
CICADAS: Congesting the Internet with Coordinated And
Decentralized Pulsating Attacks

Yu-Ming ke
National Taiwan University

Chih-Wei Chen
National Taiwan University

Hsu-Chun Hsiao
National Taiwan University

Adrian Perrig
ETH Zurich

Vyas Sekar
Carnegie Mellon University

ABSTRACT

This study stems from the premise that we need to break
away from the“reactive”cycle of developing defenses against
new DDoS attacks (e.g., amplification) by proactively inves-
tigating the potential for new types of DDoS attacks. Our
specific focus is on pulsating attacks, a particularly debili-
tating type that has been hypothesized in the literature. In
a pulsating attack, bots coordinate to generate intermittent
pulses at target links to significantly reduce the throughput
of TCP connections traversing the target. With pulsating
attacks, attackers can cause significantly greater damage to
legitimate users than traditional link flooding attacks. To
date, however, pulsating attacks have been either deemed
ineffective or easily defendable for two reasons: (1) they re-
quire a central coordinator and can thus be tracked; and (2)
they require tight synchronization of pulses, which is difficult
even in normal non-congestion scenarios.
This paper argues that, in fact, the perceived drawbacks

of pulsating attacks are in fact not fundamental. We develop
a practical pulsating attack called CICADAS using two key
ideas: using both (1) congestion as an implicit signal for de-
centralized implementation, and (2) a Kalman-filter-based
approach to achieve tight synchronization. We validate CI-
CADAS using simulations and wide-area experiments. We
also discuss possible countermeasures against this attack.

Keywords

DDoS attack; pulsating attack; distributed and decentral-
ized coordination; Kalman filter

1. INTRODUCTION
Distributed Denial-of-Service (DDoS) attacks continue to

be a major threat and have been evolving in both scale and
sophistication [1]. As such, the defense community has been
constantly playing “catch up”with attackers in this rapidly-
changing attack landscape; e.g., in the last two to three
years alone, new vectors like traffic amplification, the use
of IoT devices as bots, and the targeting of core links have

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS ’16, May 30-June 03, 2016, Xi’an, China

c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4233-9/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2897845.2897866

emerged [2,12,26]. Our work stems from the premise that to
break out of this “catch up” game, it behooves the research
community to proactively explore novel DDoS attacks that
are stealthier and more destructive than ever before.

In this paper, we specifically focus on a class of DoS/DDoS
attacks referred to as pulsating attacks [9, 14, 17, 25]. These
attacks target specific Internet links and can be more harm-
ful than simple brute-force flooding, because they can ef-
fectively suppress legitimate flows by sending only intermit-
tent bursts. For example, a series of carefully-crafted peri-
odic pulses on a network link can deceive TCP flows over
the same link to infer an extended period of congestion,
thus forcing legitimate flows to repeatedly enter the time-
out state.

To date, however, large-scale pulsating DDoS attacks have
been mostly considered an academic curiosity because of two
perceived limitations that either render the attack imprac-
tical or enable simple defenses:

• Centralized coordination. The adversary has to coor-
dinate distributed bots such that their traffic streams add
up to the desired waveform that resembles intermittent
high-volume bursts at the target link, as Figure 1 illus-
trates. Prior work requires central coordination [8,24,34]
and thus sacrifices resiliency and stealth, as this coordi-
nator becomes a single point of failure for the attack.

• Inaccurate delay estimation. To produce the desired
pulsating waveform, bots need to coordinate with each
other so that their attack packets arrive at the target syn-
chronously. Unfortunately, synchronizing clocks of hun-
dreds of thousands of bots is difficult in a wide-area set-
ting. To make matters worse, time synchronization itself
is insufficient because the main challenge here is estimat-
ing the delay from each bot to the target link. Prior
work assumes the delays remain unchanged throughout
the course of an attack and estimates the delay values via
a one-time measurement at the beginning of an attack.
Due to the dynamic nature of Internet traffic, especially
during attacks, bots fail to synchronize when relying on
one-time measurements or even periodic measurements in
a näıve way (see wide-area experiments in § 5).

This paper indicates that it is possible to achieve decen-
tralized pulsating attacks that are resilient to the delay vari-
ability introduced during attacks. Our proposed DDoS at-
tack coordination mechanism, called CICADAS, builds on
two key ideas.

• Using congestion as an implicit coordination signal: To
synchronize bots without a central controller, we propose

1

that bots use instants of congestion at the target link as a
communication signal to synchronize among themselves.
Using congestion for covert communication has two ad-
vantages. First, the signal can be observed by every bot.
Second, because the same signal is critical to important
networking protocols such as TCP congestion avoidance,
defenses that attempt to interfere with the signal are ren-
dered inapplicable.

• Control-theoretic approach for accurate delay estimation:
To compensate for the delay variations to the target link,
we design a feedback-based attack stream regulation algo-
rithm that dynamically adjusts the phase and magnitude
of each attack stream based on previous RTT measure-
ments (i.e. the feedback). Applying a control theory
concept, the algorithm can accurately estimate the at-
tack sending time such that bots collectively generate a
desired waveform at the target link.

Using simulations and real-world experiments, we con-
firm that CICADAS can successfully implement a decen-
tralized pulsating attack. Particularly, our Internet-wide
experiments show that with n bots and each bot sending
200ms-length and r-magnitude bursts, it can reliably gener-
ate 145ms-length and 0.9nr-magnitude bursts on the target
link with high probability, and the normalized throughput
of the co-existing TCP flows is reduced to 0.3. In contrast,
bots fail to synchronize when relying on one-time measure-
ments. When using periodic measurements in a näıve way,
bots are sensitive to delay variations and can only gener-
ate 60ms-length and 0.9nr-magnitude bursts. We explore
potential countermeasures to CICADAS in § 6.
This paper makes the following contributions:

• Highlighting the challenges of achieving decentralized pul-
sating attacks on the Internet.

• Designing a novel decentralized coordination method that
uses congestion as a signal for implicit communication
among bots, such that no centralized controller is needed.

• Adopting a control-theoretic framework that allows a bot
to accurately compensate for delay variations by dynam-
ically adjusting the phase and magnitude of its attack
stream.

• Evaluating the practicability of CICADAS using both
simulations and Internet-wide experiments. The results
confirm that CICADAS can successfully synchronize bots
with high probability, whereas other approaches may be
unstable or fail to synchronize.

2. BACKGROUND
In this section, we review 1) pulsating DoS attacks and

2) pulsating DDoS attacks using a central controller. We
then discuss the challenges of executing pulsating attacks in
a distributed and decentralized fashion.
We use the term pulsating attack to describe a class of

(D)DoS attacks that send only intermittent bursts instead
of flooding. They typically exploit network protocol specifi-
cations and thus can effectively reduce the availability of the
victim service. As opposed to direct flooding, the pulsating
attack is stealthy and destructive due to the low average
sending rate and high damage-to-cost ratio.

T

R

+
d3

d1

d2

L

= ?

Desired waveform on target linkDistributed attack str eams

Figure 1: An illustration of distributed pulsating
attacks. The desired waveform consists of periodic
high-volume bursts of period T , burst length L, and
burst magnitude R. Before the attack streams arrive
at the target link, they experience dynamic delays
(i.e., d1, d2 and d3) introduced by network elements.

Pulsating DoS. The Shrew attack [14] is an attack that
targets TCP and exploits the homogeneity of the minimum
Retransmission Time Out (minRTO) in TCP. At a high
level, the Shrew attack aims to cause short-term link conges-
tion whenever legitimate TCP flows retransmit, which de-
ludes them into inferring an extended period of congestion,
cutting their sending rates down to almost zero. Because of
the homogeneity of minRTO, which implies that flows ex-
periencing simultaneous packet loss would likely retransmit
at the same time, Shrew attacks can cause severe damage
by sending a carefully crafted rectangular-wave DoS stream
whose period approximates the minRTO (e.g., one second)
and duration approximates the maximum Round-Trip Time
of victim flows (e.g., 200 milliseconds). Worse yet, the an-
alytical result of the Shrew attack shows that randomizing
the minRTO parameter cannot fully mitigate this attack.

The RoQ attack [9] aims to degrade system performance
rather than completely disable the service (the latter typ-
ically being the goal of DoS), and its effectiveness can be
evaluated by the ratio between damage and cost. The RoQ
attack can be implemented in a similar way to the Shrew
attack: the attacker directs a periodic waveform to a tar-
get link in order to destabilize the adaptation process of
the system, thereby preventing the system from converg-
ing to a stable state where performance is usually opti-
mized. One well-known adaptive protocol is the Additive-
Increase-Multiplicative-Decrease (AIMD) algorithm used in
TCP congestion avoidance. The difference between the
Shrew and RoQ attacks is that the Shrew attack exploits
the timeout mechanism of TCP and aims to cause thorough
denial of service, while the RoQ attack does not target a
specific mechanism or protocol and degrades system perfor-
mance by maximizing the ratio between damage and cost.

Pulsating DDoS using a centralized controller.
Several works propose using a centralized controller to syn-
chronize distributed attacks. Guirguis et al. [8] presented
a distributed RoQ attack that obtains an unfair share of
bandwidth on a target link. However, they assume a con-
troller for DDoS coordination without specifying many de-
tails. Zhang et al. [34] studied the possibility of disrupting
BGP with pulsating attacks. In their distributed version,
bots are required to synchronize with a centralized controller
that can observe all attack paths and is close to the target
link, so as to reduce the impact of delay variance on time
synchronization. Before the attack starts, each bot sends a
timestamped packet to the controller, which then instructs
the bots when to start the attack based on the time differ-
ence. However, it is difficult to accurately predict dynamic

2

delays based on one sampled time difference, especially when
the delay variance increases dramatically during attacks.

Challenges of distributed and decentralized pulsat-
ing attacks. It is natural to extend pulsating attacks to
a distributed and decentralized setting, where multiple bot
machines collectively create the periodic attack waveform
without central controllers. A distributed pulsating attack
is more lethal than its predecessor because it is capable of
achieving a higher peak rate, thus making it possible to tar-
get high-capacity backbone links. A decentralized pulsating
attack is more robust against takedown operations target-
ing the command and control servers. However, as men-
tioned above, one critical research challenge of constructing
this type of pulsating attack is coordinating distributed bots
such that their traffic streams can add up to the target wave-
form resembling intermittent high-volume bursts at the tar-
get link. While the adversary could attempt to synchronize
the clocks of all bots and predict the delay from each bot to
the target link, the delays are difficult to predict accurately
due to the dynamic nature of Internet traffic.

3. CICADAS ATTACK OVERVIEW
In this section, we provide a high-level workflow of the

CICADAS attack and highlight the key technical challenges.
Before this, we formally specify the adversary’s goals.

3.1 Goals and Requirements
We envision an intelligent adversary that wants to cause

network congestion at a specific network link by inducing a
pulsating traffic volume waveform on this link. We assume
that the adversary has chosen the link through out-of-band
mechanisms and through a combination of Internet topology
maps [10–12].1 As such, our focus in this paper is on the
pulsating mechanism rather than the target selection.
The goal of the attack is to orchestrate n bots to synthe-

size a traffic stream of period T , burst length L, and burst
magnitude R at the target link, as shown on the right hand
side of Figure 1. Typical values are T = minRTO = 1
second, L ≈ maxRTT = 200 ms, and R is slightly higher
than the capacity of the target link to overflow the router
queues [14].
As discussed earlier, there are two high-level requirements

for the attack to be effective in practice. It should (1) re-
quire no central coordination point, and (2) achieve tight
coordination despite high network delay variations.

3.2 CICADAS Intuition
The first-order goal of CICADAS is to coordinate the be-

havior of the bots in a decentralized manner and with min-
imal assumptions on the Internet status, such as delay vari-
ances. Here, the key insight behind CICADAS is that con-
gestion at the target link can itself act as a“signal flare” that
every bot can observe (e.g., through packet loss and delay)
and synchronize with. Specifically, each bot infers the extent
of congestion based on the variations in observed latency.
Based on this insight, CICADAS can be viewed as a

1One potential concern is early congestion, when the attack
traffic congests a non-target link before reaching the tar-
get link. We assume that the adversary can avoid this on
the chosen link via out-of-band bandwidth estimation tech-
niques [10], similar to prior work [12].

Send Probe Packets

Estimate Instants of

Congestion

Probe req

Probe reply

Instants of Congestion

Traffic on

target link

Noise

Congestion Detector
(if STATE = LURK or ATTACK)

Attack Generator
(if STATE = ATTACK)

Basic Random TCP

embedding

Attack flow

Figure 2: CICADAS adjusts the attack stream
based on the estimated instants of congestion, which
is inferred from RTT measurements.

feedback-based attack stream regulator installed on each bot,
as Figure 2 illustrates:

• Congestion Detector estimates instants of conges-
tion at the target link based on observed RTTs.

• Attack Generator uses these estimations to regulate
the attack stream, so that distributed attack streams
can aggregate to periodic pulses at the target link with-
out the help of a centralized online controller.

3.3 CICADAS Workflow
Given the insight above, we will describe the end-to-end

workflow of CICADAS that has three conceptual stages:
BOOTSTRAP, LURK, and ATTACK (Figure 3). That is,
the CICADAS feedback loop can be intuitively viewed as a
state machine that transitions between these three states.
We describe the bot actions in each state below.

BOOTSTRAP In the BOOTSTRAP phase, each bot
receives attack parameters, including the target link and
target waveform (i.e., attack period, burst length, and burst
magnitude). For instance, this bootstrapping may happen
as part of the bot recruitment phase or other kinds of mal-
ware payload distribution schemes. At the end of this phase,
the bot is not required to send any traffic. The bots may
move to the LURK state (see below) at a predetermined
time or when the estimated size of the botnet has passed a
threshold [13,19]. Note that bots can enter the LURK state
at different times; no time synchronization is needed.

LURK A bot in the LURK state stealthily monitors the
target link via periodic Round-Trip Time (RTT) probing.
Once congestion is sensed (e.g., high RTT is observed with
high confidence), the bot switches to the ATTACK state.
That is, each bot considers the first congestion at the target
link as a signal for activating the attack stream. It is possi-
ble that legitimate/transient congestion at a non-target link
falsely triggers a subset of the bots. CICADAS is designed
to be resilient to such congestion. We will discuss this case
in detail in § 6.

ATTACK During the ATTACK state, a bot starts send-
ing pulses that it hopes will contribute to periodic conges-
tion at the target link. In addition, the bot adjusts the phase
and magnitude of the next pulse based on the observations
of past congestion so as to improve the level of coordination

3

BOOTSTRAP LURK ATTACK

attack failed

Congestion

detected

Begin during a

pre-configured

time period

Reset

Figure 3: CICADAS’s state machine view.

between bots and increase the severity of congestion at the
target link. If a sufficient number of bots are triggered by the
same congestion, the target link is anticipated to start peri-
odically experiencing severe attack-induced congestion with-
out any further legitimate congestion, as legitimate flows are
throttled by the attack. If the attack coordination fails (i.e.,
there is a lack of severe congestion for an extended period
of time), then the bot returns to the LURK state.

3.4 Practical Challenges
Given this high-level workflow, two key challenges remain

to making CICADAS practical. They are addressed in § 4.

1. How can we obtain a reliable feedback signal to detect
instants of congestion at the target link with stealthy
probe packets? Sending Ping packets at a high rate
will raise suspicion.

2. How can we adjust an attack stream to improve co-
ordination among bots? In particular, the challenge
is eliminating noises introduced by dynamic network
delays, the sampling of congestion signal, etc., and the
noise filter should be able to learn from past observa-
tions to improve the results.

4. DETAILED ATTACK DESIGN
As depicted in Figure 2, CICADAS’s control loop consists

of two main modules: Congestion Detector (activated in the
LURK and ATTACK phases) and Attack Stream Generator
(activated in the ATTACK phase).

4.1 Limitations of Strawman Approaches
We present two strawman approaches to Congestion De-

tector. The impracticality of these approaches motivate our
design using a control-theoretic approach for accurate con-
gestion estimation.

Strawman: Estimate the sending time based on a
one-time measurement at the beginning, and then
simply send the attack bursts every T slots. Attack
synchronization is likely to fail in this case because first, if
the one-time measurement is inaccurate, there is no way to
correct it later; second, even if the one-time measurement is
very accurate at that moment, network delays can change
over time (especially during attacks), and therefore there is
no guarantee that the attack bursts can still arrive at the
same time later.

Strawman: Send probe packets periodically but only
use the latest measurement for estimation. Each
bot sends an attack burst at Tc + T , where Tc is the time
at which the latest congestion is observed. This approach is
better than the first, but is sensitive to noise (mainly due to
dynamic delays). Thus, bots take a longer time to converge
and may be more unstable than in our scheme.

Essentially, we desire a filter to remove noise introduced
by network delays and sampling errors, and the filter’s ca-
pability should improve as measurements are collected, so
that the degree of bot coordination can be improved pro-
gressively. Feedback-based control loops can achieve this
by taking past measurements into account for estimation,
and the Kalman filter is example of this. Our evaluation
(presented in § 5) confirms that using the Kalman filter sig-
nificantly outperforms the above two strawman approaches.

4.2 Congestion Detector
The congestion detector, as illustrated in Figure 2, per-

forms two tasks: sending probe packets to monitor conges-
tion on the target link, and estimating when congestion oc-
curs at the target link based on the probe packets.

Sending probes Each bot sends probe packets to the
destination at a frequency higher than 1

L
, where L is the

burst length (e.g., 200ms). This ensures that any congestion
lasting longer than L can be sensed. Alternatively, the bot
can send out each probe probabilistically, such that with a
high probability, more than a threshold number of bots will
sense the same burst. To improve stealthiness, CICADAS
uses custom probe packets that are sent only between bots.
Such probe packets are indistinguishable and consume a neg-
ligible amount of bandwidth (e.g., about 2.2 KB/s, when
the probe packet size is 44 Bytes and probes are sent every
20 ms), and thus will likely stay under the radar without
causing any alarm.

If the coordination succeeds, we expect to see periodic
pulses (approximately every T units of time) in the RTT
measurements. These measurements are smoothed out us-
ing statistical methods such as a simple moving average com-
puted over the past few RTT samples.

Predicting next congestion event Taking the RTT
measurements as the input, we now explain how to identify
the instants of congestion. More specifically, we would like
to know when the kth congestion occurs at the target link.

z(k) denotes the observation of the kth congestion and
x(k) denotes the true state of the kth congestion. We first
describe how to obtain z(k) based on the probing results,
and then formalize the relationship between z(k) and x(k),
so that we can approximate x(k) based on the observed z(k).

Obtaining z(k): To obtain z(k), CICADAS focuses on
detecting the beginning (called the on-edge) and the end
(called the off-edge) of each congestion event.

Let OnEdge(i), OffEdge(i), and Cong(i) denote the in-
dicators of probe i’s correspondence to on-edge, off-edge, and
congestion, respectively. Intuitively, an on-edge is detected
by probe i if the ith RTT value is higher than a threshold
Thon and probe i − 1 did not experience congestion. An
off-edge is detected if the ith RTT value is lower or equal to
another threshold Thoff and probe i − 1 experienced con-
gestion. Probes between a consecutive on-edge and off-edge
thus correspond to congestion, as illustrated by Figure 4.
Formally,

OnEdge(i) = ¬Cong(i− 1) ∧ (rtt(i) > Thon) (1)

OffEdge(i) = Cong(i− 1) ∧ (rtt(i) ≤ Thoff)

Cong(i) = (Cong(i− 1) ∧ ¬OffEdge(i)) ∨OnEdge(i)

For example, the threshold values can be set such that
Thon = Thoff = RTT . Since we expect to see the du-

4

Time

RTT

avgRTT

OnEdge OffEdge

Cong

Figure 4: An example of on-edge and off-edge.

ration of malicious congestion to be approximately L, the
congestion detector removes inadequately long congestion,
e.g., < L/2, after being triggered. If multiple congestion
events are observed within T , the detector keeps only the
most “powerful” congestion, where the power is quantified
by the average RTT during the period of congestion.
After the removal, the instant of the kth congestion, z(k),

is set to the sending time of the probe packet that
corresponds to the kth on-edge. Next, we use the Kalman
filter to eliminate network noises embedding in the observed
state of congestion z(k); the true state of congestion x(k)
can then be estimated by z(k).
Approximating x(k) from z(k) using Kalman filter:

Since we know that the target link will be congested approx-
imately every T units of time when the attack succeeds, we
can model x(k) as a linear dynamical system:

x(k) = x(k − 1) + T + v(k) (2)

z(k) = x(k) + w(k),

where v(k) is the process noise (i.e., the noise introduced
by imperfect synchronization in our case) and w(k) is the
observation noise (i.e., noise due to delay variation).
This basic linear model provides us with a solid founda-

tion to solve this congestion prediction problem. Although
this formulation may be too simplified to capture the com-
plex interactions between the network and bots, using sim-
ulations and Internet-wide experiments, we show that this
basic model performs well for the purpose of coordinating
attack streams. Given the model of the system, the Kalman
filter performs the prediction and update recursively for each
new observation.
Let x̂(k|k′) be the estimate of x(k) given observations

z(k′), z(k′ − 1), · · · , z(0). Further, let P (k|k′) quantify the
accuracy of the estimate x̂(k|k′):

x̂(k|k − 1) = x̂(k − 1|k − 1) + T (3)

P (k|k − 1) = P (k − 1|k − 1) + V (k),

and the bot updates x̂ and P for each new observation z(k):

x̂(k|k) = x̂(k|k − 1) +Kg(k)(z(k)− x̂(k|k − 1)) (4)

Kg(k) =
P (k|k − 1)

P (k|k − 1) +W (k)

P (k|k) = (1−Kg(k))P (k|k − 1),

where Kg(k) is called the Kalman gain, and V (k) and W (k)
are the covariances of v(k) and w(k), respectively. In prac-
tice, we can estimate the covariances using advanced tools,
such as Autocovariance Least-Squares, or by calculating the
variance of RTT via probing. The Kalman gain controls how
much we should trust the new observation over the current

estimate. Hence, the new estimate, x̂(k|k), is a weighted
sum (determined by the Kalman gain) of the new observa-
tion and the current estimate.

In summary, using the Kalman filter, each bot predicts
when the kth congestion will occur and sends a burst during
the predicted instants of congestion, i.e., during intervals

[x̂(k|k − 1), x̂(k|k − 1) + L). (5)

4.3 Attack Stream Generation
There are many ways to combine n individual flows into

the desired waveform. For example, there are three possible
methods for generating individual attack streams: Basic,
Random, and TCP Embedding. The latter two can be used
to enhance the stealthiness of the attack.

Basic In the Basic method, each bot contributes a pulse of
duration L and magnitude R/n to the predicated congestion
interval derived in Eq. 5. This can be easily generalized
to cases where each bot sends bursts of duration L/∆ and
magnitude ∆·R

n
.

Random The periodic nature of the pulsating attack sug-
gests defense in the frequency domain [6, 17]. Although
such approaches are often resource-intensive and it is unclear
whether they can be applied to detect individual pulsating
flows, the CICADAS adversary may still desire to obscure
the periodic patterns for increased stealthiness.

The Random method probabilistically schedules a burst
for each predicted congestion interval (Eq. 5), such that the
expected value of the instantaneous rate at any point dur-
ing an on-phase is R+ǫ

n
, where R is the magnitude of bursts

at the target link, and n is the number of attack streams.
The value of ǫ is set to ensure that the instantaneous rate
of n attack streams is higher than R with high probabil-
ity. The details of the parameter selection can be found in
Appendix A.1.

TCP embedding So far, we have described how to at-
tack using unresponsive flows (e.g., UDP) that do not re-
spond to congestion. Here, we present a novel technique
called TCP Embedding, which allows bots to attack a tar-
get link and obtain an unfair share of bandwidth using re-
sponsive flows (e.g., TCP). This method not only enhances
the stealthiness of CICADAS but also allows CICADAS to
carry on the attack even when the TCP and UDP flows are
segregated.

A flow is responsive if it faithfully adjusts its sending rate
according to the TCP congestion control algorithm. Since
bots know roughly when a link will be unobstructed (i.e.,
during the off-phases), the idea behind leveraging responsive
TCP flows is that they can reliably increase the sending
rates by sending packets during off-phases. In doing so, the
resulting attack flow will be indistinguishable from a long-
lived TCP flow that gradually increases its sending rate and
happens to send traffic bursts during severe congestion from
time to time. The details of how to construct such attack
streams are presented in Appendix A.2

5. EXPERIMENT
To examine whether CICADAS can successfully orches-

trate a distributed pulsating attack without a centralized
controller, we conduct extensive experiments on both the
Internet and the ns-3 simulation platform.

5

5.1 Evaluation Metrics
We consider three metrics for quantifying the effectiveness

of a distributed pulsating attack.

Differential Time of Arrival A majority of attack
packets arriving at the target link within a short time win-
dow is a direct indicator of synchronization. Formally, we
define the Differential Time of Arrival (∆TOA) as:

∆TOA(m,α) = min
1≤k≤n

[Tm(k + αn)− Tm(k)] (6)

where Tm(k) is the arrival time of the kth bot (in temporal
order) in the mth period, α is a parameter quantifying “ma-
jority”, and n is the number of attack streams. For instance,
∆TOA(m, 75%) = 0.1s means that at the mth period, 75%
of attack streams are arriving within 0.1 seconds. (The ar-
rival time of an attack stream in the mth period is defined
as the arrival time of the first packet in an attack stream
within this period.) Thus, a smaller ∆TOA value implies a
more tightly synchronized attack.

Closeness of Synchronization The closeness of syn-
chronization is defined as the average ∆TOA(m,α) over con-
secutive time periods in one run:

closeness of sync(m1,m2) =

m2
∑

i=m1

∆TOA(i, α)

m2 −m1
, (7)

where m1 and m2 specify a given range. To focus on the
steady state behavior, we will set m1 to larger than 0 in our
evaluation.

Normalized Throughput Apart from the synchroniza-
tion of attack streams, the destructiveness of DDoS attacks
can also be evaluated by the normalized throughput of co-
existing legitimate flows.

5.2 Internet-wide Experiments
To show the feasibility of CICADAS in realistic settings,

we conduct Internet-wide experiments using 64 geographi-
cally distributed machines, as summarized in Figure 5.

Oregon: 4

San Francisco: 2
Fremont: 4

California: 4
Dallas: 2
Atlanta: 4

Virginia: 4

Newark, NJ: 4
New York: 2

São Paulo: 2

Ireland: 4

London: 4

Amsterdam: 2

Frankfurt: 6

Singapore: 8

Sydney: 4

Tokyo: 4

Target

Figure 5: The locations and the number of machines
used in our experiments.

Methodology We carefully design our experiments such
that we can evaluate our DDoS coordination mechanism
without affecting other services or inadvertently triggering
the alarms of existing detection systems.
The bot machines reside in several cloud infrastructures,

including Amazon EC2, DigitalOcean and Linode. Such a
placement not only ensures that the inter-bot traffic can
experience realistic delays, but also reduces the impact on
individual cloud platforms. Each machine is either a bot-

sender or a bot-receiver, and sends packets to each other at
a very low rate to avoid flooding the Internet.

For monitoring ease, the target link is represented by a
local machine under our control that performs three tasks:

• Forwarding packets between bot-senders and bot-
receivers. Bot-senders and bot-receivers exchange
packets via the target link, and NAT (Network Address
Translation) is set on our machine for forwarding.

• Monitoring packets for deriving metrics of interest.

• Limiting the bandwidth of the target link such that
bots can saturate the target link without disturbing
other co-existing flows on the path. We use tc (traffic
control) to constrain the bandwidth on the target.

In our experiments, each bot spends the first 10 seconds
establishing a baseline of RTT before sending attack pack-
ets, and stops at 200s. The probing rate is 3KB/s and an
attack burst is 20KB for each bot.

5.3 Results of Internet Experiments
First, one experiment instance is used to show how

well the attack streams synchronize. Figure 6 illustrates
the differential time of arrival ∆TOA(m,α) for one exper-
iment when α is 75% and 90%. This result shows that
attack streams are synchronized after about 25 seconds.
∆TOA(m, 75%) is less than 40ms and ∆TOA(m, 90%) is less
than 60ms for most of the time periods. This indicates
that the burst generated at the target link is about 160ms
(= 200−40) in length and 75% of the maximum attack rate
in magnitude; it can also be seen as 140ms (= 200 − 60) in
length and 90% of the maximum attack rate in magnitude.

0 50 100 150 200 250
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time (sec)

D
iff

er
en

ce
 o

f a
rr

iv
al

 o
f a

tta
ck

in
g

pa
ck

et
s

(s
ec

)

90% pairs of bots
75% pairs of bots

Figure 6: Differential time of arrival in one run.

We then investigate whether CICADAS can successfully
coordinate bots with high probability. Figure 7 illustrates
the cumulative distribution vs. the closeness of synchroniza-
tion for 100 experiment instances. The results show that, in
90 out of 100 instances, the closeness of synchronization is
less than 37ms and 54ms for α = 75% and 90%, respectively.

CICADAS uses a feedback-based control loop to estimate
the true state of congestion, and the Kalman filter serves as
one example throughout the paper. To understand whether
using Kalman filters is more effective than straightforward
approaches, we substitute the Kalman filter in CICADAS
with two other methods for comparison:

6

0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Closeness of synchronization

R
el

at
iv

e
cu

m
ul

at
iv

e
fr

eq
ue

nc
y

90% pairs of bots
75% pairs of bots

Figure 7: Relative cumulative frequency with mul-
tiple experiments.

• No Feedback: a one-time measurement. When bots
observe the first congestion after establishing a base-
line of RTT , bots start attacking periodically at times
first congestion time + mT , where m is mth period
and T is the length of one period.

• Simple Feedback: a simple Kalman filter with the
Kalman gain fixed to 1. That is, the bot estimates the
true state of congestion based solely on the most recent
observation. In other words, x̂(k|k) = z(k) when bots
update the true state of congestion x̂.

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (sec)

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Normalized throughput

Figure 9: Normalized TCP throughput of 10 runs.

We run 100 instances for each method. For the No Feed-
back method, the closeness of synchronization is consistently
higher than 200ms, which indicates failed synchronization.
Figures 8(a) and 8(b) compare the results for the Simple
Feedback and the Kalman Filter methods. In both figures,
CICADAS (with the Kalman filter) outperforms the Simple
Feedback method, as it is more likely to achieve lower values
regarding the closeness of synchronization.
to show that CICADAS can obtain an unfair share of

bandwidth, we use the scp command to download a large
file via the target link and examine its throughput. Figure 9
shows the normalized TCP throughput of 10 experiments.
Once the bots were synchronized, the normalized through-
put was effectively reduced to 0.3.

5.4 Simulation

The ns-3 simulator allows us to investigate how well CI-
CADAS can synchronize attack streams under different net-
work conditions by changing corresponding parameters.

Methodology Since our goal is to test the sensitivity of
various network conditions, we use a simple dumbbell topol-
ogy with attack and TCP flows sharing a bottleneck link.
Realistic topologies are tested in our Internet experiments.

Attack traffic consists of two types of packets: probe pack-
ets and burst packets. Each bot starts sending probe packets
at roughly the same time. Once started, probe packets are
sent periodically (default is 20 ms) to measure the RTT at a
fine time granularity. The link delays are randomly selected
at the beginning of a simulation.

5.5 Simulation Results
Similar to Figures 6 and 7, we first inspect the level of

synchronization in one simulation instance, which allows us
to cross-check the results of the Internet-wide experiments
and simulations.

Figure 10(a) shows the differential time of arrival for one
simulation instance. In this setting, we consider 10 legit-
imate TCP flows sharing the bottleneck link with 20 at-
tack streams in a dumbbell topology. ∆TOA(m, 75%) and
∆TOA(m, 90%) are less than 20ms for most of the time pe-
riods, which means that the burst length can be as wide as
180ms (= 200− 20).

Figure 10(b) shows the cumulative distribution versus the
closeness of synchronization for 100 simulation instances.
The results show that in 90 out of 100 instances, the close-
ness of synchronization is less than 17ms and 24ms for α =
75% and 90%, respectively.

The level of synchronization is generally higher in the sim-
ulation than in the Internet-wide experiments because the
network delays in the simulation are fixed, whereas delays
fluctuate a lot in the real network.

After confirming that CICADAS can effectively coordi-
nate multiple attack streams, we study what factors affect
the degree of coordination. We measure the closeness of
synchronization for 1) different probe intervals, 2) different
ranges of start times, and 3) different numbers of bot pairs.

5.5.1 Probe Interval

The closeness of synchronization can also be affected by
the probing interval. As can be seen in Figure 11(a), the
closeness of synchronization increases with the probe inter-
val. There is a trend that the closeness of synchronization
increases with the probe interval. This result confirms that
a small probe interval provides bots with fine-grained infor-
mation, resulting in a high degree of coordination. As the
probe interval grows, each bot obtains fewer RTT samples
per congestion, therefore making it difficult to differentiate
attack-induced congestion from noise.

5.5.2 Bot start time range

Figure 11(b) shows the closeness of synchronization versus
the range of start time of bots. We set the value m1 =
50 in (7), because some bots start later and need time to
synchronize. This result confirms that bots do not need to
start at exactly the same time. On the other hand, when
CICADAS attacks are in progress, bots can join the attack
at a later time.

5.5.3 Number of bot pairs

7

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Closeness of synchronization

R
el

at
iv

e
cu

m
ul

at
iv

e
fr

eq
ue

nc
y

Kalman Filter
Simple Feedback

(a) 75% pairs of bots

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Closeness of synchronization

R
el

at
iv

e
cu

m
ul

at
iv

e
fr

eq
ue

nc
y

Kalman Filter
Simple Feedback

(b) 90% pairs of bots

Figure 8: The closeness of synchronization using different delay estimation methods. The No Feedback
method failed constantly and thus its results were not depicted here.

10 20 30 40 50 60 70 80
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time (sec)

D
iff

er
en

ce
 o

f a
rr

iv
al

 o
f a

tta
ck

in
g

pa
ck

et
s

(s
ec

)

90% pairs of bots
75% pairs of bots

(a) Differential time of arrival with one simu-
lation on ns-3.

0 0.01 0.02 0.03 0.04 0.05 0.06
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Closeness of synchronization

R
el

at
iv

e
cu

m
ul

at
iv

e
fr

eq
ue

nc
y

90% pairs of bots
75% pairs of bots

(b) Relative cumulative frequency with mul-
tiple simulations on ns-3.

Figure 10: Simulation results.

Figure 11(c) shows the closeness of synchronization versus
the number of bot pairs. CICADAS can reliably synchronize
bots regardless of the size of the botnet.

5.6 Summary of Evaluation
The results of the wide-area Internet experiments confirm

that CICADAS can effectively synchronize attack streams
despite dynamic delays, whereas prior approaches cannot.
The ns-3 simulation results confirm that CICADAS can re-
liably synchronize bots under different network conditions.

6. DISCUSSION

Congestion at non-target links There are two ques-
tions related to congestion at non-target links.
First, how does CICADAS react to transient congestion

occurring at non-target links? Ideally, CICADAS should
treat this type of congestion as noise, since CICADAS in-
tends to regulate an attack stream based on the instants of
congestion at the target link. To understand how such noise
can be eliminated, we first note that our congestion detector
is tuned to detect severe congestion only once it leaves the
LURK state. Congestion of inadequate length or intensity
will be filtered out quickly. Hence, we can minimize inter-

ference by legitimate congestion at non-target links, which
typically has a short duration and small magnitude.

Second, will CICADAS cause congestion at non-target
links? Similar to prior work [12], CICADAS can avoid caus-
ing malicious congestion at non-target links by estimating
link capacity using existing bandwidth estimation tools [29].

Non-target congestion caused by an aggregate of legiti-
mate and attack traffic will also be viewed as noise.

The above observation is confirmed by our Internet-wide
experiments: In these experiments, bots may be triggered
by congestion at non-target links and send bursts lasting for
0.2s during the next period. These bots either cause a slight
congestion in a short period of time at the target link and
create a cascading effect in the following time periods, or
cause no effect on the target link.

Path change During a CICADAS attack, the communi-
cation path between bots may change. Such a path change
may affect the observed delays and thus decrease the level of
synchronization among bots in the short term. In the long
term, CICADAS’s feedback mechanism can help bots grad-
ually converge toward the strongest attack force. If quick
recovery is desired, the bot that detects a path change (e.g.
via traceroute) can switch back to the BOOTSTRAP state
and re-synchronize with the other bots.

8

10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

probing interval (ms)

C
lo

se
ne

ss
 o

f s
yn

ch
ro

ni
za

tio
n

90% pairs of bots
75% pairs of bots

(a) Probe interval versus closeness of
synchronization.

[0, 0) [0, 5) [0,10) [0,15) [0,20) [0,25) [0,30)
0

0.005

0.01

0.015

0.02

0.025

0.03

range of start time (sec)

C
lo

se
ne

ss
 o

f s
yn

ch
ro

ni
za

tio
n

90% pairs of bots
75% pairs of bots

(b) Start time versus closeness of syn-
chronization.

12 20 28 36 44 52 60 68 76 84 92 100
0

0.01

0.02

0.03

0.04

0.05

0.06

Number of bot pairs

C
lo

se
ne

ss
 o

f s
yn

ch
ro

ni
za

tio
n

90% pairs of bots
75% pairs of bots

(c) Number of bot pairs versus closeness
of synchronization with large queue.

Figure 11: Simulation results.

Trigger signal During the LURK state, a bot is triggered
by the first observable congestion. In the absence of conges-
tion, bots themselves can create triggers. For instance, bots
can send normal TCP traffic to each other, since the TCP
flow aggregate will naturally exhibit saw-tooth-like patterns,
which saturate the link from time to time.
It is possible that bots may be triggered by different con-

gestion instances on the target link due to their different
start times, and thus attack at different times in the follow-
ing period. However, once triggered, bots will converge over
time as they observe similar congestion signals.

Potential countermeasures CICADAS is designed to
circumvent common DDoS detection mechanisms because
bot traffic in CICADAS is legitimate-looking: bots send low-
volume traffic to each other using real IP addresses. More-
over, by design, the temporal pattern of the CICADAS at-
tack is observable only at the target link, thereby rendering
the redirection-based cloud traffic scrubbing service unus-
able. To mitigate such a stealthy DDoS attack, there needs
to be support for DDoS-resilient Internet architectures [5]
and efficient flow monitoring algorithms running at each
router. However, none of these is easy to do with respect to
design and deployment. As a proof of concept, we present
a metric called Disturbance Ratio, by which a router can
accurately distinguish legitimate flows and pulsating attack
flows. The precision and recall rates are promising, but it
remains to be seen how to compute such a metric at line rate
without keeping per-flow state at routers. Countermeasure
details can be found in Appendix B.

7. RELATED WORK
The most closely-related work is reviewed in § 2. This

section briefly reviews other DDoS attack and defense tech-
niques. We refer interested readers to survey papers [20,23,
33] for comprehensive studies.
To mitigate DDoS, existing solutions typically aim to

throttle flows that exhibit characteristics such as spoofed
IP addresses [4,7,16], undesired by destinations [31,32], and
disproportionate bandwidth share [15, 18, 22, 28]. However,
the CICADAS attack appears legitimate to many detection
algorithms since it can be performed by low-volume inter-
bot traffic using real IP addresses. The periodic pattern
of pulsating attacks is a distinguishing characteristic with
regard to attack detection [6, 17]. However, existing detec-

tion algorithms are too resource-intensive to be performed
on routers.

The crossfire attack [12] aims to cut off a region from the
Internet by flooding a few critical links that connect the
two. To achieve this, algorithms are proposed for select-
ing the target links and attack paths. While our work also
targets network links instead of end servers, it focuses on
designing an attack coordination mechanism and thus is or-
thogonal to the crossfire attack. In Temporal Lensing [25], a
single attack source uses paths with different latencies such
that a flooding attack is transformed into a pulsating at-
tack with a higher peak against the victim endhost. Its
latency estimation relies on existing DNS infrastructure and
an assumption that there are always DNS resolvers topolog-
ically close to end points. However, this assumption may
not hold when the target is an intermediate network link
rather than an endhost, and this approach may become less
effective as more and more open DNS resolvers are closing
(http://openresolverproject.org/).

8. CONCLUSION
Recent DDoS threats (e.g., amplification attacks and

flooding core links) pose new research challenges for provid-
ing available communication in critical network infrastruc-
tures. The increased sophistication and impact of DDoS at-
tacks motivates the study of future attack trends. This work
focuses on the practicability of a new type of DDoS attack,
referred to as the pulsating attack, which is considered pow-
erful but has not yet been observed in a real-world setting.
To show that it is possible to overcome the perceived limita-
tions of pulsating attacks, we develop a novel attack coordi-
nation mechanism called CICADAS, which enables bots to
synchronize with each other with no central controller in a
highly dynamic network. Moreover, CICADAS coordinates
bots in the temporal domain and can work in conjunction
with other DDoS mechanisms that coordinate bots in the
spatial domain [12, 30] or temporally concentrate one flood
into high-peaked pulses [25].

Acknowledgments

This work was supported in part by the Ministry of Science
and Technology, Taiwan, under Grants MOST-103-2218-E-
002-034-MY2 and MOST-104-2218-E-001-002.

9

9. REFERENCES
[1] ATLAS Q2 2015 Global DDoS Attack Trends.

http://www.slideshare.net/Arbor Networks/atlas-q2-
2015final.

[2] Spike DDoS Toolkit Threat Advisory. https://www.
stateoftheinternet.com/resources-web-security-threat-
advisories-2014-multi-platform-botnet-spike.html.

[3] M. Allman, V. Paxson, and E. Blanton. TCP
Congestion Control. RFC 5681 (Draft Standard),
Sept. 2009.

[4] K. Argyraki and D. R. Cheriton. Active Internet
Traffic Filtering: Real-Time Response to
Denial-of-Service Attacks. In Proceedings of USENIX
ATEC, 2005.

[5] C. Basescu, R. M. Reischuk, P. Szalachowski,
A. Perrig, Y. Zhang, H.-C. Hsiao, A. Kubota, and
J. Urakawa. SIBRA: Scalable Internet Bandwidth
Reservation Architecture. In Proceedings of NDSS,
2016.

[6] Y. Chen and K. Hwang. Collaborative detection and
filtering of Shrew DDoS attacks using spectral
analysis. Journal of Parallel and Distributed
Computing, 66(9):1137–1151, Sept. 2006.

[7] P. Ferguson and D. Senie. Network Ingress Filtering:
Defeating Denial of Service Attacks which employ IP
Source Address Spoofing. RFC 2827 (Best Current
Practice), May 2000. Updated by RFC 3704.

[8] M. Guirguis, A. Bestavros, and I. Matta. Bandwidth
Stealing via Link-Targeted RoQ Attakcs. In
Proceedings on Communication and Computer
Networks, 2004.

[9] M. Guirguis, A. Bestavros, and I. Matta. Exploiting
the Transients of Adaptation for RoQ Attacks on
Internet Resources. In Proceedings of IEEE ICNP,
2004.

[10] N. Hu, L. Li, Z. Mao, P. Steenkiste, and J. Wang.
Locating Internet bottlenecks: Algorithms,
measurements, and implications. SIGCOMM Comput.
Commun. Rev., 34(4):41–54, 2004.

[11] M. S. Kang and V. Gligor. Routing Bottlenecks in the
Internet: Causes, Exploits, and Countermeasures. In
Proceedings of ACM CCS, 2014.

[12] M. S. Kang, S. B. Lee, and V. D. Gligor. The Crossfire
Attack. In Proceedings of IEEE Symposium on
Security and Privacy, 2013.

[13] D. Kostoulas, D. Psaltoulis, I. Gupta, K. Birman, and
A. Demers. Decentralized Schemes for Size Estimation
in Large and Dynamic Groups. In Proceedings of
IEEE International Symposium on Network
Computing and Applications, 2005.

[14] A. Kuzmanovic and E. Knightly. Low-Rate
TCP-Targeted Denial of Service Attacks: the Shrew
vs. the Mice and Elephants. In Proceedings of the
ACM SIGCOMM, 2003.

[15] Y. Kwok, R. Tripathi, Y. Chen, and K. Hwang.
HAWK: Halting Anomalies with Weighted ChoKing
to Rescue Well-Behaved TCP Sessions from Shrew
DDoS Attacks. Networking and Mobile Computing,
3169(August):1–10, 2005.

[16] X. Liu, A. Li, X. Yang, and D. Wetherall. Passport:
Secure and Adoptable Source Authentication. In
Proceedings of USENIX/ACM NSDI, 2008.

[17] X. Luo and R. Chang. On a New Class of Pulsing
Denial-of-Service Attacks and the Defense. In
Proceedings of NDSS, 2005.

[18] R. Mahajan, S. Floyd, and D. Wetherall. Controlling
High-Bandwidth Flows at the Congested Router. In
proceedings of IEEE ICNP, 2001.

[19] L. Massoulié and E. L. Merrer. Peer Counting and
Sampling in Overlay Networks: Random Walk
Methods. In Proceedings of ACM PODC, 2006.

[20] J. Mirkovic and P. Reiher. A Taxonomy of DDoS
Attack and DDoS Defense Mechanisms. ACM
SIGCOMM Computer Communication Review,
34(2):39–53, 2004.

[21] M. Motiwala, M. Elmore, N. Feamster, and
S. Vempala. Path splicing. In Proceedings of ACM
SIGCOMM, 2008.

[22] R. Pan, L. Breslau, B. Prabhakar, and S. Shenker.
Approximate Fairness Through Differential Dropping.
ACM SIGCOMM Computer Communication Review,
33(2):23, Apr. 2003.

[23] T. Peng, C. Leckie, and K. Ramamohanarao. Survey
of Network-Based Defense Mechanisms Countering the
DoS and DDoS Problems. ACM Computing Surveys,
39(1), Apr. 2007.

[24] P. Ramamurthy, V. Sekar, A. Akella,
B. Krishnamurthy, and A. Shaikh. Remote Profiling of
Resource Constraints of Web Servers Using Mini-Flash
Crowds. In Proceedings of USENIX ATC, 2008.

[25] R. Rasti, M. Murthy, and V. Paxson. Temporal
Lensing and its Application in Pulsing Denial of
Service Attacks. In Proceedings of IEEE Symposium
on Security and Privacy, 2015.

[26] C. Rossow. Amplification Hell: Revisiting Network
Protocols for DDoS Abuse. In Proceedings of NDSS,
2014.

[27] A. Stavrou and A. D. Keromytis. Countering DoS
attacks with stateless multipath overlays. In
Proceedings of ACM CCS, 2005.

[28] I. Stoica, S. Shenker, and H. Zhang. Core-Stateless
Fair Queueing: A Scalable Architecture to
Approximate Fair Bandwidth Allocations in
High-Speed Networks. IEEE/ACM Transactions on
Networking, 11(1):33–46, Feb. 2003.

[29] J. Strauss, D. Katabi, and F. Kaashoek. A
measurement study of available bandwidth estimation
tools. In Proceedings of ACM SIGCOMM IMC, 2003.

[30] A. Studer and A. Perrig. The Coremelt Attack. In
Proceedings of ESORICS, 2009.

[31] A. Yaar, A. Perrig, and D. Song. SIFF: A Stateless
Internet Flow Filter to Mitigate DDoS Flooding
Attacks. In Proceedings of IEEE Symposium on
Security and Privacy, 2004.

[32] X. Yang, G. Tsudik, and X. Liu. A Technical
Approach to Net Neutrality. In Proceedings of
Hotnets-V Workshop, 2006.

[33] S. T. Zargar, J. Joshi, and D. Tipper. A Survey of
Defense Mechanisms Against Distributed Denial of
Service (DDoS) Flooding Attacks. IEEE
Communications Surveys and Tutorials,
15(4):2046–2069, 2013.

[34] Y. Zhang, Z. M. Mao, and J. Wang. Low-Rate

10

TCP-Targeted DoS Attack Disrupts Internet Routing.
In Proceedings of NDSS, 2007.

APPENDIX

A. ADVANCED ATTACK STREAM GEN-

ERATORS
This appendix describes the construction of seemingly-

innocuous attack flows that are randomized and responsive
to congestion, thus improving the stealthiness of the attack.

A.1 Random
We say that time t is during an on-phase if t ∈

[x̂(k|k − 1), x̂(k|k − 1) + L) for some k, where x̂(k|k − 1) is
derived from Eq. 3; otherwise, t is in an off-phase.
The randomized attack stream generator probabilistically

schedules a burst for each on-phase, such that the expected
value of the instantaneous rate at any time point during an
on-phase is R+ǫ

n
, where R is the magnitude of bursts at the

target link, and n is the number of attack streams. The
value of ǫ is set to ensure that the instantaneous rate of n
attack streams is higher than R with high probability.
To achieve this, for each x̂(k|k−1), the generator selects p

(0 ≤ p ≤ 1), y1 (y1 ∈ N
+), and y2 (y2 ∈ N, 0 ≤ y2 < y1) uni-

formly at random. This parameter selection process repeats

until (R+ǫ)y1
np

≤ rmax, where rmax is the maximum instan-
taneous rate of an attack stream. Then with probability p,

the generator sends traffic at rate (R+ǫ)y1
np

during interval

bk =

[

x̂(k|k − 1) +
y2
y1

L, x̂(k|k − 1) +
y2 + 1

y1
L

)

.

Analysis Let R(t) be the instantaneous rate of n attack
streams at time t, and r(t) the instantaneous rate of a gen-
erator at time t. We derive the probability of R(t) ≥ R.
When t is in an on-phase, the expected value of r(t) is

E[r(t)] = Pr[send burst] · Pr[t ∈ bk] ·
(R+ ǫ)y1

np

= p ·
1

y1
·
(R+ ǫ)y1

np
=

R+ ǫ

n
.

Since each generator selects parameters independently and
0 ≤ r(t) ≤ rmax, we obtain

Pr[R(t) < R] = Pr[n · r(t) < R]

= Pr[n · r(t) < E[n · r(t)]− ǫ]

< exp

(

−
2n2ǫ2

n · r2max

)

= exp

(

−
2nǫ2

r2max

)

. (8)

Eq. 8 is derived based on Hoeffding’s inequality. Hence,
for all δ ∈ (0, 1], the randomized attack stream generator

ensures that Pr[R(t) ≥ R] ≥ 1− δ if ǫ ≥ rmax

√

− ln δ
2n

.

Attack cost The cost of introducing this randomization
technique (in terms of the increase in attack traffic per time
unit per bot) is ǫL

nT
, which is negligible for typical values of ǫ,

L, n, and T . In sum, to ensure that the instantaneous rate
of randomized attack streams R(t) is higher than R with
high probability, each bot only has to send at an average
rate slightly higher than R

n
during each on-phase.

A.2 TCP embedding

We describe how to execute a DDoS attack using respon-
sive TCP flows. The key idea is that since bots know roughly
when the link will be unobstructed (i.e., during the off-
phases), they can reliably increase their sending rates by
sending packets during off-phases.

TCP increases its congestion window (cwnd) when no con-
gestion is sensed. As the congestion window limits the max-
imum number of unacked segments, the sending rate is ap-
proximately the size of the congestion window divided by
the RTT, i.e., cwnd

RTT
. While the actual TCP implementa-

tions vary, and numerous suggestions have been made to
improve the performance of TCP, our proposed mechanism
can work with any TCP variants in principle. Hence, we con-
sider the following standardized specification for illustration
purposes. reader unfamiliar with TCP congestion control is
referred to RFC 5681 [3].

When the congestion window (cwnd) is smaller than the
slow start threshold (ssthresh), TCP is in the slow start
phase, where it exponentially increases the congestion win-
dow to probe for available bandwidth. In the slow start
phase, the value of cwnd is doubled per RTT, or incremented
by 1 Maximum Segment Size (MSS) per non-duplicate ACK.
When cwnd ≥ ssthresh, TCP enters the congestion avoid-
ance phase, where cwnd is incremented by 1 MSS per RTT

(or incremented by MSS2

cwnd
per non-duplicate ACK) [3]. Upon

a timeout, cwnd is reset to 1 MSS and ssthresh is set to
max{FlightSize/2, 2 MSS}, where FlightSize is the size of
all unacked segments in bytes.

Analysis. Suppose each bot sends cwnd
MSS

segments per
RTT during off-phases until cwnd = x. Then during an
on-phase, the bot sends a burst of magnitude x

RTT
and du-

ration RTT . If some packets in the burst are dropped due
to congestion, cwnd is reset to 1 MSS and ssthresh to x

2
.

Assume no congestion experienced by cover traffic, the min-
imum number of periods before restoring cwnd to x is:

∆burst =

⌈

minRTO + (timeSS + timeCA) ·
1

T − L

⌉

,

where timeSS and timeCA are the time elapsed in the slow
start phase and congestion avoidance phase, respectively.
The current timeout value is minRTO, as the bot can ensure
no repeated timeouts for the same packet. Since cover traffic
is sent only during off-phases (which account for T − L out
of T time per period), the total time is divided by T − L.
Furthermore, based on the TCP specification, we can derive
that timeSS = RTT · max{log2

x
2·MSS

, 1} and timeCA =
RTT ·min{ x

2·MSS
, x
MSS

− 2}.

Attack cost. We quantify the increase in cost with re-
spect to the amount of cover traffic. Given that each bot
sends cwnd

MSS
segments per RTT during off-phases, how much

cover traffic does each bot need to send before reaching a
congestion window of size x? When no packet loss occurs
during off-phases, the average number of segments per sec-
ond is bounded:

avg rate ≤ max {avg rate SS, avg rate CA}

= avg rate CA =
0.75x

RTT ·MSS
.

B. POTENTIAL COUNTERMEASURES
We discuss potential countermeasures against CICADAS.

11

0 20 40 60 80 100 120
0

50

100

150

200

250

300

350

400

450

Time (sec)

tr
af

fic
 r

at
e(

K
by

te
s/

s)

traffic

(a) Traffic on the router.

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

8

9

Time (sec)

R
at

io

bot
user

(b) Router detection with one experi-
ment.

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

8

9

10

Time (sec)

R
at

io

bot
user

(c) Router detection with 10 experi-
ments.

Figure 12: Countermeasure preliminary results.

Throttle disturbing flows. As CICADAS aims to max-
imally disturb the communication of other flows while re-
maining stealthy, we can ideally define a new flow metric
that quantifies the level of flow disturbance to other flows,
and then throttle flows with a high disturbance value.
Following this line of thought, we observe that if a flow

accounts for a larger share of traffic during congestion, the
flow is likely to be an attack flow. (A legitimate flow, on the
other hand, should slow down during congestion or at least
behave consistently regardless of congestion.) Hence, when a
router sees periodic patterns as in Figure 12(a), it can gather
traffic statistics during congestion (i.e. the peaks) and non-
congestion (i.e. the valleys) for further analysis. Specifically,
we define the Disturbance Ratio of flow i as follows:

ratio(i) =
c(i)

C
/
nc(i)

NC
, (9)

where C and NC are the number of bytes received by the
router during congestion and non-congestion, respectively.
Similarly, c(i) and nc(i) are flow i’s traffic (in bytes) re-
ceived by the router during congestion and non-congestion,
respectively. If a flow’s disturbance ratio is greater than 1,
it means that the flow contributes more to the overall traf-
fic (in terms of percentage) during congestion than during
non-congestion. As a result, a flow is classified as malicious
if its disturbance ratio > 1.
As a proof-of-concept, we implement this method on a

local machine (which serves as the target link), and run 10
pairs of bots and 10 normal TCP flows. Attacks start from
0s to 100s and the TCP flows start from 0s to 110s. The
router computes ratio(i) every 10 seconds.
Figures 12(b) and 12(c) show the Disturbance Ratio vs.

time by running one and 10 experiments, respectively. The
red dots represent users and the blue crosses represent bots.
In Figure 12(c), the precision is > 90% during the first 20
seconds and increases to 100% in the subsequent 80 seconds.
The recall is > 90% all of the time. Note that in the context
of our study, precision means the proportion of detected ma-
licious flows to all detected flows, and recall is the proportion
of detected malicious flows to all malicious flows.
Although our proposed method has high precision and

recall, a practical solution would require computing such a
metric in an efficient manner. In the future, we aim to devise
an efficient one-pass algorithm that computes disturbance
ratios at line rate without keeping per-flow state at routers.

Disrupt CICADAS coordination. Another possible
defense strategy is to explicitly disrupt the coordination of
bots in CICADAS. For example, routers could attempt to
rate limit probe packets, as our simulations show that the at-
tack becomes less effective as the probe interval gets higher.
However, since CICADAS can employ a custom probe proto-
col rather than the standard Ping utility, the probe packets
are indistinguishable from other packets. As a result, such
a simple rate limiter would fail to limit CICADAS’s probe
packets. Routers could also try to inject noise to the con-
gestion signal – RTT and packet loss – which a bot relies on
for regulating the attack stream. However, increasing end-
to-end latency and packet drop rate is undesirable for many
network applications.

Route around congested links. A promising gen-
eral defense is multipath routing. Multipath communication
can offer dramatic availability improvements, as legitimate
senders can avoid maliciously-flooded links by switching be-
tween paths [21,27]. A multipath protocol may be more re-
silient against link flooding if it supports fine-grained path
selection; however, fine-grained path selection may actually
grant too much power to bots. For example, these bots could
construct loopy, lengthy paths that consume disproportion-
ate amount of network bandwidth, jeopardizing the welfare
of legitimate senders. In other words, multipath communi-
cation can be a double-edged sword that hurts benign flows
in some adversarial environments. Thus, further research is
required to study how much multipath protocols can help
mitigate DDoS attacks and improve network availability.

12

