
Polaris: End-to-End Path Optimization by End Hosts

Elham Ehsani Moghadam† Patrick Wicki† François Wirz† Jordi Subirà Nieto† Yih-Chun Hu‡ Adrian Perrig†
†ETH Zurich ‡University of Illinois at Urbana-Champaign

Abstract—Path-aware networking (PAN) enables endpoints to
locally select end-to-end network paths based on path prop-
erties. This approach contrasts with the traditional Internet
architecture, where routers determine the next hop towards the
destination based on the routing information provided by the
Border Gateway Protocol (BGP). By providing this additional
transparency and control, PAN opens up opportunities to op-
timize path selection, with the potential to enhance network
performance and user experience metrics.

In this paper, we evaluate the potential benefits of PAN for
enhancing end-to-end performance. We design Polaris, a concrete
feedback-driven path optimization mechanism for PAN, and
study its impact on Quality of Service (QoS) as compared to
current Internet mechanisms. Our extensive simulation results
show the viability and effectiveness of Polaris, revealing that it
outperforms the current Internet mechanisms by an average of
42% improvement in receiving rate and 81% reduction in median
loss, in the presence of background traffic.

Index Terms—Path Selection, Path Aware Networking, Quality
of Service

I. INTRODUCTION

Path-aware networking (PAN) is a networking paradigm
where endpoints are made aware of various potential paths
their data can take through the network and can select among
these paths [1]. This is in contrast to the traditional Internet
architecture, where path selection is primarily controlled by
intermediate devices like routers and is usually opaque to
endpoints.

While the current Internet predominantly entrusts path
selection to intermediary nodes, some exceptions such as
Multipath TCP/QUIC [2], [3] allow endpoints to exercise
limited control by choosing between or splitting traffic over
options such as Wi-Fi or cellular networks for the first hop.
This limited control is a first step towards PAN.

The added transparency and control inherent in PANs com-
pared to the hop-by-hop route selection in today’s Internet,
provides opportunities to optimize path selection, thus poten-
tially improving network performance and user experience.

One advantage of end-host-selected paths is that end hosts
know the characteristics and temporal behavior of their own
traffic, whereas intermediate nodes do not. However, complete
information about their own traffic is not sufficient for opti-
mizing path selection. To effectively select paths, end hosts
also need to acquire information about the network state. This
challenge exists in today’s Internet as well. While a router
knows its own state, it lacks adequate information about other
routers in the network. In this paper, we conceptualize the
end host as the entire network stack including the application,

rather than the aggregate of all applications on a single device.
We make this distinction because each application can control
its sending rate and jointly decide on both the sending rate
and the used inter-domain path.

Another advantage of end-host-selected paths is that end
hosts can make fine-tuned adjustments to the end-to-end path
in real time. However, inter-domain path selection in today’s
Internet, primarily governed by BGP, is limited. A BGP router
selects the next hop based on BGP path selection criteria,
which are generally agnostic to real-time network conditions
such as current traffic load or congestion levels [4], [5].

Once PAN end hosts obtain information about the network
state, they need to use it effectively to optimize their path
choices. However, allowing end hosts to switch to better paths
introduces the issue of selfish routing, which can lead to
network instability [6].

These challenges can be framed through two research ques-
tions: How can end hosts efficiently and effectively receive
practical and actionable feedback from the network concern-
ing available paths, and how can they optimize their path
choices based on this feedback?

In the current Internet, applications already react to network
feedback by applying congestion control mechanisms. These
mechanisms attempt to optimize performance by adjusting the
sending rate as a response to network congestion as indicated
by packet loss or latency. These congestion control mech-
anisms have proven effective; they allow data transmission
along a ‘single’ working path to be optimized. However, sig-
nificant challenges arise when considering ‘alternative’ routing
paths. The core functionality of congestion control mecha-
nisms is to adjust the sending rate based on the feedback for
the current rate over the active path. However, this approach
does not apply to alternative paths since the end host is not
actively sending traffic over them. Instead, the end host can
send probing packets on the alternative paths, but this must
be done at limited bandwidth to avoid imposing a substantial
load on the network or saturating local links.

Probing can help assess the round-trip time (RTT), one-way
latency, or even latency gradients along a path. Nonetheless,
the actual available bandwidth share for future flows on an
alternative path remains undetermined. Even if a path is free
from congested links, the presence of a bottleneck with lim-
ited capacity can render it unsuitable for bandwidth-intensive
traffic. This limitation of probing underscores the need for a
novel feedback mechanism that can, at a minimum, provide
an estimate of the available bandwidth share on a candidate
alternative path to the end host.979-8-3315-4940-4/25/$31.00 ©2025 IEEE

Given such a feedback system, the next challenge is how
to incorporate this real-time feedback in the path selection
mechanism. The path-switching operation must be seamless
and adaptive, ensuring that application performance is opti-
mized while maintaining fairness and avoiding undue strain
on the network infrastructure.

The requirements for different types of traffic vary, neces-
sitating tailored path selection mechanisms. One particularly
significant and growing category is bandwidth-demanding and
latency-sensitive traffic, such as video conferencing. The rapid
growth of real-time communications underscores the need
to improve QoS of video conferencing traffic [7]. Industry
interest in technologies such as L4S [8] highlights this priority.

In this paper, we evaluate the potential benefits of PAN
for enhancing QoS for video conferencing applications. We
propose Polaris1, a path optimization framework for end hosts.
Polaris includes a feedback system and a feedback-driven
path selection strategy. We study the impact of Polaris on the
end-to-end performance of video conferencing traffic. To the
best of our knowledge, our paper is the first to present the
design and evaluation of a feedback-driven end-to-end path
optimization system for PAN end hosts. Specifically, our work
makes the following main contributions:

• We introduce a novel feedback mechanism that provides
end hosts with real-time insights into network conditions,
including available bandwidth on candidate paths.

• Our system incorporates feedback-driven path selection
strategies, enabling endpoints to optimize routing deci-
sions and seamlessly switch paths according to network
conditions and traffic profiles.

• We conduct extensive simulations to evaluate the effec-
tiveness of Polaris, showing significant improvements in
end-to-end performance metrics for video conferencing
applications compared to current Internet mechanisms.

In the following sections, we present the motivation of Polaris
(§II) followed by the system design (§III) and evaluation setup
details (§IV). Finally, we report the evaluation results (§V) and
summarize related work (§VI).

This work does not raise any ethical issues.

II. MOTIVATION AND BACKGROUND

To motivate our work, we explore the limitations of tradi-
tional inter-domain routing including the lack of adaptability
to traffic requirements and congestion. We then highlight the
potential of PAN for addressing these limitations and the
relevance of video conferencing as a motivating use case.

a) Agnostic to traffic requirements: The traditional
design of the network layer of a host is largely agnostic to
the specific traffic requirements, relying on broad, standard-
ized protocols to facilitate data transmission. This separation
constrains the network layer from adapting dynamically to
the diverse requirements of various applications. In contrast,
the application layer possesses knowledge of its own needs,

1We named our system after Polaris, the North Star, symbolizing guidance
and optimization in navigating paths.

enabling it to adapt its behavior based on feedback from
the network or destination. This capability can improve path
selection and potentially enhance performance [9], especially
for bandwidth-demanding, bandwidth-sensitive, and latency-
sensitive applications such as video conferencing [10], [11].

b) Agnostic to congestion: Inter-domain path selection
in today’s Internet, primarily governed by BGP, is largely
agnostic to network congestion. BGP does not consider current
traffic load or congestion levels when determining the best
paths [4], [5]. BGP’s routing decisions are based on predefined
criteria such as path length, origin of the route, local prefer-
ence, and Multi-Exit Discriminator (MED), mostly intended
to ensure routing stability, adherence to AS relationships,
and compliance with financial and policy agreements [12].
Although mechanisms such as Equal-Cost Multi-Path (ECMP)
and traffic engineering via specific prefix announcements
attempt to optimize load distribution within or across ASes,
they do not respond to real-time congestion levels.

These methods rely on static metrics and administrator-
defined policies, rather than dynamically adapting to current
network congestion. As a result, while BGP is typically
effective for maintaining policy compliance and overall routing
across the global Internet, it does not dynamically adapt to
congestion, which can lead to suboptimal routing and conges-
tion on specific paths [4]. Intra-AS protocols such as OSPF
can impact BGP path selection within an AS by providing
congestion information through weights that reflect network
conditions. However, this influence is limited to scenarios
where the IGP cost is a tie-breaker. An intra-AS protocol
only provides information about the intra-AS links of the
current AS. However, the overall performance of the end-to-
end path depends on congestion across both intra-AS and inter-
AS links along the entire route [13]. BGP remains agnostic to
congestion in the rest of the network, as BGP update messages
do not carry performance information.

c) Myopic view of the network: Intermediary nodes,
compared to end hosts, might appear to have a better view
of the network’s congestion state, but this is a misconception.
While individual routers possess the most accurate knowledge
about their queues’ state, they remain unaware of the queue
state of downstream routers unless this information is explic-
itly communicated back to them. However, if routers convey
queue state information back towards the source, end hosts
can eventually aggregate this backpropagated information and
make informed decisions for path selection.

d) Emergence and deployment of PANs: PANs present
new opportunities for optimizing path selection, potentially
enhancing network performance and user experience. PANs
allow the source to embed a forwarding path into the packet
header or leverage packet-carried forwarding state (PCFS).
Several PAN architectures have been proposed in recent years,
including Platypus [14], NIRA [15], Pathlets [16], Segment
Routing [17], and SCION [18].

We instantiated Polaris in SCION as the PAN for our
implementation, because it is already deployed and operational
in real-world production networks with a mature implemen-

tation. Additionally, multiple SCION simulators are publicly
available [19], [20], making it a suitable foundation for the
implementation of our path selection method.

e) Beyond over-provisioning: In today’s Internet, over-
provisioning is a crucial strategy to prevent congestion by
allocating more resources than necessary. Over-provisioning
comes with associated costs, such as higher CAPEX for
purchasing extra equipment [21]. Dynamic resource allocation
techniques can help optimize resource utilization, potentially
reducing the need for over-provisioning or enhancing an ISP’s
revenue through increased network utilization and efficiency.

f) Economic considerations: In inter-domain path se-
lection, business considerations often outweigh performance
factors like QoS and load balancing [22]. ASes announce
paths based on business relationships, typically avoiding transit
between providers to minimize costs. PAN, as it allows end
hosts to select their end-to-end paths, poses a challenge for
intermediate ASes in terms of cost optimization. However,
path choices remain constrained by AS-announced options,
aligning with economic incentives. Routers can also implicitly
influence selection through traffic shaping. To further support
AS traffic engineering, Polaris includes an explicit feedback
mechanism that allows ASes to prioritize their traffic engineer-
ing decisions over end hosts’ path optimization needs when
necessary.

g) Video conferencing: Video conferencing traffic is
highly sensitive to congestion and requires a consistent sending
rate to maintain a seamless user experience. Video conferenc-
ing applications that use a transport layer protocol without
congestion control, such as UDP, employ alternative conges-
tion control strategies. These applications use algorithms such
as Google Congestion Control (GCC) [23], [24] in conjunction
with protocols such as RTP (Real-time Transport Protocol) and
RTCP (RTP Control Protocol) [25].

GCC is the default congestion control algorithm of
WebRTC [26], a fundamental technology in all major web
browsers [27], used to manage network bandwidth for real-
time applications. GCC dynamically adjusts the bitrate of the
video stream in response to real-time network conditions, such
as changes in available bandwidth, latency, and packet loss. It
relies on RTP for media streaming and RTCP for periodic
transmission of control packets, which include key metrics
such as packet loss, jitter, and round-trip time.

When congestion occurs on an active path, congestion
control mechanisms may reduce the sending rate to alleviate
the congestion. However, for video conferencing applications,
this rate reduction can lead to degraded video quality or
even disconnections. To address this challenge, switching to a
new path, where the sending rate can be maintained or even
increased, can enhance the user experience. In this paper, we
measure receiving rate, loss, latency, and jitter as QoS metrics
for video conferencing traffic.

III. SYSTEM DESIGN

In this section, we outline the design of Polaris, which
includes a feedback system, a path-aware congestion control,

and a path selection mechanism.

A. Feedback system

To switch to a path with higher available bandwidth, an end
host needs to compare its active path with alternatives. How-
ever, while the congestion controller monitors the active path,
it lacks visibility into the available bandwidth on alternative
paths. A lightweight probe can measure latency on these paths,
but bandwidth remains unknown. To address this, we design a
feedback system that conveys available bandwidth information
of alternative paths to the end host. This system relies on two
types of messages: the Polaris probe, referred to as P-probe,
for providing frequent estimates of the available bandwidth to
the end host, and the Polaris Congestion Alert, referred to as
P-CA, to alert the end host about a congestion situation.

1) Polaris Probe: We propose the P-probe message, which
enables the end host to receive an estimate of its bandwidth
share on a path. This allows the end host to compare its share
on the current path with its estimated share on the alternative
paths.

Each router in the network is aware of its link capacity,
can keep track of the number of flows traversing it, and can
monitor its current queue length. Furthermore, routers know
their queue management mechanisms and how capacity is
allocated among different flows, including any policies that
prioritize certain flows based on their destinations. If routers
backpropagate this information to the sending host, the host
can gain insight into its bandwidth share along the path.
However, sending this information individually to each sender
would incur significant overhead. To address this, we propose
the P-probe mechanism.

§Src § Dst○␣○␣ ○␣○␣○␣ ○␣
○␣ ○␣

Echo

Processing P-probeForwarding P-probe

Fig. 1: Overview of Polaris’s operation on a path of four ASes (blue circles).
The source sends a P-probe along the path, the border routers ◦ on the path
update the probe and the last border router echoes it back to the sender.

As shown Figure 1, a P-probe message carries the infor-
mation to the last border router on the path, where it is then
echoed back to the source. In PAN, the path included in the
packet header enables the last router to identify itself as such.
Each border router along the path calculates its bandwidth
share for a new flow on the corresponding link and updates
certain fields in the probe if needed.

Only border routers contribute to this feedback system since
the path is inter-domain and includes only the ingress and
egress interfaces of the AS, excluding intra-AS routers. This
is acceptable because the ingress border router can estimate
a flow’s bandwidth share between the ingress and egress
points based on internal traffic engineering and monitoring
mechanisms. Additionally, inter-domain links are more prone
to congestion than intra-AS links.

The P-probe message includes a 16-bit field for the band-
width share on the path’s bottleneck. If a router’s calculated
share is lower than the current Bottleneck Share, the router
should update the Bottleneck Share field with its own value
and identify itself as the bottleneck in the P-probe. To ef-
ficiently use the 16-bit field, the estimated value (in Mb/s)
is encoded in IEEE-754 half-precision floating point format.
P-probe also includes a 16-bit field for the cumulative queuing
delay (in µs), encoded in the same format. Each border router
updates the cumulative queuing delay field by adding the
queue waiting time of the current packet. The details of the
router processing and the layout of the Polaris messages are
depicted in Figures 2 and 3, respectively.

P-probe is an extension to the network layer protocol such
as the IPv6 or SCION hop-by-hop extension header. The hop-
by-hop extension header is used to carry optional information
that may be examined and processed by every node along a
packet’s delivery path.

The NextHdr field specifies the type of the next header, and
ExtLen is the length of the extension header. The rest of the
packet is Options, which is a variable-length field. We incor-
porate the following fields in the Options field, inspired by
the SCION Control Message Protocol (SCMP) message [28].
SCMP is analogous to ICMP in the current Internet, providing
functionalities for network diagnostics (similar to Ping and
Traceroute) and transmitting error messages related to packet
processing and network-layer issues to end hosts.

The Type field is set to indicate that it is a P-probe. The
Code field shows the traffic class (e.g., video). The Checksum
field is used to detect data corruption. The RequestID and
SeqNum fields are a 16-bit identifier and a 16-bit sequence
number, respectively, to aid in matching the echo message
with the probe message. The AS Identifier and InterfaceID
fields are the 64-bit AS identifier and 16-bit Interface ID of
the bottleneck Interface, respectively. Optionally, routers can
replace these two fields with zeros to conceal the bottleneck
location. The BottleneckShare field is the estimated bottleneck
bandwidth share for a data flow with the same source and
destination as the P-probe. The CumQDelay is the summation
of the estimated waiting time of the current packet in the queue
of each on-path border router.

We do not specify how routers must compute their P-probe
bottleneck share. In our implementation, a router estimates the
potential share of a flow as link bandwidth divided by active
flows plus one (to account for the new flow). This estimation is
approximate, as flows may join or leave the path dynamically.
Therefore, each end host considers a margin when making
decisions based on this estimation.

A router is naturally incentivized to report truthfully—it
risks congestion if it overstates the share and potential revenue
loss if it understates it.

Each border router keeps a hash table of flow tuples
(src host addr, src port, dst host addr, dst port) with times-
tamps. Every τ (default: 1s), entries older than τ are removed,
and the number of active flows is the table size. A larger
τ reduces processing overhead but may decrease accuracy.

P-probe
slowPathRequired=1

PolarisRequest=1

Slow Queue
Data-plane Queue

→add(slowQueue)
→slowPathProcessor
→ProcessPacket
→handlePolarisRequest

Fig. 2: Detailed view of router P-probe processing.

0 8 16 24 31

NextHdr ExtLen Type Code
Checksum RequestID
SeqNum CumQDelay

AS Identifier

InterfaceID BottleneckShare
(a)

0 8 16 24 31

Type Code Checksum
RequestID SeqNum

AS Identifier

InterfaceID
(b)

Fig. 3: Packet layouts of a) a P-probe and b) a P-CA notification.

While per-data packet update is computationally expensive
for routers, there exist novel probabilistic sketches providing
efficient estimates of flow counts [29].

2) Polaris Congestion Alert: We propose the P-CA mes-
sage, which aims to enable an on-path border router to inform
the sender directly in case of congestion. For a P-probe, when
the router queue length is substantial and there is a high
probability of dropping a packet, the border router will drop
the P-probe and send a P-CA back to the sender.

Figure 3b shows the layout of the P-CA message. The Type
field is set to indicate it is a P-CA. The Code field is reserved
for future additions. The RequestID and SeqNum fields are
set to the same values as those in the P-probe. AS Identifier
and InterfaceID fields identify the P-CA originator.

B. Congestion Control

We employ GCC to manage congestion control on the
active path. GCC is designed for a single working path; when
integrating it into Polaris, we must ensure smooth transitions
during path switches to prevent performance degradation and
maintain fairness with other flows (§ III-C).

C. Path Selection Strategy

In large-scale PANs, an end host will likely have numerous
path options to the destination. Probing all paths is inefficient,
so the end host can select a subset of paths as available paths.

P-probes are sent every 250ms, matching that of GCC,
which effectively captures network dynamics with minimal
overhead. Path switching is evaluated at a lower frequency,
with a minimum interval of 10s, referred to as waiting time,
between consecutive changes. This value is comparable to the
turbulence period after path switching, allowing flows to reach
their fair share instead of hastily switching to another path,
thus reducing instability from frequent switches.

The sender maintains candidacy information for each avail-
able path. This information changes every time the congestion
controller adjusts the sending rate (Rs in Mb/s). A path is
added to the set of potential candidate paths if the following
conditions are met:

• The estimated bandwidth share (R̂ in Mb/s) must be
from a P-probe sent after tlast path change +RTT , with

no P-CA received in the interim. This ensures potential
changes in R̂ due to the last path change are accounted
for.

• The estimated bandwidth on that path must be larger than
α ·Rs, where α is a factor greater than 1 (1.5 by default),
providing a margin for the estimation accuracy and some
inertia against unnecessary path changes.

A path that consistently meets these criteria over the last 5s
(half of the waiting time) is considered a final candidate, and
the current working path is always included as a candidate. If
more than 10s (waiting time) has elapsed since the last path
consideration, the sender selects a path uniformly at random
among final candidates. This helps prevent a scenario where
multiple end hosts switch to the same path simultaneously, thus
maintaining stability. If there is a P-CA for the active path,
an immediate path switch consideration is triggered, although
it does not necessarily result in a path change. If the active
path fails and an alternative is available, a path switch occurs
immediately.

To ensure a smooth transition when switching paths, we
update GCC by calling OnRouteChange() and providing
R̂ as the new target rate. The target rate is an indication of
the potential bandwidth the flow may ultimately get, with a
larger target enabling a faster slow start. This resets the internal
state to facilitate adaptation to the new path’s conditions.
Starting with R̂, rather than a minimal rate, may cause
higher initial losses but will stabilize as other flows back off,
and the rate converges to the actual fair share by adjusting
according to GCC. This approach prevents a sudden decline
in data throughput after a path change, without compromising
fairness.

D. Virtual Traffic Shaping

In the feedback system of Polaris, a border router can
flexibly adjust the value it inserts into the P-probe, allowing for
customized bandwidth allocation based on its policies or traffic
engineering requirements. When it needs to limit bandwidth,
the router updates the ‘BottleneckShare’ field in the P-probe
to indicate the reduced bandwidth allocation instead of the
actual share. Additionally, a router can proactively send a
P-CA signal when it has to constrain bandwidth, rather than
waiting for congestion to occur.

E. Partial Deployment

To enable partial deployment of our system, we set the
highest-order 2 bits of the Option Type identifier to 00, ensur-
ing that routers that do not recognize the option will simply
skip it and continue processing and forwarding the packet [30].
However, the resulting bottleneck share measurement may be
less accurate, as it will rely only on the routers that recognize
and update the probe. This behavior is analogous to cases
where a router chooses not to update the probe.

F. Security

A thorough analysis of security considerations is beyond
this paper’s scope; however, we briefly discuss one potential

attack scenario. An adversary could spoof a reply to a probe,
misleading end hosts and redirecting traffic to cause denial-of-
service. In PANs, such attacks are prevented by authenticating
control messages that trigger far-reaching decisions. Specif-
ically, in SCION, SCMP messages are authenticated using
DRKey and SPAO (SCION Packet Authenticator Option) [31].

G. Overhead and scalability

Each end host sends a 20-byte P-probe every 250ms,
consuming 80 B/s per host, with the same for replies. Routers
process each probe packet in O(1) time, including reading,
writing, comparison, summation, and division. The same ap-
plies to queue length tracking for delay recording. A proba-
bilistic sketch for flow counting ensures the scalability in the
fair share estimation process.

IV. EVALUATION SETUP

We aim to evaluate the end-to-end performance of Polaris
compared to traditional path selection methods. To achieve
this, we implement Polaris alongside alternative methods in
a simulated environment, using an inter-AS topology, ran-
domly generated intra-AS topology per AS, and traffic flows
between hosts. Additionally, we develop a Mixed Integer
Linear Programming (MILP) model to validate the simulation
results. This section provides an overview of our evaluation
methodology.

A. Topology

1) Inter-AS: We employ a toy topology consisting of 4
ASes and 12 links with 10MB/s bandwidth. As shown in
Figure 4, there are multiple links between each pair of ASes.
In this topology, the degree of each AS indicates the number
of border routers in each AS. We consider all the feasible paths
between source and destination as available paths.

A
B

C
D

Fig. 4: AS-level view of the inter-AS topology used in the evaluation, with
4 ASes and 12 inter-domain 10MB/s links, where ASes B and D have two
peering links between themselves and are providers for ASes A and C.

2) Intra-AS: We generate the intra-AS topologies using the
Watts-Strogatz model [32], which generates random graphs
with small-world properties such as short average path length
and high clustering. We consider a full-mesh iBGP topology.

B. Traffic Flows

Our simulation includes three types of traffic flows: Polaris
traffic flows, TCP-Cubic traffic flows, and GCC traffic flows.
The latter two represent typical network flows, where end-
hosts cannot select or switch paths during transmission.

Our target traffic is Polaris traffic flows, for which we
measure the quality metrics. The inclusion of TCP-Cubic and
GCC traffic flows allows us to ensure the fairness of Polaris
traffic when coexisting with other types of traffic and evaluate
Polaris’s performance in a mixed traffic environment.

next AS
e1

e2

e3

i
ingress flow

CIGP
i,e1 = CIGP

i,e2 < CIGP
i,e3

Fig. 5: BGP Load Balancing (LB): ECMP LB uses two equal-cost links (),
while Full-diversity LB distributes the traffic over all three links (,).

C. Alternative Path Selection Methods

We compare Polaris with two other alternatives: A naı̈ve
path selection scheme in PANs and BGP load balancing.

1) Naı̈ve Path Selection: In the naı̈ve load balancing
scheme (denoted as Naı̈ve PAN), each end host in a PAN
chooses among all available paths randomly (without weight-
ing them) and keeps sending on that path for the rest of the
session.

2) BGP Load Balancing: Since ECMP is a common load-
balancing method in BGP, we also compare Polaris against this
alternative path selection method. ECMP halts the tie-breaking
process after evaluating the IGP cost for the NEXT HOP at-
tribute. BGP implementations typically include a configuration
option that sets the maximum number of equal paths allowed
in the routing table (e.g., six paths). For ECMP selection, paths
must have identical AS PATH lengths and often identical
AS SEQUENCE segments. If an eBGP path is present, all
iBGP paths are excluded from the ECMP candidate set. For
iBGP-learned routes, the final decision usually depends on
the IGP metric of the NEXT HOP attribute, unless tunneling
mechanisms like MPLS are used. Even with multiple paths in
the routing table, a BGP speaker advertises only a single best
path to its peers, chosen by standard tie-breaking rules. We
simulate BGP load balancing using the following methods:

• Full-Diversity Flow-Level Load Balancing: In this
scenario, the IGP cost is assumed to be the same for
all ingress-egress pairs. In each AS on the best BGP AS-
level path, the BGP load balancer assigns a flow, based
on the hash of its source and destination host tuple, to
one of the egress interfaces, as shown in Figure 5.

• ECMP Flow-Level Load Balancing: Here, in each AS
on the best BGP path, the egresses with the minimum IGP
cost from the ingress interface are listed (Figure 5, e1 and
e2). The ECMP load balancer then assigns a flow based
on its hash to one of the equal-cost egress interfaces.

D. Simulation Implementation

We implemented Polaris in C++ (with ∼1.5k lines of code)
within the ns-3 SCION network simulator [19]. The simulator
includes GCC senders and receivers as shown in Figure 6.
The GCC sender is implemented based on real instances of
WebRTC 2 and adapted to fit the simulation environment. The
GCC receiver records and sends back the arrival times of
all received packets to the sender. We also developed Python
scripts to generate the input topology file, as well as to create

2The GoogCcNetworkController module from the WebRTC code
repository of the Chromium browser [33].

the intra-AS topology and the IGP cost matrix for each AS,
which are necessary for BGP load balancing. All code will be
released as open-source.

E. Theoretical Model

To validate the simulation results, we propose the MILP
in Table II to solve the global path selection problem. The
constants and variables are listed in Table I. Equation (1)
is the objective of the MILP. The goal is to maximize all the
flow rates within the constraints of a linear objective. The term∑

f,t xf,t maximizes the summation of the flows. To avoid
cases where the overall flow rate is maximized, while some
flows starve, we first maximize the minimum flow rate at each
time slot (

∑
t dt) and then the summation of all flow rates.

Equation (2) ensures that each flow has exactly one active
path during its active time. Equation (3) ensures that non-
target flows select the first path in the list. When path p is
used by flow f , Equation (4) ensures that all links on path
p are assigned to this flow at that time. Equations (5) to (7)
are the linear form of zf,t,e = af,t,e ·xt,e, which set the same
bandwidth (xt,e) for flow f on its active links. Equation (8)
ensures that the sum of flows over a link does not exceed its
capacity. Equation (9) constrains the rate of each flow to its
application limit. Equations (10) and (11) set gf,t = 1 for the
application-limited flows. Equation (12) constrains the rate of
the flows on a link to at most be equal to the bottleneck share
of that link. Equation (13) constrains the rate of the flows
bottlenecked at link e to at least be equal to its bottleneck
share. In combination with Equation (12), the bandwidth of
these flows is set equal to the bottleneck share. Equation (14)
ensures that a flow, if not application-limited, has exactly one
bottleneck link on its path. Equation (15) prevents a flow
from having a non-active link as its bottleneck. Equations (16)
and (17) set the value of variable dt as the smallest flow share
at time t among all flows.

Our MILP ensures that each non-application-limited flow
has a single bottleneck link. We prove that the MILP cor-

Indices:
f ∈ F : flow; e ∈ E: link; p ∈ Pf : path; t ∈ T : time slot
Constants
δf,p,e 1 if link e belongs to path p of flow f , 0 o.w.
λf Application limited rate of flow f
τf Duration of flow f
ζf Starting time of flow f
µf 0 if f is a target flow, 1 otherwise
νf,t 1 if flow f is active at time t, 0 otherwise
γe Capacity of link e
M Big positive integer
ϵ Small positive value
Variables
xf,t Rate of flow f at time t
yf,t,p 1 if flow f is using path p at time t, 0 otherwise
zf,t,e Rate of flow f at time t on link e
af,t,e 1 if flow f is using link e at time t, 0 otherwise
bt,e Fair share on link e at time t
cf,t,e 1 if link e is the bottleneck of flow f at time t, 0 otherwise
gf,t 1 if flow f is application-limited at time t, 0 otherwise
dt Minimum flow rate at time t

TABLE I: Definitions of the MILP constants and variables.

WebRTC
sender

GCC
receiver

ns-3 simulated SCION network
data

feedback

Fig. 6: Overview of the implementation, featuring a real WebRTC sender
instance and a GCC receiver within an ns-3 simulated SCION network.

rectly identifies the actual bottleneck link, using a proof by
contradiction. Suppose that the MILP selects link e as the
bottleneck of flow f at time t, but the actual bottleneck is link
e′ (e′ ̸= e). We put aside the time index t since it remains
consistent throughout this proof. Let b̂e denote the fair share
on link e if it is selected as the bottleneck of flow f , and be
denote the fair share of link e when it is not selected as the
bottleneck of flow f . According to the assumption, b̂e′ < b̂e.
Given that e is selected as the bottleneck by the MILP, be = b̂e,
and the bandwidth of flow f on link e (zf,e) equals the fair
share on link e (zf,e = be = b̂e), according to Equations (12)
and (13). However, be′ is not necessarily equal to b̂e′ , as link e′

is not selected as the bottleneck. According to Equations (5)
to (7), a flow maintains the same rate across different links
in its path (zf,e = xf = zf,e′). Then, we derive b̂e′ by
subtracting the bandwidth taken by flows not bottlenecked at
link e′ (α) from its capacity and dividing it by the number of
flows bottlenecked at e′ (βn), including flow f :

b̂e′ =
γe − α

βn
=

γe − α− b̂e′

βn − 1
(18)

We continue by deriving be′ , for the case in which flow f is
not among the bottlenecked flows on link e′:

be′ =
γe − α− zf,e′

βn − 1
<

γe − α− b̂e′

βn − 1

Equation (18)
= b̂e′ (19)

⇒ be′ < b̂e < b̂e′ = zf,e′ ⇒ be′ < zf,e′ (20)

This deduction contradicts Equation Equation (12).

max
∑

t dt + ϵ ·
∑

f,t xf,t (1)∑
p yf,t,p = νf,t ∀f, t (2)

µf · (yf,t,0 − νf,t) = 0 ∀f, t (3)
af,t,e =

∑
p δf,e,p · yf,t,p ∀f, t, e (4)

zf,t,e ≤ M · af,t,e ∀f, t, e (5)
zf,t,e ≥ xf,t − (1− af,t,e) ·M ∀f, t, e (6)
zf,t,e ≤ xf,t ∀f, t, e (7)∑

f zf,t,e ≤ γe ∀t, e (8)
xf,t ≤ λf ∀f, t (9)
gf,t ≥ 1−M · (λf,t − xf,t) ∀f, t (10)
(λf,t − xf,t) ≤ M(1− gf,t) ∀f, t (11)
zf,t,e ≤ bt,e ∀f, t, e (12)
zf,t,e + (1− cf,t,e) ·M ≥ bt,e ∀f, t, e (13)∑

e cf,t,e + gf,t = νf,t ∀f, t (14)
cf,t,e ≤ af,t,e ∀f, t, e (15)
dt · (1− gf,t) · νf,t ≤ xf,t ∀f, t (16)
dt ≤ γf ∀f, t (17)

TABLE II: The MILP formulation.

0 MB/s

0.5 MB/s

1 MB/s

R
at

e

Polaris
GCC
TCP0%

5%

L
os

s

0 50 100 150 200 250 300 350

40 ms

60 ms

time (s)

L
at

en
cy

Fig. 7: Competing Polaris, GCC and TCP flows reach a stable state, and the
throughput of each flow converges to the fair share on a 1 MB/s link.

0 MB/s

0.5 MB/s

1 MB/s

R
at

e

Polaris
GCC
TCP

0%

5%

L
os

s

40 ms

60 ms

L
at

en
cy

0 20 40 60 80 100 120
1
2
3
4

time (s)

Pa
th

Fig. 8: Once new flows join, Polaris detects that the active path is no longer
optimal and switches to a path with a higher bandwidth share.

1) MILP Implementation: We also used the Python API of
Gurobi [34] to solve the proposed MILP formulation of the
path selection problem. To compute the global solution, we
limit input paths to k for a fixed-size variable matrix, selecting
the k shortest paths when more are available. All code will
be released as open-source. With a bounded or moderately
growing k, the MILP complexity is O(|F | · |E| · |T |). Its
flow-based design significantly reduces complexity, allowing
it to run efficiently on the toy topology. However, while
a flow-based formulation effectively calculates each flow’s
bandwidth, it cannot capture loss or queuing latency.

0 MB/s

0.5 MB/s

1 MB/s

R
at

e

0 %

15%

L
os

s

0 100 200 300 400
1
2
3
4

time (s)

Pa
th

Fig. 9: Six Polaris flows, each represented by a different color, start by
spreading out across four paths. The router on path 2 sends out P-CAs from
150 to 300 seconds, prompting the flows to migrate to different paths.

V. EVALUATION RESULTS

A. Metrics

We report the evaluation result using the following metrics:
• Cumulative Average Receiving Rate is the average re-

ceiving rate over time for the target flows (excluding

4 8 12 16 20 24
0

20

40

60

80

C
um

A
vg

R
R

(M
B

/s
)

Simulated Polaris Naı̈ve PAN Full-Diversity BGP ECMP BGP

4 8 12 16 20 24
0

50

100

150

C
um

A
vg

R
R

(M
B

/s
)

4 8 12 16 20 24
0

20

40

60

80

C
um

A
vg

R
R

(M
B

/s
)

4 8 12 16 20 24
0

20

40

60

80

C
um

A
vg

R
R

(M
B

/s
)

4 8 12 16 20 24
0

2

4

6

8

of flows

M
in

Sh
ar

e
(M

B
/s

)

4 8 12 16 20 24
0

2

4

6

8

of flows

M
in

Sh
ar

e
(M

B
/s

)

4 8 12 16 20 24
0

2

4

6

8

of flows

M
in

Sh
ar

e
(M

B
/s

)

4 8 12 16 20 24
0

2

4

6

8

of flows

M
in

Sh
ar

e
(M

B
/s

)

Fixed w/o BG Diverse w/o BG Fixed w/ BG Diverse w/ BG

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 10: ns-3 simulation results showing the Cumulative Average Receiving Rate (a-d) and the Minimum Share (e-h) vs. number of flows for the path selection
methods Polaris, Naı̈ve PAN, Full-Diversity BGP, and ECMP BGP with Fixed A-C source-destination pairs and Diverse all-to-all source-destination pairs.

20

40

60

80

A
vg

.L
at

en
cy

(m
s)

Polaris Naı̈ve PAN Full-Diversity BGP ECMP BGP

20

40

60

80

20

40

60

80

20

40

60

80

0

0.2

0.4

0.6

Ji
tte

r
(m

s)

0

0.2

0.4

0.6

0

0.2

0.4

0.6

0

0.2

0.4

0.6

0

1

2

3

A
vg

.L
os

s
(%

)

0

1

2

0

1

2

3

0

1

2

3

Fixed w/o BG Diverse w/o BG Fixed w/ BG Diverse w/ BG

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 11: Latency, jitter, and loss distribution for the different path selection
methods simulated for 24 flows in the Fixed and Diverse source-destination
scenarios with and without background traffic.

the background traffic flows), aggregated over the flows
(CumAvgRR =

∑
f

1
τf

·
∑

t xf,t).
• Minimum Share refers to the lowest receiving rate ex-

perienced by any flow. To avoid capturing transient low
rates, we divide the time into fixed intervals of 120s and
calculate the average receiving rate of each flow for each
interval. The minimum of these average rates across all
intervals is reported as the minimum share.

• Loss, Latency, and Jitter: Packet loss and latency are
recorded for each flow over 1s intervals. Jitter is calcu-
lated as the standard deviation of inter-arrival time dif-
ferences between consecutive packets in the jitter buffer.

B. Flow generation Settings

The flows are defined as tuples in the format (flow-ID,
source, destination, application-limited rate, duration, starting
time, flow type), where flow type specifies whether a flow is a
target flow or a background flow. The starting time for each
flow is selected randomly from the time slots within the exper-
iment time. Each time slot lasts 120s, and the experiment time

comprises 5 time slots. The duration of each flow is chosen
randomly, constrained to be between a minimum of 2 time
slots and the remaining time. Flows’ source and destination
are selected from two scenarios: either fixed (node A as the
source and node C as the destination, denoted as Fixed), or
randomly selected among all pairs of distinct nodes (denoted
as Diverse). Additionally, we consider two different scenarios
regarding background traffic: one with no background traffic
on the links (denoted as w/o BG) and one with background
traffic (denoted as w/ BG). The number of background traffic
flows is half of all flows. These background flows are GCC
flows, and their path selection follows BGP-ECMP. None of
the flows are application-limited. We generate flows for 20
iterations and report the average of CumAvgRR and MinShare
with 95% confidence interval as error bar in Figures 10 and 12.
The distributions of loss, latency, and jitter are presented across
flows and iterations using boxplots in Figure 11.

C. Simulation results

In Figures 7 and 8, we observe the fairness between TCP,
GCC, and Polaris flows on the same link and over multiple
paths, respectively. Additionally, we see how GCC maintains
small queues before a loss-based TCP-Cubic flow joins. In
Figure 8, we observe that the Polaris flow switches to an idle
path once other flows start on the same path.

Figure 9 demonstrates how the P-CA message triggers a
path change. When path 1 begins responding with P-CA to
P-probes for a certain period, the Polaris flows on path 1 switch
to new paths, with one flow returning after this period.

The simulation results for different metrics are shown in
Figures 10 and 11. We observe that Polaris outperforms all
other approaches in every scenario. In the Diverse scenario,
ECMP and Full-Diversity BGP perform similarly, indicating
that increasing interface-level diversity in BGP does not neces-
sarily improve performance. The Naı̈ve PAN approach exhibits
different performance in the Fixed and Diverse scenarios.
In the Fixed scenario, Naı̈ve PAN outperforms BGP due to
its greater number of path options. However, in the Diverse
scenario, Naı̈ve PAN demonstrates that simply having more

4 8 12 16 20 24

20

40

60

80

C
um

A
vg

R
R

(M
B

/s
)

Global Polaris Global Naı̈ve PAN Global Full-Diversity BGP Global ECMP BGP

4 8 12 16 20 24
0

5

10

of flows

M
in

Sh
ar

e
(M

B
/s

)
4 8 12 16 20 24

100

200

C
um

A
vg

R
R

(M
B

/s
)

4 8 12 16 20 24
2

4

6

8

10

of flows

M
in

Sh
ar

e
(M

B
/s

)

4 8 12 16 20 24

20

40

60

C
um

A
vg

R
R

(M
B

/s
)

4 8 12 16 20 24

5

10

of flows

M
in

Sh
ar

e
(M

B
/s

)

4 8 12 16 20 24

50

100

C
um

A
vg

R
R

(M
B

/s
)

4 8 12 16 20 24
2

4

6

8

10

of flows

M
in

Sh
ar

e
(M

B
/s

)

Fixed w/o BG Diverse w/o BG Fixed w/ BG Diverse w/ BG

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 12: Global MILP solution for the Cumulative Avg. Receiving Rate (top) and the Minimum Share (bottom) for the different path selection methods.

path options can actually hinder performance when end hosts
choose paths naı̈vely. In Figure 11, we observe that Polaris
outperforms all other approaches in terms of loss and jitter
across all scenarios. Additionally, Polaris maintains latency
comparable to BGP in the Diverse scenarios and lower than
BGP in the Fixed scenarios, despite using paths that might
potentially be longer than the shortest path. We observe that
Naı̈ve PAN, despite having the same diverse path options as
Polaris, performs poorly due to its naı̈ve path selection.

Figure 12 shows the global MILP solutions. We observe
the same trend as in the simulation results, with Polaris
consistently outperforming other methods in all scenarios,
validating our simulation results.

VI. RELATED WORK

One common mechanism for enhancing QoS in today’s
Internet is ECMP routing [35], [36], widely supported by
major vendors [37]–[39]. At the inter-domain level, AS Path
Manipulation techniques provide coarse-grained load balanc-
ing. Methods such as AS Path Prepending [40], route filtering
[41], and community tags [42] influence routing decisions,
while selective announcements and prefix de-aggregation mod-
ify path visibility [43], [44]. Additionally, BGP attributes like
Local Pref and MED affect path selection, though MED can
lead to route oscillation and is often ignored [44], [45].

To increase path diversity, BGP extensions such as Add-Path
[46] and BGP-XM [47] enable AS-level multipath routing, im-
proving load balancing. However, these approaches introduce
the overhead of maintaining multiple BGP sessions [28].

Transport-layer solutions such as Multipath TCP [2] and
QUIC [3] allow end-hosts to use multiple interfaces (e.g.,
Wi-Fi and cellular) to balance load over a few first-hop
options. Recent proposals leverage multiple prefixes for the
same destination to enhance path diversity without modifying
network routers. Examples of these systems are Painter [48]
and Tango [49], with Tango significantly reducing one-way
delay by bypassing default BGP routes.

Another approach to enhancing QoS through path opti-
mization is application-aware traffic engineering, where in-

band signaling enables applications to request specific network
resources based on their requirements [50], [51].

The limitations of router-driven path selection have led to
mechanisms that empower end hosts to choose inter-domain
paths. Source routing [52] allows senders to specify routes but
lacks scalability due to its reliance on full topology awareness.
In contrast, path-aware networking (PAN) [15], [18], [41]
offers a scalable alternative by enabling end-hosts to choose
from a set of control-plane-managed paths [31].

To fully realize PAN’s potential, a scalable and fine-grained
inter-domain path optimization mechanism is needed. In this
paper, we propose Polaris to address this requirement.

In Polaris, we use probes to determine the fair share of avail-
able but unused paths. While probing for path performance is
common, most systems either measure only latency (gradient)
or only the bottleneck capacity of paths, without accounting
for current congestion or the fair share available to new flows
[53], [54]. Moreover, systems with complex measurements
[53] are suitable for coarse-grained evaluations over longer
periods but are not useful for real-time applications.

VII. CONCLUSION

This paper presents Polaris, a feedback-driven path opti-
mization system designed to enhance QoS for bandwidth-
intensive and latency-sensitive traffic. Leveraging the source-
based path selection in PANs, Polaris enables endpoints to
optimize their experience by dynamically selecting paths
based on real-time network conditions. Extensive simulations
demonstrate that Polaris outperforms ECMP, achieving an
average of 42% improvement in receiving rate and a 81%
reduction in median loss, in coexistence with background
traffic and diverse source-destination pairs for the flows.

In conclusion, Polaris demonstrates the potential of PANs
to improve QoS for network applications, prompting further
research to study different approaches for network state col-
lection and distribution, as well as different approaches for
enhancing end-to-end performance.

REFERENCES

[1] B. Trammell, “Current open questions in path-aware networking,” IRTF,
RFC 9217, 2022.

[2] C. Paasch and O. Bonaventure, “Multipath TCP,” Communications of
the ACM, vol. 57, no. 4, pp. 51–57, 2014.

[3] Q. De Coninck and O. Bonaventure, “Multipath QUIC: Design and
evaluation,” in Proceedings of the 13th international conference on
emerging networking experiments and technologies, 2017, pp. 160–166.

[4] B. Schlinker, H. Kim, T. Cui et al., “Engineering egress with edge
fabric: Steering oceans of content to the world,” in Proceedings of the
Conference of the ACM Special Interest Group on Data Communication,
2017, pp. 418–431.

[5] N. Feamster, J. Borkenhagen, and J. Rexford, “Guidelines for interdo-
main traffic engineering,” ACM SIGCOMM Computer Communication
Review, vol. 33, no. 5, pp. 19–30, 2003.

[6] S. Scherrer, A. Perrig, and S. Schmid, “The value of information in self-
ish routing,” in Structural Information and Communication Complexity:
27th International Colloquium, SIROCCO 2020, Paderborn, Germany,
June 29–July 1, 2020, Proceedings 27. Springer, 2020, pp. 366–384.

[7] J. Eo, Z. Niu, W. Cheng et al., “OpenNetLab: Open platform for RL-
based congestion control for real-time communications,” in Proceedings
of the 6th Asia-Pacific Workshop on Networking, 2022, pp. 70–75.

[8] D. Schepper et al., “RFC 9330: Low latency, low loss, and scalable
throughput (L4S) internet service: Architecture,” 2023.

[9] W. Li, J. Liu, S. Wang, T. Zhang, S. Zou, J. Hu, W. Jiang, and J. Huang,
“Survey on traffic management in data center network: from link layer
to application layer,” IEEE Access, vol. 9, pp. 38 427–38 456, 2021.

[10] K. Tsioutas and G. Xylomenos, “Audio delay in web conference tools,”
in Web Audio Conference (WAC), 2022, pp. 1–6.

[11] S. F. Lindström, M. Wetterberg, and N. Carlsson, “Cloud gaming:
A QoE study of fast-paced single-player and multiplayer gaming,” in
2020 IEEE/ACM 13th International Conference on Utility and Cloud
Computing (UCC). IEEE, 2020, pp. 34–45.

[12] Y. Rekhter, T. Li, and S. Hares, “RFC 4271: A border gateway protocol
4 (BGP-4),” 2006.

[13] M. Luckie, A. Dhamdhere, D. Clark, B. Huffaker, and K. Claffy, “Chal-
lenges in inferring internet interdomain congestion,” in Proceedings of
the 2014 Conference on Internet Measurement Conference, pp. 15–22.

[14] B. Raghavan and A. C. Snoeren, “A system for authenticated policy-
compliant routing,” in Proceedings of the 2004 conference on Applica-
tions, technologies, architectures, and protocols for computer communi-
cations, 2004, pp. 167–178.

[15] X. Yang, D. Clark, and A. W. Berger, “NIRA: a new inter-domain routing
architecture,” IEEE/ACM transactions on networking, vol. 15, no. 4, pp.
775–788, 2007.

[16] P. B. Godfrey et al., “Pathlet routing,” ACM SIGCOMM Computer
Communication Review, vol. 39, no. 4, pp. 111–122, 2009.

[17] C. Filsfils, S. Previdi, L. Ginsberg, B. Decraene, S. Litkowski, and
R. Shakir, “Segment routing architecture,” 2018.

[18] X. Zhang, H.-C. Hsiao, G. Hasker, H. Chan, A. Perrig, and D. G.
Andersen, “SCION: Scalability, control, and isolation on next-generation
networks,” in 2011 IEEE Symposium on Security and Privacy. IEEE,
2011, pp. 212–227.

[19] S. Tabaeiaghdaei, “ns-3-scion: A simulator for SCION integration with
ns-3,” https://gitlab.com/SeyedaliTaba/ns-3-scion, 2022, accessed: 2024.

[20] “SCION Seed emulator,” https://perma.cc/M8VQ-S89D.
[21] M. Menth, R. Martin, and J. Charzinski, “Capacity overprovisioning

for networks with resilience requirements,” ACM SIGCOMM Computer
Communication Review, vol. 36, no. 4, pp. 87–98, 2006.

[22] P. Gill, M. Schapira, and S. Goldberg, “A survey of interdomain routing
policies,” ACM SIGCOMM Computer Communication Review, vol. 44,
no. 1, pp. 28–34, 2013.

[23] G. Carlucci, L. De Cicco, S. Holmer, and S. Mascolo, “Analysis and
design of the google congestion control for web real-time communica-
tion (webrtc),” in Proceedings of the 7th International Conference on
Multimedia Systems, 2016, pp. 1–12.

[24] S. Holmer, H. Lundin, G. Carlucci et al., “A Google Congestion Control
Algorithm for Real-Time Communication,” Internet Engineering Task
Force, Internet-Draft draft-ietf-rmcat-gcc-02, Jul. 2016.

[25] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “Real-time
transport protocol,” in MCNC 2nd Packet Video Workshop, vol. 2, 2003.

[26] Google, “Real-time communication for the web,” 2024. [Online].
Available: https://webrtc.org/

[27] MDN contributors, “RTCPeerConnection: Browser compatibility,” 2024.
[Online]. Available: https://perma.cc/G2S8-MFV8

[28] C. Krähenbühl, S. Tabaeiaghdaei, C. Gloor et al., “Deployment and
scalability of an inter-domain multi-path routing infrastructure,” in
Proceedings of the 17th CoNEXT, 2021, pp. 126–140.

[29] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
the count-min sketch and its applications,” Journal of Algorithms,
vol. 55, no. 1, pp. 58–75, 2005.

[30] S. Deering and R. Hinden, “Rfc 8200: Internet protocol, version 6 (ipv6)
specification,” 2017.

[31] L. Chuat, M. Legner, D. Basin, D. Hausheer, S. Hitz, P. Müller, and
A. Perrig, “The complete guide to SCION,” Information Security and
Cryptography, 2022.

[32] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-
world’networks,” nature, vol. 393, no. 6684, pp. 440–442, 1998.

[33] “WebRTC code repository,” https://perma.cc/WUW9-ZMFU.
[34] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”

2024. [Online]. Available: https://www.gurobi.com
[35] C. Hopps, “Analysis of an equal-cost multi-path algorithm,” 2000.
[36] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “Hula: Scal-

able load balancing using programmable data planes,” in Proceedings
of the Symposium on SDN Research, 2016, pp. 1–12.

[37] Juniper Networks, “Load balancing for a BGP session,” February 2024,
[Online] Available: https://perma.cc/7RK8-FUNY.

[38] Cisco Systems, “BGP best path selection algorithm,” July 2023, [Online]
Available: https://perma.cc/6NCD-YU3W.

[39] Huawei Technologies, “Example for configuring BGP load balancing,”
August 2023, [Online] Available: https://perma.cc/WK4C-XPH2.

[40] P. Marcos, L. Prehn, L. Leal, A. Dainotti et al., “AS-Path prepending:
there is no rose without a thorn,” in Proceedings of the ACM Internet
Measurement Conference, 2020, pp. 506–520.

[41] W. Xu and J. Rexford, “Miro: Multi-path interdomain routing,” in
Proceedings of the 2006 conference on Applications, technologies,
architectures, and protocols for computer communications, pp. 171–182.

[42] F. Streibelt, F. Lichtblau, R. Beverly et al., “BGP communities: Even
more worms in the routing can,” in Proceedings of the Internet Mea-
surement Conference 2018, 2018, pp. 279–292.

[43] P. Amaral, E. Silva, L. Bernardo, and P. Pinto, “Inter-domain traffic
engineering using an AS-level multipath routing architecture,” in 2011
IEEE International Conference on Communications (ICC), pp. 1–6.

[44] B. Quoitin, C. Pelsser, L. Swinnen, O. Bonaventure, and S. Uhlig,
“Interdomain traffic engineering with BGP,” IEEE Communications
magazine, vol. 41, no. 5, pp. 122–128, 2003.

[45] T. G. Griffin and G. Wilfong, “Analysis of the MED oscillation problem
in BGP,” in 10th IEEE International Conference on Network Protocols,
2002. Proceedings. IEEE, 2002, pp. 90–99.

[46] A. Retana, “Advertisement of multiple paths in BGP: Implementation
report,” 2015.

[47] J. M. Camacho, A. Garcı́a-Martı́nez, M. Bagnulo, and F. Valera, “BGP-
XM: BGP extended multipath for transit autonomous systems,” Com-
puter Networks, vol. 57, no. 4, pp. 954–975, 2013.

[48] T. Koch, S. Yu, S. Agarwal, E. Katz-Bassett, and R. Beckett, “Painter:
Ingress traffic engineering and routing for enterprise cloud networks,”
in Proceedings of the ACM SIGCOMM 2023 Conference, pp. 360–377.

[49] H. Birge-Lee, M. Apostolaki, and J. Rexford, “It takes two to tango:
cooperative edge-to-edge routing,” in Proceedings of the 21st ACM
Workshop on Hot Topics in Networks, 2022, pp. 174–180.

[50] T. Miyasaka, Y. Hei, and T. Kitahara, “Networkapi: An in-band sig-
nalling application-aware traffic engineering using srv6 and ip any-
cast,” in Proceedings of the Workshop on Network Application Inte-
gration/CoDesign, 2020, pp. 8–13.

[51] S. H. Mortazavi et al., “Earlybird: Automating application signalling for
network application integration in datacenters,” in Proceedings of the
ACM SIGCOMM Workshop on Network-Application Integration, 2022,
pp. 40–45.

[52] S. A. Jyothi, M. Dong, and P. B. Godfrey, “Towards a flexible data center
fabric with source routing,” in Proceedings of the 1st ACM SIGCOMM
Symposium on Software Defined Networking Research, 2015, pp. 1–8.

[53] H. V. Madhyastha et al., “iplane: An information plane for distributed
services,” in Proceedings of the 7th symposium on Operating systems
design and implementation, 2006, pp. 367–380.

[54] J. Strauss, D. Katabi, and F. Kaashoek, “A measurement study of
available bandwidth estimation tools,” in Proceedings of the 3rd ACM
SIGCOMM conference on Internet measurement, 2003, pp. 39–44.

