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Abstract
To realize the long-standing vision of providing quality-of-service

(QoS) guarantees on a public Internet, this paper introduces Hum-
mingbird: a lightweight QoS-system that provides fine-grained

inter-domain reservations for end hosts.

Hummingbird enables flexible and composable reservations with

end-to-end guarantees, and addresses an often overlooked, but cru-

cial, aspect of bandwidth-reservation systems: incentivization of

network providers. Hummingbird represents bandwidth reserva-

tions as tradable assets, allowing markets to emerge. These markets

then ensure fair and efficient resource allocation and encourage

deployment by remunerating providers. This incentivization is fa-

cilitated by decoupling reservations from network identities, which

enables novel control-plane mechanisms and allows the design of a

control plane based on smart contracts.

Hummingbird also provides an efficient reservation data plane,

which streamlines the processing on routers and thus simplifies

the implementation, deployment, and traffic policing, while main-

taining robust security properties. Our prototype implementation

demonstrates the efficiency and scalability of Hummingbird’s asset-
based control plane, and our high-speed software implementation

can fill a 160 Gbps link with Hummingbird packets on commodity

hardware.
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1 Introduction
Most applications today require stable network connections to

provide optimal functionality. This holds true, in particular, for

applications that rely heavily on the cloud or that require real-time

communication. Video calls, which have become more frequent

with the popularity of remote work, are a common example of such

applications. Ensuring a high quality of service (QoS) for important

calls can have a significant impact on the success of businesses.

In online games, the reliability of the connection between players

and the game server can influence the outcome of a competition,

providing an advantage to players with better network connectivity.

The quality of the network connection can also impact traditional

finance applications as well as decentralized finance protocols [49].

In both cases, ensuring that a trade is submitted on time can make

or break the trade. In B2B communication settings, QoS on a public

Internet can satisfy the needs of high-availability use cases and

replace the use of SD-WAN (valued at USD 5B in 2023 [42]) or

leased line technologies (valued at USD 12B in 2023 [41]). Given

the market sizes, incentives exist for challengers to leverage QoS

to enter and capture market share.

To fully realize these use-cases, flexible, short-term guarantees

for reliable network connectivity across multiple domains in the

Internet are required. However, in the current Internet, providing

guaranteed QoS is only possible within a centralized domain, i.e.,

an autonomous system (AS), through expensive leased lines, or SD-

WANs. In addition, these guarantees cannot be flexibly obtained for

short or medium time periods, i.e., on the order of seconds, minutes,

hours, or days.

Previous proposals to provide QoS for Internet traffic [3, 7, 17,

18, 51, 54] have several limitations. Earlier techniques [3, 7, 51] do

not consider the presence of adversaries, and are therefore only

applicable in intra-domain settings. To withstand powerful network

adversaries, more recent proposals [17, 54] enforce reservations

through network capabilities [2], unforgeable cryptographic tokens
that can be checked efficiently and statelessly by routers on the

forwarding path. However, the attack resilience of these systems

comes at the expense of increased control-plane complexity [17], or

inflexible reservation sizes [18, 54] (e.g., the source cannot specify

the amount of bandwidth to be reserved). The tradeoff between

control-plane complexity and reservation flexibility may appear

fundamental: Increasing the degrees of freedom in which reserva-

tions can be parameterized and composed should come at the cost of

https://doi.org/10.1145/3718958.3750495
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a more intricate control-plane logic; conversely, a more streamlined

control plane should constrain reservation expressiveness.

This paper moves beyond this impasse by proposing Humming-
bird, a system that allows expressive bandwidth reservations on the

data plane, while avoiding the coordination and timeliness require-

ments that encumbered the control plane of previous proposals.

The key insights are that reservations can be made independent

from in-band identities, such as network addresses, that they can

be granted to the source on a per-hop basis without coordination

between on-path ASes, and that they can be negotiated well ahead
of their start time if desired. The source is then responsible for

obtaining and composing reservations to protect end-to-end paths.

This decoupling of the control plane from the data plane enables

new control-plane designs that address a fundamental part of a

bandwidth-reservation system: A mechanism to incentivize fair

and efficient allocation of reservations.

In contrast to previous solutions, we prioritize incentivization

by designing a control plane that represents bandwidth as freely

tradable assets—that can be sold, bought, and re-sold. This approach

enables the creation of bandwidth markets that attach a monetary

value to reservations, and ensure that bandwidth supply provided by

ASes, and demand originating from hosts, converge to the fair mar-

ket price. This mechanism serves multiple purposes: (i) incentivize

ASes to provide bandwidth reservations to hosts, (ii) maximize the

utility of reservations and provide economic fairness, and (iii) en-

sure that the cost of preventing a host from obtaining a reservation

is equal to the market value of the reservation.

We thus design a control plane that makes use of smart con-

tracts to (i) create tradable assets for bandwidth reservations, and

(ii) allow obtaining end-to-end QoS guarantees atomically without

interaction between on-path ASes.

On the data plane, the sender adds authentication tags to each

packet, serving as capabilities that are checked efficiently by border

routers on the path. Hummingbird incorporates several optimiza-

tions to ensure that reservations granted ahead of time cannot be

abused, and that information about the heterogeneous on-path

reservations can be transmitted efficiently.

2 Related Work
Several different systems to improve on best-effort traffic were pro-

posed in the 1990s, of which the two most prominent are IntServ [7,

51] and DiffServ [3]. Unfortunately, neither of them is applicable to

adversarial settings and both systems suffer from additional short-

comings: IntServ can provide strong guarantees (in the absence of

malicious actors) but requires a large amount of per-connection

state and has to make complicated decisions on routers when pro-

cessing RSVP requests [7]. DiffServ, on the other hand, is highly

scalable but only provides weak communication guarantees, and

it is mainly used to define different traffic types within an AS.

Thereafter, researchers have studied traffic prioritization protocols

that use cryptographic authentication to enforce traffic prioritiza-

tion [2, 31, 32, 38, 56, 57]. These systems, however, were either not

scalable or did not provide sufficient guarantees compared to best

effort, and never saw widespread adoption.

Inter-domain bandwidth reservations. The research area has

seen a revival in the past decade with the rise of path-aware net-

working architectures, like SCION [9], which facilitate bandwidth

reservations with features such as packet-carried forwarding state

and path stability [5, 17, 18, 23, 53, 54]. However, even in this set-

ting, previous proposals make different choices for the trade-off

between scalability, deployability, fairness, simplicity, and security.

In the following, we describe two state-of-the-art systems and their

limitations for our use case.

Colibri [17] provides its inter-domain bandwidth reservations

with a two-step process. First, ASes establish segment reservations

that cover SCION up-, core-, or down-segments. Second, end-to-end

reservations are established by combining such segment reserva-

tions, using fractions of the segment reservation bandwidth. Estab-

lishing a Colibri reservation is performed by the source AS on behalf

of the host using a gateway, and requires coordination between all

ASes on the path. The gateway manages and monitors reservations

for its hosts, which do not have access to the cryptographic keys to

authenticate packets themselves. Instead, the gateway embeds the

required authenticators in the packets. Due to the complexity of

separately monitoring each path, on-path ASes only monitor traffic

probabilistically, and, if overuse is detected, punish the source AS,

e.g., by declining future reservations.

Further, Colibri requires the deployment of an additional key

distribution infrastructure (DRKey [30, 44]), its control plane is

complex to implement, and it requires duplicate suppression, i.e.

filtering of duplicate packets, on the data plane. We discuss the need

for duplicate suppression in related work and why Hummingbird
can do without in Section 5.4 in more detail. Additionally, Colibri

does not allow any partial reservations, in which bandwidth is only

reserved on some of the hops, and thus can only be used if each

AS on the path provides a reservation to the host. Finally, Colibri

offers little flexibility regarding the validity period of reservations:

a reservation is valid as soon as it is received and must be renewed

after a fixed time interval of 16 s.

With Helia [54], Wyss et al. introduce flyover reservations, which
are granted per-AS instead of the full path. This reduces the com-

plexity of reservations compared to Colibri and allows for partial

reservations on a path – an approach we adopt in Hummingbird as

well. One limitation of Helia is that the reservation granularity is

coarse and, most importantly, the reserved bandwidth as well as the

start and expiration times cannot be negotiated between the source

and the on-path AS. Instead, the reservations have fixed time slots

and their size is automatically set to ensure that each source can

obtain a reservation. In addition, Helia does not allow end-hosts to

create and use reservations directly. Similar to Colibri, it requires

an AS-gateway to authenticate packets, it does not allow creating

reservations ahead of time, and it also requires the DRKey [30, 44]

infrastructure to be in place. Further, Helia does not support atomic

end-to-end reservation guarantees, since the reservation for each

hop is obtained individually without coordination.

Network utilization and economic incentives. Since the early

days of the Internet, researchers explored the use of economic in-

centives to improve the utilization of network resources [12, 36].

These works were inspired by the recent memory of the “conges-

tion collapses” [24] of some years prior, and asked the question of
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whether pricing congestion explicitly could help improve the allo-

cation of the scarce bandwidth at the disposal of the early Internet.

Kelly et al. [27] demonstrate that TCP-like congestion control algo-

rithms can naturally be interpreted as a price-based rate-allocation

mechanism, where the “shadow prices” of are inferred from flow

rates. These publications served as the theoretical foundation for

the later development of a rich literature on network utility maxi-

mization (NUM) through implicit or explicit pricing [16, 37, 40].

NUM-based systems have several key differences from Hum-
mingbird. First, they often consider a network with a single con-

troller, or “one-hop” networks, where the controller can enforce

the pricing and billing of resources. Hummingbird, instead, con-
siders the full scope of inter-domain resource billing and enforce-

ment, without a single central authority. Second, given the single-

path nature of the Internet, these works only leave two options

to the end-host: either to pay the price set by the network, or

to reduce their network usage. Hummingbird builds on SCION’s

multi-path forwarding architecture, allowing end-hosts to reroute

their traffic depending on congestion and prices. Further, only

reservation-protected traffic—which is a new and opt-in service–is

priced through a market in Hummingbird. Therefore, our design
does not alter the existing inter-domain economic relationships

between ASes, and only adds a new layer of economic incentives

for a new service.
1

Finally, these works are mainly focused on incentive mecha-

nisms, rather than concrete system design; Hummingbird, on the

other hand, provides a complete design and implementation of a

system that can be deployed in adversarial settings. While our work

considers a network and economic model that is very different from

those studied in the NUM literature, analyzingHummingbird under
the lens of NUM is a promising direction for future work.

Regarding the use of blockchains as supporting infrastructure for

network protocols, Route Bazaar [8] pioneered the use of blockchain

to implement decentralized QoS markets. Yet, this work does not

provide a concrete system design, and does not consider reservation

enforcement nor adversarial action. Hummingbird, on the other

hand, provides a complete design and implementation, including

reservation monitoring and policing, preventing unauthorized ac-

cess and overuse.

3 Hummingbird Overview
In this section, we describe the properties and goals of Humming-
bird, state the assumptions that we make on the network and infras-

tructure, and finally provide a high-level overview of the system

design.

3.1 Goals & Properties
The goal of Hummingbird is to enable end-to-end QoS guaran-

tees in the Internet through bandwidth reservations. Traffic using

reservations is prioritized over best-effort traffic, and is therefore

shielded from congestion and DoS attacks.

To that end, we rely on existing intra-domain traffic separa-

tion and prioritization mechanisms, e.g., DiffServ, or MPLS tunnels

within an AS’s network. We focus on coordinating the utilization

1
The emergent interactions between the incentive structures of the best-effort Internet

and the reservation market are an interesting topic for future work.

of these systems in the global inter-domain context, enabling their

flexible and scalable composition, and ensuring that QoS-traffic

does not suffer from congestion at peering points between ASes.

The core challenges we aim to solve are (i) to scale control and

data plane to the size of the Internet; (ii) to avoid reservation spoof-

ing and abuse by adversaries; and, (iii) to provide incentive mecha-

nisms for the fair and efficient allocation of reservations. In partic-

ular, we design Hummingbird to provide the following properties:

Independent & Composable Flyover Reservations. Each reser-

vation is granted for an individual AS hop, called a flyover, and
prioritizes the source’s traffic (up to the reserved bandwidth) intra-

AS from the ingress to the egress router of the AS, and inter-AS

from the egress router to the ingress router of the next AS.These

reserved hops can then be composed to obtain end-to-end guar-

antees, or they can be used independently to only reserve parts

of a path that are expected to be congested. This composability

also allows reusing a reservation on one hop for connections to

different entities. For example, one large reservation at a central AS

in the network can be used together with multiple smaller reserva-

tions to obtain bandwidth guarantees for connections to multiple

destinations.

Control-Plane Independence. The data plane is independent of

the control plane; i.e., reservations can be created without relying

on the network identity of the source. This decoupling allows each

AS to decide how it wants to offer reservations to its customers,

and thus—in contrast to existing solutions—enables out-of-band

mechanisms such as bandwidth marketplaces.

Atomic Path Reservations. Since reservations are obtained for

each hop independently, it may occur that a source can only obtain

reservations for part of the path, while on a few key hops there is no

bandwidth available. If the source requires full path protection, then

the obtained reservations are useless to the source, potentially cause

a financial loss, and are no longer available to other hosts, despite

being unused. One useful property we require for Hummingbird’s
control plane is therefore a mechanism to provide atomic path
reservations, whereby the source is guaranteed to either obtain

reservations for all requested hops, or none at all.

Stateless Reservation Authentication. Transit ASes can verify

the authenticity of each reservation on the fly, based only on the

reservation information in the packet.

Efficient Policing. Monitoring and policing of bandwidth reserva-

tions inHummingbird are feasible with simple methods andwithout
relying on duplicate suppression, which is challenging to imple-

ment in the network [33]. Our design does not require complex

probabilistic monitoring schemes, nor does it rely on punishment

to prevent overuse. Instead, traffic can be policed efficiently using

deterministic monitoring and requires only storing minimal state.

Importantly, each AS can individually decide and limit the number

of reservations that it can afford to monitor simultaneously.

Reservation Incentives. An important aspect of a bandwidth

reservation is providing incentives for a fair and efficient resource

allocation. Since incentivization is usually an afterthought in the

design of bandwidth-reservation systems, retrofitting such a mech-

anism onto the previous proposals creates significant inefficien-

cies and overhead. Hummingbird is designed to enable efficient
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incentivization—through markets—with a control plane that repre-

sents bandwidth as a tradable asset (see Section 4.2).

3.2 Network & Infrastructure
Our system requires the followingminimal assumptions on network

stability and infrastructure deployment.

Path Stability & Transparency. Any bandwidth-reservation sys-

tem requires the source to determine which ASes are traversed

to obtain and use the correct reservations, and the paths need to

remain stable through the duration of the reservation. Therefore,

we assume that the source is aware of the paths to the destination

and their validity periods to be able to set up appropriate reser-

vations. This assumption is fulfilled, e.g., by path-aware network

architectures that carry the path of packets in their headers such

as SCION. As SCION is deployed commercially, with over a dozen

ISPs selling connectivity
2
, we build Hummingbird on SCION.

PKI for Autonomous Systems. To ensure the validity of reser-

vations, the control plane assumes that a PKI for ASes is in place,

such as the Resource Public Key Infrastructure (RPKI) [35] used in

secure BGP, or the Control-Plane PKI (CP-PKI) [9] used in SCION.

Allocation of AS-internet resources. We assume that ASes can

allocate internal resources to support all reservations that they

provide, i.e., traffic can pass between any two interfaces without

causing congestion, as long as the advertised available bandwidth

per interface is not exceeded.

Time Synchronization. To check the age of a packet, the clocks

of hosts using reservations and ASes must be synchronized to a

maximum clock skew of 𝛿 (e.g., 0.5 seconds). Several time synchro-

nization systems amply satisfy this property, such as NTP, PTP,

GNSS – in practice, time accuracy with NTP is around 10ms, and be-

low 100ms in the vast majority of cases [50]. A time synchronization

error above 0.5s can invalidate the QoS reservation.

AS Stack. ASes that provide reservations need to deploy a Hum-
mingbird Service, which is responsible for coordinating the reserva-

tions and managing the AS-local secret keys for data plane authenti-

cation. Further, border routers need to be augmented to support the

key derivation and packet authentication processes (see Section 4.3).

Client Stack. Hummingbird clients must be able to (i) contact the

control plane to obtain the reservation authentication keys, and (ii)

use the keys to authenticate packets at forwarding time.

3.3 High-Level Design
In the following, we provide an overview on how Hummingbird
works, illustrated using Fig. 1, and how it provides the properties

described in Section 3.1.

At a high level, a flyover reservation is a six-tuple indicating

which AS granted the reservation, the ingress and egress interfaces

traffic will traverse, the start and expiration times, and the amount

of forwarding bandwidth reserved.

Obtaining Reservations. To keep Hummingbird’s operation sim-

ple and lower the burden on transit ASes, the source is responsible

for obtaining valid overlapping reservations that cover the commu-

nication path on the control plane.

2
see https://www.scion.org/isps/

§ §
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Figure 1: Overview of Hummingbird’s operation on a path
of five ASes (dark circles). The source host performs a reser-
vation request (❶) to set up reservations on the path to the
destination. Reservations may have independent sizes, start
and expiration times (represented by the “tube” widths, ❷).
Further, not all on-path ASes must provide reservations (❸).
Border routers (❹) authenticate and prioritize reservation
traffic on the data plane.

The control plane coordinates the creation of reservations, and

allows establishing a shared reservation authentication key between

the source and the transit AS. Since reservations are granted on a

per-hop basis, the control plane only requires pairwise interaction

between the source and each individual on-path AS (❶ in Fig. 1),

and avoids complex multi-party reservation protocols.

In Hummingbird, reservations have a start time. Thus, the reser-
vation key can be provided to the source ahead of time, ensuring

that the reservation is immediately usable, without any setup delays

after the start time.

Since reservations are independent for each hop, reservations

covering multiple hops do not need to have the same start time,

expiration time, or even bandwidth (❷ in Fig. 1). Further, thanks to

this decoupling, the source can obtain partial reservations on the

path (❸ in Fig. 1), even if not all on-path ASes provide reservations.

Our control plane provides incentivization and efficient utiliza-

tion of resources by enabling bandwidth markets, in which ASes

can sell their reservation bandwidth by listing bandwidth assets—
which can be split, combined, and traded—that act as vouchers for

reservations on the data plane. Once a source wants to use a reser-

vation, it redeems the asset to obtain the corresponding reservation

authentication key.

In the bandwidth-reservation setting, where decentralization and

resilience to failures are of paramount importance, a centralized

bandwidth marketplace is unsuitable because it introduces a single

point of failure. Because of this, we design a control plane based on

blockchain smart contracts that is decentralized, provides strong

availability guarantees, and has a high performance. This approach

provides multiple advantages and is well-suited to the inherently

decentralized setting of the Internet where not all parties mutually

trust each other [55]. Blockchains are designed to be Byzantine fault

tolerant (BFT) and thus highly resilient to failures and adversarial

actions. They are replicated among globally distributed entities and

thus provide redundant access to the Hummingbird control plane.

The use of smart contracts allows for flexible listing, modification,

and purchase of assets with guaranteed integrity and without the in-

teraction of the selling AS (see Section 4.2). Further, smart contracts

are executed atomically, i.e., state changes are only applied if the

https://www.scion.org/isps/
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whole contract call executes without error, which enables sources

to purchase reservations for a whole path in a single transaction,

directly solving the problem of providing atomic path reservations.

It is important to note here that modern high-performance block-

chains such as Sui [6], which we use for our evaluation, do not

suffer from often cited disadvantages that have plagued previous

blockchain generations. They are far faster, cheaper, and much

more energy efficient.

Using Reservations. At forwarding time, the host uses the reser-

vation keys obtained on the control plane to derive a per-packet

message-authentication code (MAC) for each reserved AS hop. Bor-

der routers in transit ASes can re-derive this reservation key on the

fly based on the reservation information in the packet (❹ in Fig. 1).

These cryptographic tags authenticate the reservation information

and the packet’s length, so that the reserved bandwidth can only

be used by the source (see security analysis in Section 5).

Further, reservations are not tied to flows. A source can use the

same reservation for multiple flows crossing the same AS hop –

while ensuring that the flows in the aggregate stay within the re-

served bandwidth. Hummingbird’s design allows policing reserva-

tion traffic to be lightweight, requiring only a single 8 byte counter

per reservation (see Section 4.4).

4 System Details
This section presents the details of Hummingbird. We first explain

how reservations in our system are authenticated, then provide

an example control plane that makes use of smart contracts and

allows trading bandwidth assets in a market, and finally discuss

the details of the data plane.

A full specification of the packet headers and format, based on

the SCION Internet architecture [9], is included in Appendix A.

In our specification, traffic that is (partially) protected by reserva-

tions uses a separate SCION path type that introduces additional

8 bytes per reserved hop compared to the standard SCION header.

We chose SCION as a basis for Hummingbird as it provides path

transparency (an end host knows and can observe and select paths)

and path stability (the packet’s embedded path is followed), which

are essential properties for bandwidth-reservation systems (see Sec-

tion 3.2). Moreover, SCION is deployed on commercial networks,

enabling a roll-out of Hummingbird in practice.

While SCION offers native support for path awareness and

cryptographically-enforced stability, the core of Hummingbird’s de-
sign can be adapted to other architectures as well. For instance, IPv6

Segment Routing (SRv6) [15] or MPLS-based [48] networks can sup-

port path transparency, and thus would also allow Hummingbird
reservations. However, these architectures also have limitations,

compared to SCION, that make them less suitable forHummingbird.
SRv6 leverages IPv6 addresses, which are routed using BGP, and

thus it is susceptible to the same transient rerouting events and

hijacking attacks that prevent path stability in the current Internet.

MPLS-based networks, on the other hand, provide stable paths (un-

less the MPLS labels are announced and discovered through, e.g.,

BGP-LU [43]), but the configuration of MPLS network-to-network

interfaces (NNIs) is still a complex and mostly manual process,

limiting the scalability and flexibility of the system. Thus, SCION

remains the most practical target at present for realizing end-to-end

enforceable QoS with market-based reservations.

4.1 Reservation Authentication
Assume that the source has reserved BW bandwidth from the

ingress interface In to the egress interface Eg of an AS 𝐾 , from

time StrT for a duration Dur . AS 𝐾 assigns an identifier, ResID, to
the reservation, which must be unique for the interface pair during

the reservation’s validity period.

The reservation is then determined by the tuple

ResInfo𝐾 = (In, Eg, ResID, BW , StrT ,Dur) . (1)

The AS 𝐾 providing the reservation is implicitly specified by the

authentication key for the reservation, which is computed by AS 𝐾

as

𝐴𝐾 = PRFSV𝐾
(
ResInfo𝐾

)
, (2)

where SV𝐾 is a secret value known only to AS 𝐾 , which is shared

among its border routers. PRF is a secure pseudo-random function

with an output length sufficient to yield secure symmetric crypto-

graphic keys (i.e., in practice at least 128 bits). The authentication

key, 𝐴𝐾 , is shared through the control plane (see Section 4.2) with

the source.

Note that, in contrast to previous bandwidth-reservation solu-

tions, no source address or unique source identifier is used to create

the reservation in our proposal. Instead, a unique ResID identifies

the reservation at each hop. This approach has several advantages:

First, each AS𝐾 independently determines the ResID, which only
has to be unique for a particular interface pair, and thus controls

the maximum number of ResIDs available. This can improve the

efficiency of monitoring and policing, which can be done determin-

istically (see Section 4.4).

Second, reservations can be shared between multiple (mutually

trusting) sources or it can be obtained by one party for use by

another. For example, a client could obtain a reservation for the

reverse direction (i.e., server to client) and provide the authentica-

tion key to the server in order to obtain bi-directional bandwidth

guarantees (see Appendix C).

Further, the same source may have multiple reservations on

the same hop. This can increase the availability guarantees of the

system (importantly, it can prevent attacks from on-reservation-set

adversaries, see Section 5.1). It also increases the flexibility of the

system, e.g., during bursts of traffic, a source can obtain additional

reservations to supplement an existing long-standing reservation.

Finally, it enables control-plane-independent reservations with-

out introducing attacks that may be present if the reservations

are granted per-source based on network identities. If network

identities would be used instead, the source would need to prove

its identity when obtaining the reservation (e.g., through a PKI).

Otherwise, an adversary could reserve bandwidth on the source’s

behalf to prevent that source from creating further reservations.

4.2 Control Plane
The Hummingbird data plane is compatible with any control plane

that allows the source to (i) negotiate reservations and (ii) obtain
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ResInfo𝐾 and 𝐴𝐾 from AS 𝐾 , importantly without relying on in-

band identities. This control-plane independence enables the cre-

ation of a market for bandwidth reservations, which maximizes the

utility of the allocated resources instead of relying on an in-band

control plane.

Our control plane enables ASes to represent bandwidth as assets

on a blockchain, makes them freely tradable, and allows obtaining

end-to-end guarantees atomically. The core of our control plane is

an asset contract that defines the structure and behavior of band-
width assets. These bandwidth assets are issued by ASes that provide
Hummingbird reservations and act as vouchers for said reserva-

tions on the data plane. Each asset represents reserved bandwidth

for an ingress or egress interface at the issuing AS during a given

time interval. A pair of an ingress and an egress asset can then be

redeemed at a later time for the information required to use the

reservation on the data plane.

The asset contract is complemented by one or multiple indepen-

dent market contracts which provide a decentralized marketplace

for trading bandwidth assets. Assets can be split in the time or band-

width dimension into multiple non-overlapping assets. This allows

an AS to issue a single “large” asset that represents all available

bandwidth for a given interface for a long time interval, which can

then be split by their current owner—which can be the AS, a buyer,

or the market contract— into “smaller” assets as needed.

In the following, we will first describe the structure of a band-

width asset, and then explain the registration process for ASes,

before we detail how an end host obtains a reservation. Figure 2

illustrates this process in an example, in which we assume that

the AS has previously registered with the asset contract, and that

the end host already owns an ingress asset for the desired flyover

reservation (❶), e.g., from a previous purchase.

Asset Representation. As reservations should be possible for

both long and short time periods as well as for large and small

bandwidth allocations, issuing an individual asset for each possible

reservation quickly becomes infeasible. Because of this, we repre-

sent reservations using assets that are splittable in both the time

and bandwidth dimension, subject to the limitations of the provided

granularities (see below). This allows an AS to publish one large

bandwidth asset, which can then be split up into smaller bandwidth

assets as needed, which will be explained below.

Additionally, providing individual assets for all possible pairs of

ingress/egress interfaces can quickly lead to a space explosion. We

avoid this by making each asset represent a reservation on a single

interface used either as ingress or egress for the reservation. To

later make use of the reservation, an asset for both an ingress and

egress interface from the same AS representing the same bandwidth

and time intervals are needed.

Each bandwidth asset contains the following attributes:

AS Identifier: The identifier of the AS offering the reservation.

This is set automatically after authenticating the AS.

Bandwidth: The bandwidth of the reservation. Corresponds to

BW on the data plane.

Start Time: The start time of the reservation represented by the

asset. Corresponds to StrT on the data plane.

Expiration Time: The expiration time of the reservation repre-

sented by the asset. Corresponds to StrT +Dur on the data plane.

End Host

Market

Contract

Asset

Contract

AS

❷ Issue

❷ Egress Asset

❸ List

❹ Split & Buy $

❹ $❹

❺ Redeem ❻

❽ Deliver Res.❽ Reservation

❶

❼

Figure 2: Control-plane interactions between the asset and
market smart contracts, an AS, and an end host. The figure
shows how assets are issued (❷) and listed on a marketplace
(❸), how an end host obtains an egress asset (❹) that matches
a previously obtained ingress asset (❶), and how the reserva-
tion is redeemed (❺–❽).

Interface: The ID of the AS interface for which the reservation is

valid. Corresponds to In or Eg on the data plane.

Ingress/Egress: An indicator describing whether the reservation

allows the use of the interface as ingress or egress.

Time Granularity: Theminimumduration forwhich theASwants

to support reservations. Supporting very short reservations may

not be in the interest of every AS, thus we allow each AS to

set this threshold. Each asset can be split in the time dimension

as long as the duration of each new asset is a multiple of this

granularity.

Minimum Bandwidth: The minimum bandwidth of reservations.

This parameter allows an AS to limit the number of concurrent

reservations, see also Section 4.4. Each asset can be split in the

bandwidth dimension as long as the bandwidth of each new asset

exceeds this minimum.

AS Registration. Our asset smart contract requires a registration

process, which ensures that the entity issuing an asset is actually

authorized to do so; i.e., an entity cannot simply create an on-chain

asset that represents a reservation at some AS that is not under

their control. Since we assume that a PKI for ASes is in place, each

AS could simply sign each asset that they issue, which would allow

any user to verify the validity of an asset before obtaining it.

This naive approach can be improved to only require authen-

tication once, during an AS registration process, in which the AS

provides its AS certificate to the asset smart contract and proves

that it is in possession of the corresponding private key. At this

point, the smart contract issues an authorization token to the AS

that contains the AS identifier. The asset contract then enforces that

(i) only the owner of such an authorization token, i.e., registered

ASes, can issue bandwidth assets, and (ii) that the AS identifier listed

in each issued asset corresponds to the AS identifier contained in

the authorization token that is provided during issuance.

Issuance. Each registeredAS can issue bandwidth assets for ingress
and egress interfaces by calling the issue function of the asset con-

tract, specifying the attributes of the asset. In Step ❷ in Fig. 2, the

AS issues a large bandwidth asset for an egress interface, which the

contract immediately transfers to the AS. At this point, the asset is
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owned by the AS and can be transferred arbitrarily. In our example,

the AS now lists this asset for sale by sending it to a market contract

(❸), which allows the market contract to modify the asset, governed

by the restrictions put in both the market and asset contracts, e.g.,

dictating how assets can be split.

Asset Splitting & Purchase. In our example, the AS has issued,

and listed for sale, an asset that represents a longer time interval

and larger bandwidth than the end host wants to purchase, namely,

an asset that matches the dimensions of the previously obtained

ingress asset (❶).

Luckily, the owner of a bandwidth asset—which, in the exam-

ple is the market contract—can split it in the time or bandwidth

dimension if the split conforms to the restrictions on the time gran-

ularity and minimum bandwidth, resulting in two “smaller” assets.

When splitting an asset, the attributes Start/Expiration Time and

Bandwidth are adjusted according to the split, whereas the other

attributes remain unchanged. To split an asset into multiple chunks

or in both dimensions, the process is repeated.

Thus, in our example (Fig. 2), the end host can buy a fraction of

the asset by sending the required payment to the market contract

and specifying the desired time interval and bandwidth (❹). The

payment is forwarded to the seller (in this case the AS) and the asset

that was split off is transferred to the end host, who now becomes

its owner. This allows them to transfer or resell the asset, to split it

again, or to fuse it with other compatible assets.

Asset Redemption. Before a reservation can be used on the data

plane, a pair of ingress/egress assets that represent this reservation

need to be redeemed. In this step, the owner of said assets exchanges
them for the required data-plane information. This is necessary

since ownership of assets themselves cannot directly allow use of

the network resource, as this requires information (in particular

the authentication key 𝐴𝐾 ) that (i) needs to remain secret, (ii) de-

pends on attributes that change with each split of the asset, and

(iii) depends on both assets that are combined for the reservation.

Once an end host has obtained compatible ingress and egress

assets (i.e., same AS, validity period, bandwidth) and wants to use

the reservation, the end host—as owner of the assets—sends both

assets, as well as an ephemeral public key to the asset contract to

redeem them (❺). The contract wraps the assets and the public key

into a redeem request (represented as another on-chain asset) which

is then transferred to the issuing AS (❻). Once the AS receives this

redeem request, it creates the information required for the reserva-

tion (i.e., ResInfo𝐾 , 𝐴𝐾 ) as described in Section 4.1 and encrypts it

with the public key from the redeem request (❼).

In this step, the AS also assigns the reservation’s ResID. To keep

monitoring as efficient as possible (see Section 4.4), per-ingress

unique IDs are preferred; however, an AS is free to assign IDs differ-

ently as long as it can uniquely identify and monitor a reservation

based only on the ResInfo.
The AS then sends the encrypted reservation (together with the

redeem request asset) back to the asset contract, from which it is

received by the client (❽). The contract additionally destroys the

bandwidth assets, which can thus no longer be traded. Finally, the

client decrypts the received information and forwards ResInfo𝐾 and

𝐴𝐾 to its Hummingbird-enabled local applications to use on the

data plane.

Atomic End-to-End Guarantees. One crucial property we get

from using blockchain-based assets is that multiple transactions can

be made atomic, i.e., they either all succeed or all fail. Thus, even

though each asset represents only an interface of a hop on the path,

a source can create an atomic transaction to buy reservations for

all hops on a path: If it succeeds, the source receives an end-to-end

bandwidth reservation; if it fails, no money is lost (except minimal

transaction fees).

The atomicity of blockchain transactions solves one of the most

difficult tasks in hop-based bandwidth-reservation systems: Obtain-

ing end-to-end reservations without active coordination between

the involved ASes and with no significant partial-failure costs.

4.3 Data Plane
The data plane for Hummingbird flyovers is lightweight, allows

stateless traffic authentication on routers, and only requires a small

state for policing (see Section 4.4).

When sending a packet over the reservation, after the start time

has passed, the source authenticates the packet with the packet
authentication tag

𝑉𝐾 = PRF𝐴𝐾 (DstAddr, len(pkt), TS) [: ℓtag], (3)

where len(pkt) is the length of the packet (including header) and

TS is a high-resolution timestamp that is unique for each packet,

used for traffic policing. DstAddr is the destination address, which

is included to mitigate reservation stealing attacks (see Section 5)

and [: ℓtag] denotes truncation to ℓtag bytes, which is a parameter

configured at the protocol level. Truncating the tags reduces the

effort required for brute-force attacks. However, since the tags are

only valid for a short amount of time (see below), and brute-forcing

them requires an online attack, this is sufficient for our use case (see

Section 5) and allows saving valuable space in the packet headers.

In systems like SCION [9], where each hop already contains a Hop
Field MAC to authenticate the forwarding information, 𝑉𝐾 can be

aggregated with this Hop Field MAC into an aggregate MAC [26] by

XORing the two, which saves additional space (see Appendix A.4).

The packet is then transmitted, containing the reservation infor-

mation (1) and tag (3) for each hop with a reservation:
3

(TS, len(pkt), ResInfo
1
,𝑉1, . . . , ResInfo𝐾 ,𝑉𝐾 , . . . ) . (4)

Upon receiving a packet, each border router performs the fol-

lowing steps:

(1) Check if the packet contains a reservation. If not, treat it as

best-effort traffic.

(2) Verify the authenticity of the reservation information in the

packet to ensure that the packet is using bandwidth of a valid

reservation. The border router only needs to recompute 𝐴𝐾 and

𝑉𝐾 , and compare the latter to the one in the packet to verify the

validity of the reservation. If the authentication fails, the packet

is dropped.

(3) Check if the timestamp TS in the packet is recent—i.e., between

𝑡 −𝛿 −Δ and 𝑡 +𝛿 , where 𝑡 is the current time, 𝛿 is the maximum

clock skew, and Δ is the maximum packet age—and that it falls

within the validity period of the reservation. If this is not the

3
Parts of the ResInfo are already contained in the SCION standard header.



SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Wüst et al.

case, treat the packet as best-effort traffic. Otherwise continue

with the next step.

(4) Monitor the reservation traffic, see Section 4.4.

(5) Forward the packet with priority if there is still sufficient band-

width available in the reservation, otherwise forward with best

effort. Packets are not dropped to ensure that benign bursts of

traffic—which can occur through network elements that are not

under the control of the source—do not degrade performance to

below best-effort performance.

Since reservation traffic is prioritized over best-effort traffic, it

will be able to pass, even if the network is congested. However,

unused bandwidth from a reservation is not wasted, since it is still

available for best-effort traffic.

4.4 Traffic Policing
Hummingbird is designed to allow every AS to perform determin-

istic monitoring and policing for its own reservations to ensure

that it can provide its guarantees. This is in contrast to systems

like Colibri [17], where the source AS performs deterministic traffic

policing and on-path ASes only perform probabilistic monitoring.

For each reservation, policing can be implemented with a simple

token-bucket algorithm using a single 8 B counter, as described

below. Since an assigned ResID is unique for the particular ingress

interface during the reservation’s validity period, an AS can simply

keep an array of ResIDmax counters, where ResIDmax is the highest

assigned ResID of all its reservations, and use the ResID in the packet

header as an index. If the ResIDs are assigned such that ResIDmax is

sufficiently small, the policing array can fit into a processor’s cache,

making policing very efficient.

ResID Assignment. Assigning ResIDs is an instance of the online

interval coloring problem which can be solved efficiently [21, 25, 28,

29]. However, online graph coloring algorithms cannot assign the

optimal coloring and instead, in the worst case, assign a maximum

color 𝑅 · 𝜒 , where 𝜒 is the chromatic number of the graph and

𝑅 is called the competitiveness of the coloring algorithm. In our

case, the competitiveness is the ratio between the largest assigned

ResID and the maximum number of concurrent reservations (i.e.,

TotalBW/MinBW ).

By setting the total bandwidth TotalBW available for reserva-

tions during a time period as well as the minimum bandwidth

MinBW for reservations, an AS can ensure that the possible values

for the ResIDs are between 0 and ResIDmax := 𝑅 · TotalBW/MinBW
in the worst case. An AS can always ensure that this array fits into

the processor’s cache by choosing appropriate values for TotalBW
and MinBW . Consider the following two examples (using 𝑅 = 3):

4

(1) An ingress interface with a total bandwidth of 100Gbps (a com-

mon link size in the current Internet [39]) and a min bandwidth

of 100 kbps (sufficient for VoIP [46]): This results in ResIDmax =

3×106 and a policing array of 24MB, which fits into the L3 cache

of many current processors.

(2) The same total bandwidth but a minimum of 4Mbps, which is

sufficient for 1080p video calls [46]: This results in ResIDmax =

75 000 and a 600 kB policing array, which fits into the L2 cache

of current processors.

4
In the optimal online algorithm 𝑅 = 3 [29], although other algorithms perform better

in practice for most interval graphs [21].

Using the ResID directly as an index into the policing array and

keeping the reservation bandwidth in the packet header makes the

policing algorithm extremely simple.

Traffic Policing Algorithm. Algorithm 1 describes a simple and

highly efficient algorithm, adapted from the algorithm presented by

Wyss et al. [54], for deterministic policing, which only keeps an 8-

byte timestamp per reservation in an array plus a global parameter

BurstTime.
This parameter limits the allowed “burstiness”: intuitively, a

sender cannot send more than BurstTime worth of traffic com-

pressed into a single burst. It should be set sufficiently small such

that the router’s buffers can absorb some synchronized bursts and

to limit jitter, but large enough that it does not cause unnecessary

constraints on packet sizes for small reservations.

Given current trends in router buffers [58], a value of roughly

50ms seems reasonable. Note that for very small reservations (be-

low 240 kbps), this limits the maximum packet size to below 1500 B.

However, specifically for VoIP applications, this is not an issue, as

those anyway send a packet roughly every 20ms [10] and thus do

not trigger the burst prevention.

Processing a packet requires very few operations, namely i)

getting the current time, ii) 1 load operation, iii) 2 comparisons and

branches, iv) 1 division
5
, v) 2 additions, and vi) 1 store operation

(in the successful case).

Algorithm 1 Simple policing algorithm for Hummingbird which

assumes unique values for the ResID of all reservations on a given

ingress interface. This algorithm locally stores an array of times-

tamps (one for each possible value of ResID) and a global parameter

BurstTime. All other inputs (ResID, BW , PktLen) are part of the au-
thenticated packet information. The algorithm is a slight adaptation

of the algorithm presented in Appendix E of Wyss et al. [54].

Input: TSArray, BurstTime (local store)
Input: ResID, BW , PktLen (packet)

Returns: fwd_type

1: function BandwidthMonitoring(ResID, BW , PktLen)
2: now ← time()
3: TS ← max(TSArray [ResID], now) + PktLen/BW
4: if TS ≤ now + BurstTime then
5: TSArray [ResID] ← TS
6: Return: fwd_flyover
7: else
8: Return: fwd_best_effort

5 Security Analysis
In this section, we analyze the security of Hummingbird. We first in-

troduce the adversary model, then describe the security properties,

and finally analyze the security of the control and data planes.
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Adversary (not on 𝑃 )

can observe the shared reservation

Target path 𝑃

Path 𝑄

Target AS 𝑇

Figure 3: On-reservation-set adversary. The source is using
two paths 𝑃 (solid line) and𝑄 (dashed line) concurrently, with
a single shared reservation on AS𝑇 . Despite not being on the
target path 𝑃 , the adversary can observe authentication tags
that are also valid for path 𝑃 , since the same reservation is
used for path 𝑄 .

5.1 Adversary Model
To analyze Hummingbird’s security, we consider an adversary that

controls a set of hosts, ASes, and/or routing elements. The adver-

sary is distributed and can drop, modify, duplicate, inject, or delay

traffic but not break cryptography. We further make the follow-

ing assumptions to allow a meaningful analysis of the system’s

properties:

(1) There exists a routable path of honest ASes from source to des-

tination. Otherwise, no availability guarantees can be provided

in any system since the adversary can always drop the traffic

and prevent any communication.

(2) Every honest source and AS is able to communicate with the

control-plane elements to obtain reservations. For our control

plane, this means that each source and each AS must have access

to a path of honest ASes that connects them to the blockchain

network on which the control-plane smart contract is hosted. In

other words, we assume that the adversary cannot eclipse [22, 52]

an honest party.

(3) There is an efficient (in the economic sense) market that allows

bandwidth-reservation assets to be priced correctly.

We distinguish several different adversaries. Considering a source

𝑆 and a destination 𝐷 communicating over a path 𝑃 , we distinguish

the following adversary types:

Compromised source: The adversary tries to gain an unfair ad-

vantage as the source of the communication.

On-path adversary: The adversary controls at least one AS or

routing element on the path 𝑃 (but not the source 𝑆).

On-reservation-set adversary: This type of adversary is illus-

trated in Fig. 3, and can only exist if the source simultaneously

uses two paths 𝑃 and 𝑄 that share a reservation on at least one

target hop. The adversary then controls at least one AS that is

on path 𝑄 but not on 𝑃 and targets reservation traffic on path

𝑃 . Thus, this adversary can observe valid packet authentication

tags for the reserved downstream ASes that are shared between

paths 𝑄 and 𝑃 .

5
If desired, the division in line 3 of Algorithm 1 can be replaced by a load and multipli-

cation by storing the inverse of all possible 1024 BW values in an array (assuming a

10-bit field as described in Appendix A.4).

Off-path adversary: The adversary controls a set of hosts and

ASes, but is not one of the previously defined types.

5.2 Security Properties
Hummingbird provides the following security properties, on the

control plane (C1, C2) and data plane (D1, D2):

C1 Secure reservation establishment. The control plane allows an
honest host to securely establish a reservation, i.e., the control-

plane guarantees confidentiality for the reservation authenti-

cation keys, and integrity of the reservation information. In

addition, the adversary cannot perform denial-of-capability at-
tacks that prevent an honest host from obtaining reservations on

an honest AS hop—provided that there is sufficient bandwidth

available.

C2 Fair bandwidth distribution. The adversary cannot gain more

than a fair share of the bandwidth available for reservations, by,

e.g., creating multiple accounts or using large numbers of hosts

(Sybil attack). This abstract property depends on the specific no-

tion of fairness. In this paper, we consider the notion of economic
fairness: An adversary cannot obtain a larger reservation than

other nodes without paying the fair market price for it. Equiva-

lently, the adversary cannot starve honest nodes for bandwidth

without paying the respective price.

D1 Overuse protection. An adversary cannot overuse or spoof a

reservation. The adversary cannot use a forged reservation, or

a valid reservation (at an honest AS hop) outside its limits, i.e.,

before start time, after end time, or for more bandwidth than

granted.

D2 Quality of Service (QoS). Legitimate hosts should benefit from

the QoS guarantees promised by reservations at an honest AS.

These guarantees include the amount of bandwidth reserved,

but may also incorporate, e.g., bounds on jitter, latency, or other

network-layer properties that may be provided by the AS inside

their domain. As an on-path adversary can always perform a

DoS attack, and thus disrupt QoS, by simply dropping packets

(as in all bandwidth-reservation systems), we do not consider

this adversary type in our analysis of this property.

5.3 Control-Plane Analysis
Secure reservation establishment (C1). Secure reservation es-

tablishment is ensured through our assumptions on the control

plane in combination with the registration of ASes and the encryp-

tion of ResInfo𝐾 , 𝐴𝐾 during redemption.

Since we assume that a PKI is in place for ASes (see Section 3.2)

and ASes prove to the asset smart contract that they are in posses-

sion of the secret key corresponding to their certificate, each issued

asset provides authenticity. Due to the access-control guarantees

provided by the blockchain and the smart contracts (only the owner

of an asset can use the asset in a transaction), no other party can

tamper with the message sent to deliver the reservation, which

ensures its integrity. Confidentiality is provided by encrypting the

asset with the public key of the asset owner (i.e., the host). This

public key is sent to the AS together with the asset through the

smart contract, which guarantees authenticity of the key (again,

since only the owner can use the asset) and therefore confidentiality

of messages encrypted with this key.
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Finally, our assumption that honest hosts and ASes are not

eclipsed (Section 5.1) and can therefore always reach the blockchain

hosting the smart contracts ensures the availability of the market-

place, and protects against attacks that prevent an honest host from

obtaining a reservation.

Fair bandwidth distribution (C2). Fairness and Sybil resistance

are guaranteed by allowing the assets to be freely tradeable and

our assumption that an economically efficient market exists that

enables price discovery for a fair market value. The existence of such

a market then guarantees economic fairness. Even if an adversary

was able to obtain reservations at a price that is lower than the

value of the reservations at the time of an attack (e.g., by buying

the reservations far in advance when they are valued lower), they

would suffer the opportunity cost of not reselling the bandwidth

assets. Thus, the cost of the attack is always at least equal to the

value of the corresponding reservation. The same applies to starving

honest sources of bandwidth: To do so, the adversary would have

to reserve the full hop bandwidth themselves—and therefore pay

for it—becoming its legitimate owner. Note that the adversary gains

nothing from creating multiple hosts or accounts, i.e., a Sybil attack,

since they need to pay the market value for each asset, independent

of the number of accounts that they are using to obtain reservations.

A concrete market design or analysis thereof is out-of-scope for

this work. However, there are several well-known market mech-

anisms that could plausibly be deployed to achieve efficient price

discovery and allocation of bandwidth reservations. One possibility

are Vickrey-Clarke-Groves (VCG) auctions [11, 19, 47], in which

participants bid on multiple items simultaneously and the final

allocation maximizes the total utility. These auctions are provably

strategy-proof and economically efficient under a broad set of as-

sumptions and could be utilized to vote for bandwidth reservations

along a path. However, this would require additional rounds of

communication with a smart contract as well as discrete rounds in

which the auctions complete.

Alternatively, a more lightweight approach could involve a spot

market with posted prices, similar to our prototype, where Au-

tonomous Systems (ASes) list bandwidth offers in real time, and

users select the best-priced paths that satisfy their requirements.

Such markets offer responsiveness and deployability, albeit with

potential inefficiencies under high volatility or demand shocks.

Hybrid mechanisms, e.g., combining advance reservation auctions

with short-term spot market resales, could help stabilize pricing

while maintaining flexibility for bursty traffic.

Crucially, the path diversity in the underlying SCION archi-

tecture enhances the viability and liquidity of any such market.

Between most source-destination pairs, there are multiple disjoint

or partially overlapping paths, recent measurements in SCIERA, an

educational network that is part of the production SCION network,

show that between most source/destination pairs, there are more

than twenty, and up to one hundred, paths available, and at least

two paths exist between any pair [14]. This diversity provides many

alternative paths that constitute substitutable goods in economic

terms: if one path segment is overpriced or congested, alternative

paths can be used instead. This not only reduces monopolistic pric-

ing risks, but also improves price stability and makes the market

more resilient to manipulation or scarcity-induced spikes.

We argue that the design of Hummingbird enables a range of

plausible mechanisms that are capable of achieving sufficient price

discovery and economic fairness to support our assumption. Future

work may explore these mechanisms in more detail, potentially

adapting tools from existing pricing research and auction theory to

the unique constraints of inter-domain bandwidth reservations.

5.4 Data-Plane Analysis

Overuse protection (D1). Hummingbird protects against reser-

vation overuse and spoofing through its per-packet reservation

authentication and traffic policing. The authentication tag is com-

puted over the full reservation description and a secret value only

known to the granting AS, and each AS performs traffic policing

based on these protected values. Therefore, an adversary that either

tries to spoof a reservation or to overuse a valid reservation must

be able to forge an authentication tag. Since we assume that the

authentication tags are computed using a secure PRF, the authenti-

cation tags are a secure MAC with security parameter ℓtag.

This ensures that the only possible attack vector is a brute-force

attack on the authentication tag, the feasibility of which depends

on their length ℓtag. To save space in the packet header, tags are

ideally as short as possible, while providing sufficient security in

practice.

A brute-force attack on Hummingbird cannot be performed

offline, as it is not possible to check the validity of a tag without

knowledge of the key. This means that for each candidate tag, a

packet needs to be sent to the reservation AS, which forces the

adversary to brute-force the tag in an online attack. Brute-forcing a

valid tag only allows an adversary to use it for a short time, namely

the validity period (e.g., 1 second) of a packet with the provided

timestamp. Therefore, the tag length ℓtag only needs to be chosen

such that an online attack becomes infeasible (or prohibitively

expensive) for an adversary. In our implementation, we use a tag

length of 6 bytes, which would require the adversary to send (on

average) more than 140 trillion packets to have one success, which

is prohibitively expensive in practice. Note that brute-forcing the

key used for the PRF—which would allow sending packets until

the expiration time of the brute forced reservation—depends on the

key length, not the tag length, and is therefore infeasible.

Quality of Service (D2). In an honest AS, QoS is provided by

prioritizing the reservation over best-effort traffic, ensuring that

the source can use the full reservation bandwidth.

An adversary can try to cause delayed or dropped packets, e.g., by

introducing congestion at the reserved hop. Since an honest AS does

not hand out more reservations than it can handle and prioritizes

reservation traffic, congestion caused by best-effort traffic does not

impact reservations.

This does not exclude the threat of other DoS attacks, which we

analyze separately for off-path and on-reservation-set adversaries.

As discussed above, brute-force attacks on authentication tags are

not feasible in practice. Therefore, off-path adversaries cannot forge

authentication tags for an honest AS hop, which prevents them

from disturbing reservation traffic, since they can only either send

best-effort traffic, or traffic belonging to a valid reservation.

Since reservations are granted for individual hops, a host may

use the reservation for a specific hop on multiple paths. In this case,
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an on-reservation-set adversary could observe valid authentication

tags for reservations on hops that are used by the source formultiple

paths. This enables such an adversary to perform a DoS attack (D2)

on these hops.

Namely, an on-reservation-set adversary can observe authenti-

cation tags for the reserved hop from packets that were sent on a

path that includes the adversary. The adversary can then fabricate

packets that will successfully pass authentication at the reserved

hop by duplicating the observed packet authentication tags (op-

tionally dropping the original packets) which is possible during

the validity period of the observed packet (e.g., 1 second). Since

Hummingbird does not require ASes to deploy duplicate suppres-

sion, this can be used for a DoS attack on packets that do not flow

through the attacker: by sending large amounts of traffic on the

reservation to exhaust the reservation’s bandwidth limit at a down-

stream AS, causing legitimate traffic arriving on a different path at

the downstream AS to get dropped by the policing system.

To prevent such attacks, it is sufficient to make a separate reser-

vation for shared hops on each path and thus use each reservation

exclusively on one path at a time. Whether to use a single reserva-

tion on multiple paths or to obtain separate reservations for each

path is a trade-off between convenience and security. The decision

between these options can be made by the source, depending on

whether they trust ASes on all paths that they use, or only the ASes

on the current path.

Reservation-stealing as incentive. One possible motive for an

attacker is reservation-stealing. An on-path or on-reservation-set

adversary can attempt to use a reservation from another party for

themselves by reusing the authentication tag of a valid packet and

replacing the payload. The effect of such an attack for the source is

the same as any other DoS attack, and our analysis above applies

equally. However, reservation-stealing provides an additional incen-

tive, as the compromised AS can benefit from using the reservation.

As a mitigation, the computation of the authentication tag in-

cludes the destination address. This ensures that an adversary can

only benefit if they either (i) send traffic to the same destination,

or (ii) control an additional on-path AS after the reservation that

redirects the packet to the new destination.

On the Absence of Duplicate Suppression and Gateways.
Previous bandwidth-reservation designs (Helia [54], Colibri [17])

require duplicate suppression at on-path ASes and gateways at the

source AS. We analyze here why Hummingbird can work without

these cumbersome subsystems while still achieving similar security

and availability properties.

Both duplicate suppression and the gateway are in place mainly

to prevent framing attacks, in which the adversary sends a large

amount of seemingly legitimate traffic to frame the source AS,

and cause repercussions for the source, such as precluding new

reservations. These attacks may work in two ways:

• An on-path adversary may duplicate packets and send them at

a high rate. These packets will pass authentication, and it is

therefore necessary to remove them before they are accounted

for in the monitoring.

• A compromised or malicious host who has access to hop authenti-

cation keys may relay them outside the AS, allowing an off-path

adversary to generate seemingly legitimate traffic. To prevent

this, the gateway was introduced such that authentication keys

are not accessible to endhosts.

It is important to note that this problem stems from the fact that

previous systems rely on ASes to manage reservations for scala-

bility reasons, i.e., to aggregate the control plane and monitoring

tasks at the AS level.

In our system, these cases are not a problem for two reasons:

(1) There is no penalty for overusing a reservation: in case of

overuse, packets are simply dropped. Therefore, framing attacks

are never successful.

(2) The scalability of the system does not rely on AS-level aggre-

gation. Therefore, any entity can obtain authentication keys

without external mediation from their AS. The gateway is there-

fore not strictly necessary, as the monitoring is directly imputed

to the source host and the AS is not directly responsible.

The only type of attack that would be prevented inHummingbird
by introducing duplicate suppression are reservation-DoS attacks

from on-reservation-set adversaries. We believe, however, that the

practical advantages of removing duplicate suppression from the

system requirements outweigh this downside, in particular, since

the same attacks can be prevented by obtaining separate reserva-

tions for each used path.

Further, duplicate suppression can be incrementally added (the

system is designed to include unique packet IDs that can be used for

duplicate suppression) by individual ASes. Note that, for on-path

adversaries, the lack of duplicate suppression does not introduce

new attack vectors, since an on-path adversary is always able to

block traffic from the source.

The gateway’s function of enhancing the system’s scalability—by

multiplexing multiple AS-internal reservations in one single inter-

domain bandwidth reservation—is still beneficial, and our system

readily supports the implementation of gateways to this end. How-

ever, the gateway is not required, which makes Hummingbirdmore

flexible and improves the speed at which it can be implemented

and deployed in practice.

6 Control-Plane Evaluation
In this section, we describe the implementation of our control plane

and evaluate its performance. Additional evaluation results are

provided in Appendix B. The most relevant analysis here is the cost

and time required to make a reservation on the marketplace. Note

that the scalability of Hummingbird’s control-plane operations is
dictated by the scalability of the blockchain—which is beyond the

scope of this paper. However, a recent study [6] shows that the

blockchain we make use of supports thousands of transactions per

second.

6.1 Implementation
Control-Plane Smart Contracts. We implemented our control

plane as a set of smart contracts on top of the Sui blockchain [6] that

provide the bandwidth asset functionality, as well as a marketplace

that allows buying and selling assets.

Market Client Application. To allow ASes and end hosts to

interact with the smart contracts (i.e., the assets and marketplace),

we implemented a client applicationwritten in Rust. Our application
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Table 1: Gas and dollar cost, rounded to two significant fig-
ures, of transactions to atomically buy and redeem a full
path. The total cost in SUI is computed as computation cost
+ storage cost - storage rebate.

Hops Computation Storage (SUI) Total

(SUI) Cost Rebate SUI USD

1 0.000 75 0.047 0.016 0.031 0.038

2 0.000 75 0.090 0.029 0.062 0.076

4 0.000 75 0.18 0.054 0.12 0.15

8 0.0015 0.35 0.10 0.25 0.30

16 0.0030 0.69 0.20 0.49 0.60

Computation price: 7.5 × 10
−7

SUI/unit; storage price: 7.6 × 10
−6

SUI/byte;

SUI price: 1.221 USD (as of 2024-04-18 14:09 UTC);

allows an AS to create assets and marketplace listings and handles

the assignment of ResIDs (using an online First Fit algorithm [21,

28]), the derivation of the authentication keys, and the delivery of

the reservation information (via smart contract call).

On the end host, the application handles buying and redeeming

of assets and integrates with the Hummingbird data plane, i.e.,

delivers all necessary information to the applications using the

reservation.

Blockchain Platform & Atomic Transactions. We chose the

Sui blockchain for our implementation due to its high throughput

and low latency, which make it suitable for applications such as

bandwidth reservations. Sui transactions using only owned objects

benefit from a fast path (using Byzantine consistent broadcast).

This reduces latency compared to accessing shared objects, which

require consensus. In our design, all operations on the assets them-

selves can be performed using this fast path. Only interactions with

a market require the consensus path.

Evaluation. Our benchmarks measure the cost incurred by the

smart contract execution for atomically buying and redeeming

reservations for an end-to-end path, as well as the end-to-end la-

tency between initiating the buy-and-redeem transaction, until all

reservations are delivered. We perform the latency measurements

on the Sui testnet which is globally replicated with a distribution

that closely resembles its main blockchain (Sui mainnet).

6.2 Results
Contract Execution Cost. The cost for transactions in Sui is split

into three components. The computation cost is charged according

to fixed buckets of computational units, based on the computation

complexity, which are then converted to a value in Sui according to

the computation gas price provided in the transaction. In our results,

the values are provided based on the current reference gas price

on mainnet of 7.5 × 10
−7

SUI per unit. The storage cost of objects is
charged based on a storage gas price, which is currently 7.6 × 10

−6

SUI per byte. The third component is a storage rebate, which the

transaction sender receives when deleting an object, consisting of

99% of the original price paid for its storage.

Table 1 shows the cost of atomically purchasing paths of different

lengths. Since the cost is deterministic, the table does not include
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Figure 4: End-to-end latency for an atomic buy-and-redeem
(reporting total, request, and response latencies) for different
path lengths, each measured 100 times. Time is measured
from the point when the buyer has chosen which assets to
buy until all of the reservation information required for the
data plane has been delivered to the buyer. The whiskers in
the box plots represent the 5th and 95th percentiles.

any measurement uncertainties. The cost is dominated by the stor-

age cost resulting from splitting an asset and re-listing the pieces

that are not bought. In our benchmark, we perform a worst-case

split for each asset on the path, consisting of two splits in the time

dimension and one in the bandwidth dimension.

The cost depends linearly on the path length, since a longer path

involvesmore assets that are split off from assets listed in themarket.

The transaction fees are approximately 0.038 USD per hop, resulting

in a total cost of 0.60 USD for a path with 16 hops. Compared to

transaction fees on, e.g., Ethereum where the average transaction

fees are 8.16 USD
6
this is extremely cheap, and compares favorably

even to centralized payment providers such as Paypal or Square,

which charge a percentage of the price plus a fee of 0.49 and 0.30

USD, respectively [34]. Importantly, most of the transaction fees are

later refunded to the ASes during the redemption of the reservation.

Thus, the fees can be partially priced in to the asset listings on the

marketplace.

End-to-end Latency. Figure 4 shows the end-to-end latency for

atomically buying reservations for a full path. The measurements

are run 100 times for each path length. The request time describes

the latency between initiating the purchase and the finalization of

the purchase transaction. The response time measures the latency

from that point until the buyer has received the reservation infor-

mation from all on-path ASes. The responses make use of Sui’s fast

path, which lowers the latency significantly, whereas the purchase

transaction interacts with a shared object (namely the marketplace),

which requires going through consensus. The latency is largely in-

dependent of the length of the path with a total latency of less than

3 seconds in 83% of our measurements.

6
30-day trailing average transaction fee on 2024-04-18, from https://etherscan.io/chart/

avg-txfee-usd

https://etherscan.io/chart/avg-txfee-usd
https://etherscan.io/chart/avg-txfee-usd
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This end-to-end latency is comparable to the time required to au-

thorize credit-card payments (“a few seconds” [45]). Thus, any cen-

tralized bandwidth market that makes use of credit-card payments—

independent of the underlying QoS system—is unlikely to provide a

significantly lower latency. For many applications, e.g., video calls,

this should even be fast enough for obtaining reservations ad-hoc,

e.g., when congestion occurs unexpectedly. However,Hummingbird
also allows reservations to be established ahead of time—which we

expect to be the common usage—in which case the latency matters

less and is more than fast enough for any application.

7 Data-Plane Evaluation
We implement two versions of the Hummingbird data plane. The

first extends the open-source SCION implementation in Golang,

adding the Hummingbird data plane and providing an API for the

control plane. The second is a high-speed variant, which comprises

the generation of reservation traffic at the source and the packet

validation and forwarding at border routers. We use this latter ver-

sion to demonstrate Hummingbird’s potential for performance and

compare it to a SCION-only data plane, constituting our baseline.

We provide additional evaluation results in Appendix B.

7.1 Implementation and Test Setup
We implement both SCION andHummingbird in DPDK [13], which

is also used for SCION routers deployed in commercial networks [1].

For theMAC and PRF operations, we use AES-128, taking advantage

of Intel’s AES-NI [20] hardware instructions. To deterministically

police flyover reservations in Hummingbird, we use an array that

establishes a direct mapping between the reservation ID and its

corresponding 8B token bucket.We initialize the array to store at

most 10
5
reservation IDs, requiring 800 kB of memory.

Our testing environment consists of two machines: one off-the-

shelf server with an Intel Xeon 2.1 GHz CPU running Ubuntu and

executing our implementation, and a Spirent SPT-N4U device. The

Spirent machine serves a dual role as a traffic generator during bor-

der router traffic validation evaluations, and as a bandwidthmonitor

when assessing traffic generation at a source. Both machines are

interconnected by four bidirectional Ethernet links operating at

40Gbps each. We assess each of the two implementations inde-

pendently. When evaluating Hummingbird, we always measure

its worst-case performance by assuming the existence of a flyover

reservation at every on-path AS.

7.2 Results

Traffic Forwarding. The border router’s validation and forward-

ing performance are shown in Fig. 5. With only 4 cores, our imple-

mentation achieves the line rate of 160Gbps for 1500 B payloads,

and scales to send 100 B payloads at line rate using 32 cores. As

anticipated, operations such as computing the SCION hop field

MAC, authentication key, flyover MAC, and performing the overuse

check emerge as the most resource-intensive operations. We find

that best-effort SCION packets can be processed in 123 ns, while

Hummingbird packets require 308 ns. Although this difference is

noticeable, this does not imply a lower throughput in practice, as it

can be mitigated by increasing the number of CPU cores.

1 2 4 8 16 32
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Figure 5: Border router packet validation and forwarding
performance for different payload sizes and number of CPU
cores. Solid lines correspond to Hummingbird reservations,
dashed lines to standard SCION best-effort traffic. Note that
the dashed lines for 1000B and 1500B are hidden behind
the solid line for 1500B since the performance is virtually
identical.

8 Conclusion
We explore how the combination of an out-of-band control plane—

in our case in the form of a smart contract running on a blockchain—

with a data plane for inter-domain bandwidth reservations can

result in a highly flexible, efficient, and fair system to enforce avail-

ability guarantees on a public Internet.

The efficient data plane makes Hummingbird easy to deploy on

routers. The reservation model—whereby reservations are inde-

pendently granted on each AS-level hop—facilitates incremental

deployment, as not all on-path ASes need to offer bandwidth reser-

vations. Further, the reservation market dynamics incentivize ASes

and provide them with an additional source of revenue.

In conclusion, Hummingbird is the first practical inter-domain

bandwidth-reservation system: Its substantial benefits for endhosts,

and clear economic incentives for ASes facilitate adoption, enabling

applications with strong availability requirements to flourish on

the SCION Internet.
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Appendices
Appendices are supportingmaterial that has not been peer-reviewed.

A Specification for Hummingbird on SCION
In this appendix, we include the specification of a new SCION [9]

path type that supports Hummingbird reservations. SCION is well

suited to deploy a bandwidth-reservation system such as ours, since

it provides path choice to the source, which guarantees the stability

of the path. In contrast, path stability in the current Internet with

BGP routing is only provided as long as there is convergence in

the network. For example, path stability is not guaranteed in the

presence of BGP hijacking attacks [4].

This header specification is written analogously to the SCION

header specification
7
and duplicates/reuses some of the information.

Changes compared to the SCION header specification are indicated.

The header layout for this path type is shown in Fig. 6; the individual

parts are described in further detail in the following subsections.

PathMetaHdr

InfoField

. . .

InfoField

HopField

HopField / FlyoverField

. . .

Figure 6: Path header layout for the Hummingbird path type
consisting of a path meta header, up to 3 info fields, and up
to 64 hop fields or flyover fields.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

C CurrHF r Seg0Len Seg1Len Seg2Len

BaseTimestamp

MillisTimestamp Counter

Figure 7: Layout of the PathMetaHdr.

A.1 Path Meta Header (changed)
The PathMetaHdr is a 12-byte header containing meta information

about the SCION path contained in the path header, see Fig. 7. It

contains the following fields:

(C)urrINF 2-bit index (0-based) pointing to the current info field

(see offset calculations below).

CurrHF (changed) 8-bit index (0-based) pointing to the start of

the current hop field (see offset calculations below) in 4-byte

increments. This index is increased by 3 for normal hop fields

and by 5 for flyover hop fields, which are 12 B and 20 B long,

respectively.

r Unused and reserved for future use.

Seg{0,1,2}Len (changed) 7-bit encoding of the length of each seg-

ment. The value in these fields is the length of the respective

segment in bytes divided by 4. 𝑆𝑒𝑔𝑖𝐿𝑒𝑛 > 0 implies the existence

of info field 𝑖 .

BaseTimestamp (new) A unix timestamp (unsigned integer, 1-

second granularity, similar to beacon timestamp in normal SCION

path segments) that is used as a base to calculate start times for

flyovers and the high granularity MillisTimestamp.

MillisTimestamp (new) Millisecond granularity timestamp, as

offset from BaseTimestamp. Used to compute MACs for flyover

hops and to check recentness of a packet.

Counter (new) A counter for each packet that is sent by the source

to ensure that the tuple (BaseTimestamp,MillisTimestamp, Counter)

is unique. This can then be used for the optional duplicate sup-

pression at an AS.

Path Offset Calculations (changed). The number of info fields

is implied by 𝑆𝑒𝑔𝑖𝐿𝑒𝑛 > 0, 𝑖 ∈ [0, 2], thus NumINF = 𝑁 + 1 where
𝑁 = max𝑖∈[0,2] s.t. ∀𝑗 ≤ 𝑖 : SegjLen > 0. It is an error to have

SegXLen > 0 ∧ SegYLen = 0 for 𝑋 > 𝑌 . If all SegiLen = 0, 𝑖 ∈ [0, 2],
then this denotes an empty path, which is only valid for intra-AS

communication.

The offsets of the current info field and current hop field (relative

to the end of the address header) are now calculated as

InfoFieldOffset = 12 B + 8 B · CurrINF, (5a)

HopFieldOffset = 12 B + 8 B · NumINF + 4 B · CurrHF . (5b)

To check that the current hop field is in the segment of the

current info field, the CurrHF needs to be compared to the SegLen

fields of the current and preceding info fields.

A.2 Info Field (unchanged)
The format of an InfoField is the same as in the SCION path type

and shown in Fig. 8. It contains the following fields:

r Unused and reserved for future use.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

r r r r r r P C RSV SegID

Timestamp

Figure 8: Layout of an InfoField.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

F r r r r r I E ExpTime ConsIngress

ConsEgress

HopFieldMAC

Figure 9: Layout of a HopField.

P Peering flag. If set to true, then the forwarding path is built as

a peering path, which requires special processing on the data

plane.

C Construction direction flag. If set to true then the hop fields are

arranged in the direction they have been constructed during

beaconing.

RSV Unused and reserved for future use.

SegID Updatable field used in the MAC-chaining mechanism.

Timestamp Timestamp created by the initiator of the correspond-

ing beacon. The timestamp is expressed in Unix time, and is

encoded as an unsigned integer within 4 bytes with 1-second

time granularity. It enables validation of the hop field by verifi-

cation of the expiration time and MAC.

A.3 HopField (slightly changed)
The HopField, used for hops without a reservation, is slightly

changed compared to SCION and is shown in Fig. 9. This Hop-

Field is also used as the first hop field for reserved hops at segment

boundaries (see Appendix A.5). It contains the following fields:

F (new) Flyover bit. Indicates whether this is a hop field or a flyover

hop field. Set to 0 for HopFields.

r (unchanged) Unused and reserved for future use.

I (unchanged) ConsIngress Router Alert. If the ConsIngress Router

Alert is set, the ingress router (in construction direction) will

process the L4 payload in the packet.

E (unchanged) ConsEgress Router Alert. If the ConsEgress Router

Alert is set, the egress router (in construction direction) will

process the L4 payload in the packet.

ExpTime (unchanged) Expiry time of a hop field. The field is 1-

byte long, thus there are 256 different values available to express

an expiration time. The expiration time expressed by the value of

this field is relative, and an absolute expiration time in seconds

is computed in combination with the timestamp field (from the

corresponding info field).

ConsIngress, ConsEgress (unchanged) The 16-bit interface IDs
in construction direction.

HopFieldMAC (name changed) 6-byte MAC to authenticate the

hop field. For details on how this MAC is calculated refer to the

hop-field MAC computation of the SCION path type.
8

8
https://docs.scion.org/en/latest/protocols/scion-header.html#hop-field-mac-

computation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

F r r r r r I E ExpTime ConsIngress

ConsEgress

AggMAC

ResID BW

ResStartOffset ResDuration

Figure 10: Layout of a FlyoverHopField.

A.4 FlyoverHopField (new)
The FlyoverHopField shown in Fig. 10 is present if the reservation

bit in the previous hop field is set to 1. It contains the following

fields:

F Flyover bit. Indicates whether this is a hop field or a flyover hop

field. Set to 1 for FlyoverHopFields.

r, I, E, ExpTime, ConsIngress, ConsEgress These values are the

same as in the standard HopField. Note that ExpTime is the ex-

piration time of the standard HopField, not the expiration time

of the reservation.

AggMAC The aggregate MAC [26] (i.e., XOR) of the standard Hop-

Field MAC and the per-packet flyover MAC as described in Sec-

tion 4:

AggMAC = HopFieldMAC ⊕ FlyoverMAC, (6)

where

FlyoverMAC = PRF𝐴𝐾 (DstAddr ∥ PktLen ∥ TS) [: 6], (7a)

TS = ResStartOffset ∥ MillisTimestamp ∥ Counter, (7b)

DstAddr = DstISD ∥ DstAS, (7c)

PktLen = PayloadLen + 4 · HdrLen. (7d)

PayloadLen and HdrLen are the values from the SCION Common

Header and PktLen is a 2-byte value. If an overflow occurs during

the calculation of PktLen, the packet must be dropped. 𝐴𝐾 is

computed as described in Eq. (2) and Appendix A.6. The bit-

layout for the input to the MAC computation (Eq. (7a)) is shown

in Fig. 11.

ResID 22-bit Reservation ID, this allows for approximately 4 mil-

lion concurrent reservations for a given ingress/egress pair.

BW 10-bit bandwidth field indicating the reserved bandwidthwhich

allows for 1024 different values. The values could be encoded

similarly to floating point numbers (but without negative num-

bers or fractions), where some bits encode the exponent and

some the significant digits. For example, one can use 5 bits for

the exponent and 5 bits for the significand and calculate the

value as significand if exponent = 0 or otherwise as
(32 + significand) << (exponent - 1). This allows val-
ues from 0 to almost 2

36
with an even spacing for each interval

between powers of 2.

ResStartOffset The offset between the BaseTimestamp in the Path

Meta header and the start of the reservation (in seconds). This

allows values up to approximately 18 hours in second granularity.

ResDuration Duration of the reservation, i.e., the difference be-

tween the timestamps of the start and expiration time of the

reservation.

https://docs.scion.org/en/latest/protocols/scion-header.html#hop-field-mac-computation
https://docs.scion.org/en/latest/protocols/scion-header.html#hop-field-mac-computation
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

DstISD

DstAS

PktLen ResStartOffset

MillisTimestamp Counter

Figure 11: Layout of the input to the computation for the
FlyoverMAC (see Eq. (7a)).

Algorithm 2 Authenticating and forwarding traffic at the ingress

border router of the 𝑖th on-path AS (AS 𝑖). For a higher-level

overview, see Fig. 13. Fields inside the packet (pkt) are represented
as Field . SV i is the AS-local secret value for the computation of

Hummingbird authentication tags.

Input: pkt, SV i , Ki
1: if flyover bit F is set then
2: (retFlyover, TS, PktLen)← FlyoverProcessing(pkt, SV i)

⊲ Algorithm 3

3: else
4: retFlyover← fwd_best_effort

5: if retFlyover == drop_pkt then
6: drop packet
7: retHf← StandardHfProcessing(pkt, Ki) ⊲ Algorithm 4

8: if retHf == drop_pkt then
9: drop packet
10: if retFlyover == fwd_flyover then
11: retMonitor ← BandwidthMonitoring( ResID , BW ,

PktLen) ⊲ Algorithm 4

12: if retMonitor == fwd_flyover then
13: forward packet as high priority
14: forward packet as best effort

A.5 Segment boundaries
On segment boundaries, the AS needs to process two hop fields

(last HF in the first segment, first HF in the second segment). Both

HFs together specify the ingress and egress interfaces. If there is a

flyover field for this AS, it must be placed in the first segment as

the first HF of the AS.

A.6 Key Derivation
Since the derivation of𝐴𝐾 is done completely by AS𝐾 , they are free

to choose the key derivation function used in the key derivation as

described in Eq. (2) in the main paper:

𝐴𝐾 = PRFSV𝐾
(
ResInfo𝐾

)
,

The concrete input to the key derivation is shown in Fig. 12,

where ResStart = BaseTimestamp − ResStartOffset.

A.7 Packet Forwarding
When forwarding a packet with a FlyoverHopField at the current

AS, each ingress border router executes the steps described in Sec-

tion 4.3 in addition to the packet processing of the standard SCION

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ConsIngress ConsEgress

ResID BW

ResStart

ResDuration 0 Padding

Figure 12: Layout of 𝑅𝑒𝑠𝐼𝑛𝑓 𝑜𝐾 used for the key derivation in
Eq. (2).

Algorithm 3 Reservation processing at a border router. Δ is the

maximum packet age, and 𝛿 is the maximum acceptable clock skew.

Input: pkt, SV i
Returns: (fwd_type, TS, PktLen)
1: function FlyoverProcessing(pkt, SV i)

2: ResStart ← BaseTimestamp - ResStartOffset

3: ResInfoi ← ConsIngress ∥ ConsEgress || ResID ∥ BW ∥
ResStart ∥ ResDuration ⊲ Fig. 12

4: 𝐴𝑖 ← PRFSV 𝑖
(
ResInfo𝑖

)
⊲ Eq. (2)

5: TS← ResStartOffset ∥ MillisTimestamp ∥ Counter ⊲

Eq. (7b)

6: DstAddr ← DstISD ∥ DstAS ⊲ Eq. (7c)

7: (overflow, PktLen)← checkedAdd( PayloadLen , 4·HdrLen )
⊲ Eq. (7d)

8: if overflow then
9: Return: (drop_pkt, TS, PktLen)
10: FlyoverMACi ← PRF𝐴𝑖 (DstAddr ∥ PktLen ∥ TS)[: 6] ⊲

Eq. (7a)

11: AggMACi ← FlyoverMACi ⊕ AggMACi ⊲ Cand. HF MAC

12: absTS← BaseTimestamp ∥ MillisTimestamp
13: if 𝑛𝑜𝑤 () − 𝑎𝑏𝑠𝑇𝑆 ∉ [−𝛿,Δ + 𝛿] then ⊲ Freshness check

14: Return: (fwd_best_effort, TS, PktLen)
15: ResExp← ResStart + ResDuration
16: if now() ∉ [ResStart, ResExp] then ⊲ Res. active check

17: Return: (fwd_best_effort, TS, PktLen)
18: Return: (fwd_flyover, TS, PktLen)

path type with the difference that the HopFieldMAC and the Fly-

overMAC are XORed before comparing them to the value stored in

the header. The FlyoverMAC is computed as shown in Eq. (7a).

Before forwarding, the router then replaces the AggMAC in

the Flyover with the HopFieldMAC that it computes during the

verification of the FlyoverHopField. This allows the path to be

reversed easily.

A high-level overview is shown in Fig. 13, the detailed algorithms

are specified in Algorithms 2 to 4.

In the Reservation active check in Algorithm 3, the clock skew

is not included, since this could cause problems at the boundaries

of two reservations that share the same ResID. In particular, it may

i) cause packets from expired reservations to be counted towards

a new, unrelated reservation, or ii) if no adjacent reservations are
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Algorithm 4 Overview of the standard SCION border router pro-

cessing steps. Providing a full description of SCION border router

processing is beyond the scope of this document. This algorithm

highlights the border router checks that are essential to Humming-

bird’s security properties. Ki is the AS-local secret value for the

computation of the SCION HopFieldMACs.

Input: pkt, Ki
Returns: fwd_type

1: function StandardHfProcessing(pkt, Ki)

2: if hop field is expired then
3: Return: drop_pkt

4: Recompute HopFieldMAC using pkt, Ki
5: if HopFieldMAC in pkt does not match then
6: Return: drop_pkt

7: Additional checks (segment combination allowed, . . . )

8: Update the SegID

9: if flyover bit F is set then
10: CurrHF ← CurrHF + 5

11: else
12: CurrHF ← CurrHF + 3

13: Return: fwd

assigned the same ResID, more traffic may be prioritized than the

AS has capabilities for.

A.8 Path Reversal
Path reversal works in the same way as standard SCION with the

addition that for each FlyoverHopField, the flyover bit is set to 0,

all fields that are unique to FlyoverHopFields are removed (ResID,

BW, ResStartOffset, ResDuration) to convert the FlyoverHopField

to a regular HopField, and the SegiLen values are adjusted accord-

ingly. This provides a valid path of the Hummingbird path type

(albeit without reservations), but it can further be converted to the

regular SCION path type by replacing the PathMetaHdr with the

PathMetaHdr of the regular SCION path type (i.e., removing the

timestamps and and converting the 𝑆𝑒𝑔𝑖𝐿𝑒𝑛 values).

B Additional Evaluation Results
B.1 Gas Cost Evaluation
Table 2 (of which the results table in Table 1 is a subset) shows the

cost of the contract calls for our control plane. Since the cost is deter-

ministic, the table does not include any measurement uncertainties.

The cost for transactions in Sui is split into three components: Com-

putation cost, storage cost, and a storage rebate. Computation cost

is based on the complexity of the computation, which is charged

according to fixed buckets of computational units. These computa-

tional units are then converted to a value in Sui according to the

computation gas price provided in the transaction. In our results,

the values are provided based on the current reference gas price

on mainnet of 7.5 × 10
−7

SUI per unit. Storage of objects is charged

based on a storage gas price, which is currently 7.6 × 10
−6

SUI per

byte. The third component is a storage rebate, which the transaction

sender receives when deleting items from the storage, and amounts

to 99% of the original value paid in SUI for the storage of the item.

If the storage rebate exceeds the transaction’s computation and

storage cost, the sender receives the difference.

As Table 2 shows, the cost of transactions for individual calls

for interacting with the assets or the marketplace are relatively

cheap, costing only fractions of a cent. The cost of buying a full

path depends on the length of the path, and it is dominated by the

cost of buying multiple assets, since this incurs the storage cost of

splitting an asset and re-listing the pieces that are not bought. In

our benchmark, each asset on a path requires a worst-case split, i.e.,

the buyer buys a time interval from the middle of the time interval

represented by the listing and only a fraction of the bandwidth. This

causes two splits in the time dimension and one in the bandwidth

dimension.

Since buying an asset creates new objects and delivering a reser-

vation deletes them, most of the storage fee incurred by the buyer

is later refunded to the AS as a storage rebate. To lower the transac-

tion cost for the buyer, the market could be pre-loaded with funds

provided by the AS, which then the smart contract could use to

refund part of the cost of buying assets. The AS later gets these

funds back through the storage rebate when deleting the assets.

B.2 Border Router Processing
Table 3 reports the execution times of all the steps required to pro-

cess a regular SCION packet, and the additional overhead incurred

when processing a Hummingbird packet (darker gray background).

A SCION packet requires 123 ns to be processed, while Humming-
bird adds an overhead of 185 ns for a total of 308 ns.

B.3 Traffic Generation Performance
To complete our data-plane benchmarks, we study the performance

of a Hummingbird traffic generator. In most cases, we expect the

sources to be end-hosts, where the forwarding performance is lim-

ited by the hosts’ stacks and network uplinks. However, performant

traffic generation is essential in scenarios where a single entity

purchases bandwidth for hosts within its network—for example,

a corporate LAN—and provides reservations to hosts through a

dedicated Hummingbird gateway.

Figure 14 shows the traffic-generation throughput of a multi-

core Hummingbird gateway implemented in DPDK. Increasing the

number of cores enhances the throughput: For payloads of 500 B, a

mere 32 cores deliver 160Gbps line rate for both Hummingbird and

SCION, even across long paths with eight on-path ASes. Table 4

details the durations of individual per-packet computation steps for

a four-hop path, where the total overheads are 494 ns and 293 ns

for Hummingbird and SCION, respectively.

Traffic generation at the source is notably slower than traffic

forwarding at the border router. This is as expected: The source

has to compute the Hummingbird packet authentication tags for

all ASes on the path, while on-path border routers only need to

compute the authentication tag for their own AS. Nevertheless,

a 32-core source gateway is sufficient to serve the vast majority

of deployments, as residential and corporate link speeds seldom

exceed 1Gbps, and even ISP links are usually below 100Gbps.

Figure 15 demonstrates the single-core packet generation perfor-

mance at the source. For both SCION and Hummingbird traffic, the

throughput achieved correlates with the number of ASes on the path
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pkt in

Flyover processing (Algo. 3):
- re-compute FlyoverMAC
- compute candidate HF MAC

- check res. timeliness

Standard SCION processing (Algo. 4):
- check HF MAC

- update SegID
- update CurrHF
- . . .

Bandwidth monitoring (Algo. 1)
& (optional) duplicate

suppression

fwd best effort

drop packet

fwd high priority
flyover pkt

best-effort pkt

not timely
timely

check succeeds

check failscheck
succeeds

overuse

duplicate pkt

no overuse
no duplicate
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Figure 13: High-level representation of the packet-processing pipeline at the border router.

Table 2: Gas cost (rounded to two significant figures) for contract calls to asset and marketplace contracts, as well as transactions
for atomically buying and redeeming a full path. A Negative value indicates that the caller earns SUI because the storage rebate
exceeds the transaction cost.

Contract call Computation (SUI) Storage (SUI) Storage rebate (SUI) Total (SUI) Total (USD)*

Asset functions
issue 0.000 75 0.0046 0.0025 0.0029 0.0035

split_time 0.000 75 0.0052 0.0031 0.0029 0.0035

split_bandwidth 0.000 75 0.0052 0.0031 0.0029 0.0035

fuse_time 0.000 75 0.0031 0.0051 −0.0013 −0.0016

fuse_bandwidth 0.000 75 0.0031 0.0051 −0.0013 −0.0016

redeem 0.000 75 0.0045 0.0051 0.000 12 0.000 14

deliver_reservation 0.000 75 0.000 99 0.0045 −0.0027 −0.0033

Market functions
create_marketplace 0.000 75 0.0030 0.000 98 0.0028 0.0034

register_seller 0.000 75 0.0026 0.000 98 0.0024 0.0029

create_listing 0.000 75 0.011 0.0067 0.0050 0.0061

buy (full) 0.000 75 0.0071 0.010 −0.0023 −0.0028

buy (split bw) 0.000 75 0.013 0.010 0.0039 0.0048

buy (split time) 0.000 75 0.020 0.010 0.010 0.012

buy (split both) 0.000 75 0.026 0.010 0.016 0.020

Atomic buy-and-redeem
1 hop 0.000 75 0.047 0.016 0.031 0.038

2 hops 0.000 75 0.090 0.029 0.062 0.076

4 hops 0.000 75 0.18 0.054 0.12 0.15

8 hops 0.0015 0.35 0.10 0.25 0.30

16 hops 0.0030 0.69 0.20 0.49 0.60

Computation price: 7.5 × 10
−7

SUI/unit; storage price: 7.6 × 10
−6

SUI/byte;

SUI price: 1.221 USD (as of 2024-04-18 14:09 UTC);

and scales proportionally to the packets’ payload size. For instance,

with a 1 kB payload size and flyovers on four on-path ASes, Hum-
mingbird achieves a throughput of 17.90Gbps, whereas SCION’s

best-effort traffic reaches 28.64Gbps. However, with smaller 100 B

payloads, the throughput decreases to 4.65Gbps and 7.70Gbps, re-

spectively.

C Bidirectional Reservation Support
Bidirectional reservations can generally be implemented by having

the source communicate pre-computed hop authentication tags to

the destination with every packet. If the reverse traffic is expected

to be larger, multiple tags per hop can be provided in each packet.
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Table 3: Fine-grained packet validation and forwarding tim-
ings at the border router. The timings are independent of the
number of on-path ASes and the size of the payload.

Task Time [ns]

Check packet size 14

Parse packet headers 30

Check whether hop field is expired 8

Recompute SCION hop field MAC 46

Update segment identifier (SegID) 4

Update current hop field pointer 13

Check if hop field is of type SCION or Flyover 8

Compute absolute start of reservation (ResStart) 8

Compute authentication key (𝐴𝑖 ) 43

AES-extend authentication key (𝐴𝑖 ) 24

Validate high-precision time stamp 6

Recompute flyover MAC 44

Compute aggregate MAC 4

Verify xor-ed MAC same as in header 9

Check whether the reservation is still active 8

Check for overuse 39

Total 123 [+185]
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Figure 14: Packet generation performance at the source for
packets carrying a payload of 500B, and for different num-
ber of AS-level hops (ℎ) and cores. Solid lines correspond to
Hummingbird reservations, dashed lines to standard SCION
best-effort traffic.

However, this approach has two main problems: (i) sending addi-

tional authentication tags for each hop on the path in almost every

packet introduces a large overhead, and (ii) this approach increases

the complexity of monitoring, since it requires aggregating the

monitoring information for forwards and backwards traffic, which

are monitored at two different border routers.

We believe that bidirectional reservations are better obtained

with a separate—and possibly out-of-band—exchange protocol:

• The source obtains reservations to the destination normally and

obtains separate reservations for the reverse path.

Table 4: Fine-grained packet generation timings at the source,
for four AS-level hops; the additional operations required for
Hummingbird are highlighted. All timings are independent
of the payload size except in the case of “Add packet payload”,
which we evaluate for 500B and 1500B payloads.

Task Time [ns]

Add Ethernet, IP, Scion header fields 107

Compute flyover MACs (4 on-path ASes) 201

Add hop fields for all on-path ASes 171

Add 500 B (1500 B) payload 15 (40)

Total for 500B (1500B) payload 494 (519)
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Figure 15: Single-core packet generation performance at the
source for different number of AS-level hops (ℎ) and payloads.
Solid lines correspond to Hummingbird reservations, dashed
lines to standard SCION best-effort traffic.

• The source communicates the authentication keys to the destina-

tion for the reverse path (if the destination is enabled to use the

reservations).

• Source and destination use the reservations as normal.

Note that, even though on the data plane both source and des-

tination use unidirectional “forward” reservations, these are both

billed to the source and therefore act as a backward reservation.

This is an important property enabled by the control-plane inde-

pendence of Hummingbird: The source can obtain a reservation

in any direction and for any hop, which is not the case in previous

bandwidth-reservation protocols such as Colibri [17] or Helia [54].

With our control plane, the source could even send the band-

width assets for the backward reservation to the destination (as-

suming it knows their on-chain identity), which would allow the

destination to directly obtain the reservation information and au-

thentication keys by automatically redeeming the assets. In this

case, it may be useful to use additional tags in the asset that contain

the source address to ensure that the (trusted) destination uses the

reservations for communicating with the source.
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