Environment Switch Overhead. For every non-

sensitive system call, the hypervisor is invoked to con-

duct environment switches between the MIEE and the

RE, in which procedure the hypervisor (1) synchro-

nizes all CPU cores through a operation called CPU-

quiescing [46], (2) configures the nested page table for

memory protection, and (3) copies system call param-

eters between the MIEE and the RE. The environment

Figure 7: Environment switch benchmarks in us. Average of

100 runs and standard deviation is less than 5%.

switch causes overhead on non-sensitive system calls and

may affect application performance in the MIEE. We

evaluate the overhead of environment switches with dif-

ferent parameter types (e.g., Pointer Out, Pointer OutIn)

and sizes (amount of data to pass into/out of the MIEE).

TrustVisor conducts similar operations with MiniBox

during environment switches. However, TrustVisor sup-

ports a single pointer type that describes a data buffer,

which is copied in both directions. Similar experiments

are also conducted on vanilla TrustVisor v0.1 with iden-

tical parameter sizes, and similar parameter types.

The evaluation results (Figure 7) show that on Mini-

Box the environment switch overhead increases by about

40 microseconds per 4KB parameter size for Pointer

Out and 80 microseconds per 4KB parameter for Pointer

OutIn. The evaluation results also show that the parame-

ter marshaling mechanism on MiniBox is more efficient

than the marshaling mechanism on TrustVisor for data

that needs to be copied in only one direction (Pointer

Out in Figure 7). However, when the parameter type

is Pointer OutIn, the parameter marshaling mechanism

on MiniBox is slower than the mechanism on TrustVi-

sor. For Pointer OutIn, MiniBox also copies parameters

in both directions. However, the MiniBox hypervisor

obtains parameter information from the MIEE for every

switch (Section 4.2), whereas TrustVisor always uses the

same parameter information for the MIEE. Thus, Mini-

Box takes more time to conduct environment switch than

TrustVisor when the parameter type is Pointer OutIn.

System Call Overhead. In the MIEE, non-sensitive

system calls are handled in the OS with environment

switches while sensitive system calls are handled either

in the application layer inside the MIEE or by the hy-

pervisor through hypercalls. It is important to know the

system call overhead in the MIEE to understand the per-

formance impact on the application running in the MIEE.

The system call overhead in the MIEE is measured, and

compared with the corresponding system calls on vanilla

NaCl, and MiniBox in debug model (recall Section 4.7).

The evaluation results (Figure 8) show that the non-

sensitive system calls (e.g., file operation calls) that in-

11

Figure 8: System call benchmarks in us. Average of 100 runs and standard deviation is

less than 5%. Calls with ∗ are sensitive calls handled inside the MIEE without environment

switches. Calls with # are sensitive calls that involve hypercall or environment switches.

Figure 9: File I/O benchmarks in us.

Average of 100 runs and standard de-

viation is less than 2%.

Figure 10: Network I/O

benchmarks in Mbps. Aver-

age of 100 runs and standard

deviation is less than 2%.

Figure 11: zlib file compression

with file I/O benchmarks in ms. Av-

erage of 10 runs and standard devia-

tion is less than 2%.

Figure 12: SSL connection

benchmarks in ms. Average

of 10 runs and standard de-

viation is less than 3%.

Figure 13: SSL throughput

benchmarks in Mbps. Aver-

age of 10 runs and standard

deviation is less than 1%.

volve environment switches on MiniBox are slower than

on vanilla NaCl. However, the corresponding system

calls on MiniBox in debug mode have similar perfor-

mance to those on vanilla NaCl. Thus the overhead

of these system calls on MiniBox is mainly caused by

environment switches. The sensitive system calls that

are handled within the MIEE without any environment

switch (e.g., thread synchronization calls) have simi-

lar performance to those on vanilla NaCl. The sensi-

tive system calls that involve hypercall and environment

switches (e.g., memory management system calls) on

MiniBox are slower than on vanilla NaCl. The overhead

is expected because of the environment switch overhead

and the operations conducted by the hypervisor.

File I/O. We evaluate the file I/O overhead on MiniBox

and compare it to the file I/O on vanilla NaCl and Mini-

Box in debug mode. We measure reads & writes of 32B

for both general file I/O and secure file I/O. The mea-

surement results (Figure 9) show that when the data is

cached in the MIEE (cache-hit), the cache buffer signifi-

cantly reduces the file I/O overhead for both general file

I/O and secure file I/O.

Network I/O. We evaluate the network I/O throughput

on MiniBox and compare it to the network I/O through-

put on MiniBox in debug mode and vanilla NaCl (we add

the socket interface on the NaCl). The server runs in the

MIEE using MiniBox on the Dell T105 while the client

runs on a plain Linux machine on a Dell Optiplex 755

desktop with two Intel Core2 Duo processors running at

2.0 GHz with 2 GB memory. The operating system on

the Dell Optiplex machine is Ubuntu 8.04.4 LTS with a

32-bit Linux kernel 2.6.24.30. Both the server and the

client connect to a Netgear Gigabit Ethernet Switch us-

ing a Gigabit Ethernet Adapter. During each connection,

the client sends 16 KB data to the server and we mea-

sure the network I/O throughput. The results (Figure 10)

show that network I/O on MiniBox is about 10% slower

than on vanilla NaCl. Thus, although the environment

switches impose a small overhead on MiniBox, the net-

work throughput remains high.

6.2 Application Benchmarks

CPU-bound application (AES key search and Bit-

Coin). We measure the performance of CPU-bound ap-

plications on MiniBox and compare it to the performance

of equivalent applications on vanilla NaCl and MiniBox

in debug mode. We first evaluate AES key search, which

encrypts a 128-Byte plaintext using a 128-bit key in CBC

mode 200,000 times, simulating a AES key search oper-

ation. We ported CBitCoin [37]), an open source Bit-

Coin implementation to run on MiniBox. We measure

the time to construct a BitCoin block, requiring 200,000

SHA-1-256 computations. The results (Figure 14) show

that MiniBox does not add any noticeable overhead for

CPU-bound applications over NaCl.

I/O-bound application (Zlib). We evaluate the per-

12

MiniBox MiniBox Debug NaCl

AES Key Search 168 168 168

BitCoin 236 236 236

Figure 14: AES key search and BitCoin block generation

benchmarks in ms. Average of 10 runs and standard deviation

is less than 2%.

formance of I/O-intensive applications on MiniBox by

testing Zlib [32], an open source library used for data

compression. Zlib is already ported to run on NaCl as

part of the naclports project, and did not require addi-

tional porting efforts to run on MiniBox. We measure

the time elapsed to read 1 MB of file data from the file

system over the general file I/O, and then compress the

read data. The file data always misses the cache buffer,

so every read operation involves an environment switch.

The evaluation results (Figure 11) show that because of

environment switches, the zlib application on MiniBox

is slower than vanilla NaCl. The slowdown is mainly

caused by the environment switches since MiniBox in

debug mode has the same performance as vanilla NaCl.

We repeated the measurement on MiniBox while storing

the file data in the cache buffer in the MIEE. The zlib

application reads file data with cache-hit without envi-

ronment switches. The measurement result shows that

the overhead is significantly reduced. Thus, while file

I/O in MiniBox can be expensive in the worst case, we

expect that the cache buffer will significantly improve the

application performance in practice.

SSL Server. We ported the entirety of OpenSSL [39]

(version 1.0.0.e) to run on MiniBox. We also run the

SSL server on the NaCl by adding socket system call in-

terface on the NaCl. In this experiment, the Dell Optiplex

machine serves as the SSL client, and the Dell T105 acts

as the SSL server. The SSL client runs on a plain Linux

while the SSL server runs inside the MIEE on MiniBox.

We recorded both the time required to create an SSL con-

nection and the overall SSL throughput. The SSL client

sends 16KB data to the SSL server during each connec-

tion. As in previous experiments, both machines con-

nected to a Netgear Gigabit Ethernet Switch via a Gi-

gabit Ethernet Adapter. The results show that MiniBox

impose about a 15% overhead to SSL connections (Fig-

ure 12) and that SSL throughput on MiniBox has about

a 10% slowdown (Figure 13). The overhead is mainly

caused by network and file I/O, since MiniBox in debug

mode has the same performance as NaCl.

7 Discussion

Improving Performance and Alternative Implemen-

tations. The hypervisor-based isolation mechanism

causes overhear in environment switches. It is expected

that the hardware-based isolation mechanism provided

by Intel SGX will decrease the environment switch over-

head (Intel SGX has not been released on commercial

processors). The VMFUNC instruction [26] released on

the latest Intel 4th Generation Processor enables software

in a guest Virtual Machine (VM) to switch EPTs without

a VM exit. It is expected that the VMFUNC instruction

will decrease the environment switch overhead. How-

ever, the VMFUNC instruction does not switch other crit-

ical system configurations (e.g., the GDT or IDT). As fu-

ture work we will investigate the approach to perform en-

vironment switch using the VMFUNC instruction in a se-

cure way. Microsoft Drawbridge provides efficient sand-

boxing mechanism to confine native applications and re-

quires minimal porting efforts for legacy POSIX applica-

tions. An alternative MiniBox implementation is to inte-

grate the Drawbridge service runtime with TrustVisor or

Intel SGX.

Supporting Multi-tenant Cloud Platform. The Mini-

Box hypervisor prototype supports only a single guest

OS. There is no fundamental barrier to port MiniBox

with a virtual machine monitor like Xen [8] that supports

multiple tenants, though doing so increases the TCB size.

CloudVisor [58] demonstrates the approach to minimize

the TCB on multi-tenant cloud platforms by leveraging

nested virtualization technology. Nested virtualization

can be added in MiniBox to support multi-tenant cloud

platforms with a small TCB. On multi-tenant cloud plat-

forms, the virtual machine (VM) may be constructed, de-

structed, saved, restored, or migrated. It is critical to

protect the MIEE including the application during VM

management, as discussed and demonstrated in CloudVi-

sor. Similar actions can be employed by MiniBox to pro-

tect the integrity and confidentiality of MIEEs (including

applications) in VM management on multi-tenant cloud

platforms. The MiniBox hypervisor can encrypt or de-

crypt the memory contents of MIEEs including appli-

cations in VM management, and verify the integrity of

the MiniBox hypervisor on other machines to guarantee

that MIEEs are only migrated to machines with a ver-

ified hypervisor. Also, the MiniBox hypervisor needs

to encrypt or decrypt the µTPM instance (including the

PCRs and µTPM secret keys) together with an MIEE

in VM management, to make the trustworthy comput-

ing abstractions provided to the MIEE transparent to the

VM management. The above features can be added in

MiniBox with sufficient engineering effort.

Control Flow Integrity (CFI). Since the application

that runs on MiniBox is isolated using nested page ta-

bles at the hypervisor level, and always runs in ring 3,

MiniBox does not share NaCl’s CFI requirement to be

able to reliably disassemble and validate all instructions.

Therefore, the CFI mechanisms implemented in NaCl

13

are not necessary in MiniBox. The NaCl CFI mecha-

nism depends upon its toolchain inserting many nop in-

structions into the compiled program, which decreases

performance. The benefit of keeping the CFI mecha-

nism, however, is that programs compiled by the same

toolchain will be compatible with both NaCl and Mini-

Box. Also, the NaCl CFI mechanism does raise the bar

for an adversary who wants to attack a specific applica-

tion running in the MIEE.

Supporting Dynamic Code. MiniBox does not sup-

port dynamic code for applications because marking data

memory as executable to support dynamic code adds

challenges for integrity measurement and significantly

increases the attack surface. The NaCl Newlib toolchain

already provides dynamic code APIs [6]. As future work,

we will investigate a mechanism to support dynamic

code for applications on MiniBox while measuring and

protecting the code integrity of applications.

8 Related Work

Protecting Applications. Systems aspiring to protect

entire applications from a potentially compromised OS

have been proposed (e.g., InkTag [25], Overshadow [13],

SP3 [17], Proxos [45], PrivExec [38], and others [54,

12, 14]). Most of these schemes mainly focus on pro-

tecting application data from malicious code on an op-

erating system and expose sensitive system calls to the

untrusted OS, thus making the protected application vul-

nerable to Iago attack. InkTag [25] secures applications

running on an untrusted OS by verifying that the un-

trusted OS behaves correctly using a trustworthy hyper-

visor. It prevents mmap-based Iago attack by verifying

memory address invariants. However, in InkTag some

other security-sensitive system calls (e.g., thread syn-

chronization and TLS-related calls) are still performed

by the untrusted OS without being verified. Proxos [45]

splits system calls and forwards sensitive system calls

to a trusted private OS to protect applications from an

untrusted OS. However, Proxos needs application devel-

opers to specify the splitting rule and has a large TCB

(encompassing the entire private OS).

Protecting Security-Sensitive Code. Researchers have

also explored many systems for isolating sensitive code

using virtualization, microkernels, and other low-level

mechanisms [20, 45, 42, 36, 35, 7], or by running

the code inside trusted hardware [11, 28, 44]. The

virtualization-based schemes contain a large TCB. Other

schemes either do not enjoy compatibility with a large

set of commodity systems or require significant porting

effort. TrustVisor [35] and Flicker [36] isolate the Se-

curity Sensitive Portion of an Application (SSPA) from

an untrusted OS with a small TCB. Because constrained

interfaces are exposed between the isolated SSPA and

the untrusted OS in TrustVisor and Flicker, the isolated

SSPA in both is not vulnerable to Iago attack. How-

ever, TrustVisor and Flicker do not provide a mini-

mized service runtime to support the execution of the

isolated SSPA. Thus, porting security-sensitive applica-

tions on TrustVisor or Flicker requires significant efforts.

Nizza [42] also requires developers to perform similar

operations to port sensitive applications to Nizza. Mini-

Box exposes trustworthy computing abstractions to the

application running on MiniBox. These facilities are im-

plemented at the hypervisor layer, extending the chain of

trust from hardware support for dynamic root of trust. In

this sense they are similar to TrustVisor [35], or SICE [7].

Sandbox for x86 Native Code. Google Native

Client [55] confines untrusted native code using SFI [34,

43, 49] and enables developers to port native code as web

applications. However, the NaCl sandboxing mechanism

depends on a validator that validates all instructions in

the application. If the validator has vulnerabilities, privi-

leged instructions may break out of NaCl sandbox. draw-

bridge [18, 40] isolates an application in a picoprocess

and provides a library OS to the isolated application. In

this way, a misbehaving application cannot compromise

other application or the OS on Drawbridge. The isola-

tion property is similar to MiniBox. However, Draw-

bridge provides only one-way protection. A malicious

OS can compromise the application running in a pico-

process. TxBox [27] confines an untrusted application

by executing the application in a system transaction and

conducting security check. MBox [29] protects the host

file system from an untrusted application by exposing

a virtual file system on top of the host file system for

the application. Both TxBox and MBox only protect the

OS from an untrusted application. Capsicum [50] sup-

ports capability-sandbox for applications on UNIX-like

OS (e.g., FreeBSD). It focuses on application compart-

mentalization and fine-grained access control. The pro-

tection mechanisms provided by Capsicum can be ap-

plied on MiniBox as part of the OS protection modules.

Cloud Security. We describe previous work that se-

cures cloud computation against malicious cloud admin-

istrators or malware on cloud platforms. CloudVisor [58]

protects the guest virtual machine instance (VMI) from

unauthorized access by isolating the guest VMI from

other VMIs (including the control VMI) and from the

Xen hypervisor by leveraging nested page-based iso-

lation and nested virtualization technology. However,

CloudVisor does not prevent attacks from inside the

guest VMI. For example, the adversary (e.g., a malicious

cloud administrator) could inject malware into the guest

OS image before the guest OS is launched on the cloud

platform without being detected. Also the large code size

of the guest OS makes it challenging to guarantee the

14

runtime security of the guest OS though the guest VMI

is protected by CloudVisor. Credo [41] measures the in-

tegrity of the guest OS during bootstrap with a static root

of trust. However, the large code size of the guest OS

makes it challenging to guarantee the runtime security on

that OS. A certified operating system for cloud comput-

ing [30, 23, 53] may protect the customer’s application

from malware on the cloud. However, without attesta-

tion, malicious cloud administrators could inject mali-

cious code into the customer’s application or the certi-

fied OS on the cloud without being detected. SSC [9]

exposes control VMs to cloud customers, enabling cloud

customers to protect and control their own VMs. How-

ever, SSC still has a large TCB and does not focus on

application-level protection. Recent work to break up

popular hypervisors into systems more closely resem-

bling micro-kernel architectures also show promise for

TCB reduction [15].

9 Conclusion

MiniBox makes the first attempt toward a two-way sand-

box with a minimized and secure communication inter-

face between OS protection modules and an application.

MiniBox provides efficient sandboxing mechanism with

a small TCB, protects applications against Iago attack,

and provides an efficient execution environment for iso-

lated applications. Though the environment switch on

MiniBox causes overhead in file I/O, the overhead can

be reduced by cache buffers. MiniBox does not require

any modifications to the OS and offers an easy way to

port native code. We expect that MiniBox can be used in

PaaS cloud computing or web browsers to offer two-way

protections.

References

[1] ABADI, M., BUDIU, M., ERLINGSSON, U., AND LIGATTI, J.

CFI: Principles, implementations, and applications. In Proc.

ACM Conference and Computer and Communications Security

(CCS) (2005).

[2] ABADI, M., BUDIU, M., ERLINGSSON, U., AND LIGATTI, J.

Control-flow Integrity Principles, Implementation, and Applica-

tions. ACM Transaction on Information and System Security

(TISSEC) 13 (2009), 1 – 40.

[3] ABADI, M., BUDIU, M., ÚLFAR ERLINGSSON, AND LIGATTI,

J. A theory of secure control flow. In Proc. Conference on Formal

Engineering Methods (2005).

[4] ABATU, U., GUERON, S., JOHNSON, S. P., AND SCARLATA,

V. R. Innovative technology for cpu based attestation and sealing.

In Proceedings of the 2nd International Workshop on Hardware

and Architectural Support for Security and Privacy (New York,

NY, USA, 2013), HASP ’13, ACM.

[5] ADVANCED MICRO DEVICES. AMD64 architecture program-

mer’s manual: Volume 2: System programming. AMD Publica-

tion no. 24593 rev. 3.14, Sept. 2007.

[6] ANSEL, J., MARCHENKO, P., ERLINGSSON, U., TAYLOR, E.,

CHEN, B., SCHUFF, D. L., SEHR, D., BIFFLE, C. L., AND

YEE, B. Language-independent sandboxing of just-in-time com-

pilation and self-modifying code. SIGPLAN Not. 47, 6 (June

2011), 355–366.

[7] AZAB, A. M., NING, P., AND ZHANG, X. SICE: a hardware-

level strongly isolated computing environment for x86 multi-core

platforms. In Proc. ACM Conference on Computer and Commu-

nications Security (2011).

[8] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S.,

HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I., AND

WARFIELD, A. Xen and the art of virtualization. In Proc. Sym-

posium on Operating Systems Principles (2003).

[9] BUTT, S., SRIVASTAVA, H. A. L.-C. A., AND GANAPATHY, V.

SelfService Cloud Computing. In Proc. ACM Conference and

Computer and Communications Security (CCS) (2012).

[10] CHECKOWAY, S., AND SHACHAM, H. Iago attacks: Why the

system call api is a bad untrusted rpc interface. In Proc. Architec-

tural Support for Programming Languages and Operating Sys-

tems (ASPLOS) (Mar. 2013).

[11] CHEN, B., AND MORRIS, R. Certifying program execution with

secure processors. In Proceedings of HotOS (2003).

[12] CHEN, H., ZHANG, F., CHEN, C., YANG, Z., CHEN, R.,

ZANG, B., YEW, P., AND MAO, W. Tamper-resistant execu-

tion in an untrusted operating system using a VMM. Tech. Rep.

FDUPPITR-2007-0801, Fudan University, 2007.

[13] CHEN, X., GARFINKEL, T., LEWIS, E. C., SUBRAHMANYAM,

P., WALDSPURGER, C. A., BONEH, D., DWOSKIN, J., AND

PORTS, D. R. Overshadow: a virtualization-based approach to

retrofitting protection in commodity operating systems. In ASP-

LOS (2008).

[14] CHENG, Y., DING, X., AND DENG, R. AppShield: Protect-

ing applications against untrusted operating system. In Singa-

port Management University Technical Report, SMU-SIS-13-101

(2013).

[15] COLP, P., NANAVATI, M., ZHU, J., AIELLO, W., COKER, G.,

DEEGAN, T., LOSCOCCO, P., AND WARFIELD, A. Breaking up

is hard to do: Security and functionality in a commodity hypervi-

sor. In Proc. ACM Symposium on Operating Systems Principles

(2011).

[16] DARROW, B. Google App Engine by the

numbers. http://gigaom.com/2012/06/28/

google-app-engine-by-the-numbers/.

[17] DEWAN, P., DURHAM, D., KHOSRAVI, H., LONG, M., AND

NAGABHUSHAN, G. A hypervisor-based system for protecting

software runtime memory and persistent storage. In Proc. Spring

Simulation Multiconference (2008).

[18] DOUCEUR, J. R., ELSON, J., HOWELL, J., AND LORCH, J. R.

Leveraging legacy code to deploy desktop applications on the

web. In Proceedings of the 8th USENIX conference on Operating

systems design and implementation (Berkeley, CA, USA, 2008),

OSDI’08, USENIX Association, pp. 339–354.

[19] FRANK, M., ILYA, A., ALEX, B., V, R. C., HISHAM, S., VED-

VYAS, S., AND R, S. U. Innovative instructions and software

model for isolated execution. In Proceedings of the 2nd Inter-

national Workshop on Hardware and Architectural Support for

Security and Privacy (New York, NY, USA, 2013), HASP ’13,

ACM, pp. 10:1–10:1.

[20] GARFINKEL, T., PFAFF, B., CHOW, J., ROSENBLUM, M., AND

BONEH, D. Terra: A virtual machine-based platform for trusted

computing. In Proc. ACM Symposium on Operating System Prin-

ciples (SOSP) (2003).

[21] GONG, L. Java 2 Platform Security Architecture.

http://docs.oracle.com/javase/6/docs/technotes/

guides/security/spec/security-spec.doc.html.

15

[22] GRAWROCK, D. The Intel Safer Computing Initiative: Building

Blocks for Trusted Computing. Intel Press, 2006.

[23] GU, L., VAYNBERG, A., FORD, B., SHAO, Z., AND

COSTANZO, D. CertiKOS: A Certified Kernel for Secure Cloud

Computing. In Proceedings of the 3rd ACM SIGOPS Asia-Pacific

Workshop on Systems (2011).

[24] HOEKSTRA, M., LAL, R., PAPPACHAN, P., PHEGADE, V., AND

DEL CUVILLO, J. Using innovative instructions to create trust-

worthy software solutions. In Proceedings of the 2nd Interna-

tional Workshop on Hardware and Architectural Support for Se-

curity and Privacy (New York, NY, USA, 2013), HASP ’13,

ACM, pp. 11:1–11:1.

[25] HOFMANN, O., DUNN, A., KIM, S., LEE, M., AND WITCHEL,

E. Inktag: Secure applications on an untrusted operating system.

In Proc. Architectural Support for Programming Languages and

Operating Systems (ASPLOS) (Mar. 2013).

[26] INTEL CORPORATION. Intel 64 and IA-32 architectures software

developer’s manual volume 3b: System programming guide, part

2. Order Number: 325384-048US, Sept. 2013.

[27] JANA, S., PORTER, D. E., AND SHMATIKOV, V. Txbox: Build-

ing secure, efficient sandboxes with system transactions. In Pro-

ceedings of the 2011 IEEE Symposium on Security and Privacy

(Washington, DC, USA, 2011), SP ’11, IEEE Computer Society,

pp. 329–344.

[28] JIANG, S., SMITH, S., AND MINAMI, K. Securing web servers

against insider attack. In Proc. Computer Security Applications

Conference (2001).

[29] KIM, T., AND ZELDOVICH, N. Practical and effective sand-

boxing for non-root users. In Proceedings of the 2013 USENIX

conference on USENIX annual technical conference (2013),

USENIXATC’13.

[30] KLEIN, G., ELPHINSTONE, K., HEISER, G., ANDRONICK, J.,

COCK, D., DERRIN, P., ELKADUWE, D., ENGELHARDT, K.,

KOLANSKI, R., NORRISH, M., SEWELL, T., TUCH, H., AND

WINWOOD, S. seL4: formal verification of an OS kernel. In

ACM SOSP (2009).

[31] KORTCHINSKY, K. CloudBurst: A VMware Guest to Host Es-

cape Story. In Black Hat’09.

[32] LOUP GAILLY, J., AND ADLER, M. zlib open source library.

http://www.zlib.net.

[33] MAHESHWARI, U., VINGRALEK, R., AND SHAPIRO, W. How

to build a trusted database system on untrusted storage. In Pro-

ceedings of the 4th conference on Symposium on Operating Sys-

tem Design & Implementation - Volume 4 (Berkeley, CA, USA,

2000), OSDI’00, USENIX Association, pp. 10–10.

[34] MCCAMANT, S., AND MORRISETT, G. Evaluating sfi for a cisc

architecture. In Proc. USENIX Security (2006).

[35] MCCUNE, J. M., LI, Y., QU, N., ZHOU, Z., DATTA, A.,

GLIGOR, V., AND PERRIG, A. TrustVisor: Efficient TCB re-

duction and attestation. In Proceedings of the IEEE Symposium

on Security and Privacy (2010).

[36] MCCUNE, J. M., PARNO, B., PERRIG, A., REITER, M. K.,

AND ISOZAKI, H. Flicker: An execution infrastructure for TCB

minimization. In Proceedings of the European Conference on

Computer Systems (EuroSys) (Apr. 2008).

[37] MITCHELL, M., STERLING, A., AND MILLER, A. Cbit-

coin open source project. http://code.google.com/p/

naclports/.

[38] ONARLIOGLU, K., MULLINER, C., ROBERTSON, W., AND

KIRDA, E. Privexec: Private execution as an operating system

service. In Proceedings of the 2013 IEEE Symposium on Secu-

rity and Privacy (Washington, DC, USA, 2013), SP ’13, IEEE

Computer Society, pp. 206–220.

[39] OPENSSL PROJECT TEAM. OpenSSL. http://www.openssl.

org/, May 2005.

[40] PORTER, D. E., BOYD-WICKIZER, S., HOWELL, J., OLINSKY,

R., AND HUNT, G. C. Rethinking the library os from the top

down. SIGPLAN Not. 46, 3 (Mar. 2011), 291–304.

[41] RAJ, H., ROBINSON, D., TARIQ, T. B., ENGLAND, P.,

SAROIU, S., AND WOLMAN, A. Credo: Trusted Computing for

Guest VMs with a Commodity Hypervisor. In Microsoft Techni-

cal Report MSR-TR-2011-130 (2011).

[42] SINGARAVELU, L., PU, C., HÄRTIG, H., AND HELMUTH, C.

Reducing TCB complexity for security-sensitive applications. In

EuroSys (2006).

[43] SMALL, C., AND SELTZER, M. I. Misfit: Constructing safe

extensible systems. IEEE Concurrency 6, 3 (1998), 34–41.

[44] SMITH, S. W., AND WEINGART, S. Building a high-

performance, programmable secure coprocessor. Computer Net-

works 31, 8 (Apr. 1999).

[45] TA-MIN, R., LITTY, L., AND LIE, D. Splitting interfaces:

Making trust between applications and operating systems con-

figurable. In ACM SOSP (2006).

[46] VASUDEVAN, A., CHAKI, S., JIA, L., MCCUNE, J., NEW-

SOME, J., AND DATTA, A. Design, implementation and veri-

fication of an extensible and modular hypervisor framework. In

Proceedings of the 34th IEEE Symposium on Security and Pri-

vacy (May 2013).

[47] VASUDEVAN, A., MCCUNE, J. M., AND NEWSOME, J. De-

sign and implementation of an extensible and modular hypervisor

framework. Tech. Rep. CMU-CyLab-12-014, CMU CyLab, June

2012.

[48] VULNERABILITY, C., AND EXPOSURE. Xen: secu-

rity vulnerability. http://www.cvedetails.com/

vulnerability-list/vendor_id-6276/XEN.html.

[49] WAHBE, R., LUCCO, S., ANDERSON, T. E., AND GRAHAM,

S. L. Efficient software-based fault isolation. In ACM SOSP

(1993).

[50] WATSON, R. N. M., ANDERSON, J., LAURIE, B., AND KEN-

NAWAY, K. Capsicum: Practical capabilities for unix. In Pro-

ceedings of the 19th USENIX Conference on Security (Berkeley,

CA, USA, 2010), USENIX Security’10, USENIX Association,

pp. 3–3.

[51] WEINHOLD, C., AND HÄRTIG, H. Vpfs: building a virtual pri-

vate file system with a small trusted computing base. In Proceed-

ings of the 3rd ACM SIGOPS/EuroSys European Conference on

Computer Systems 2008 (New York, NY, USA, 2008), Eurosys

’08, ACM, pp. 81–93.

[52] WEINHOLD, C., AND HÄRTIG, H. jvpfs: adding robust-

ness to a secure stacked file system with untrusted local storage

components. In Proceedings of the 2011 USENIX conference

on USENIX annual technical conference (Berkeley, CA, USA,

2011), USENIXATC’11, USENIX Association, pp. 32–32.

[53] YANG, J., AND HAWBLITZEL, C. Safe to the last instruction:

automated verification of a type-safe operating system. SIGPLAN

Not. 45, 6 (June 2010), 99–110.

[54] YANG, J., AND SHIN, K. Using hypervisor to provide data se-

crecy for user applications on a per-page basis. In Proc. ACM

Conference on Virtual Execution Environments (VEE) (2008).

[55] YEE, B., SEHR, D., DARDYK, G., CHEN, J. B., MUTH, R.,

ORM, T., OKASAKA, S., NARULA, N., FULLAGAR, N., AND

GOOGLE INC. Native client: A sandbox for portable, untrusted

x86 native code. In Proceedings of the IEEE Symposium on Se-

curity and Privacy (2009).

16

[56] YEE, B., SEHR, D., DARDYK, G., CHEN, J. B., MUTH, R.,

ORMANDY, T., OKASAKA, S., NARULA, N., AND FULLAGAR,

N. Native Client: A sandbox for portable, untrusted x86 native

code. Communications of the ACM 53, 1 (2010), 91–99.

[57] YEE, B. S. Using Secure Coprocessors. PhD thesis, Carnegie

Mellon University, 1994.

[58] ZHANG, F., CHEN, J., CHEN, H., AND ZANG, B. Cloudvisor:

retrofitting protection of virtual machines in multi-tenant cloud

with nested virtualization. In Proceedings of the ACM Symposium

on Operating Systems Principles (2011).

[59] ZHANG, Y., JUELS, A., REITER, M. K., AND RISTENPART,

T. Cross-vm side channels and their use to extract private keys.

In Proceedings of the 2012 ACM conference on Computer and

communications security (New York, NY, USA, 2012), CCS ’12,

ACM, pp. 305–316.

17

