
SAFES: Sand-boxed Architecture for Frequent Environment
Self-measurement

Toshiki Kobayashi
NEC Corporation

t-kobayashi@ib.jp.nec.com

Takayuki Sasaki
NEC Corporation

t-sasaki@fb.jp.nec.com

Astha Jada
NEC Corporation

a-jada@aj.jp.nec.com

Daniele E. Asoni
ETH Zürich

daniele.asoni@inf.ethz.ch

Adrian Perrig
ETH Zürich

adrian.perrig@inf.ethz.ch

ABSTRACT
Monitoring software of low-end devices is a key part of defense in
depth for IoT systems. These devices are particularly susceptible to
memory corruption vulnerabilities because the limited computa-
tional resources restrict the types of countermeasures that can be
implemented. Run-time monitoring therefore is fundamental for
the security of these devices. We propose a monitoring architecture
for untrusted software at the I/O event granularity for TrustZone-
enabled devices. The architecture enables us to measure the in-
tegrity of the code immediately before its execution is triggered by
any input. To verify the integrity in a lightweight manner, we stati-
cally determine the minimal code region that needs to be measured
based on the I/O operation. We develop a prototype of the architec-
ture using TrustZone-M and demonstrate that our prototype has a
low processing overhead and small ROM memory footprint.
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1 INTRODUCTION
Cyberattacks are spreading widely to various embedded systems
such as industrial systems, critical infrastructure, and biomedical in-
strumentation. Many security products and technologies developed
for traditional IT systems are not well suited to provide end-point
protection for low-end embedded devices with a microcontroller
unit (MCU) [19]. The most common and simple class of attacks
against such devices exploits a memory bug to overwrite software
code in memory [18]. The usual way to mitigate such code corrup-
tion attacks is by placing the executable code in read-only memory
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regions, which are set up and managed by the OS with the sup-
port of the hardware. However, some low-end embedded devices
cannot support such code integrity enforcement due to the lim-
ited resources available given real-time requirements. Furthermore,
even when such memory protection is supported, it can be recon-
figured when the processor is running in privileged mode (also
known as kernel or handler mode), meaning that a memory bug
may be exploited to disable the read-only memory protection.

To ensure code integrity on low-end devices, several attestation
schemes have been proposed [17]. Remote attestation enables a
device owner to check the code integrity of a remote device, and
it is typically based on hardware-based security technologies such
as Trusted Platform Module (TPM) [8] or Intel’s Software Guard
Extensions (SGX) [10]. However, the biggest issue of remote attesta-
tion is the gap between the Time-of-Check and Time-of-Use (TOC-
TOU) [2]. Remote attestation can guarantee code integrity at a
particular point in time, but it cannot ensure runtime integrity after
that point, nor can it guarantee that no compromise happened in
the past. Some attestation schemes have been proposed which at-
tempt to solve this problem. ICE [15] enforces code execution after
code checking by disabling interrupts. However, such solutions are
not suitable for embedded devices for which interrupts are critical.
ERASMUS [3] proposed periodic self measurement, an effective
approach to reduce the TOCTOU gap: in this paper we build on
this idea, with the aim of improving the security guarantees.

1.1 Goals and contributions
This paper proposes SAFES (Sand-boxed Architecture for Frequent
Environment Self-measurement), an architecture for efficient and
secure self-measurement of the code running on an embedded
device. SAFES enables us to measure the integrity of the code in the
sand-boxed environment at each I/O event. The measurement at
input time ensures the integrity of the code and prevents tampered
code from generating output from the device.

We also introduce small-area code measurements to reduce the
overhead. Our scheme utilizes I/O data such as user commands
to identify the smallest code region that should be measured. We
statically analyze a program image to obtain a code structure at
compilation time, which forms the base for the runtime attestation.
We note that we limit our scope to MCU programs that have a static
memory layout and do not support dynamic code loading.

The main contributions of this paper are the following.
• We propose novel scheme for runtime code verification
which ensures the execution of correct code on the device
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and that no output is generated when the code is changed.
In contrast to related work, our scheme reduces TOCTOU
risk by performing self measurements at I/O events. At the
same time, the scheme achieves low overhead by measuring
only the code regions executed for the specific I/O event.
• We implement a prototype of SAFES on ARM Versatile Ex-
press Cortex-M Prototyping System (V2M-MPS2+).
• We evaluate our prototype, demonstrating low execution
overhead and small program binary size.

2 PROBLEM STATEMENT
2.1 Code tampering
In industrial systems, the embedded devices constitute the bridge
between the computational and the physical world by the use of
sensors and actuators. Thus malicious attacks can cause physical
damage to products and facilities, and even harm to humans. Code
tampering is the most straightforward way to execute arbitrary
code on a vulnerable device. The adversary overwrites a part of
the code on the device’s memory by leveraging vulnerabilities. For
example, the adversary could make an invalid pointer go out of
bounds or become dangling, and then use it to overwrite memory
regions containing executable code. Even though code integrity
is enforced by the OS on modern systems, many embedded de-
vices do not support it due to limited computational resources and
real-time constraints. Additionally, embedded devices should be
working in real-time. Some additional scanning on the devices for
ensuring code integrity introduces overhead and may break its
real-time guarantees. These problems make it difficult to ensure
code integrity.

To protect the devices from physical attacks using code tamper-
ing, we aim to satisfy the following requirements:
• Detect code tampering shortly after it happened;
• Prevent tampered code from generating output;
• Keep the overhead of the countermeasures low to satisfy
real-time execution constraints.

2.2 Trust model (Adversarial model)
We consider an adversary performing a runtime attack against
a target device to violate code integrity by exploiting memory
errors. We assume the device has a trusted environment that has
no vulnerability and cannot be compromised, and an untrusted
environment that may be susceptible to memory errors caused by
user input. Thus the adversary can overwrite a memory region
of the untrusted environment via a user input port. We make the
following assumptions on the adversarial capabilities:
• Only attacks via a serial or a network port for user input
are possible against the target device. In particular, physical
attacks and side channel attacks are ruled out.
• Trusted code (i.e., code running in the secure world) cannot
be compromised and has no vulnerability.
• The adversary can change the code everywhere in the un-
trusted environment. However, we assume that for a single
input (and therefore, for a single attack instance, e.g., a single
buffer overflow) the adversary cannot both modify the code
and then change it back to the original.
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Figure 1: System model of a sandboxed architecture with
code measurement. The monitor code checks the control
code per I/O event.

In this work, we do not consider control-flow hijacking without
any code tampering such as Return-Oriented Programming [16]
and data-only attacks such as non-control data attacks [4] and
Data-Oriented Programming [9].

3 ARCHITECTURE DESIGN
3.1 ARM TrustZone-M
We consider a code verification method based on TrustZone-M as
a trust anchor. Code verification is achieved by measuring code
integrity, for instance by checking its hash value. Since the device
verifies its code locally, the verification needs to securely compute
the hash value of the code, and to store on the device a whitelist
of hash values which are considered to be correct. To realize these
requirements, we use TrustZone-M as a trusted execution environ-
ment on ARMv8-M architecture [13].

TrustZone-M introduces a hardware-supported security exten-
sion which allows the creation of two separate worlds, the secure
world and the normal world. The secure world has higher privileges
and typically is used to run a small trusted kernel. The normal
world instead is typically used to execute a full-fledged, untrusted
OS. TrustZone allows software running in the secure world to con-
trol and access the data of the normal world, while the normal
world is prevented from accessing the secure world. Furthermore,
TrustZone’s hardware informs the memory controllers and periph-
erals about whether an access originates from the normal or from
the secure world, allowing the enforcement of access control by
the secure world.

3.2 Per-I/O measurement
We introduce a per-I/O measurement to check the executing code
at every I/O event to reduce the TOCTOU gap. Fig. 1 shows our
system model. The device’s MCU communicates with a user (or a
software controller), a sensor and an actuator. The control code that
resides in the normal world controls the actuator and returns certain
values to the user based on user commands and sensor readings.
The monitor code residing in the secure world measures the code
integrity of the control code. Every input/output to/from the system
goes through the monitor and triggers an integrity check.

Here we assume that the target device receives commands from
the user or a software controller, and executes functions that corre-
spond to the command. These functions are used for changing the
internal state and to produce outputs for the user, other devices, or
for elements such as displays, actuators and LEDs. This assumption
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Figure 2: (a) Example of detectable tampering. (b) Example
of code recovery, with the altered code changing itself back
to the original to avoid detection: we exclude this scenario.

limits the scope of applications. However, it is an assumption that
commonly applies to embedded devices, since most of them are
configured and controlled by commands, and perform some sensor
reading or physical action as a result.

If the control code has a vulnerability causing a memory error,
an adversary can potentially tamper with the code everywhere
in the normal world. In particular, since the timing of tampering
is right after an input event, and therefore after a measurement,
there is a TOCTOU gap between tampering and code measurement
at the output event that follows the input event. To successfully
perform an attack without detection, the adversary would need to
perform three actions: tampering, executing and recovering, within
the gap. An example of a failure by the adversary is shown in
Fig. 2(a): there is a single memory corruption vulnerability between
I/O events, so the adversary can modify the code that is executed,
but the modification is detectable before the output is generated.
In particular, a scenario as shown in Fig. 2(b) is not realistic, since
it would require the adversary to both change the executed code,
and then modify the code back to the original state, with a single
memory error attack.

After the detection of tampering, the monitor code can either
safely shut down the system or report the error so further recovery
steps can be performed. In this way, the monitor prevents the mali-
cious execution from controlling the output. The desired actions
in that case strongly depend on the specific use case. Therefore, it
should be considered for each application.

3.3 Small-area code measurement
Although a per-I/O measurement is sufficiently frequent to prevent
malicious code from compromising the device’s behavior, the execu-
tion time overhead will be significant, and possibly intolerable, for
time-critical systems, if at every measurement the entire executable
needs to be verified. To reduce the overhead of the measurement,
we therefore propose a small area code measurement that reduces
the scan area of each code integrity check based on the specific I/O
operation performed. The basic concept is illustrated in Fig. 3(a).
When the user sends the command B, the monitor code measures
only the part of the control code related to command B. In order
to obtain a code structure related to user commands, we perform
(prior to deployment) an analysis of the binary of the control code,
as shown in Fig. 3(b). In this figure, functions of the code are ag-
gregated based on user commands by using a function call-graph.
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Figure 3: (a) Basic concept of small-area code measurement.
(b) Example of code partitioning for small-area code mea-
surement using a function-call graph.

Then the monitor code measures the code integrity for each user
command at its input time. The sequence of steps for small-area
code measurements is the following: (1) receive the user command
from the user, (2) call the monitor code with the identifier of user
command, (3) check the part of control code related to the user
command, and (4) execute the code if it is correct. Narrowing down
the focus of the measurements in this way allows us to reduce the
execution time overhead of each measurement. We can further op-
timize and reduce the code region to be measured by analyzing the
control-flow graph instead of the call-graph, trading off additional
effort in the offline analysis for faster measurements at runtime.

In the above example, we have focused on a user command, but
the same applies to all I/O operations. For example, when some
GPIO access is used for reading sensor values, a code measurement
at the GPIO access can monitor only a part of code related to the
sensor. However, reducing the scan area is a trade-off with security.
If the adversary modifies the code at a different location from the
scan area, the code measurement will miss the attack. However,
whenever the tampered code region is about to be executed because
of another input, the attack will be detected.

4 IMPLEMENTATION
We implemented a proof-of-concept prototype of SAFES on the
ARM Versatile Express Cortex-M Prototyping System MPS2+ con-
figured as a Cortex-M33 processor executing at 25 MHz.

We designed the entire system including a control code that com-
municates with a user, with a sensor and an actuator. There are three
threads on Keil RTX RTOS with the following tasks, respectively:
processing user commands, reading sensor values, controlling an
actuator. In order to access I/O from the control code in the normal
world, we defined Non-Secure Callable (NSC) functions as inter-
faces of the UART and GPIO ports for communicating with the user
and with the sensor/actuator, respectively. Each interface results in
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Figure 4: Overhead of the code measurement vs. code size.

a call for the monitor code with an identifier specifying which part
should be measured.

For our prototype, we construct a whitelist based on the function-
call graph. Fig. 3(b) shows an example of partitions of the whitelist’s
components. We aggregate the function lists of entry points corre-
sponding to each user command. We then compute the hash values
of these functions and register them, together with the information
about target addresses, in the whitelist, associated with an identi-
fier. The monitor code obtains the identifier from the caller and the
memory addresses from the whitelist, and computes the hash value.
We rely on SHA-256 for computing the hash values.

5 EVALUATION
We evaluate our prototype in terms of detection of code tampering
and in terms of performance. To detect code tampering, we imple-
ment buffer overflow bugs on array indexing, allowing direct access
to any point in the memory of the normal world by using negative
integer indexing. Using the memory bugs, we verify that the code
measurement is working as expected, detecting the attacks.

To evaluate the performance, we measure the overhead of the
tamper detection process. The results are shown in Fig. 4. We mea-
sure the overhead for different sizes of monitored code regions,
with the largest code region being 1 kB. The dashed line is obtained
by the best fit with A x+ B, where x represents code size, A = 2.49
us/Byte and B = 132 us. In this evaluation, we disable interrupts
while the hash calculation is performed. The size-dependent term
of 2.49 us/Byte is mainly caused by the hash calculation. The size
independent term of 132 us seems negligible. It includes the context
switching between the secure world and the normal world. Owing
to TrustZone-M, the context switching overhead is minimal. To
check the impact of interrupts from threads in the normal world,
we also measured the overhead when we enable interrupts from
a thread for reading sensor values. We find that when the mea-
surement is interrupted by the sensor thread once, the measured
overhead was increased by about 0.03 ms. Regarding the security of
interrupts, we note that threads in the normal world cannot affect
the result of code integrity measurement because the measurement
is executed in the secure world. On the other hand, an interrupting
thread, if malicious, may alter the code being measured and possibly
hide the fact that it had been previously altered. However, the code
of the malicious thread is either being run as the result of another

I/O event, in which case the code of the malicious thread will itself
be measured and detected as being altered, or else caused by the
same I/O event that invoked the code for the interrupted thread,
in which case our assumption about the hardness of self-erasing
code injections implies that the compromised code of the malicious,
interrupting thread will be detected.

As for our prototype, the overhead of single small-area measure-
ment is mostly less than a few milliseconds since most whitelist
contents are smaller than 1 kB. This is sufficiently small for an IoT
device since typically a single scan cycle of a programmable logic
controller lasts for a few milliseconds on average, while for devices
requiring Internet communication, we note that the network delay
alone is much larger. If we do not use small-area code measurement,
the total code size in the normal world of 15 kB takes 37 ms for
every measurement. Although the effectiveness of small-area code
measurement depends on the software’s structure, most complex
software has portions of codewhich are unused, andwhosememory
could therefore be ignored by small-area code measurement.

We also measure the code size of the monitor code by compiling
our prototype with and without the code measurement. We found
the (machine) code size of the monitor to be 2.5 kB. This includes the
hash function and the calls to the monitor code in the normal world
software. Although the calls are deployed on each I/O interface,
their cost in terms of ROM data is only 8 bytes per call. Therefore,
the difference in code size is mainly due to the hash function, and
is sufficiently small given the MCU’s memory.

As additional costs, we also consider the memory overhead of
the whitelist and the implementation cost of the I/O interface in the
secure world. In our prototype, each entry of thewhitelist comprises
a set of memory addresses, function addresses and a hash value of
the function code. We implement the whitelist as a static array that
can store the addresses and lengths of 20 code regions. The size of
each entry is 116 bytes. The size of the whitelist depends on the
complexity of target software and on the measurement granularity.
As for the implementation cost of the I/O interfaces, it is minimal,
since they only need to forward calls to the original I/O drivers in
the secure world.

6 SECURITY CONSIDERATIONS
In this work, we focus exclusively on code integrity. This means in
particular that control-flow hijacking attacks cannot be detected nor
prevented with our scheme: changes in the control flow, e.g., if the
functions are executed in different sequence due to an overwritten
return pointer, cannot be detected by our scheme since the code
is not changed by such attacks. Therefore incorporating control
flow integrity would be a way to harden the security of embedded
devices further, and a promising direction for future work.

We also note that we only focus on self measurement, in which
trusted code in the secure world measures untrusted code locally.
This may be integratedwith remote attestation, withwhich the state
of the device can be periodically checked by a remote verifier [6].

7 RELATEDWORK
Prior work on runtime attestation aims to protect the integrity of the
system during the execution. C-FLAT [1] is a dynamic attestation
scheme that enables the verification of the control flow of software



to prevent runtime attacks that hijack the software’s execution. It
checks whether the control flow is benign or malicious based on the
software’s control-flow graph obtained by offline binary analysis.
While C-FLAT requires instrumentation of software, LO-FAT [7]
uses hardware components (IP blocks) to check the correctness of
the control flow without requiring changes to the original software.
Such control-flow attestation schemes are neither strictly weaker
nor strictly stronger than our code integrity protection mechanism.
For example, by using a buffer overflow, the attacker may be able to
hijack an existing buffer copy to write malicious code into memory,
while still preserving all the jump pointers of the original code. The
control-flow attestation mechanisms cannot detect such attacks,
while SAFES will detect any modification to the code. On the other
hand, with SAFES it is impossible to detect attacks that are purely
based on control-flow hijacking, while they are easily detectable by
control-flow attestation. We therefore do not consider the two ap-
proaches as competing, but rather as complementary mechanisms
to harden the security of embedded devices.

There have also been several proposals to mitigate runtime at-
tacks [18]. Stack cookies (also known as canaries) and address space
layout randomization [11] are well investigated approaches. How-
ever, these solutions are not supported on most embedded OSes
due to the limited resources available given real-time requirements.
Tock [12] is an OS for resource-constrained MCUs which allows
software fault isolation, provides memory protection and manages
dynamic memory allocation efficiently. These features harden the
security of embedded devices in general. CaRE [14], which is also
complementary to our approach, can enforce return integrity for
TrustZone-enabled MCUs. CaRE utilizes a shadow call stack [5]
which holds a copy of the return addresses in secure world. Al-
though its control-flow protection supports only return addresses,
it covers interrupt-driven devices.

7.1 Hardware-supported protection
The security of SAFES is based TrustZone-M’s hardware-based fea-
tures. Initially, ARMTrustZone was designed for high-end Cortex-A
processors, but with TrustZone-M the same strong isolation capa-
bilities are made available to MCUs. Currently, only a small subset
of Cortex-M processors support TrustZone, but we believe that as
ARM and the IoT industry move towards adopting security as a
fundamental design aspect for IoT devices [20], a larger fraction of
processors will support TrustZone or similar technologies.

ARM also offers simpler security features besides TrustZone,
such as thememory protection unit (MPU), which can be configured
to, e.g., make the code region read-only during normal execution.
However, when the MCU is running in privileged (handler) mode,
theMPUmay be reconfigured bywriting to the appropriatememory
region used for system control [13]. To achieve security in depth,
it may be reasonable to use the MPU along with SAFES, since
their scope is somewhat orthogonal: for instance, the MPU can
protect normal world memory regions used for system control
and peripheral control during unprivileged execution, an attack on
which may not be detectable with SAFES.

8 CONCLUSIONS
The security of safety- and time-critical embedded devices faces nu-
merous challenges. Lack of code integrity enforcement is the most
critical point for protecting these devices. In this paper we intro-
duce SAFES, a system for monitoring the code integrity of low-end
devices at the frequency of I/O events. This system enables us to
ensure the integrity of code regions before their execution, and be-
fore they are allowed to generate output of their execution results.
To minimize the overhead of this scheme, we perform integrity
checks on minimal code areas, based on the pre-computed execu-
tion paths corresponding to each user command. Our prototype
implementation based on TrustZone-M can detect code tampering,
and demonstrates good performance. We discuss how SAFES can be
integrated with other techniques such as control-flow integrity and
remote attestation, showing how our scheme fits into the general
security ecosystem of embedded devices.
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