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Abstract—Compromised and misconfigured routers are a
well-known problem in ISP and enterprise networks. Data-
plane fault localization (FL) aims to identify faulty links
of compromised and misconfigured routers during packet
forwarding, and is recognized as an effective means of achieving
high network availability. Existing secure FL protocols are
path-based, which assume that the source nodeknows the
entire outgoing path that delivers the source node’s packets
and that the path is static and long-lived. However, these
assumptions are incompatible with the dynamic traffic patterns
and agile load balancing commonly seen in modern networks.
To cope with real-world routing dynamics, we propose the
first secure neighborhood-based FL protocol, DynaFL, with
no requirements on path durability or the source node knowing
the outgoing paths. Through a core technique we named
delayed key disclosure,DynaFL incurs little communication
overhead and a small, constant router state independent of the
network size or the number of flows traversing a router. In
addition, each DynaFL router maintains only a single secret
key, which based on our measurement results represents 2–4
orders of magnitude reduction over previous path-based FL
protocols.

I. I NTRODUCTION

Modern ISP, enterprise, and datacenter networks demand
reliable data delivery to support performance-critical ser-
vices, thus requiring the data plane to correctly forward
packets along the routing paths. However,real-world inci-
dents [2], [3], [7], [21], [25], [32] reveal the existence of
compromised routers in ISP and enterprise networks that
sabotage network data delivery. Also, in a 2010 worldwide
security survey [1], 61% of network operators ranked infras-
tructure outages due to misconfigured network equipment
such as routers as the No. 2 security threat. Such misbehav-
ing routers can easily drop, modify, delay or inject packets
into data plane to mount Denial-of-Service, surveillance,
man-in-the-middle attacks, and data exfiltration where a
malicious router may replicate some packets and send them
along other unexpected paths.

Unfortunately, current networks lack areliable and se-
cure way to identify misbehaving routers that jeopardize
packet delivery. For example, a malicious or misconfigured
router can “correctly” respond toping or traceroute
probes while corrupting other data packets, thus cloaking
the attacks fromping or traceroute. Data-plane fault
localization (FL) aims to localizefaulty links that sabotage
packet delivery in the data plane, thus providingdata-plane
accountability. By removing the identified faulty links from

the routing tables or bypassing the faulty links in route
selection, FL enables network communication to be carried
only on non-faulty links, thus yielding high packet delivery
guarantees [9], [14], [34].

Existing FL protocols that are secure against sophisticated
packet modification and fabrication attacks [11], [14], [34]
require that the senderknow the entire paththat delivers
the source node’s packets, and that the path belong-lived
(e.g., stable over transmitting108 packets [14]) to obtain
a statistically accurate FL. However, recent measurement
studies [10], [18], [20] show that a considerable fraction
of current network flows are short-lived “mice” and routing
paths are highly dynamic. Furthermore, emerging enterprise
and datacenter networks call for more agile load balancing
and dynamic routing paths. For example, a recently proposed
datacenter routing architecture, VL2 [20], employs Valiant
Load Balancing [24], [37] to spread traffic uniformly across
network paths via random packet deflection. In this case, the
actual routing path is determinedon the fly during forward-
ing and thus cannot be predicted and known by the sender.
Given the conflict between the “static-path” assumption
and the “dynamic-path” reality, researchers have concluded
that existing FL protocols are impractical for widespread
deployment in large-scale networks with dynamic traffic
patterns [14].

In addition, in existing secure FL protocols, a router
must share some secret (e.g., cryptographic keys) with each
source node sending traffic traversing that router, making
the key storage overhead at an intermediate router linear
in the number of end nodes. The proliferation of key copies
shared by routers with all end nodes under non-uniform (and
generally poor) administration also increases the risk of key
compromise thereby enabling undetected attacks. In existing
secure FL protocols, a router also needs to maintain per-
path state for each path traversing that router, making the
FL unscalable for large-scale networks.

We aim to bridge the current gap between the security
of FL against strong adversaries and the ability to support
dynamic traffic patterns in modern networks such as ISP,
enterprise, and datacenter networks. More specifically, the
desired FL protocol should be secure against sophisticated
packet dropping, modification, fabrication, and delaying
attacks by colluding routers, while retaining the following
properties:
• Path obliviousness:A source node or a router does not
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Figure 1. Path-based FL. TSr denotes the traffic summary generated by
routerr. For brevity, “TSA 6=TSB” refers to “TSA deviates from TSB more
than a certain threshold”.
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Figure 2. A neighborhood example.

need to know the outgoing/downstream path.
• Volatile path support: The FL protocol requires no

maximum duration for a forwarding path.
• Constant router state: A router does not need to

maintain per-path, per-flow, or per-source state.
• O(1) key storage: A router only manages a small

number of keys regardless of the network size.

Path obliviousness and volatile path support together enable
agile (e.g.,packet-level) load balancing and dynamic routing
paths (e.g., Valiant load-balanced paths). These two prop-
erties alsodecouplethe data-plane FL from routing, thus
enabling it to support a wide array of routing protocols.
Finally, constant router state provides scalability in large-
scale networks and O(1) key storage reduces the key setup
overhead.

We observe that the “static-path” assumption in existing
secure FL protocols stems from the fact that those FL
protocols operate on entire end-to-end paths (path-based),
to localize the fault toone specific link. As Figure 1 shows,
each router maintains a certain “traffic summary” (e.g., a
counter, packet hashes, etc.) foreach path that traverses
the router (thus requring per-path state), and sends the
traffic summary to the source nodeS of each path.S can
then detect a linkl as malicious if the traffic summaries
from l’s two adjacent nodes deviate greatly, as Figure 1
illustrates. Hence,S needs to know the entire path topology
to compare traffic summaries of adjacent nodes, and needs
to send a large number of packets over the same path so that
the deviation in traffic summaries can reflect a statistically
accurate estimation of link quality. Finally, to authenticate
the communication between the source and each router in
the path, a router needs to share a secret key with each
source that sends traffic through it.

In this paper, we exploreneighborhood-basedFL ap-
proaches, where a routerr’s data-plane faults (if any) can
be detected by checking the consistency (or conservation)
of the traffic summaries generated by the1-hop neighbors
of r (denoted byN(r) in Figure 2). That is, in benign cases,
the packetssent to r will be consistent with the packets
received fromr by all of r’s neighbors as reflected in their
traffic summaries. In this way, the FL is independent of
routing paths and only depends on 1-hop neighborhoods,
thus supporting arbitrary routing protocols and dynamic load
balancing. Additionally, each router in a neigbhorhood-based
approach only needs to maintain state for each neighbor.
In summary, neighborhood-based FL localizes faultsto a
specific 1-hop neighborhoodto reduce further investigation,
to trade localization precision for practicalityin modern
networks with dynamic traffic patterns.

Though promising, neighborhood-based FL is susceptible
to sophisticated packet modification and collusion attacks
due to several security and scalability challenges. For exam-
ple, for the sake of scalability, the traffic summary cannot
be a copy of all the original packets (or even their hashes),
but have to be a compact representation of the original
packets via a certainfingerprinting function F . On one
hand, if F generates traffic summaries at different nodes
without using different secret keys, a malicious router can
predict the outputs ofF at other nodes and tactically
modify packets such that the outputs ofF will stay the
same as with the original packets. On the other hand, if
F at different nodes usesdifferent secret keys, we cannot
compare and run consistency check over different nodes’
traffic summaries. To address these challenges, we propose
DynaFL, a protocol that employs a core technique called
delayed key disclosure,which discloses thesamekey for
computingF to different routersafter they have forwarded
the packets. To further minimize the protocol overhead,
DynaFL employs a secure sampling mechanism also based
on the delayed key disclosure, so that a malicious router
cannot know if a packet is sampled or not at the time it
forwards (corrupts) the packet. Finally, a router inDynaFL
only shares a secret key with a centralized controller, thus
achieving O(1) key storage.

Contributions. Our contributions are three-fold:

1. We raise the importance of pursuing a secure FL design
to cope withdynamic traffic patternsin real-world networks
with a small constant router state and key storage.

2. To the best of our knowledge,DynaFL is the first secure
neighborhood-based FL protocol that achieves path oblivi-
ousness and volatile path support,and is secure against both
packet loss and sophisticated packet modification/injection
attacks.

3. In addition, aDynaFL router requires only about 4MB
per-neighbor state based on our AMS sketch [6] implementa-
tion, whereas path-based FL protocols require per-path state.



We also show through measurements that the number of
keys a router needs to manage in path-based FL protocols
is 2 - 3 orders of magnitude higher than that inDynaFL
(which is a single key shared with a centralized controller).
Finally, our simulation results demonstrateDynaFL’s small
detection delay and negligible communication overhead.

II. PROBLEM STATEMENT

In this section, we formalize the notation, network setting,
adversary model, and problem statement.

A. Notation

We use the termsnodeandrouter interchangeably to gen-
erally refer to devices that either perform layer-2 switching
or layer-3 routing (so nodes do not include end servers).
We denote the 1-hop neighborhood (or neighborhood, for
brevity) of a nodes as N(s), as Figure 2 illustrates. For
a particular packet traversing a neighborhoodN(s), the
neighbor sending that packet to nodes is called aningress
node in N(s) for that packet, and the node receiving that
packetfrom s is called anegress node. We term a sequence
of packets as apacket streamS. Particularly, we denote the
packet stream sent from nodei to nodej as Sij , and this
packet stream isseenby nodesi and j as S

→j
i and S

←i
j ,

respectively. Thedifference of two packet streamsS and
S
′

, denoted by∆(S
′

, S
′

), refers to the number of packets in
one packet stream but not in the other, without considering
the variable IP header fields such as the TTL and checksum
fields.

B. Network Setting

We consider a network with dynamic traffic patterns and
a relatively static network topology, which is best exem-
plified by today’s ISP, enterprise, and datacenter networks.
To provide maximum flexibility to support various routing
protocols, and even packet-level load balancing, we pose
no restriction on the routing protocols and load balancing
mechanisms used in the network. We assume atrusted
administrative controller (AC) in the network, which
shares a pairwise secret key with each router in the network.
As we will show later, the AC is mainly in charge of
analyzing the traffic summaries gathered from different
nodes and localizing any neighborhood with data-plane
faults. Finally, we require nodes in the network beloosely
time-synchronized, e.g., on the order of milliseconds. Loose
time synchronization represents a common requirement for
detecting packet delaying attacks [8], [9], [29] and nowadays
even high-precision clock synchronization is available given
the advent of GPS-enabled clocks and the adoption of IEEE
1588 [23].

C. Adversary Model

We consider a sophisticated adversary controlling multiple
malicious nodes. Specifically, amalicious node corrupts

data-plane packets by unexpectedlydropping, modifying
and delaying legitimate packets sent by the source, and
fabricating bogus packets that are not sent by the source.
A malicious node can corrupt both the data packets and
control packets, such as traffic summaries sent from a node
to the AC and certain administrative messages sent from
the AC to nodes. Furthermore, a sophisticated adversary
has knowledge of and tries to disrupt the FL protocol to
evade detection. Multiplecolluding nodescan collectively
perform the above data-plane attacks, conspiring to evade
detection or frame benign nodes. The colluding nodes know
each other’s security credentials (e.g., secret keys used in
the FL protocol).

Such a strong attacker model is not merely a theoretical
conception, but has been widely witnessed in practice. For
example, outsider attackers have leveraged social engineer-
ing, phishing [3], and exploration of router software vul-
nerabilities [2], [7] or weak passwords [21] to compromise
ISP and enterprise routers [32]. In addition, a majority of
network operators in a recent worldwide security survey [1]
listed router misconfiguration, which also falls under our ad-
versary model, as a primary cause of network outages [25].
As we will show in Section III-C, achieving FL security
against surreptitious packet modification/fabrication attacks
is challenging and dramatically complicates the protocol
design.

D. Problem Formulation

Our goal is to design a practical and secureneighborhood-
basedFL protocol to identify a suspiciousneighborhood
(if any) that contains at least one malicious node. Recall
that practicality translates topath obliviousness, volatile path
supportandconstant router stateas stated in Section I. We
further adopt the(α, β, δ)-accuracy [19] to formalize the
security requirements as below:

• If more thanβ fraction of the packets are corrupted
by a malicious nodem, the FL protocol will raise
a neighborhood containingm or one of its colluding
nodes as suspicious with probability at least1− δ.

• In benign cases, if no more thanα fraction of the
packets are spontaneously corrupted (e.g., dropped)
in a neighborhood, the FL protocol will raise the
neighborhood as suspicious with probability at mostδ.

The thresholdsα and β are introduced to tolerate spon-
taneous failures (e.g., natural packet loss) and are set by
the network administrator based on her experience and
expectation of network performance.

Neighborhood-based FL enables the network administra-
tor to scope further investigation to a 1-hop neighborhood to
find out which router is compromised. It is also possible to
further employ dedicated monitoring protocols, which only
need to monitor a small region (the identified neighborhood)
of the network to find the specific misbehaving router.



III. C HALLENGES AND OVERVIEW

In this section, we first describe the high-level steps of
general neighborhood-based FL and then explain the security
challenges in the presence of strong adversaries. Finally,
we present the key ideas inDynaFL that address these
challenges.

A. High-Level Steps

The general steps a neighborhood-based FL takes are
(i) recordinglocal traffic summaries, (ii)reporting the traffic
summaries to the AC, and (iii)detectingsuspicious neigh-
borhoods by the AC based on the received traffic summaries,
as we sketch below. Though intuitive, these general steps
face several potential security vulnerabilities and scalability
challenges as Section III-C will show.

Recording. We divide the time in a network into consec-
utive epochs, which are synchronous among all the nodes
including the AC in the network. For each neighborr, a
nodes locally generates traffic summaries, denoted by TS→r

s

and TS←r
s , for the packet streamsSsr and Srs in each

epoch, respectively. Figure 3 depicts the router state in a
toy example.
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Figure 3. Router state for traffic summaries.

The traffic summary recorded by a nodes should reflect
both the packet contents and the arrival/departure time seen
at node s to enable the detection of malicious packet
corruption and delay. For the sake of scalability, the traffic
summary can not simply be an entire copy of all the original
packets (or their hashes using acryptographichash function
such as SHA-1 which provides one-wayness and collusion
resistance) and their timing information. Instead, we use
a fingerprinting function F to reflect theaggregatesof
packet contents to reduce both router state and bandwidth
consumption for reporting the traffic summaries to the AC.
We denote the fingerprint for a packet streamSrs generated
by r asF(S→s

r ), as Figure 3 depicts. In addition, as Figure 3
shows, for a packet streamSrs (or Ssr), the traffic summary
of noder also contains theaveragedeparture timet

→s

r (or
arrival time t

←s

r ) and the total number of packetsn→s
r (or

n←s
r ) in Srs (or Ssr) seen in the current epoch to enable the

detection of packet delay attacks.

Reporting. At the end of each epoch, each nodes sends its
local traffic summaries to the AC.

Detection. After receiving the traffic summaries at the end
of an epoch, the AC runs a consistency check over the traffic
summaries in each neighborhood. A large inconsistency
of the traffic summaries in a certain neighborhoodN(s)
indicates thatN(s) is suspicious.

B. The Fingerprinting FunctionF

Before we present the instantiation ofF , we first describe
the general properties thatF should satisfy. To enable the
AC to detect suspicious neighborhoods,F should generate
traffic summaries with the following two properties:

Property 1: Given any two packet streamsS and S
′

,
the “difference” betweenF(S) and F(S

′

) can give an
estimation of the difference betweenS andS

′

, denoted by:
∆(F(S),F(S)

′

) ∆(S, S
′

).
Defining the “difference” betweenF(S) and F(S

′

) is F-
specific, as we show shortly.

Property 2: Given any two packet streamsS and S
′

,
F(S ∪ S

′

) = F(S) ∪ F(S
′

).
The ∪ operator on the left-hand side denotes a union
operation of the two packet streamsS andS

′

. The∪ operator
on the right-hand side denotes a “combination” ofF(S) and
F(S

′

), which isF-specific and defined shortly.
These two properties enable the conversionfrom checking

packet stream conservation to checking the conservation of
traffic summaries in a neighborhood. In other words, these
two properties enable nodes to simply store the compact
packet fingerprints instead of the original packet streams
while still enabling the AC to detect the number of pack-
ets dropped, modified, and fabricated between two packet
streams from their corresponding fingerprints.

Specifically, during the detection phase, the AC only
needs to compare the difference between (i) thecombined
traffic summaries for packetssent tonode s in N(s), i.e.,
∪i∈N(s) F(S→s

i ), and (ii) thecombinedtraffic summaries for
packetsreceived fromnodes in N(s), i.e.,∪i∈N(s) F(S←s

i ).
By Properties 1 and 2:

∆( ∪
i∈N(s)

F(S→s
i ), ∪

i∈N(s)
F(S←s

i ))

= ∆(F( ∪
i∈N(s)

S
→s
i ),F( ∪

i∈N(s)
S
←s
i )) based on Property 2

 ∆( ∪
i∈N(s)

S
→s
i , ∪

i∈N(s)
S
←s
i ) based on Property 1

(1)

Note that∆(∪i∈N(s) S
→s
i ,∪i∈N(s) S

←s
i ) reflects the discrep-

ancy between packets sent to and received from nodes, and
a large discrepancy indicates packet dropping, modification,
and fabrication attacks inN(s).

Sketch for F . The pthmoment estimation sketch [5], [17],
[33] (as used by Goldberg et al. [19] forpath-based
FL) serves as a good candidate forF . More specifically,
pthmoment estimation schemes use a random linear map
to transform a packet stream into a short vector, called the
sketch, as the traffic summary. Inbenigncases, packets, if



viewed as 1.5KB (the Maximum Transmission Unit) bit-
vectors, are “randomly” drawn from{0, 1}1536×8. Hence,
different packet streams will result in different sketcheswith
a very high probability (w.h.p.). Goldberg et al. [19] also
extensively studied how to estimate the number of packets
dropped, injected, or modified between two packet streams
from the “difference” of two corresponding sketch vec-
tors, thus satisfying Property 1. Specifically, the difference
∆(F(S),F(S)

′

) (used in Property 1) between two sketch
vectors is defined as:

∆(F(S),F(S)
′

) = ||F(S)−F(S)
′

||pp (2)

where ||x||pp denotes thepthmoment of the vectorx. We
can further prove that the sketch satisfies Property 2 and
the combination ofF(S) andF(S)

′

used in Property 2 is
defined as:

F(S) ∪ F(S)
′

= F(S) + F(S)
′

(3)

where + denotes the addition of two vectors. The proof is
as follows.

Proof: A sketch functionF over a set of elementsS =
{p1, p2, . . . , pn} can be implemented in a “streaming” mode
using a hash functionh [19], where:

h(pi)→ ~vi (4)

and~vi denotes a vector. More specifically:

F(S) = F({p1, p2, . . . , pn}) = h(p1)+h(p2)+ . . .+h(pn)
(5)

Hence, given two packet streamsS = {p1, p2, . . . , pn}
andS

′

= {p
′

1, p
′

2, . . . , p
′

n′}, we have:

F(S ∪ S
′

) = F({p1, . . . , pn, p
′

1, . . . , p
′

n′})

= h(p1) + . . . + h(pn) + h(p
′

1) + . . . + h(p
′

n′)
(6)

and:

F(S) + F(S
′

) = F({p1, . . . , pn}) + F({p
′

1, . . . , p
′

n′})

= h(p1) + . . . + h(pn) + h(p
′

1) + . . . + h(p
′

n′)
(7)

From Equations 6 and 7 we can see that: whenF(S) ∪
F(S

′

) is defined asF(S) + F(S
′

), we haveF(S ∪ S
′

) =
F(S) ∪ F(S

′

), thus proving Property 2 for Sketch.

C. Challenges in a Neighborhood-based FL

From Property 1, we can further derive the following
conditions on the fingerprinting functionF . Given any two
packet streamsSr andSt seen at nodesr andt, respectively,
a fingerprinting function computed byr andt should satisfy:

if Sr = St,F(Sr) = F(St) (8)

if Sr 6= St,F(Sr) 6= F(St) w.h.p. (9)

sr t

0001 00010001

Srs S
′

t
( 6= Srs)

F(S→s
r ) → F(S

′

t
) →

Find aS
′

t
such that

F(S
′

t
) →

F(S→s
r ) = F(S

′

t
), no faults detected!

Figure 4. An example of stealthy packet modification attacks when nodes
do not use different secret keys for computingF . For simplicity, the sketch
vector is represented as a ‘0-1’ bit vector. The malicious node s modifies
the packet stream in such a way that the modified packet streamS

′

t
still

results in the same sketch vector asSrs at nodet.

The first condition ensures the consistency of traffic sum-
maries (more precisely, sketches in the traffic summaries) in
the benign case when the packet streams are not corrupted
between nodesr and t. The second condition ensures
that if packet corruption happens between nodesr and t,
inconsistency of the traffic summaries will be observed,
which will then enable the estimation of packet difference
in the corresponding packet streams (Property 1). However,
these two conditions tend to be contradicting and lead to the
following dilemma.

F without different secrets. If the random linear map in
F (which can be implemented as a hash function [14]), is
not computed with different secret keys by different nodes,
a malicious node can predict theF output ofany othernode
for anypacket. SinceF maps a set of packets (or their 160-
bit cryptographic hashes) to a much smaller sketch,hash
collisionswill exist where two different packets produce the
sameF output (since sketch is not proven to perserve the
collision resistance property of the cryptographic hash func-
tion). Hence, a malicious node can leverage such collisions
to modify packets such that the modified/fabricated packets
will produce the sameF output at other nodes, violating the
condition in (9). Figure 4 depicts such an example.

F with different secrets. If nodes computeF with different
secret keys to satisfy the condition in (9), it is hard for
the AC to perform a consistency check among the resulting
sketches. For example, even the same packet stream would
result in different sketches at different nodes, thus violating
the condition in (8). Figure 5 depicts such an example. Since
the sketch is only acompact and approximaterepresentation
of the original packet stream, the AC cannot revert the
received sketches to the original packet streams to check
packet stream conservation.

Scalability vs. sampling. Even withF for packet finger-
printing, a traffic summary over a huge number of packets
can become too bandwidth-consuming to be sent frequently
to the AC (e.g., every 20 milliseconds). For example, the
number of packets for an OC-192 link (10Gbps) can be
on the order of107 per second in the worst case, which
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Srs
Sst(= Srs)

F(S→s
r ) → F(S←s

t ) →

F(S→s
r ) 6= F(S←s

t ), suspicious!

Figure 5. Illustration of the difficulty in using different secret keys when
computingF . The sketch vector is represented as a ‘0-1’ bit vector for
simplicity. In this example, nodesr, s andt use different secret keys when
computing the Sketch to generate their traffic summaries.

swells the size of a sketch to hundreds of bytes to bound
the false positive rate below 0.001 [19] and may require
several KB/s bandwidth for the reporting byeach node.
Packet sampling represents a popular approach to reducing
bandwidth consumption, where each node only samples a
subsetof packets to feed intoF for generating the traffic
summaries. To enable a consistency check of the traffic
summaries in a neighborhood, all nodes in a neighborhood
should sample thesamesubset of packets, and the challenge
is how to efficiently decide which subset of packets all
nodes should agree to sample. For security, the sampling
scheme must ensure that a malicious node cannot predict
whether a packet to be forwarded will be sampled or not.
Otherwise, the malicious node can drop any non-sampled
packets without being detected.

The problem is further complicated by the presence of
collusion attacksin our strong adversary model as well as
our path obliviousnessrequirement. Several existing sam-
pling schemes are broken when applied to our setting. For
example, in Symmetric Secure Sampling (SSS) [19], the
packet sender and receiver use a shared Pseudo-Random
Function (PRF)P to coordinate their sampling. Imported
to our setting, e.g., using the neighborhood example in
Figure 5, nodesr andt share a secret keyKrt and a PRFP,
computeP with Krt for each packet, and sample the packet
if the PRF output is within a certain range. In this way, node
s itself cannot know whether a packet is sampled or not.
However, this approach fails in our setting. We consider the
topology in Figure 5 for example:

• If s andr collude,r can informs of which packets are
sampled, so thats can safely drop non-sampled packets
and not be detected.

• Due to the dynamic traffic pattern, an ingress noder of
a neighborhoodN(s) does not know which egress node
a packet will traverse inN(s) (if s has more neighbors
besidesr and t, there exist multiple possible egress
nodes thant). Hence,r does not know which PRF
or secret key to use for packet sampling, given that
r shares a different secret key with each node inN(s).

D. DynaFL Key Ideas

In DynaFL, nodes temporarily store the cryptographic
hashes (which are collision-resistant) for all packets re-
ceived/sentper neighborin an epoch. At the end of each
epoche, nodes useepoch samplingto decide if packets in the
epoch are to be fingerprinted; if so, nodes generate the traffic
summaries and report them to the AC. This reduces both the
communication overhead for sending the traffic summaries
to the AC and the computational overhead for generating
and checking the traffic summaries. Specifically, nodes first
use thenetwork-wideidentical per-epochsampling keyKe

s

(described shortly) for computing a PRFP to determine if
the current epoch is “selected”; if and only if the current
epoch is selected, nodes will useF with the network-
wide identical per-epochfingerprinting key Ke

f (described
shortly) to map packets into per-neighbor traffic summaries.
Using the sameKe

s and Ke
f enables consistency checking

over the traffic summaries from different nodes.
To address the packet modification attacks and collusion

attacks mentioned earlier, nodes donot know the per-epoch
Ke

s and Ke
f until the end of each epoche, after theyhave

forwarded(or possibly corrupted) packets in epoche. Thus,
when a packet is to be forwarded (or corrupted), a malicious
node does not knowKe

s and Ke
f , and thus cannot predict

whether this epoch is selected for sending traffic summaries,
and if selected, what the sketch output will be for this
packet. To achieve this property, inDynaFL, the trusted
AC periodically sends the per-epochKe

s and Ke
f via key

disclosure messagesto all nodes at the end of each epoch
in a reliable way (described later) and nodes use the received
Ke

s andKe
f to select epochs and fingerprint packets that have

already been forwarded or corrupted.
A malicious node may first attempt to locally hold all

the packets in an epoche, and only forward or corrupt
packets at the end ofe when the malicious node learnsKe

s

and Ke
f , thus being able to launch the packet modification

and selective packet corruption attacks as mentioned ear-
lier. However, since the traffic summaries also include the
average departure/arrival time of the sent/received packets,
the malicious node will be detected with packet delay
misbehavior in the detection phase.

Sections IV, V, and VI detail the recording, reporting,
and detection phases inDynaFL, respectively. Section VII
presents the security analysis and Section VIII evaluates
DynaFL’s performance through measurements and simula-
tions.

IV. RECORDINGTRAFFIC SUMMARIES

The main technical challenges in the recording phase are
how to deal with imperfect time synchronization among
nodes and packet transmission delay, and how to efficiently
protect the key disclosure message from adversarial corrup-
tion. We explain howDynaFL solves these challenges in
turn below.



A. Storing Packets

In the “ideal” case (with perfect time sychronization and
no packet transmission delay), nodes simply need to store
packets for the single “current” epoch and at the end of each
epoch send the traffic summaries to the AC for that epoch.
However, in practice, routers need to determine which epoch
an incoming packet belongs to (or whether a received packet
belongs to the current epoch or a previous, outdated epoch).
One might attempt to let routers map received packets into
epochs based on their local packet arrival time. However,
this approach would introduce large errors for the following
reasons:

• Though all the nodes in the network areloosely time-
synchronized, e.g.,±1 millisecond, the epoch intervals
at different nodes may still be misaligned by up to a few
milliseconds. This misalignment will result in a consid-
erable number of packets being attributed to different
epochs at different nodes, thus causing inconsistencies
in the corresponding packet fingerprints.

• Due to the network transmission delay, a packet sent
by a source at epoche may arrive at another node at
a different epoche + i. In other words, a packet may
have been received by an ingress node but not the egress
node of a neighborhood at the end of an epoch when
nodes need to generate their packet fingerprints, thus
producing inconsistencies in the traffic summaries.

To deal with imperfect time synchronization, the source
in DynaFL embeds alocal timestamp when sending each
packet. Such a timestamp can be added as an additional flow
header, using the TCP timestamp, or in the IP option field,
etc. Any router in the forwarding path will determine the
corresponding epoch for each packet based on the embedded
timestamp. In this way, we ensure that all routers put each
packet in the same epoch for updating the traffic summaries.
For example, if the timestamp embedded by the source is
ts and the epoch length isL, then all routers will map the
packet into epoch⌊ ts

L
⌋.

To eliminate traffic summary inconsistencies due to packet
transmission delay, we also need to ensure that when gen-
erating traffic summaries for a certain epoche, packets
that are sent and not corrupted in epoche are received
by all the nodes in the forwarding paths. To this end,
if the epoch length is set toL and the expected upper
bound on theone-way packet transmission delay in the
network isD, each router stores packets sent in the current
epoch e as well as in previous ⌈D

L
⌉ epochs, denoted by

e−1, e−2, . . . , e−⌈D
L
⌉. We call these epochslive epochs.

Then at the end of an epoche, nodes will generate and send
to the AC the traffic summaries for theoldest live epoch
e−⌈D

L
⌉, in which the packets have either traversed all nodes

in their forwarding paths or been corrupted. The periodic key
disclosure messages that the AC broadcasts synchronize the
current epoch ID and the oldest live epoch ID for which

traffic summaries are needed for reporting.
Hence, a nodes maintains the following data structures

for each neighborr for each epoch, as Figure 6 also shows.
• The packet cacheC↔r

s temporarily stores hashes for
packets in bothS→r

s and S
←r
s that are seen in a live

epoch (using a cryptographic hash function such as
SHA-1). Each entry contains the packet hash and a bit
indicating if the packet belongs toS→r

s or S
←r
s .

• The router stores thesum of packet departure times-
tampst→r

s seen inS
→r
s and the sum of packet arrival

timestampst←r
s seen in S

←r
s in a live epoch with

microsecond precision.
• Finally, the router stores the total number of packets

n→r
s seen inS→r

s andn←r
s seen inS←r

s in a live epoch.
In DynaFL, a routers also needs to consider the case where
its next-hop neighborr is the destination for a certain packet,
so thatr will naturally not forward the packet. If it is the
case for a certain packet, routers does not cache that packet
for neighborr.

crypto hash

Epoch ID

...
 ..

.

...
 ..

.

t←r
s n←r

s
t→r
s n→r

s C↔r
s

Srs or Ssr?

Figure 6. Router per-neighbor state details.

Among these data structures,t←r
s , t→r

s , n←r
s , and n→r

s

require small constant storage, around 8 or 4 bytes for each.
C
↔r
s will be used for packet fingerprinting. The size ofC

↔r
s

depends only on the epoch lengthL and link bandwidth,
but not the number of flows/paths traversing nodes. As
Section VIII-A shows, with an epoch length of 20 millisec-
onds and one-way network latency of 20 milliseconds, each
router line-card requires only around 4MB of memory for
an OC-192 link, which is practical today.

For simplicity’s sake, we useC→r
s andC

←r
s to denote the

packets cached forS→r
s andS

←r
s by nodes, respectively.

B. Secure Key Disclosure

At the end of each epoche, the AC discloses the sam-

pling key K
e−⌈D

L
⌉

s and fingerprinting keyK
e−⌈D

L
⌉

f to all
nodes in the network via akey disclosure messagedAC,
and requests the traffic summaries for the most recently
retired epoche − ⌈D

L
⌉. Obviously, dAC itself needs to be

protected from data-plane attacks (dropping, modification,
fabrication, or delaying) by a malicious node during end-
of-epoch broadcasting. It might be tempting to let the AC
use digital signatures to authenticatedAC in order to address
malicious modification and fabrication; however, frequently
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Figure 7. Possible attacks in the recording phase. A malicious nodes
may attempt to drop the key disclosure messagedAC, or manipulate the
TTL value to cause packets to be dropped at a remote place (nodea in this
example), thus framing a remote neighborhood (N(a) in this example).

generating and verifying the signatures on a per-epoch basis
can be expensive (e.g., an epoch can be as short as 20
milliseconds and signature generation and verification time
could be on the order of milliseconds).

Our key observation is that, the key disclosure message
dAC is transmitted at the end of each epoch synchronously
among all the nodes. If a malicious nodes dropsdAC, the AC
will fail to receive the traffic summaries of certain neighbors
of s, thus detectingN(s) as suspicious. For example in
Figure 7, if s drops dAC instead of forwarding it to its
neighborr, noder cannot fingerprint the packets to generate
traffic summaries, thus failing the consistency check of
traffic summaries inN(s). As we show in Section V, the AC
expects to receive traffic summaries within a short amount
of time after each epoch ends; delayingdAC more than
that amount of time is effectively equivalent to dropping
dAC and causes the malicious node’s neighborhood to be
detected. Thus, the remaining problem is to prevent the
modification and fabrication ofdAC, which is equivalent to
authenticatingdAC to all nodes in the networkwithout the
use of digital signatures. Section VII further elaborates why
the authentication ofdAC is needed for security purposes.

The dAC for epochj includes anepoch keyKj , based
on which the epoch sampling keyKj

s and the epoch fin-
gerprinting keyKj

f can be derived using a Pseudo-Random
Function (PRF), e.g.:

Kj
s ← PRFKj (1), K

j
f ← PRFKj (2) (10)

Furthermore inDynaFL, time in the network is loosely
time-synchronized and divided into consecutive epochs; the
authentication ofdAC is required only once per epoch.
Hence, we just need to authenticateKj

s for each epoch,
which can be efficiently achieved via aone-way hash chain.
As Figure 8 shows, the AC applies a one-way functionH

(a cryptographic hash function) repeatedly on the root key
Kr to derive a set of epoch keys. The AC publishesK0 in a
bootstraping broadcast message through the network so that
nodes can verify if any given epoch key is indeed derived

... ...K0 K1 Kr−1 Kr

H(K1) H(K2) H(Kr−1) H(Kr)

Figure 8. One-way hash chain example.

from the genuine one-way hash chain and is thus authentic.
We assume each node in the network has the correct public
key of the AC, so that the AC can authenticateK0 via
digital signatures during the bootstraping phase. Along with
K0, an epoch number is included and authenticated in the
bootstraping broadcast message to enable switching to a new
key chain whenever needed.

Furthermore,DynaFL creates a spanning tree in the
network rooted at the AC, along whichdAC is delivered
to each node. SinceDynaFL uses apre-generated, static
spanning tree for the broadcast messages, there is no need
for dynamic path support when protectingdAC.

C. Sampling and Fingerprinting

Given the disclosedKj
s and K

j
f at the end of an epoch

e, each nodet first uses the sampling PRFP with Kj
s ,

denoted byP
K

j
s
, to determine if the oldest live epochj is

selected. If so, nodet then uses the fingerprinting function
F to map the cached packet hashes in each per-neighbor
stream into a sketch vector, i.e.,F

K
j

f
(C→r

t ) or F
K

j

f
(C←r

t ),

computed with the givenKj
f . Finally, nodet generatestwo

traffic summaries T→r
t and T←r

t for a neighborr:
• T→r

t for packet streamS
→r
t includes a fingerprint

F
K

j

f
(C→r

t ), average packet departure timet
→r

t =
t→r
t

n→r
t

,
and the total numbern→r

t of packets seen inS→r
t in

epochj;
• T←r

t for packet streamS
←r
t includes a fingerprint

F
K

j

f
(C←r

t ), average packet arrival timet
←r

t =
t←r
t

n←r
t

,
and the total numbern←r

t of packets seen inS←r
t in

epochj.
Figure 9 summarizes the FL-related packet processing

inside aDynaFL router. We detailP andF in the following.

Implementing P. A n-bit epoch sampling keyKj
s is derived

via a PRF (Equation 10) and is thus uniformly distributed
in [0, 2n − 1]. Given asampling rateλ ∈ (0, 1), an epochj
is selected iff:

Kj
s < λ · 2n (11)

In this way, on average a fractionλ of the epochs will
be selected. Since nodes use the sameKj

s for epoch sam-
pling, benign nodes will select the same set of epochs,
thus ensuring the consistency of the traffic summaries in
a neighborhood.

Implementing F . We use the second-moment sketch
computed withK

j
f as a case study to implementF , and

analyze the size of the sketch vector to achieve Property 1
with (α, β, δ)-accuracy. We assume107 packets per second
in the worst case for an OC-192 link with an epoch length
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Figure 9. FL-related packet processing inside aDynaFL router.

of L (seconds). Then, the number of packetsη in a sampled
epoch isη = L ·107. Using the classical Sketch due to Alon
et al. [6] for example, the storage requirement for the sketch
is given by:

M × log2

√

2η ln(
200N

δ
) (12)

whereM >
12

ǫ2
1

3− 2ǫ
ln

1

δ

and ǫ =
β − α

β + α
.

(13)

In Section VIII-A we derive numeric values for the size of
the sketch vector based on the epoch lengthL.

Dealing with TTL attacks. Certain fields in the IP header,
such as the TTL, checksum, and some IP option fields, will
change at each hop. Both sampling and fingerprinting in
DynaFL need to properly deal with these variant fields. Take
the TTL field for instance hereinafter (though the arguments
apply similarly to other variant fields). On the one hand, if
F is computed over the entire packet including the TTL
field, even in the benign case the same packet stream will
leave different traffic summaries (or precisely, the sketch
vectors) at ingress and egress nodes. On the other hand, if
F is computed over the entire packets excluding the TTL
field, a malicious node can modify the TTL field at liberty
without affecting the traffic summaries. Figure 7 depicts an
example TTL attack, where the malicious nodes lowers the
TTL value to 2 in the packets and causes the packets to be
dropped at the 2-hop-away downstream nodea, thus framing
neighborhoodN(a).

AC
i

k

r

s

j
Rk=Tk|| MAC(Tk)

Rj=Tj || MAC(Tj ||Rk)

Rr=Tr|| MAC(Tr)

Rs=Ts|| MAC(Ts)

Rj=Ti|| MAC(Ti||Rj||Rs||Rr)

Figure 10. Example of secure transmission of traffic summary reports.
For brevity, we denote the traffic summaries of a nodei as Ti and omit
the secret key for the MAC notation.

To address the TTL attacks, when computingF , each
noder performs either of the following:

• For a packet received from a neighbor, noder computes
F over the entire packetincluding the TTL field.

• For a packet sent to a neighbor, noder computes and
F over the packet, but with the TTL field additionally
decreased by 2 (equal to the TTL value at the 2-hop-
away egress node inN(r)).

In this way, noder in Figure 7 simply uses the TTL value as
contained in the packets received froms when computing
F , since the ingress nodes inN(s) (nodesi and j) must
have computedF with an adjusted TTL value equal to that
at noder.

The TTL value in a packet is also decremented by one
for every second the packet is buffered at a router. Holding
a packet longer than one second at a router is treated as a
packet delaying attack and will be detected due to the use
of the above construction.

V. REPORTINGTRAFFIC SUMMARIES

If an epoch is selected, after the fingerprinting procedure,
a node t generates two traffic summaries T→r

t and T←r
t

for each neighborr, and sends them to the AC in a
traffic summary report denoted byRt. The challenge in the
recording phase is to protect the traffic summary reports
from being corrupted.

In DynaFL, nodes form a static spanning tree rooted at
the AC for sending the traffic summaries. Given the spanning
tree, the goal is to protect the traffic summary reportsRts
from different nodes destined to the AC. AlthoughRts are
also subject to data-plane attacks, they are transmitted over
static andpre-generatedpaths in the spanning tree. Hence,
dynamic traffic is no longer a concern, thus substantially
simplifying the problem. Specifically,DynaFL utilizes an
Onion Authenticationapproach [34], [36] to protect the
transmission ofdAC along each path in the spanning tree.
In a nutshell, within a short timer at the end of each epoch,
each nodet needs to send its traffic summary reportRt

to the AC, andRt is authenticated with a MAC computed
using a pairwise secret key shared between nodet and the



AC. The traffic summary reports from different nodes are
sent in anonion fashion. For example in Figure 10,Rj

includes the reportRk of node k. In this way, DynaFL
efficiently protects the key disclosure messagedAC without
the use of expensive asymmetric cryptography. Section VII
gives a more detailed security analysis of such an Onion
Authentication approach.

VI. D ETECTION

The AC performs consistency checks for each neigh-
borhood N(r) based on the received traffic summaries.
However, since an epoch may only have a small number
of packets, detecting a suspicious neighborhood based on
the consistency checks forindividual epochs can introduce
a large error rate. Take an extreme case for example: if in a
certain epoch a neighborhoodN(r) only transmits a single
packet and the packet was spontaneously lost, concluding
that the packet loss rate is 100% andN(r) is suspicious
would be inaccurate.

To deal with this problem, the AC still performs the
consistency checks and estimates the discrepancy for in-
dividual epochs; but it makes the detection based on the
aggregateddiscrepancies over a set ofE epochs (called
accumulated epochs), so that the total number of packets
over theE epochs is more than a certain thresholdN to give
a high enough accuracy (e.g.,> 99.9%) on the detection
results. Section VIII studies the value ofN . Therefore, the
AC stores the traffic summaries for each neighborhood and
makes detection when the total number of packetsN is
reached. More specifically, letn←y

x (e) and n→y
x (e) denote

the packets received from / sent tox (n←y
x and n→y

x ) in
the traffic summary for epoche, respectively; for a certain
neighborhoodN(r), whenever

max{
∑

e

∑

i

n→r
i (e),

∑

e

∑

i

n←r
i (e)} > N (14)

(where i ∈ N(r) and e iterates over all the accumulated
epochs), indicatingN is reached, the AC performs the
following checks to inspect ifN(r) is suspicious:

1. Flow conservation.The AC first extractsn→r
i (e) and

n←r
i (e) for each nodei in N(r) for each epoche, and

calculates the difference between the number of packets sent
to r and the number of packets received fromr over all the
E accumulated epochs. If the ratio of the difference to the
total number of packets in all theE accumulated epochs is
larger than a thresholdβ, i.e.:

|
∑

e

∑

i n→r
i (e)−

∑

e

∑

i n←r
i (e)|

max{
∑

e

∑

i n→r
i (e),

∑

e

∑

i n←r
i (e)}

> β (15)

then the AC detectsN(r) as suspicious. The thresholdβ is
set based on the administrator’s expectation of the natural
packet loss rate; e.g., in the simulations in Section VIII we
set β to be four times of the natural packet loss rate in a
neighborhood.

2. Content conservation.The AC then extracts the sketches
in the traffic summaries inN(r), and estimates the discrep-
ancy δf between the sketches for packets sent tor and the
sketches for packets received fromr. The AC detectsN(r)
as malicious ifδf is larger than a certain threshold, i.e.,:

δf >
2αβ

α + β
×max{

∑

e

∑

i

n→r
i (e),

∑

e

∑

i

n←r
i (e)}

where

δf = || ∪i∈N(r) FK
j

f
(C←r

i )− ∪i∈N(r)FK
j

f
(C→r

i )||22

(16)

It has been proven [19] that the above threshold can satisfy
the (α, β, δ)-accuracy defined in Section II-D.

3. Timing consistency.Finally, the AC extracts the differ-
ence between the average packet departure time and arrival
time, and concludes thatN(r) is suspicious if the difference
is larger than the expected upper bound on the 2-hop link
latency.

VII. SECURITY ANALYSIS

We show thatDynaFL is secure against all attacks that
are possible in the misbehavior space given our adversary
model. By our definition, a malicious router can drop,
modify, fabricate, and delay packets. In addition, a malicious
router can attack data packets, key disclosure messagesdAC,
and reporting messages. We first showDynaFL’s security
against a single malicious node and then sketchDynaFL’s
security against colluding nodes.

Security against corrupting the data packets.Dropping,
modifying, and fabricating data packets in a neighbor-
hood N(m) will cause inconsistencies between sketches
in N(m) as mentioned earlier. Delaying data packets in
N(m) will cause abnormal deviation between average packet
arrival/departure timestamps inN(m). If a malicious router
changes the timestamps in data packets embedded by the
source nodes, it is equivalent to modifying packets and
packets may be mapped to different epochs, in which case
such an attack will manifest itself by causing inconsistencies
in the sketches of a neighborhood containing the malicious
router.

Security against corrupting dAC. As we mentioned earlier,
if a malicious nodem drops thedAC, some nodes adjacent
to m will fail to send the correct traffic summaries to
the AC, thus causing a neighborhood containingm to be
detected. We note that the authentication ofdAC is needed
(through the one-way hash chain). Otherwise, a malicious
node can replace the sampling and fingerprinting keys with
its own fake keys, by which the malicious node can predict
the output of other nodes’s sketches and perform packet
modification attacks. In addition, if the epoch IDs indAC
were not authenticated, a malicious node can replace the
oldest live epoch ID indAC for which the traffic summaries
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Figure 11. Example ofDynaFL’s security against colluding nodes. A
number denotes the packet count each node sends.

are requested with the current epoch ID. In this way,
inconsistencies of traffic summaries can be detected for some
benignneighborhood due to the packet transmission delay
as Section IV-A describes. With the (delayed) authentication
of dAC, any attempt to modifydAC will be detected (after
⌈D

L
⌉ epochs).

It is noteworthy that thedAC sent at the end of epoche
cannot simply disclose the MAC secret keyKe−1 for the
previous epoche − 1. This is because at the timeKe−1

is disclosed, thedAC sent at the end of epoche − 1 may
not have yet reached all nodes. Hence, a malicious node
which has already receivedKe−1 might sendKe−1 to a
downstream colluding node via an out-of-band channel, so
that the colluding node can break the authenticity of the
dAC sent in epoche − 1. Hence, at the end of an epoche,
we disclose the MAC key for epoche− ⌈D

L
⌉ to ensure the

dAC sent in epoche− ⌈D
L
⌉ has reached all the nodes in the

network.

Security against corrupting reporting messages.First, due
to the use of the Onion Authentication, a malicious nodem

cannotselectivelydrop the reporting messages of aremote
(non-adjacent) noder, to frame a neighborhood containing
node r. Since all the accumulated reporting messages are
“combined” at each hop,m can only drop the reporting
messages from itsimmediateneighbors, which will manifest
a neighborhood containingm as suspicious.

Security against colluding attacks.We illustrateDynaFL’s
security against colluding attacks via a toy example shown
in Figure 11. We show that for a malicious nodem which
actually corrupts packets,as long as one benign node exists
in N(m), a neighborhood containing eitherm or one of its
colluding nodes will be detected. The key observation is that
since the traffic summaries are sent to the AC and the AC
performs the detection,each node can only claim one traffic
summary per selected epoch. To simplify the analysis while
still unveiling the intuition, we only consider the number (but
not the payload) of packets sent by each node, as shown
in Figure 11. Suppose nodesc and d are colluding, and
noded drops 50 packets. As long as nodee is benign in
N(d), to cover the misbehavior ofd, the colluding nodec
has to send a traffic summary to the AC falsely claiming it
sent “50” packets tod (and thus received “50” packets from
node b). However, this claim will make the neighborhood
N(b) suspicious since the benign nodea will claim it sent
100 packets tob.
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Figure 12. Sketch size for an OC-192 link with the average packet size
of 300 bytes andδ = 0.001.

VIII. P ERFORMANCEEVALUATION

In this section, we analyze the protocol overhead and
study the detection efficiency ofDynaFL via measurements
and simulations, with our implementation of the classic
Sketch [6] in C++.

A. Storage Overhead

DynaFL incurs only per-neighbor state while existing
secure path-based FL protocols require per-source and per-
path state. In this section, we quantify the per-neighbor
storage overhead of aDynaFL router, which primarily
includes the packet cache and the sketch for each neighbor.

Sketch size.We derive numeric values of the sketch size
based on Equations 12 and 13, using an example setting
where the average packet size is 300 bytes and the link’s
capacity is 10 Gbps (an OC-192 link). Furthermore, we
consider δ = 0.001, α = 0.002, and β = 2α for the
(α, β, δ)-accuracy, i.e., the false positive rate and false
negative rate of the sketch-based detection are limited under
0.001. Figure 12 plots the result, from which we can see
that a sketch with fewer than 500 bytes can already yield a
desirable accuracy.

Cache size and per-neighbor storage overhead.We now
study the cache size for temporarily storing packet hashes in
live epochs, which, together with the sketch size analyzed
above, constitutes the per-neighbor storage overhead of a
DynaFL router. We denote the upper bound of one-way
network latency asD, epoch length asL, and the number
of packets per second asη. Using 20-byte packet hashes,
the cache size is given by:

⌈
D

L
+ 1⌉ · 20 · η · L (17)

We omit the 1-bit indicator for each packet hash entry
to indiciate which packet stream the packet belongs to
(see Figure 6). Assuming the per-neighbor sketch size is
500 bytes, one-way latencyD = 20ms, and the average
packet size is 300 bytes for an OC-192 link, we derive
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Figure 13. Router per-neighbor state for an OC-192 link withthe average
packet size of 300 bytes and one-way network latency as 20ms.
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Figure 14. Key management overhead at each router. A router inDynaFL
always requires just one key shared with the AC.

the per-neighbor storage overhead of aDynaFL router with
different epoch lengths shown in Figure 13. We can observe
that, with an epoch length of 20ms, only around 4MB is
required per-neighbor. The “humps” exist in the curve due
to the use of the ceiling function in Equation 17.

B. Key Management Overhead

One distinct advantageDynaFL presents is that each
router inDynaFL shares only one secret key with the AC,
whereas in path-based FL protocols it isnecessaryfor each
router to share a secret key with each source node in the
network in the worst case [14], which dramatically compli-
cates the key management and broadens the vulnerability
surface. To quantifyDynaFL’s advantage over path-based
FL protocols, we leverage the measured ISP topologies
from the Rocketfuel dataset [31] and the topology from
Internet2 [4]. Figure 14 shows the maximum number of keys
each router needs to manage in path-based FL protocols;
and a router inDynaFL always requires only one secret
key shared with the AC (thus invisible in the figure). We
can see that the number of keys a router needs to manage in
path-based FL protocols is 100 to 10000 times higher than
that in DynaFL.

C. Bandwidth Overhead

We analyze the bandwidth consumption on each link by
the reporting traffic summaries based on the measured ISP
topologies from the RocketFuel dataset [31]. Recall that the
reporting messages are transmitted along a spanning tree
rooted at the AC. Hence, the bandwidth consumption by the
reporting messages on a link is determined by the number
of children below that link and the degrees of the children.

For each ISP topology, we first select a “central” node
as the AC, which is the node in the network that has the
highest fraction of all shortest paths that pass through that
node. Then, we create a minimum spanning tree rooted
at the central node (or the AC) for transmitting reporting
messages to the AC. We consider the epoch lengthL=20ms,
a per-neighbor traffic summary as 500 bytes, and the epoch
sampling rate is 1%. Hence, on average, each node only
sends one reporting packet in every two seconds. Figure 15
plots the results for ISPs with AS numbers 1221, 1239, 1755,
3257, 3967, and 6461. From the results, we can see that the
fraction of bandwidth used for reporting traffic summaries
on a link is small for all topologies (e.g., between 0.002%
and 0.012% for an OC-192 link).

D. Detection Delay

As Section VI states, the AC performs consistency checks
and detects any anomalies only when the total number of
packets over multiple epochs is accumulated more than a
certain thresholdN in order to give a low false positive and
negative rate (e.g.,<0.1%) on the detection results. Hence,
the number of packetsN characterizes the detection delay
of the FL protocol. We fully implement the classic Sketch
due to Alon et al. [6] in C++ with a four-way hash function,
and perform simulations to studyN .
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Figure 16. False positive rates with no malicious activity ina neighborhood
with different numbers of nodes. The natural packet loss ratein a neigh-
borhood is 0.001 and the detection thresholds for both flow conservation
and content conservation areTd = β = 2α = 0.004.

Since inDynaFL, neighborhoods are inspected by the AC
independently, we also perform simulations for independent
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Figure 15. CDF of per-link bandwidth consumption for the reporting messages inDynaFL.
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Figure 17. False negative rates in a malicious neighborhood with five
nodes, where the malicious nodeonly dropspackets. The natural packet
loss rate in a neighborhood is 0.001, the detection thresholds for both flow
conservation and content conservation areTd = β = 2α = 0.004, and the
malicious packet dropping rate is 0.005.

neighborhoods with different sizes. Since we showedDy-
naFL’s security against colluding attacks in Section VII,
we emulate a single malicious node in our simulations.
Our setting is as follows. The natural packet loss rate
in a neighborhood is 0.001 and the detection thresholds
for both flow conservation and content conservation are
β = 2α = 0.004. Figure 16 depicts the false positive
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Figure 18. False negative rates in a malicious neighborhood with
five nodes, where the malicious node both drops packets and modifies
packets. The natural packet loss rate in a neighborhood is 0.001, the
detection thresholds for both flow conservation and contentconservation
areTd = β = 2α = 0.004, the malicious packet dropping rate is 0.005,
and the malicious packet modification rate is 0.005.

rates in benign cases where no malicious routers exist in
the neighborhood. We can see that withN > 5000 packets,
the false positive rate is under 1%.

Figure 17 shows the false negative rates with a malicious
router which only drops packets with a probability of 0.005.
Figure 18 plots the false negative rates with a malicious



router which both drops and modifies packets with a prob-
ability of 0.005, respectively. We can see that the sketch-
based approach is effective in detecting packet modification
attacks, since by modifying packets the malicious router is
detected faster in Figure 18 than in Figure 17.

IX. RELATED WORK AND DISCUSSION

Realizing its importance, researchers have recently pro-
posed several approaches for network fault localization.
As aforementioned, the known secure FL protocols are
all path-based, failing to support dynamic routing paths,
requiring per-path state at routers, and incurring per-source
key sharing and management. Besides these fundamental
limitations, we show that most FL protocols also suffer either
from security vulnerabilities or high protocol overhead.

For example, WATCHERS [16], [22], AudIt [8] and
Fatih [29] implement the traffic summaries using either
counters or Bloom Filters [15] with no secret keys, thus
remaining vulnerable to packet modification attacks as Sec-
tion III-C shows.

Both ODSBR [12], [13] and Secure Traceroute [30] acti-
vate FL only when the end-to-end packet loss rate exceeds a
certain threshold. However, a malicious node can safely drop
packets when FL is not activated, and behave “normally”
when FL is invoked. In addition, ODSBR does not consider
natural packet loss, which can make the algorithm either
not converge or incur high false positives by incriminating
benign links.

Liu et al. propose enabling two-hop-away routers in the
path to monitor each other [26] by using 2-hop acknowl-
edgment packets. However, such a 2-hop-based detection
scheme is vulnerable to colluding neighboring routers. Sim-
ilarly, both Watchdog [28] and Catch [27] can identify
and isolate malicious routers for wireless ad hoc networks,
where a senderS verifies if the next-hop nodefi indeed
forwards S’s packets bypromiscuouslylistening to fi’s
transmission. Both Watchdog and Catch are vulnerable to
collusion attacks, where a malicious nodefm drops the
packets of a remote senderS (which is out of the promiscu-
ous listening range offm) while the colluding neighbors in
the promiscuous listening range offm intentionally do not
report the packet dropping behavior offm.

Among the known secure proposals, the protocol due to
Avramopoulos et al. [11] incurs high computational and
communication overhead, because it requires acknowledg-
ments from all routers in the path, and requires multiple
digital signature generation and verification operations for
eachdata packet. Recently proposed PAAI-1 [34], Statistical
FL [14], and ShortMAC [36] all require stable routing paths
and per-path state at routers. TrueNet [35] leverages trusted
computing to achieve FL with constant small router state.
However, TrueNet requires special hardware support such
as a TPM.

X. CONCLUSION AND FUTURE WORK

In this paper, we first raise the awareness of achieving a
practical and scalable network fault localization protocol
that can cope with dynamic traffic patterns and routing
paths with constant, small router state. After identifying
the fundamental limitations of previous FL protocols which
are all path-based, we explore a neighborhood-based FL
approach; we also proposeDynaFL, which utilizes delayed
key disclosure, a novel technique that enables secure yet
efficient checking of packet content conservation.

While existing path-based FL protocols aim to identify
a specific faultylink (if any), DynaFL localizes data-plane
faults to a coarser-grained 1-hop neighborhood, to achieve
four distinct advantages. First,DynaFL does not require
any minimum duration time of paths or flows in order to
detect data-plane faults as path-based FL protocols do. Thus,
DynaFL can fully cope with short-lived flows which are
popularly seen in modern networks. Second, inDynaFL,
a source node does not need to know the exact outgoing
path, unlike path-based FL protocols. Hence,DynaFL can
support agile (e.g., packet-level) load balancing such as
VL2 routing [20] for datacenter networks. Third, aDynaFL
router only needs around 4MB per-neighbor state based on
our classic Sketch implementation, while a router in a path-
based FL protocol requires per-path state. Finally, aDynaFL
router only maintains a single secret key shared with the AC,
while a router in a path-based FL protocol needs to manage
100 to 10000 secret keys in measured ISP topologies.

DynaFL focuses mainly on unicast communication, while
multicast and broadcast communication may cause the detec-
tion of “packet injection”, since a packet may be “benignly”
duplicated during the transmission. As future work, we plan
to deal with multicast and broadcast scenarios.
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