Lightweight Internet Bandwidth Allocation and
Isolation with Fractional Fair Shares

Marc Wyss Yih-Chun Hu

ETH Zurich University of Illinois at Urbana-Champaign University of Luxembourg

Abstract—Ensuring fair bandwidth allocations on the public
Internet is challenging. Congestion control algorithms (CCAs)
often fail in achieving fairness, especially when different CCAs
operate simultaneously. This challenge becomes even more pro-
nounced during volumetric distributed denial-of-service (DDoS)
attacks, where legitimate traffic can be starved entirely. One
approach to address this challenge is to enforce fairness by allo-
cating bandwidth directly at routers. However, existing solutions
generally fall into two categories: those that are easy to deploy
but fail to provide secure in-network bandwidth isolation, and
those that offer strong isolation guarantees but rely on complex
assumptions that hinder real-world deployment.

To bridge the gap between these two categories, we introduce a
new fairness model based on the notion of a per-stream Fractional
Fair Share (FFS). At each on-path node, a stream’s FFS, repre-
sented as packet labels and updated along the forwarding path,
conveys its current fair share of egress bandwidth. The combina-
tion of a packet-carried FFS and probabilistic forwarding enables
effective and scalable isolation of streams with minimal overhead.
FFS is the first system to combine low implementation and
deployment overhead with effective bandwidth isolation, while
remaining robust against source address spoofing and volumetric
DDoS attacks, and delivering high performance, scalability, as
well as minimal latency and jitter.

We show that FFS effectively isolates bandwidth across 15
different CCAs while keeping latency and jitter minimal. Our
high-speed implementation sustains a 160 Gbps line rate on
commodity hardware. Evaluated on realistic Internet topologies,
FFS outperforms several of the most recent and secure bandwidth
isolation systems in both median and total bandwidth allocation.
In our security analysis, we prove that FFS guarantees a non-zero
lower bound on bandwidth allocation for every traffic stream,
ensuring that volumetric DDoS attacks, even when combined
with source address spoofing, cannot prevent legitimate commu-
nication. Finally, we present an extension of FFS that provides
accurate and secure rate feedback to the sender, allowing rapid
rate adaptation with minimal packet loss.

I. INTRODUCTION

Fair and reliable bandwidth allocation is essential to ensure
equitable access during congestion on the public Internet. To-
day’s Internet relies on congestion control algorithms (CCAs)
to manage and allocate bandwidth among competing flows, but
unfortunately, many CCAs suffer from limitations that prevent
them from achieving fair allocations [1], [2]:

Network and Distributed System Security (NDSS) Symposium 2026
23 - 27 February 2026 , San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.240023
www.ndss-symposium.org

Vincent Lenders Roland Meier Adrian Perrig

armasuisse ETH Zurich

o Low-RTT flows ramp up sending rates faster, achieving
higher bandwidth due to quicker feedback [3], [4].

o Aggressive CCA variants can dominate bandwidth, leav-
ing conservative ones with smaller shares [5].

o Even minimal packet loss forces CCAs to back off,
degrading legitimate traffic [6]-[8].

The problems intensify in the presence of malicious end hosts,
which may disregard CCA signals to claim disproportionate
bandwidth. In the worst case, volumetric DDoS attacks induce
heavy packet loss on legitimate flows, leading to complete
starvation of benign communication [9].

Bandwidth-isolation mechanisms, which run on routers and
thus enforce fairness directly inside the network, offer a
complementary solution for some of the CCA shortcom-
ings [10]. However, as we discuss in our review of related work
(Section III), existing approaches exhibit a trade-off between
their requirements for implementation and deployment and
the properties they deliver, such as isolation, performance,
scalability, and security. Systems designed for easy imple-
mentation and deployment [I 1] compromise significantly on
secure bandwidth isolation. Often, attackers can still transmit
at high rates to gain an excessive share of bandwidth or disrupt
legitimate communication through volumetric DDoS attacks.
Also, many systems struggle to defend against floods of traffic
with spoofed source addresses [12]. Some approaches [!3]
rely on trust between independent entities—an unrealistic
assumption given the diverse actors on the public Internet.

Conversely, systems that provide secure bandwidth isolation
in the complex environment of the public Internet are often
impractical to deploy due to their extensive requirements or
poor scalability. Many [14], [15] rely on assumptions such
as stable end-to-end paths and predictable traffic patterns,
or require cryptographic operations and precise time syn-
chronization at routers. Systems offering fine-grained band-
width isolation [16], [17] frequently compromise scalability
by requiring, for example, millions of queues at routers, per-
packet state proportional to the number of on-path entities,
or computational overhead that grows with network size. Due
to these limitations, such systems cannot scale to the global
Internet and are typically confined to small- or medium-scale
deployments, such as private WANs or data centers.

Apparently, designing scalable and secure in-network band-
width isolation systems that are easy to deploy on the public
Internet, with minimal or no requirements, is challenging. The

task is made even harder because diverse applications may
need high throughput or low and stable latency, or both.

We address these challenges with a system called FFS,
named after its core principle of assigning each stream a
Fractional Fair Share (FFS). The FFS represents a stream’s
minimum guaranteed share of egress capacity along its for-
warding path. At any on-path node (e.g., a router), a stream’s
FFS at the egress is determined by (i) the stream’s FFS from
the previously traversed egress, (ii) a relative weight assigned
to the ingress at which the stream arrives, as specified by
the node’s operator, and (iii) the demand of other streams
sharing the same egress. Excess bandwidth from underutilizing
streams is reallocated to those with higher demand.

FFS simplifies implementation and deployment through
its streamlined design and minimal requirements. At an egress
interface, an FFS node requires just a single FIFO queue,
constant memory (independent of the number of flows), and
constant-time packet processing. FFS relies solely on basic
floating-point operations and simple functions like min () and
max (); it does not depend on external systems or other spe-
cialized hardware capabilities. For configuration, FFS requires
only a per-node fairness matrix, where entries specify the share
of an egress interface’s capacity allocated to each ingress inter-
face. Importantly, although FFS adds a small, constant-sized
header to each packet, it requires no coordination between
nodes, eliminating reliance on cooperation and trust among
independent entities on the Internet. Moreover, FFS supports
incremental deployment, where bandwidth isolation improves
progressively as more nodes adopt the system.

Nevertheless, FFS delivers effective isolation, high perfor-
mance, scalability, and security necessary for deployment
on the public Internet. Its bandwidth isolation protects each
stream’s fair share of bandwidth, thus improving fairness
among CCAs. The per-stream-stateless design, combined with
low packet processing overhead and probabilistic dropping,
enables fast and scalable packet forwarding with low latency
and jitter. In addition, FFS defends against volumetric DDoS
attacks through bandwidth isolation. Each stream is provably
guaranteed a minimal rate, regardless of the communication
patterns of other entities. This rate is determined by the
fairness matrices of the nodes along the stream’s path. FFS is
also immune to source address spoofing, as congestion control
decisions do not depend on IP addresses. By normalizing label
values at ingress, FFS ensures robustness against manipula-
tion by greedy or malicious entities seeking to illegitimately
increase their bandwidth share.

Finally, as a useful enhancement, we demonstrate that FFS’
packet-carried congestion information can be leveraged to
design two endpoint algorithms, one that minimizes data
transmission time and another that reduces packet loss.

Our main contributions are:

o The specification of FFS fairness.

o A highly scalable and secure in-network bandwidth iso-

lation mechanism for enforcing this fairness notion.

¢ An extension of this mechanism enabling sources to

rapidly discover and converge to their fair sending rates

while suffering only minimal packet loss.

o A security analysis in the context of the threats present
on the public Internet, supported by formal proofs that
substantiate our claims.

« Implementations and evaluations showing isolation across
15 CCAs, line-rate forwarding at 160 Gbps on commod-
ity hardware, larger allocations than prior systems, and
consistently low latency and jitter.

« An extensive comparison to related work, emphasizing
the distinctive properties and advantages of FFS.

II. OBJECTIVES

We design FFS to achieve the following core requirements:

O1 Isolation: Enforce fair allocations through end-to-end in-
network bandwidth isolation. In the absence of conges-
tion, all traffic should be forwarded without restriction.

02 Performance: Achieve high link- and network utilization
while minimizing latency, loss, and jitter.

O3 Scalability: Minimize overhead in terms of packet header
length, computational costs, memory usage, number of
queues, pre-transmission setup, and control-plane com-
munication. Scale to multi-Gbps traffic rates typical of
modern inter-domain links.

O4 Security: Protect streams from off-path attackers per-
forming volumetric DDoS attacks and tampering with
packet fields, including addresses and protocol labels.

OS5 Deployment: Minimize obstacles to implementation and
deployment by maintaining a simple design, avoiding
reliance on external systems and specialized hardware
capabilities, reducing any setup configuration overhead,
eliminate the need for coordination and trust among in-
dependent entities, and enabling incremental deployment.

To the best of our knowledge, FFS is the only system that
satisfies all these requirements.

III. BACKGROUND AND RELATED WORK

When an egress interface becomes congested, it is necessary
to decide which packets to drop and which ones to forward.
This raises the question of what constitutes a fair bandwidth
allocation and how this allocation can be implemented. In
this section, we extensively examine the properties of various
bandwidth-allocation mechanisms with respect to the required
properties listed in Section II. Figure 1 provides an overview
that highlights a clear trend: systems that are easy to deploy
often lack secure in-network bandwidth isolation, while those
offering strong isolation guarantees have complex require-
ments that limit their practical deployment. The remainder
of this section provides a more in-depth discussion of the
related work, serving as background for the design of FFS.
Additional related work—though less directly relevant, as
it often targets data center networks rather than the public
Internet—is discussed in Appendix G.

Insufficient Isolation. Routers typically use first in, first out
(FIFO) with tail-drop, where senders with higher rates, e.g.,
using aggressive CCAs, can claim higher shares of egress

® = (7]
£ 5 g 2 2 - 3
o 2 13 o = '] b= 3 =] o
A E c 8 b £ e £
s & £ H e T €
33 ¢ 2 5 = 5 5 3 > 2 . 5 5 3
> 2 - @2 % = 3 £ 3 3 £ S % % 2 E s 3 5 &
= T ® 9 =] o O 2 e B B) o O © k] 2 < S 0
2 N 2 ¢ § t 5§ S § ® g s 2 = 3 5 £ 3 8 > ¢
S c O o £ 2 - o c &] 2 B2 k=] 8 <) s .l;'- o
3 e % 5 o g @ 3 3 2 c o 3 ° €] § & g 5 £ 3
E § 3z ° % § E g £ 8 B § % 2 3 E 5 2 = 2 5 g
[c a 98 = o a 2 [2 £ £ n P » = o o €] o
= P " B s c £ 3 e o H 5] 0 "] S N N S =
: 238 =& £ £§%8 . s ¥ g & 2 ¢ ¢ 2 E % 8§ 3%
< ey t - - = 7] © = = = = c ° Qo
% E o e 8] Y 2 3 5 5 £ E o
E £ES5 3 & 8 &£& § & & & 25 &8 E 85§ 8§ & ¢
Requires Provides
FIFO| No No No No No No No O(1) o(1) No No No O(1) No - CCA No No No Yes No Yes
L4S| No No No No No No No O(1) o(1) No No No O(1) Yes - CCA No Low Low Yes No Yes
FQ| No No No No No No No O(1) Off) No No Yes O(f) No Per flow Yes No Low Yes No No
AFD No No No No No No No O(1) 0o(1) No No Yes O(1) No - FQ Yes No Low Yes No |No
csFQl No No No No No (Weights) No O(1) %‘igr:f gg)) No (Weights) Yes O(1) No (Weights) | (WFQ Yes No No Yes No No
HCSFQ i‘;ﬁf No No No No (Weights) No O(d) O(T) No (Weights) Yes O(1) No (Weights) | HW)FQ Yes No No O(d) No No
psp| Traffic “ng N0 No No Yes No O(1) O(*) ' No No No O(1) No Allocation | Ing-Egr. fyotng Ng yes LiMiyeg
History matrix Isolation ted
RCS2020 No No No No No No No O(1) O() No No No O() No Weights I':gl':fig; No No No Yes No Yes
RCS 2024| No No No No No Yes No O(1 o(T No Yes Yes O(T) No Weights HWFQ Yes No Low O(d No No
g
RCP| No No No No No No Yes O(1) o(1) No No Yes O(1) Yes - Perflow No Yes Low Yes No No
XCP| No No No No No No Yes O(1) o(1) No No Yes O(1) Yes - Flexible 'No Yes Low Yes No No
FFS| No No No No No No No O(1) O No No No O(1) No Fairmess FFS Yes Yes Yes Yes Yes Yes
Traffic .(°’?'V Per-egress AL GW: O(h
Z-Lane History Yes Yes Yes No No No O(h) O(Va) Yes No inside ' O(1) Yes allocagtions groups Yes No Yes Router: (Ygs Yes Yes
group) (weighted)
GLWP Stable Yes Yes Yes Yes Yes Yes O(h) 0o(1) Yes Yes No O(1) Yes AIIoca?ion GMA Yes Yes Yes RSO Yes Yes
paths matrix Router: Yes
COLIBRI Stable Yes Yes Yes Yes Yes Yes O(h) o(1) Yes Yes No O(1) Yes AIIoca’_(ion N-Tube Yes Yes Yes GW: 9“‘) Yes Yes
paths matrix Router: Yes
Helia (Flyovers) Stable Yes Yes Yes No No Yes O(h) O(a) Yes No No O(1) Yes AIIoca'_(ion gegactive Yes Yes Yes (33 9(") Yes Yes
paths matrix Router: Yes
. .| Stable Per-interface | Bandwidth Source: O(h)
Hummingbird paths Yes Yes Opt. No Yes Yes O(h) o(r) Yes No No O(1) Yes bandwidth T Yes Yes Yes ERn Yes Yes

Notation: f: number of flows, i: number of interfaces, T: tree for HFQ, d: depth of tree, h: number of on-path hops, r: number of reservations, a: number of currently sending

ASes, GW: gateway, RS: reservation service.

Figure 1: Detailed comparison of FFS and related systems along fine-grained criteria derived from the

capacity. ECN [18] signals congestion to end hosts but lacks
isolation. L4S [11] uses ECN with an additional egress queue
for low latency, relying on CCAs to respond correctly to
congestion signals. XCP [19] extends ECN by signaling pre-
cise congestion window adjustments to flows, avoiding RTT
bias and scaling independently of flow count by embedding
congestion data in packet headers. However, it lacks authenti-
cated feedback and relies on source compliance and a reactive
monitoring system with per-flow state, vulnerable to address
spoofing. RCP [4] signals source transmission rates but lacks
isolation in adversarial settings.

Interface-based Isolation. PSP [20] and RCS-2020 [10] iso-
late traffic between ingress-egress pairs. However, they fail to
reliably isolate CCAs, as congestion may not occur at the first
common egress but later, when flows share the same interface.
In such cases, only the aggregate traffic is controlled, giving
more bandwidth to sources with aggressive CCAs.

Fair Queuing (FQ). To ensure robustness against aggressive
CCAs or malicious hosts, and to enable diverse CCAs to
coexist, bandwidth isolation can be implemented at routers.
FQ achieves this by allocating resources based on flow de-

objectives in Section II.

mands. While standard FQ requires per-flow state or queues,
CSFQ [13] is stateless at core routers, requiring only per-
flow rate estimation at the edges, with rates stored in packet
headers. However, CSFQ assumes a fully trusted network
environment. AFD [21] assumes that a small number of flows
are responsible for the majority of traffic, allowing it to
reduce state overhead by tracking only those high-volume
flows. FQ approximates max-min fairness, allocating a rate
r; = min(d;, 7) for flow f;, where 7 satisfies C' =) . r;.
However, greedy end hosts can exploit FQ by generating extra
flows, gaining unfairly higher rates.

Weighted Fair Queuing (WFQ). FQ can be extended to WFQ
by assigning weights to flows, with rates computed as r;
min(d;, w; - 7). CSFQ also supports WFQ. Like FQ, WFQ can
be exploited by greedy end hosts creating extra flows.

Hierarchical Weighted Fair Queuing (HWFQ). HWFQ or-
ganizes flows hierarchically, assigning weights to both individ-
ual flows and flow groups. This ensures fair resource allocation
at multiple levels, capping the total rate for a host while allow-
ing fair allocation among its individual flows. Implementing
HWEFQ efficiently is challenging. HCSFQ [17], an extension of

CSFQ, supports HWFQ on programmable switches but relies
on a trusted network, limiting its use to datacenters. Also,
scalability is affectedbut is hard to implement efficiently by the
requirement to carry hierarchy node lists within packets. RCS-
2024 [16] uses Deficit Round Robin, but its computational
overhead grows with the hierarchy depth, and the number of
queues increases with the hierarchy size, potentially reaching
millions on the Internet. RCS-2024 also requires trust between
operators for hierarchy weight propagation and is vulnerable
to address spoofing, enabling a malicious host to deplete a
benign host’s fair share of bandwidth.

Secure Inter-domain Bandwidth Reservation Systems. Se-
cure inter-domain bandwidth reservation systems like COL-
IBRI [22], GLWP [23], and Helia [14] implement fairness
based on N-Tube [24], GMA [25], and per-AS allocations.
These systems reserve dedicated channels along a path, guar-
anteeing a specific rate for a set period, regardless of other
traffic. Unused reserved bandwidth is dynamically reallocated
to best-effort traffic. Bandwidth reservations minimize latency
and eliminate the need for CCAs, though they require an
explicit setup phase. Z-Lane [I5] eliminates the need for
a setup overhead for short-lived communication. Humming-
bird [26] enables economic fairness by allowing hosts to
bid for available bandwidth. However, reservation systems
have significant implementation and deployment challenges,
including the need for cryptographic operations at routers,
time synchronization between routers and end hosts, and path
stability, which is hard to maintain with BGP. Extended packet
headers reduce payload size, and key exchange and duplicate
suppression mechanisms add complexity.

Lessons Incorporated into FFS. For the design of FFS, we
draw inspiration from several systems. We assign fair shares
to streams and avoid overuse as in bandwidth reservation
systems, while preventing underuse through max-min fairness
with a 7-based mechanism like (W)FQ. To ensure robustness
against address spoofing, we adopt PSP-like local isolation,
making forwarding probabilities address-independent. Inspired
by HWFQ, we extend this to end-to-end bandwidth isolation
via recursive fairness across multiple hops. As in CSFQ,
we use probabilistic forwarding to reduce state and queue
requirements. Finally, to avoid loss during fair share discovery,
we provide explicit feedback to source endpoints, as in XCP.

IV. MODEL AND (NON-)ASSUMPTIONS

This section introduces the terminology used throughout the
description of FFS and highlights its minimal assumptions,
requirements, and reliance on external systems.

Node, Interface, and Capacity. The primary entities in
our model are nodes (Figure 2a), which represent points of
potential network traffic congestion. A node n has a non-
empty set of interfaces I", where a (possibly empty) subset of
interfaces L. (C I) are local interfaces. While a local interface
represents a communication endpoint (source or destination
of traffic), a non-local interface connects the node via some

link to a non-local interface of another node.! We assume
nodes are connected, meaning each has at least one non-local
interface. For a given node n, we denote the capacity of an
interface ¢ € I" as C'. Connected nodes have equal interface
capacities in both directions.” We consider a node’s interface j
as congested if » ;. Rf; ;y > C7, where R, ;) represents the
aggregate rate of traffic originating from interface ¢ towards
interface j. When the context focuses on a single node, we
omit the reference to n for simplicity, e.g., we write C; instead
of C7. We further omit the reference to j when it is clear from
the context, e.g., we simply write C instead of C;.

A practical instantiation of a node is for example an
autonomous system (AS), where node interfaces correspond
to AS interfaces. A node may also represent an individ-
ual router—whether home, edge, internal, or border—or the
networking stack of a physical or virtual end host. In this
case, node interfaces may refer to network interface card
(NIC) interfaces, application sockets, IP prefixes, or specific IP
addresses. Nodes can be nested, with, e.g., an AS as a single
node and its routers as nested nodes.

Streams. Instead of the traditional notion of a flow, which
is commonly defined as a 5-tuple (source IP, destination
IP, source port, destination port, protocol), we follow prior
work [16] and use the notion of a stream. This allows us to
formally reference the fairness-matrix entries associated with
the nodes a packet traverses, which determine its forwarding
probability, and generalizes a transport flow: it may correspond
to a single flow or an aggregate of flows. We also adopt the
term stream to clearly distinguish our setting from per-flow
fairness mechanisms, which can be exploited by artificially
creating additional flows to obtain a larger share of bandwidth.

A stream s of length ¢ is a sequence of
connected nodes and their corre interfaces:
s = [(n°,4% 5°), (nt, i, 51), ..., (n, i j°)]. All packets of
the same stream follow the same forwarding path, where
i and j¢ are local interfaces, and all other interfaces are
non-local. We assume that no two streams start at the same
interface.” The first and last node in a stream typically refer
to an edge router, an end host, an application, or a single
port. We define pre(n,s) as the preceding on-path node of
stream s relative to node n. Additionally, we define SZJ) as
the set of streams entering through ingress interface ¢ and
exiting via egress interface j at node n.

Fairness Matrices. Each node n has a fairness matrix M",
where the entry in the i-th row and j-th column indicates the
fair capacity share for ingress interface 7 at egress interface j.
Importantly, the matrix is thus defined at the level of interfaces
rather than individual flows. For a given egress j, the sum of
all entries in its row equals its capacity:) ;. M; ;) = C;. The
sum of entries for any ingress ¢ is not constrained by its capac-

IRepresenting endpoints as interfaces simplifies the later notion of streams.

2For simplicity; the model extends to differing ingress and egress capacities.

3This assumption ensures stream isolation; otherwise all traffic sent over the
corresponding interfaces will be treated as a single stream. Streams starting
at the same interface can be assigned separate local interfaces to comply.

egress interface

[Node:n v e Toalo:
local non- Ioca|.2 0 001 3 02|03
interface 3 interface 1031 04|04

2 0.39 3 0.1/0.25

ingress interface

3 /03 3 0.3/0.05
1101 1

egress capacity

(b)

Figure 2: Core concepts: (a) abstract node model and (b)
example fairness matrix (in Gbps).

ity. In Figure 2b, the entry for ingress 1 and egress 2 (M?1,2))
is 0.4 Gbps, a large share of the 1Gbps egress capacity.
Diagonal entries, like M& 1) enable packet reflection, such as
for ICMP traceroute replies. A basic FFS configuration assigns
each ingress an equal share of egress capacity. However, a
node may use its fairness matrix to prioritize certain neighbors
by assigning larger matrix entries to those with greater im-
portance (e.g., higher-bandwidth agreements between ASes),
similar to defining weights and allocation matrices in related
work [14], [16], [20]. For example, consider an egress with
a physical capacity of 10 Gbps. An AS might then allocate
matrix entries such as 1Gbps each for six default-contract
neighbors, and 4 Gbps for a premium-contract neighbor. FFS
uses matrix entries to guide allocation but does not strictly
isolate traffic between interface pairs. Unused bandwidth from
underutilized streams is reallocated to all streams sharing the
same egress, not just those on the same interface pair. Unlike
bandwidth reservation systems, an FFS node can adjust its
matrix anytime without risking over-allocation. An FFS node
requires only the fairness matrix for configuration.

(Non-)Assumptions. We assume that entities agree on how
FFS labels are encoded into packet headers.* Beyond this, FFS
imposes no additional assumptions, requirements, or reliance
on external systems. This minimalism stands in stark contrast
to many prior approaches and significantly simplifies FFS
deployment. FFS avoids common assumptions in the literature,
such as the presence of only one bandwidth bottleneck along
a path [27], congestion being limited to specific locations like
the last mile [28], volumetric DDoS being a solved problem in
today’s Internet [1 1], or trust among independent entities [13].
It further eliminates the need for cryptographic operations at
source endpoints or routers, avoiding assumptions about the
security of cryptographic primitives [14] and thus rendering
the system inherently quantum-safe. In addition, FFS operates
without reliance on external components such as duplicate sup-
pression mechanisms [15] or dedicated monitoring infrastruc-
ture [23]. To better illustrate the system’s full capabilities, we
assume in the following sections that all potential congestion
points (i.e., nodes) implement FFS. However, this is not a

4Even without this assumption, i.e., if nodes use their own encoding
schemes that are not understood by others, FFS still provides local isolation,
though it would no longer guarantee CCA independence.

requirement; FFS also supports incremental deployment, as
discussed in Section XIII.

V. FAIRNESS ACCORDING TO FFS

This section describes fairness according to FFS, which
serves as the foundation for achieving scalable and secure
bandwidth isolation in later sections. An overview of the key
terminology is provided in Table I.

Fractional Fair Shares. For a stream s going through inter-
faces ¢ and j of node n, we associate a rate f}, referred to
as the Fractional Fair Share (FFS). The FES represents the
stream’s current fair share of egress capacity and is computed
iteratively (i.e., fractionally) as:

re(n,s)
f: - Fpre(n,s) X M(iaj)’ (D
where FPre(m:s) — desn , re("5)_ Thus, a stream’s FFS is

(i,
normalized, meaning it represents a share of M? distributed

among all streams passing the same interface- palr weighted
by their FFS at the most recently traversed egress. Therefore,
if S?z‘,j) is non-empty, the sum of all normalized fractional
fair shares from ¢ to j at node n is always equal to MZ)

. no i .

e, F ;= ZSES@ H fy = M(;), and zero otherwise. For a
! 0 0

stream’s source node n°, we have {7 = M?io 9)-

Reallocating Underused Shares. If an interface is not expe-
riencing congestion, it forwards all traffic without restriction.
When congestion occurs at an interface j of node n, each
stream s could, in principle, be assigned a rate equal to its FFS,
fl7, since the total fair shares directed toward interface j cannot
exceed its capacity: » ;i Esesn £y < e M)
CJ However, this represents the worst-case (i.e., minimum)
allocation, which is only necessary if all streams are sending
at or above their FFS. If some streams are sending below their
FFS, their unused share can be reallocated to other streams.
In our fairness model, we redistribute all unused bandwidth
fairly among streams with demand exceeding their FFS, again
weighted according to their FFS. We define 17} as the rate of a
stream s after it passes the egress interface of on-path node n.
Therefore, the rate 7’ of a stream s after passing the egress
interface of node n is given by:

= min(rgre("’s), 7 x 1) 2)

The fairness parameter 7 is defined as the unique solution
to the equation C' = > 1. > o sp ry, and we refer to

(fy x 7) as the Current Fair Rate (JCFR) In the absence
of congestion, fairness enforcement is not required, and we
set 7 = oo. The node itself does not determine the relative
weights of the streams in R?i,j); rather, this is established
by the previous node. Thus, our fairness model follows a
hierarchical approach, where each node focuses solely on
enforcing local fairness according to its own policies. The
flexible granularity and independence of streams make FFS
ideal for multi-path protocols and inherently enable traffic
protection in both directions. We prove a lower bound on

A e > _min(r, f) < C; >_min(r, f-7) = C; p(1) = 100%
1 fln.' S m S u

7 fr |}M(1,j) . ::> : p(0)) = 80%
2 1| f_i?.- C]‘ : :AI |

Ik : : p([1) = 100%

pase

-
ey

BE

.fl T2 fZ T3 f3

<
-

@ Proportionally scale fair shares.

@ Multiply fair shares by T, s.t., egress is fully utilized.

fi rafa T3 f3

<
-

® Probabilistic forwarding

Figure 3: Illustration of the key steps in Algorithm 1. Here, r denotes a stream’s sending rate and f its fair share.

an FFS stream’s allocation, which holds irrespective of other
network traffic, in Lemma 2 in Section XI.

Comparison to Related Work. FFS can be broadly inter-
preted as a dynamic adaptation of GMA [25]. While GMA
determines static fair shares based on a worst-case scenario
(assuming maximum congestion at all interfaces), FFS redis-
tributes unused bandwidth to streams with higher demand.
FFS can also be viewed as WFQ [/3] with adaptive weights
(w = f7) that carry information from prior nodes to achieve
hierarchical fairness. Although FFS appears similar to HWFQ
due to its hierarchical approach, it operates differently (Ta-
ble II). In interface-based HWFQ, unused bandwidth is first
allocated to other streams on the same ingress with unmet
demand. In contrast, FFS redistributes unused bandwidth
among all streams sharing the same egress, regardless of their
ingress. While FFS streams align more closely with their fair
shares, HWFQ may be more economically suitable [16]. In
data centers, for example, with tenants at the first level and
flows within each tenant at the second level of the hierarchy,
HWFQ may be a better fit [17]. FFS’ key advantage is
its streamlined design and minimal requirements, delivering
effective isolation, high performance, scalability, and security,
making it well-suited for Internet deployment.

VI. BANDWIDTH ISOLATION

We now present an algorithm to enforce FFS fairness,
translating the target rates outlined earlier into efficient packet-
level operations without requiring nodes to identify individual
streams or keep per-stream state. It only adds a small, constant
packet size overhead, requires constant per-packet computa-
tion, and maintains constant per-interface state.

Overview. Each packet p is extended with two labels, and
, denoting it’s stream’s current rate (r) and FFS (f). Labels
are initialized at the stream’s source endpoint or the first on-
path node, both initialized to the stream’s rate. Algorithm 1
describes the fairness enforcement algorithm at a node’s
egress. It updates a packet’s FFS according to Equation (1)
(Line 1) and computes its forwarding probability v (Line 2),
detailed further below. Then, it adjusts the stream’s encoded
rate based on ~, reducing r to r - v (Line 3). It optionally
invokes Algorithm 2 (Line 4), which enables the source to

Table I: Overview of key terminology. The metrics actively
monitored at egress j are emphasized at the bottom.

Term Description

S?i,j) Streams from ingress ¢ to egress j at node n.
Z’J) Fair capacity share for ingress ¢ at egress j.

pre(n,s)] Upstream node for stream s relative to node n.

Cc? Capacity of interface 7 at node n.

i FES for stream s going through node n.

fy x 7 | Current Fair Rate (CFR)

F?iaj) Zsesz"i’j) f?

Rate of stream s after passing node n.
Aggregate traffic rate from interface ¢ to j.

n
S

n
(4.7)

T

R?*J) Total traffic rate directed to egress j from all
ingress interfaces, equal to >, R(; j)-

F‘(’T’J(;”) Total fair share sum from ingress i to egress j,
computed based on weighted packet sizes.

Aj Rate of outgoing, i.e., accepted, traffic.

Tj Fairness parameter per Equation (2), computed

as in Appendix A.

Table II: HWFQ vs. FFS allocations for three streams from
two ingresses sharing a 15 Gbps egress.

Stream Rate Fair Share HWFQ FFS

s1 (i1) 3 Gbps 6 Gbps 3 Gbps 3 Gbps
sy (i1) 4 Gbps 1 Gbps 4Gbps 1.3 Gbps
sz (i3) 16 Gbps 8 Gbps 8Gbps 10.6 Gbps

discover its fair rate as described in Section VIII. Lastly, it
forwards the packet with probability v (Line 5). Figure 3
presents an illustration of the key steps. We next detail the
derivation of F?Z) the computation of ~, and its rationale.

Sum of Fair Shares. FFS fairness requires that for R(; ;) > 0,
the sum of fractional fair shares equals M?i,j)’ ensuring
Gy = M ;- While M{; ;) is constant, F(; ;) depends
on prj(,n’s), which is challenging to estimate. A packet’s
label reveals its stream’s FFS, but identifying the stream
and calculating total FFS would require per-stream state. To

Algorithm 1: Packet forwarding at egress j of node n,
for a packet p arriving from some ingress 7. We use E]
to refer to packet labels and <— for assignments.

1 [pA) (pf] / B) My
2'y<—m1n(1 i/- - T)
[pr] >y

4 Call Algorlthm 2 (for rate feedback)
5 Forward packet with probability v, otherwise drop it.

address these challenges, we express Fl(’re(#) g

fpm('n s)
Zsesn fgre ™) = 2565" rgre(n)

(i) (09 EECDR
as a weighted rate: Similarly to how R{; ;) = =3

pre(n, s)
as Fi j)

interpreting it
Iyre (n,s)

SEST; .

is measured using each packet’s length, call 1t(p.len, we
measure the weighted rate FP(’ZQJ(;L **) using p.len x (([p-f] / [pr)-
Therefore, just as the rate R?Z ;) can be computed based on the
size of incoming packets (e.g., using exponential averaging),
F’()iej(;l %) can be derived using the size of incoming packets,
where each packet’s size is weighted by the label and

divided by the label .

Forwarding Probability. The computation of ~ in Line 2 is
derived from Equation (2): r* = min(rf?*"*), % x) =
r};re(n,s) mln(l fn < T / rpre(n 9)) rgre(n ,8) y

Measurements. Equation (2) can be interpreted as WFQ
with packet-carried weights. Therefore, we can reuse existing
methods for estimating 7 in WFQ, such as the constant
per-packet-overhead approach from (H)CSFQ [13], [17], as
detailed in Appendix A. The metrics tracked at some egress j
are listed and highlighted in Table 1. The rates RELZ i) EL*)

and F? ;e](,n’s) are monitored using the state of packets prior to
the execution of Algorithm 1, while A; is tracked based on
the packets being forwarded after the algorithm’s execution.

VII. BANDWIDTH ISOLATION EVALUATION

We evaluate FFS for CCA isolation and network utilization.’

A. CCA Isolation

We implement FFS and evaluate its fairness, link utilization,
RTT, and jitter for competing CCAs, comparing it to a standard
FIFO queue and (H)CSFQ. We assess two FFS variants: (i)
FFS-C100, where . M(i, j) = 1.00-Cj, and (ii) FFS-C85,
where . M(i,j) = 0.85 - C;. The goal of FFS-C100 is
to maximize throughput, whereas the goal of FFS-C85 is to
reduce latency by limiting queue buildup.

Implementation. We implement an FFS node in Python using
netfilterqueue [29] to intercept and process system traffic.
For packet parsing, we avoid using scapy [30] and instead
implement our own parser, which is about 40 times faster.

SWe focus on aspects that are particularly relevant for our protocol. As prior
studies have already demonstrated key properties, we avoid repeating them.
E.g., [17] confirms that probabilistic forwarding, the principle underlying FFS,
remains effective across large topologies with multiple hops and varying RTTs.

Table III: Performance of different scheduling schemes.
Scheme F U L2) LG&0) J2) JG50)
FIFO 30.7% 804% 0% 71% 0% 7.1%
H)CSFQ 721% 91.5% 0% 38.1% 09% 90.5%
FFS-100 713% 939% 0% 369% 0.5% 89.3%
FFS-85 88.5% 79.3% 100% 100% 99.1% 100%

We use a custom Mininet [31] topology with two sources
connected via FFS nodes over a common bottleneck link to
two destinations, configured with a 10 ms one-way delay. The
FFS node’s fairness matrix entries are set equally for both
sources to ensure equal bandwidth allocation. We evaluated
all TCP CCAs pre-installed on Ubuntu 24.04.1 LTS with
default settings, using iperf3 [32] for traffic generation. The
evaluated CCAs are bbr, bic, cdg, cubic, highspeed, htcp,
hybla, illinois, lp, nv, scalable, vegas, veno, westwood, and
yeah, where some of them are known to produce particularly
bursty traffic patterns. We exclude dctcp, because it is designed
for data centers. Each one-minute measurement records the
RTT every second using ping, enabling consistent assessment
of FFS across CCAs. To compute traffic rates at the FFS
node, we implement exponential averaging [13]. Instead of
calculating the accepted egress rate (A;) based solely on the
size of accepted packets, we update it using the expected value
of all egress packets, i.e., multiplying the packet size by the
forwarding probability, yielding more stable and accurate rate
estimates. Packets are forwarded with probability v by uni-
formly sampling a random number n € [0, 1] and forwarding
the packet if n < +, otherwise dropping it.

Fairness, Link Utilization, RTT, and Jitter.
those metrics as follows:

We evaluate

F Fairness across all CCA pairs, defined as the mean
of min(ty,ts)/max(t1,t2), where ¢; and to are the
achieved throughputs of two competing CCAs.

U Average utilization among all CCA pairs.

L(x) Fraction of CCA pairs with latency increase < z ms.
J(x) Fraction of CCA pairs with jitter < x ms.

Table III compares these metrics for FIFO, (H)YCSFQ, FFS-
C100, and FFS-C85. Achieving fairness and isolation is in-
herently challenging, as CCAs differ in how they interpret
signals such as loss and delay, and in how aggressively
they increase their sending rates. As expected, FIFO does
not reliably ensure fairness between CCAs (F = 30.7%)
and often results in high latency. In contrast, FFS-C100
and (H)CSFQ significantly improve fairness (F = 71.3% and
72.1%, respectively), latency, and jitter across diverse CCA
combinations while maintaining high link utilization. FFS-
C100 performs very similarly to (H)CSFQ, reflecting their
shared underlying mechanisms (probabilistic dropping and the
T-finding algorithm) as well as similar configurations (per-
flow fairness in (H)CSFQ and equal fairness matrix entries
in FFS). However, delay-sensitive CCAs such as Vegas may
still be disadvantaged when competing with more aggressive
CCAs under these schemes. FFS-C85 further increases fairness

(F = 88.5%) while minimizing latency and jitter, all while
maintaining utilization comparable to FIFO. Notably, an FFS
node achieves low forwarding latency by deciding whether to
forward or drop packets before they enter the egress queue,
directly limiting queue growth. A more detailed and visual
comparison of those results is provided in Appendix B.

Trust and Complexity. Our evaluation shows that FFS
can match or even surpass (H)CSFQ in terms of fairness,
link utilization, RTT, and jitter. Beyond these performance
metrics, FFS addresses the issue of trust among network
participants (end hosts, routers, and ASes) and comes with
significantly lower implementation complexity and computa-
tion cost compared to (H)CSFQ, particularly its hierarchical
variant. Regarding network trust, all fair queuing (FQ) solu-
tions, including (H)CSFQ, are vulnerable to attackers creating
multiple flows to gain a larger share of bandwidth. In contrast,
FFS avoids this problem because bandwidth allocations are
determined by fairness matrices rather than the number of
flows. With FFS, generating additional flows does not increase
bandwidth beyond what a single flow would receive, unless the
original flow underutilizes its fair share. Moreover, (H)CSFQ
is susceptible to label manipulation, where an attacker might
claim a smaller flow rate in its packet labels to increase
forwarding probability. FFS mitigates this risk by performing
label normalization at ingress nodes, preventing tampering.
In terms of implementation complexity, (H)YCSFQ requires
packet headers that grow with the number of hierarchy levels
and imposes state and per-packet computation overhead (e.g.,
requiring tracking multiple 7 values) that scales with the
hierarchy depth. FFS, on the other hand, maintains a constant
header size and constant per-packet computation overhead
while implementing hierarchical fairness. Lastly, FFS does
not require knowledge of forwarding paths in advance, and
it can handle dynamic or unpredictable path changes without
maintaining state for any specific hierarchy.

B. Network Utilization

We evaluate allocation sizes on the public Internet by
simulating FFS’s end-to-end bandwidth and comparing it to
Helia’s [14] per-AS allocations and GLWP’s [23] allocations
based on GMA [25], as those systems most closely match our
desired properties (Table I).

Implementation. We implement a parallelizable simulator in
Go [33] to evaluate network utilization of FFS and related
systems. The simulator supports experiments on (i) realistic
topologies, (ii)) random power-law degree graphs, and (iii)
custom topologies. The realistic topologies, used for this eval-
uation, are based on the top 2000 Tier-1 and Tier-2 ASes from
the CAIDA AS relationships dataset [34]. Random power-
law degree graphs approximate the structure of real-world
IT networks [35], enabling evaluations on various topology
sizes and thus faster tests. Custom topologies are available for
specific needs, like debugging corner cases. In these topolo-
gies, each node represents an AS, and nodes are connected
through inter-domain links. The link capacity is determined

using a degree-gravity model, where capacity is proportional
to the product of the degrees of adjacent nodes [36], ranging
from 40 to 400 Gbps. This reflects the real-world behavior
where more connected nodes typically have higher forwarding
capabilities [37]. We assign every AS a local fairness matrix,
with the entries corresponding to the tuple consisting of the
local interface and some egress being set to 10 % of the egress
capacity. Matrix entries between two non-local interfaces get
initially assigned the capacity of the inter-domain link attached
to the ingress interface. If the sum of matrix entries in a
column is smaller than the egress capacity, the remaining
bandwidth is allocated to the local interface. If the sum exceeds
egress capacity, the entries are scaled down accordingly.
Unlike emulations sending actual data, our simulations
focus on fairness at the stream level, avoiding packet-level
computations. To compute 7., we solve a numerical optimiza-
tion problem using Brent’s method [3%].° In case of congestion
at an AS egress, we find the root of the function g(7), where:

g(r)=>_ > min(r") I xr) — C

1€I™ sESZYj)

Each node attempts to send traffic to 20% of other nodes
using shortest paths (this percentage is adjustable). In FFS,
source ASes start at their maximum rate, and in each round,
a stream’s rate is reduced at congested egresses to the CFR,
with the source adjusting its rate accordingly. For bandwidth
reservation systems like GMA and Helia, nodes request reser-
vations, and we evaluate the allocated bandwidth. We analyze
the distribution of bandwidth across all active paths.

Results. The results in Figure 4 show that FFS achieves higher
allocations than Helia and GLWP, with median values of
5.97 Gbps, 5.62 Gbps, and 0.64 Gbps, respectively. This is ex-
pected, as FFS dynamically reallocates unused bandwidth, un-
like GLWP, which uses static allocations. Helia also performs
well overall but does not allow reallocation of underutilized
bandwidth between ASes. We expect similar behavior to FFS
from other work-conserving systems like RCS-2024, though
these systems do not meet all of our objectives, particularly
in terms of security and scalability.

VIII. RATE FEEDBACK

As an optional feature, orthogonal to our core design, we
enable on-path nodes to convey a stream’s fair rate to the
destination, which authenticates and returns it to the source.
This allows the source to rapidly adjust its sending rate with
minimal loss, overcoming the tradeoff that is fundamental to
traditional CCAs [39]. FFS’ rate feedback mechanism offers
higher precision than L4S, achieving accuracy similar to XCP
but without requiring senders to maintain a congestion window
or relying on a uniform algorithm. We stress that respecting
rate feedback is not required for congestion control, as fairness
is enforced via bandwidth isolation at on-path nodes.

5This approach is only used in the network utilization simulations. For
real systems, including our Python (Section VII) and DPDK (Section XII)
implementations, we use the method described in Appendix A.

150 |- —L— 7

100

Allocation [Gbps]

—— FFS - - - Helia - GLWP

.............. Prare
100 150 200 250
Bandwidth [Gbps]

Figure 4: Network utilization of FFS, Helia, and GLWP on
the CAIDA top 2000 topology.

Cumulative
Bandwidth [Pbps]
[\)

Algorithm 2: Algorithm updating the RI label.

1 if R, > C then
// Congestion at egress interface

2 « min(|p.RI], X T)

3 else

// No congestion at egress
interface

4 RI + max(X (%) ; [p-f])
5 | [pRI) + min(p.RI}, C, RI)

Packet Label. Each packet is extended with a Rate Indicator
(RI) label , updated by routers along the path. During
congestion, the RI reflects the stream’s minimum CFR, and
when there is no congestion, it provides a lower bound on the
source’s fair rate. The source initializes the RI to its maximum
value (c0). If a source does not wish to learn its fair rate,
it omits the RI label, and on-path nodes will not add it. A
node updates the packet’s RI label (Algorithm 2) along with
enforcing bandwidth isolation (Algorithm 1). If congestion
occurs at the egress, the RI is updated to the stream’s CFR
(- 1) if it’s lower than the current value. If there is no
congestion, the node calculates the maximum of the FFS and
' (RQ) where R% adjusts the rate for full egress utilization,
and ensures it does not exceed the egress capacity C.

Rate Feedback. The source learns the RI indirectly through a
notification from the destination, which can send the median
of the most recent RIs instead of sending one for every
packet. Typically, the destination already sends data or ac-
knowledgments, so the RI can be included in those packets
without creating new ones. Upon receiving the RI, the source
adjusts its rate accordingly. Today’s transport protocols often
struggle to distinguish between delay and loss, often mistaking
timeouts for packet loss, leading to spurious retransmissions

and reduced throughput. In contrast, FFS eliminates delayed
packets, as it ensures low-latency forwarding. Moreover, the
rate feedback lets the source distinguish congestion drops from
random losses via the RI field’s continuity, making it especially
useful in wireless environments.

IX. RATE FEEDBACK EVALUATION

We implement and evaluate two feedback-based algorithms
and compare them to BBR and Cubic.

Implementation. We use the same implementation and eval-
uation setup as in the FFS-C85 evaluation, which we extend
with Rl-capabilities at the router. Furthermore, we implement
an application running at the destination endpoint that sends
the received RI back to the source. The source implements
two algorithms, MinTime and MinLoss:
MinTime. Sending at the maximum possible rate, i.e., at the
rate corresponding to the source’s egress capacity.
MinLoss. Starting at a low rate, the source adjusts its sending
rate toward the RI learned from the destination.
Both algorithms provide reliable transport by retransmitting
lost packets. MinLoss uses a leaky bucket [40] to stay close
to the learned rate, optimized for allowing the source’s CPU
to sleep until the next packet can be sent. The source stores
the 21 most recent RI values in a sliding window to compute
a median, smoothing feedback fluctuations. In our evaluation,
1 or 2 streams transmit 1-10 MB data, and we measure file
transfer time, as well as arrival- and drop rates at the router.
We compare MinTime and MinLoss with BBR and Cubic.

Transfer Time and Drop Rate. Figure 5 shows MinTime
achieves the shortest transfer time but incurs the highest loss
rates, followed by BBR. MinLoss has the lowest loss rates,
with 0% for single-stream transfers and 0.05%-1.01% for two-
stream scenarios. Cubic exhibits higher loss rates, ranging
from 0.58%-3.32%. While MinLoss outperforms Cubic in
both transfer time and loss rate, it has slightly higher transfer
times than BBR. The two-stream measurements highlight
FFS’s bandwidth isolation, ensuring fair rate allocation with
comparable transfer times for both streams.

Convergence and Stability. We measure sending and drop
rates at the router for two streams. Both streams transfer
10 MB, with the second stream starting two seconds after the
first one, as shown in Figure 6. MinLoss only experiences
packet loss when the second stream starts. At this point, the
link is already saturated by the first stream and the router
must first detect the sending rate of the second stream and
then update 7 accordingly. During this adjustment, the arrival
rate exceeds the link capacity, causing losses. Cubic, BBR,
and MinTime experience 2.7x, 30.2x, and 232x more drops
than MinLoss. Rates are highly stable for FFS in combination
with MinLoss: An FFS node benefits from burst-free sending
rates provided by MinRate, enabling precise and consistent
rate tracking as well as reliable 7 estimation, while MinRate
leverages the rate feedback to rapidly converge on a stream’s
fair rate, characterized by low fluctuations due to the stability
of 7, and to reduce or even eliminate packet loss.

B MinTime [1] M BBR [1] M Cubic [1] M MinLoss [1]
[IMinTime [2][]BBR [2][]Cubic [2][]MinLoss [2]

40

T
|

20

0 L

2 4 6 8 10
Transfer Size [MB]
|

T
|

Drop Rate [%]

Transfer Time [s]
t
T

0 1
2 4 6 8 10
Transfer Size [MB]

Figure 5: Rate feedback evaluation results. Numbers in square
brackets denote concurrent streams.

X. SECURITY

We now show how FFS prevents tampering and volumetric
DDoS attacks and thereby achieves objective O4.

Threat Model. An on-path adversary, for instance a compro-
mised router or destination host, can trivially undermine our
security goals by modifying, delaying, or dropping packets.
Therefore, the security properties of FFS hold only when a
path consists entirely of honest and uncompromised nodes, a
fundamental assumption shared by all secure communication
systems. We place no restrictions on the capabilities or number
of off-path adversaries. An off-path adversary can observe,
modify, inject, drop, delay, and replay packets. Attackers can
compromise entire (off-path) nodes, including infrastructure
services and routers, and gain access to key material.

Tampering. An adversary can increase its forwarding rate only
by increasing the forwarding probability of its packets. This
probability is decoupled from IP addresses and thus robust
to spoofing, but depends on the ratio of the packet labels
and (Algorithm 1, Line 2). For instance, an attacker might
inﬂa by a factor X > 1 or reduce by 1/X. This
behavior effectively attempts to inflate the FFS of its stream §,
as indicated by the estimated sum of fair shares (Section VI):

fgre(”’g) - rg’e(”’g) X / However, this will also inflate

R0, a5 B = Taegy, o 09 + 2502
Normalization ensures a malicious node can only adjust the
relative weights of its streams, without affecting the total
FFS at the next node. In Section XI, we prove that a node
maximizes egress throughput at its upstream node by treating
its traffic as a single stream, setting equal to . An
AS could thus maximize total forwarded traffic, but this risks

customer complaints since all streams, including those below
their fair share, would be dropped equally.

Furthermore, off-path attackers could exploit rate feedback
by spoofing the source IP, either impersonating the destination
to send packets to the source, or impersonating the source
to trigger reflected rate information from the destination. For
connection-oriented protocols like TCP, off-path attacks are
difficult due to the handshake, which defends against IP spoof-
ing, and sequence numbers, which mitigate packet injection.
A more secure approach is embedding RI feedback in a TLS
connection or using systems like DRKey [41], [42], which
derives symmetric keys on-the-fly to authenticate both the
source and rate feedback at the network layer. Importantly, for
use in FFS, any authentication protocol requires cryptographic
operations solely at the endpoints, not at on-path nodes.

Volumetric DDoS. Under persistent DDoS attacks, continuous
congestion causes legitimate flows to continually decrease
their transmission rates in response to the congestion [6], [7].
FFS’ bandwidth isolation mitigates this issue, as it ensures
streams to retain their fair shares, even in the presence of vol-
umetric traffic, such as link- and destination-flooding attacks.
Although reallocating fairness matrix entries in response to
DDoS may seem tempting, it could cause collateral damage if
not all streams arriving at the same ingress interface are part of
the attack. A more challenging class of volumetric attacks for
FFS to mitigate are pulse-wave attacks, characterized by high-
rate, short bursts typically lasting only a few seconds [12]. The
key question is whether FFS’ 7-tracking algorithm, adapted
from (H)CSFQ, can effectively respond to such rapid on-off
traffic patterns. Our high-speed evaluation (Section XII) shows
that it can: 7 stabilizes within tens to hundreds of milliseconds,
even under aggressive conditions such as ramping from 0 to
40 Gbps. FFS also offers some protection against volumetric
attacks originating from botnets, although defending against
botnets is inherently difficult for any system. The challenge
stems less from the overall traffic volume and more from the
large number of small, concurrent streams, which are often
indistinguishable from legitimate traffic. If bots are regionally
concentrated, FFS mitigates the attack through fairness matrix-
based isolation. But even in the case of a globally distributed
botnet (e.g., consisting of compromised IoT devices), FFS
ensures that legitimate endpoints can still communicate: In
Section XI, we formally prove that with FFS, each stream
is guaranteed a minimum share of bandwidth, regardless of
how many hosts an adversary controls within a botnet. A key
insight of FFS is that it does not try to classify traffic as
malicious or legitimate, a distinction that can be inherently
difficult or impossible, but instead ensures that every stream
receives its fair share of resources.

Others. FFS helps mitigate emerging attacks that exploit
congestion probing. For instance, CrossPoint attacks [43] aim
to uncover obfuscated Internet links by exploiting correlated
increases in RTT and other metrics.’ Similarly, SnailLoad [44]

"Topology obfuscation defends against link-flooding attacks (LFAs). FFS
inherently mitigates LFAs by enforcing fairness.

0 20 T » 28 » 20 ‘016
26 |
‘;2 | \ '!zg%% JE%%Z _§‘14 |
|
14 ‘ | =20 =14 =12 ‘
%12 | %16 %12 %10 f |
210 L |2 g8
o 8 o010 o o 6 [
£ 6 £ 8 £ 6 RN |
T 4 S 6 S 4 ke
g 2 g2 g 2 g2 |
[I — w0 0 0] @ of——
01 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 01 2 3 45 6 7 8 91011 0 1 2 3 4 5 6 7 8 9 10
Time [s] Time [s] Time [s] Time [s]
—— Total drops: 1665 —— Total drops: 150 —— Total drops: 55
v %] (%] w
Q. Q. o Q.
< o e o
[a) o L a [a)
— T o 14760 . M Ll IHI’HHH lMIM” l |
A L Ly L] Ly \
2 3 4 5 6 7 8 9 10 01 2 3 4 5 6 7 8 9 1011

1 2 3 4 5 6 7 8 9 10
Time [s]

(a) MinTime

Time [s]

(b) BBR

12 3 4 5 6 7 8 9 10
Time [s]

(d) MinLoss

Time [s]

(c) Cubic

Figure 6: Source sending rate and router drop rate for MinTime, BBR, Cubic, and MinLoss (10 MB transfers).

uses latency as a side channel to monitor victim system
activities, e.g., to perform video fingerprinting. By ensuring
consistently minimal latency, FFS reduces the effectiveness of
these latency-based probing attacks.

XI. SECURITY PROOFS

This section formally proves that under FFS, every stream
is guaranteed a worst-case minimum allocation, regardless of
other streams’ sending rates. We also show that if a greedy
node attempts to maximize its throughput over a neighboring
node, its best strategy is to concentrate traffic into a single
stream. We begin by proving that 7 > 1, an intermediate result
that will serve as a stepping stone for the main proofs.

Lemma 1. 7 > 1.

Proof. Consider egress interface j. If there is no congestion,

by definition, 7 = oo. In the presence of congestion, FFS

ensures that C' = >, 1n > cgn 17, reformulating this gives:
(i.9)

C= Z Z ry = Z Z min(r2e(ms) 7 5 1)

el sES?, P el sESE’I P
<E E ><7'—T><§ E —TXE M(”
el sESE‘I P el seSE; P el
=rxC

Dividing both sides by C' gives 7 > 1. This follows from
applying Equation (2), the fact that min(a, b) < b, that the
sum of fractional fair shares of some interface-pair must be
equal to the corresponding fairness entry, and that the sum of
matrix entries is equal to the capacity. O

Lemma 1 implies that a flow’s fair share at an egress cannot
decrease, since it is scaled by 7 > 1. The flow’s allocation can
increase if other streams under-utilize their fair shares.

Lemma 2. A stream s gets a worst-case minimum guaran-
Ht 0 (zt t)

W), With Tins

. . .0
teed allocation of min(riy;, min;,_(

referring to the source’s sending rate, where this allocation
holds even if every on-path interface is maximally congested.

Proof. We first establish a lower bound for the FFS fZT of a
stream’s X-th on-path node:

z—1 z—1 z—2 z—1 z
pro by e K MM
s e 1 = ijci1 Fn$72 lefl

x—2 x—1 T t

LS (G | S (L
- ij—z Cjw—l - tI 01 Cnt
Here, we recursively applied Equation (1), SO < Cjo-,

and f” . Next, we use this result to prove a lower
bound for the stream’s arrival rate at the destination r}

= (

= min(mi

= min(r?"
o= min(rinit, fgo
fe)

[T, M"™
)
t=0 C

. 0
2 mln(rinila f: PREED)
> min(Tipi, mlgl(

Here, we additionally applied Equation (2) and Lemma 1. [

Corollary 1. If traffic from ingress i to egress j consists of a
single stream, then at least up to a rate of M, ;) is guaranteed
to be forwarded, irrespective of the rate and FFS distributions
of streams originating from other ingresses.

Proof. The guaranteed rate for traffic from interface x is:

g 7 =17 = min(r) | 7 % 7) > min(2e™),
seSY

)

S
(i,5)

= min(Z= . My)
We first used that only a single stream exists from ingress i to
egress j, then applied Equation (2) and Lemma 1, and finally

Competing Distribution

+t Exponentia
t Normal

+ Binomial

+ Poisson

4‘» Static

t Uniform

Uniform -
Exponential
Normal {
Binomial 1
Poisson 1

Static .

| e——]
0.0 0.5 1.0
Throughput [%]

Distribution under Evaluation

Figure 7: Throughput of two competing interfaces, each orig-
inating traffic with a certain distribution of . The total
traffic rate is the same for both ingress interfaces. If the
interface under evaluation transmits using a static distribution,
it consistently achieves at least 50 % of the overall throughput.

noted that the sum of fractional fair shares over an interface
pair equals the corresponding fairness matrix entry. O

The proof can be trivially generalized to multiple streams,
i.e., if each stream s € S?i,j) sends at least at a rate

r‘;‘e(”’s) > {77, then the total sum of bandwidth is at least M&)
irrespective of the rate and FFS distributions of streams orig-
inating from other ingresses. In Figure 7, we experimentally
verify that this strategy is optimal by evaluating two competing
interfaces originating traffic with a certain FFS distribution.

XII. HIGH-SPEED IMPLEMENTATION

Implementation. We implement high-speed versions of both
an FFS source endpoint and router using Intel’s Data Plane
Development Kit (DPDK) [45]. While the source endpoint
is straightforward to implement at high speeds (primarily
involving the creation of packets with FFS headers), the
router demands more careful design considerations. Next, we
therefore describe our implementation of Algorithm 1, which
includes on-the-fly updates of 7 (Appendix A).

To distribute incoming packets across available router cores,
we leverage Receive Side Scaling (RSS). Each core is exclu-
sively dedicated to a single port, and memory is allocated
in a NUMA-aware manner to minimize access times. To
prevent false sharing, we cache-align shared data structures.
For random value generation, we use DPDK’s rte_rand ()
function. Our implementation is entirely lock-free, which is
achieved by ensuring that no variables are updated by multiple
cores concurrently. For rate estimation, we take inspiration
from exponential averaging [13], which updates rate R upon
receiving a packet p of length len(p) as follows:

len(p)
t

T <

f+exp(-x); R+ (1-7) +f-R

K;

Table IV: Average packet processing overhead at router.

Task Time [ns]
Parse headers from received FFS packet 13
Update estimation of R, ;. Flg;ej(;m,s) and A; 16
Update [p.f], [P}, and 28
Compute forwarding probability ~y 9
Update header fields 15
Others (sync. cores, timestamp, update 7) 21
Total 102

Here, t is the inter-arrival time of the last two packets, and
K is a constant (we use K = 107). We optimize exponential
averaging further for high-speed processing by approximating
exp(-x) using 1/(1+x) for small values of x, which reduces
computational overhead at high forwarding rates. For inter-
arrival times below 1 ms, this approximation introduces only
a 0.47% error, which is negligible in practice. For larger
values of x (corresponding to low traffic rates) we revert to
computing exp(-x) directly. This approach is feasible because
computational overhead is less critical at low traffic rates.

Testbed. We evaluate the performance of both the source
endpoint and the router by running them sequentially—never
simultaneously—on a commodity machine equipped with an
Intel Xeon processor running at 2.1 GHz. This machine is
connected via four 40 Gbps bidirectional Ethernet links to a
Spirent SPT-N4U device, which generates streams that are not
CCA-controlled for the router evaluation. During the evalua-
tion, the router reads incoming packets from its designated
ports, processes them, and either drops or sends the processed
packets back to the Spirent device. The Spirent device also
provides functionality to randomize specific bytes within the
packets, enabling the generation of random and values.

Results. Figure 8 shows source packet generation and router
forwarding performance. For the source, a single CPU core
can generate traffic at 40 Gbps with 600 B payloads, and the
router achieves a 160 Gbps line rate even for packets with
a 250B payload, using only 10 cores. As expected, fewer
cores are required for higher payloads. The high forwarding
speed is thanks to the low per-packet processing overhead
of 102ns. This overhead is approximately 2.4x lower than
Helia’s [14] and 3x lower than Hummingbird’s [26]. This
gain stems from FFS’ ability to provide secure forwarding
without relying on computationally expensive operations such
as key derivation, authentication, or stateful policing. Table IV
provides a detailed breakdown of the FFS processing latency.

During our measurements, we observed that the tracking
of 7 performed well, rapidly converging to the optimal value.
As a result, Aj fluctuated around C'; with a variance of ap-
proximately 100 Mbps. We further stress-tested the algorithm
for estimating 7 by generating random values for and
. Even under these conditions, the algorithm consistently
derived 7 such that A; ~ C;.

- 40
=
w &o— 30 a
S B on | |
s 50 20
v 00
2 E= 107 2
= | | | |
900 200 300 400 500 600
Payload [B]
- 160 L 4 ———————
5 é“? 120 - Payload |
S E gl ——250B | |
é a¢) ——500B
£ 40: —e—750B ||
0 | | | r
1 2 4 6 8 10
CPU Cores

Figure 8: Throughput of sender (single core) and router.

XIII. DISCUSSION

Future Work. First, to discourage overuse, an overusing
stream could be assigned a lower forwarding probability,
resulting in a rate lower than its fair share. For instance, the
enforced rate could decrease more sharply as the stream’s
overuse intensifies. Adapting FFS to incorporate this feature
is straightforward, as the 7 computation naturally accommo-
dates such adjustments. Future research should evaluate the
practicality and effectiveness of such an incentive mechanism.

Second, while adding FFS to fixed-function hardware
routers is impractical, programmable architectures like DPDK
and P4 allow existing devices to be reprogrammed to support
FFS. Therefore, future work could include implementing FFS
in P4, also to demonstrate Tbps throughput, as even more
complex systems such as HCSFQ have already been success-
fully implemented in P4. Additionally, FFS could be extended
to multipath protocols or integrated into existing CCAs like
Cubic or BBR, to facilitate incremental deployment.

Limitations. Discovering the rate through feedback inherently
involves at least one round-trip time (RTT). While this delay
is relatively small, a node located closer to the source could, in
theory, provide the source with rate information more quickly.
Notifying the source at the first congested node would require
on-path nodes to authenticate the feedback, which introduces
additional deployment challenges. Therefore, FFS avoids this
approach and relies solely on the destination to authenticate
rate feedback. Nonetheless, FFS’ low-latency design ensures
that rate feedback delay stays close to one RTT and does not
increase substantially even under congestion.

Also, FFS relies on several approximations that may in-
troduce some inaccuracies. For instance, FFS nodes estimate
rates between interfaces and calculate 7 reactively based on
observed traffic, assuming that future traffic patterns will
follow past behavior. As a result, the rate feedback pro-
vided to endpoints may fluctuate. These approximations are
important to consider in implementations, where techniques
such as filtering or smoothing of rate feedback at the source

help mitigate such fluctuations. Our evaluation in Section IX
demonstrates that these challenges can be effectively man-

aged and do not compromise the effectiveness of FFS’ rate
feedback mechanism. We do not claim to achieve the fine-
grained fairness of many-queue systems that guarantee perfect
fairness. Instead, we willingly accept the trade-off of providing
only approximate fairness in exchange for greater scalability,
enhanced security, and easier deployment.

Configuration and Deployment. FFS can be incrementally
deployed at endpoints and nodes, as discussed in Appendix C.
Label range and precision influence the accuracy of the
provided fair rates. For Internet deployment, allocating 2B
per field should be sufficient (e.g., using binary16 [46]). Ap-
pendix D shows how FFS’ size overhead can be substantially
reduced. We cover deployment incentives in Appendix E and
further header considerations in Appendix F.

XIV. CONCLUSION

FFS provides secure and scalable bandwidth allocation
and isolation on the Internet, while minimizing barriers to
deployment by making minimal assumptions, imposing few
requirements, and avoiding reliance on external systems.
Its network-enforced notion of fairness mitigates volumetric
DDoS attacks and addresses key issues in existing CCAs,
such as RTT-dependent unfairness and differences in CCA
aggressiveness. As such, FFS marks a significant step toward
enabling meaningful communication guarantees on the global
Internet by offering a practical solution where previous sys-
tems have remained mostly academic. Its significantly easier
implementation and deployment increase its potential to bridge
the gap between academic research and real-world adoption.

Our results highlight several surprising aspects of FFS:

« FFS contributes to fairer bandwidth allocations across all
tested CCAs while keeping latency and jitter low.

o FFS ensures constant overheads in packet processing
time, memory, number of queues, and packet label sizes,
making it suitable for large-scale networks.

o FFS does not require trust between nodes because the
normalization step mitigates tampering with FFS fields.

« FFS is inherently robust against source address spoofing
attacks without needing cryptographic authentication be-
tween on-path nodes because the forwarding probability
is independent of IP addresses.

o The flexible granularity and independence of streams
make FFS suitable for multi-path protocols and inherently
support traffic protection in both directions.

This work establishes the foundations of FFS and opens up
exciting opportunities for future research, including further
optimizations and integration with real-world systems.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feed-
back. We appreciate the financial support received from ETH
Zurich, the Zurich Information Security and Privacy Center
(ZISC), and armasuisse Science and Technology.

[1]
[2]

[3]
[4]
[5]

[6]
[7]

[9]
[10]

(11]

[12]

[13]

[14]
[15]

[16]

(17]

[18]

[19]
[20]
[21]
[22]
[23]

[24]

[25]

[26]

[27]

[28]

REFERENCES

S. Scherrer, M. Legner, A. Perrig, and S. Schmid, “Model-based insights
on the performance, fairness, and stability of bbr,” in IMC, 2022.

A. A. Philip, R. Ware, R. Athapathu, J. Sherry, and V. Sekar, “Revisiting
tep congestion control throughput models & fairness properties at scale,”
in Proceedings of the 21st ACM Internet Measurement Conference, ser.
IMC ’21. Association for Computing Machinery, 2021.

T. Kozu, Y. Akiyama, and S. Yamaguchi, “Improving rtt fairness on
cubic tcp,” in CANDAR, 2013.

N. Dukkipati, “Rate control protocol (rcp): congestion control to make
flows complete quickly,” Ph.D. dissertation, 2008.

K. Sasaki, M. Hanai, K. Miyazawa, A. Kobayashi, N. Oda, and S. Yam-
aguchi, “Tcp fairness among modern tcp congestion control algorithms
including tcp bbr,” in CloudNet, 2018.

M. Mathis et al., “The macroscopic behavior of the tcp congestion
avoidance algorithm,” CCR, 1997.

Neal Cardwell, “BBR v2: A model-based congestion control,” http://
tinyurl.com/25khc6et, 2024.

K. Sanjta, “Path Quality Part 1: The Surprising Impact
of 1% Packet Loss,” https://www.thousandeyes.com/blog/
path-quality-surprising-impact-one- percent-packet-loss, 2024.

S. Savage, N. Cardwell, D. Wetherall, and T. Anderson, “Tcp congestion
control with a misbehaving receiver,” SIGCOMM CCR, 1999.

L. Brown et al., “On the future of congestion control for the public
Internet,” ser. HotNets, 2020.

B. Briscoe, K. D. Schepper, M. Bagnulo, and G. White, “Low Latency,
Low Loss, and Scalable Throughput (L4S) Internet Service: Architec-
ture,” RFC 9330, 2023.

A. G. Alcoz, M. Strohmeier, V. Lenders, and L. Vanbever, “Aggregate-
based congestion control for pulse-wave ddos defense,” in SIGCOMM,
2022.

I. Stoica, S. Shenker, and H. Zhang, “Core-stateless fair queueing:
achieving approximately fair bandwidth allocations in high speed net-
works,” SIGCOMM CCR, 1998.

M. Wyss et al., “Protecting critical inter-domain communication through
flyover reservations,” in CCS, 2022.

M. Wyss and A. Perrig, “Zero-setup intermediate-rate communication
guarantees in a global internet,” in USENIX Security, 2024.

L. Brown, A. G. Alcoz, F. Cangialosi, A. Narayan, M. Alizadeh,
H. Balakrishnan, E. Friedman, E. Katz-Bassett, A. Krishnamurthy,
M. Schapira, and S. Shenker, “Principles for internet congestion man-
agement,” in SIGCOMM, 2024.

Z. Yu, J. Wu, V. Braverman, L. Stoica, and X. Jin, “Twenty years after:
Hierarchical Core-Stateless fair queueing,” in NSDI, 2021.

K. Ramakrishnan, S. Floyd, and D. Black, “The Addition of Explicit
Congestion Notification (ECN) to IP,” IETF, RFC 3168, Sep. 2001.
[Online]. Available: http://tools.ietf.org/rfc/rfc3168.txt

D. Katabi, M. Handley, and C. Rohrs, “Congestion control for high
bandwidth-delay product networks,” in SIGCOMM, 2002.

J. Chou et al., “Proactive surge protection: a defense mechanism for
bandwidth-based attacks,” ser. USENIX Security, 2008.

R. Pan, L. Breslau, B. Prabhakar, and S. Shenker, “Approximate fairness
through differential dropping,” SIGCOMM CCR, 2003.

G. Giuliari et al., “Colibri: A cooperative lightweight inter-domain
bandwidth-reservation infrastructure,” ser. CONEXT, 2021.

M. Wyss et al., “Secure and scalable QoS for critical applications,” ser.
IWQoS, 2021.

T. Weghorn, S. Liu, C. Sprenger, A. Perrig, , and D. Basin, “N-Tube:
Formally verified secure bandwidth reservation in path-aware internet
architectures,” in CSF, 2022.

G. Giuliari, M. Wyss, M. Legner, and A. Perrig, “Gma: A pareto optimal
distributed resource-allocation algorithm,” in SIROCCO, 2021.

K. Wiist et al., “Hummingbird: Fast, flexible, and fair inter-
domain bandwidth reservations,” 2024. [Online]. Available: https:
/larxiv.org/abs/2308.09959

N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“Bbr: Congestion-based congestion control: Measuring bottleneck band-
width and round-trip propagation time,” Queue, 2016.

A. A. Philip, R. Ware, R. Athapathu, J. Sherry, and V. Sekar, “Revisiting
tcp congestion control throughput models & fairness properties at scale,”
in IMC, 2021.

[29]

[30]
(31]

(32]
(33]
[34]
(35]
[36]
[37]
[38]
(39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]
[56]
(571
[58]

(591

Netfilter, “The netfilter.org libnetfilter_queue project,” https://netfilter.
org/projects/libnetfilter_queue/, 2024.

S. community, “Scapy,” https://scapy.net/, 2024.

M. P. Contributors, “Mininet: An Instant Virtual Network on Your
Laptop (or Other PC),” http://mininet.org/, 2024.

ESnet, “iperf3 documentation,” http://software.es.net/iperf/, 2024.

G. LLC, “The Go programming language,” https://go.dev/, 2023.

C. for Applied Internet Data Analysis, “AS Relationships,” https://www.
caida.org/catalog/datasets/as-relationships-geo/, 2023.

A. D. Broido and A. Clauset, “Scale-free networks are rare,” Nature
communications, 2019.

L. Saino, C. Cocora, and G. Pavlou, “A toolchain for simplifying
network simulation setup,” in /CST, 2013.

D. Alderson, H. Chang, M. Roughan, S. Uhlig, and W. Willinger, “The
many facets of internet topology and traffic,” 2006.

mathsfromnothing, “Brent’s method,” https://mathsfromnothing.au/
brents-method/, 2025.

A. Agarwal, V. Arun, D. Ray, R. Martins, and S. Seshan, “Towards
provably performant congestion control,” in NSDI, 2024.

A. Tanenbaum, Computer Networks, 4th ed. Prentice Hall Professional
Technical Reference, 2002.

T. H.-J. Kim, C. Basescu, L. Jia, S. B. Lee, Y.-C. Hu, and A. Perrig,
“Lightweight source authentication and path validation,” in SIGCOMM,
2014.

B. Rothenberger, D. Roos, M. Legner, and A. Perrig, “PISKES: Prag-
matic Internet-scale key-establishment system,” in ASIACCS, 2020.

X. Huang, K. Xue, L. Chen, M. Ai, H. Zhou, B. Luo, G. Gu, and
Q. Sun, “You can obfuscate, but you cannot hide: CrossPoint attacks
against network topology obfuscation,” 2024.

S. Gast, R. Czerny, J. Juffinger, F. Rauscher, S. Franza, and D. Gruss,
“SnaillLoad: Exploiting remote network latency measurements without
JavaScript,” 2024.

DPDK Project, “Data Plane Development Kit,” https://dpdk.org, 2025.
“Ieee standard for floating-point arithmetic,” IEEE Std 754-2019 (Revi-
sion of IEEE 754-2008), 2019.

J. Kumar, S. Anubolu, J. Lemon, R. Manur, H. Holbrook, A. Ghanwani,
D. Cai, H. Ou, Y. Li, and X. Wang, “Inband Flow Analyzer,” Internet
Engineering Task Force, Internet-Draft draft-kumar-ippm-ifa-08, 2024,
work in Progress.

T. P. A. W. Group, “In-band network telemetry (int) dataplane specifi-
cation,” https://p4.org/p4-spec/docs/INT_v2_1.pdf, 2020.

F. Gont, “Security Assessment of the Internet Protocol Version 4,”
IETF, RFC 6274, Jul. 2011. [Online]. Available: http://tools.ietf.org/rfc/
rfc6274.txt

K. Nichols, S. Blake, F. Baker, and D. Black, “Definition of
the Differentiated Services Field (DS Field) in the IPv4 and
IPv6 Headers,” IETF, RFC 2474, Dec. 1998. [Online]. Available:
http://tools.ietf.org/rfc/rfc2474.txt

T. I. C. C. R. Group, “Internet congestion control research group iccrg,”
https://www.irtf.org/iccrg.html, 2025.

Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao,
M. Zhang, F. Kelly, M. Alizadeh, and M. Yu, “Hpcc: high precision
congestion control,” in SIGCOMM, 2019.

W. Wang, M. Moshref, Y. Li, G. Kumar, T. S. E. Ng, N. Cardwell, and
N. Dukkipati, “Poseidon: Efficient, robust, and practical datacenter CC
via deployable INT,” in NSDI, 2023.

B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout, “Homa: a receiver-
driven low-latency transport protocol using network priorities,” in SIG-
COMM, 2018.

S. Agarwal, Q. Cai, R. Agarwal, D. Shmoys, and A. Vahdat, “Harmony:
A congestion-free datacenter architecture,” in NSDI, 2024.

S. Arslan, Y. Li, G. Kumar, and N. Dukkipati, “Bolt: Sub-RTT conges-
tion control for Ultra-Low latency,” in NSDI, 2023.

P. Goyal, P. Shah, K. Zhao, G. Nikolaidis, M. Alizadeh, and T. E.
Anderson, “Backpressure flow control,” in NSDI, 2022.

N. K. Sharma, M. Liu, K. Atreya, and A. Krishnamurthy, “Approximat-
ing fair queueing on reconfigurable switches,” in NSDI, 2018.

P. Gao, A. Dalleggio, Y. Xu, and H. J. Chao, “Gearbox: A hierarchical
packet scheduler for approximate weighted fair queuing,” in NSDI, 2022.

http://tinyurl.com/25khc6et
http://tinyurl.com/25khc6et
https://www.thousandeyes.com/blog/path-quality-surprising-impact-one-percent-packet-loss
https://www.thousandeyes.com/blog/path-quality-surprising-impact-one-percent-packet-loss
http://tools.ietf.org/rfc/rfc3168.txt
https://arxiv.org/abs/2308.09959
https://arxiv.org/abs/2308.09959
https://netfilter.org/projects/libnetfilter_queue/
https://netfilter.org/projects/libnetfilter_queue/
https://scapy.net/
http://mininet.org/
http://software.es.net/iperf/
https://go.dev/
https://www.caida.org/catalog/datasets/as-relationships-geo/
https://www.caida.org/catalog/datasets/as-relationships-geo/
https://mathsfromnothing.au/brents-method/
https://mathsfromnothing.au/brents-method/
https://dpdk.org
https://p4.org/p4-spec/docs/INT_v2_1.pdf
http://tools.ietf.org/rfc/rfc6274.txt
http://tools.ietf.org/rfc/rfc6274.txt
http://tools.ietf.org/rfc/rfc2474.txt
https://www.irtf.org/iccrg.html

APPENDIX
A. Computing T

We update 7; at egress interface j on the fly using the
following expression, adapted from the CSFQ paper [13]
(symbols mapped to match our notation):

C j+ 6

Aj +90

Here, C; denotes the capacity of egress j, and A; is the rate of
outgoing (i.e., admitted) traffic (see Table I). The intuition is as
follows. When A; > C}, meaning that FFS admits more traffic
than the link can support, 7; is decreased, which in turn lowers
the streams’ fair rates (see Equation (2)). Conversely, when
A; < Cj, indicating that the link is underutilized, 7; increases,
raising the streams’ current fair rates. We introduce damping
parameter ¢ to smooth 7; updates and enhance stability.

Tj &= Tj X

Performance. The computational effort to derive 7 is con-
stant, and in particular does not increase with the number of
streams or interfaces. In practice, 7 is not recomputed on every
packet arrival; instead, it is updated periodically, either after a
given number of packets or after a minimum time interval. We
adopt this strategy in our multi-core DPDK implementation
(Section XII), where a single core computes 7 once every
1ms. This yields an amortized per-packet cost well below
1ns, which is insignificant compared to the total per-packet
processing time of 102 ns (Table IV). This policy works well
in high-rate environments, where traffic aggregates are suffi-
ciently stable at the millisecond scale. In contrast, our Python
prototype operates at lower data rates, where traffic can exhibit
considerable burstiness: a small number of large packets may
disproportionately influence observed throughput. To handle
these conditions, we refine the update procedure so that 7 can
react swiftly to major changes in sending rates. Concretely,
we maintain auxiliary candidate values near 7 (above and
below) together with their associated hypothetical admission
rates. When a sudden change occurs, this structure allows us to
move quickly to an appropriate new value of 7. This additional
tracking incurs overhead, resulting in a noticeably higher (both
absolute and relative) computational cost for deriving 7 in the
Python prototype. Finally, we stress that only in the network
utilization experiments of Section VII-B do we determine 7 via
numerical optimization (Brent’s method [38]). This is feasible
in the simulator because it has global knowledge of all streams.
That setting is intended to analyze Internet-scale allocation
outcomes rather than packet-level dynamics, making numerical
search—based computation of 7 appropriate in that context.

B. Detailed Bandwidth Isolation Results

Figure 9 provides a visual overview of the isolation results
for each pair of competing CCAs. The evaluated CCAs are
bbr, bic, cdg, cubic, highspeed, htcp, hybla, illinois, Ip, nv,
scalable, vegas, veno, westwood, and yeah. The rows and
columns of the matrices in the figure follow this order, starting
from the top left. While the figure shows results for each

CCA pair, the key insights emerge from the overall trends.
It is observable, for example, that throughput is unevenly

distributed under FIFO, whereas FFS-C100 and (H)CSFQ
generally move allocations toward a more equal distribution,
though not for all CCA combinations. With FFS-C85, two
competing CCAs consistently get roughly equal bandwidth.

C. Incremental Deployment

FFS can be deployed incrementally, with support for partial
adoption among network nodes and end hosts.

Network Deployment. Fairness and isolation improve as
FFS-enabled nodes increase. If all congested nodes support
FFS and non-congested nodes preserve FFS fields, a stream’s
fair share is fully protected. In early deployment, with a
signle on-path FFS node (or when labels are removed between
FFS nodes), FFS operates like RCS-2020 [10] and PSP [20],
enforcing fairness only locally. As a result, even the very first
adopter benefits from improved fairness and enhanced DDoS
resilience. As deployment grows, labels are trustlessly propa-
gated hop-by-hop, gradually achieving better CCA isolation.

We evaluate the security effectiveness of incremental in-
network deployment of FFS by simulating the top 2000 Tier-1
and Tier-2 ASes from the CAIDA AS relationships dataset (as
described in Section VII-B). We define the security effective-
ness of a path as the fraction of on-path nodes that implement
fairness and isolation through FFS, which reflects the path’s
resilience against an attacker attempting to congest any of its
nodes. We study the impact of incremental deployment by
varying the fraction of nodes (randomly sampled among the
2000 ASes) that support FFS. Our focus is on the distribution
of path-level security effectiveness under these deployment
scenarios. Figure 10 presents the CDF of this distribution. As
expected, increasing FFS deployment improves path protec-
tion. For example, when 40% of nodes implement FFS, 30%
of paths achieve 33% protection, 10% achieve 50% protection,
28% reach 66%, and 3% even attain 75% protection.

End Host Deployment. The endpoint components of FFS
(measuring sending rates and initiating packet labels, or
optionally applying the MinTime or MinLoss algorithms)
can be incrementally deployed at individual hosts. Crucially,
FFS enforces allocation and isolation guarantees within the
network itself, so security does not rely on correct behavior
from end hosts. Stream initiation rates do not necessarily
need to be measured by the application; they may instead
be inferred by the operating system or by an edge router.
FFS headers can also be added deeper within the network
at the first FFS-enabled node, where packets without FFS
headers can be assigned default labels (r = 1.0, f = 1.0),
after which normalization ensures consistency with packets
that do include FFS headers. The feasibility depends on the
concrete implementation: for example, if FFS uses the TOS
field, no additional header space is needed, avoiding MTU
issues. Alternatively, a router can treat packets without FFS
headers as having implicit values of r = 1.0 and f = 1.0,
without adding a header. The limitation of this approach is
that fairness cannot propagate across FFS nodes, since each
subsequent FFS router will reset these values to 1.0. When an

(cubic, nv)

Many, but not all, CCA combinations cdg
lead to high utilization i

nv vegas

Throughput [Mbps] Link Utilization [%]

Latency [ms] Ijtter [ms]

High latency and jitter occur
in most combinations

(a) FIFO

Throughput [Mbps]

Latency [ms]

scalable

(b) FFS-C100 / (H)CSFQ

Fair allocations over all
CCA combinations

/

Consistently high link
utilization (>90%)

Consistently high link
utilization (~80%)

ENEEE E= n

L|nk Utilization [%]

Jitter [ms]

Throughput [Mbps] L|nk Utilization [%]

Latency [ms] Ijtter [ms]

Consistently minimal latency
and jitter (< 2 ms)

(c) FFS-C85

Minimal to
moderate jitter

Figure 9: CCA isolation results. Each colored square in a grid corresponds to a CCA competing against another CCA. For all
three subfigures, value ranges are always [0, 20] Mbps, [20, 200] ms, and [0, 200] ms, for throughput, RTT, and jitter.

Fraction of FFS nodes
— 0% === 20% 40%
==60% == 80% - - 100%
1 — j
g ... ! H
= (. i B |L
0.8 : i
S 1 i N
5 : i
2 06} g - H
8 fe-aaaaad : : : i
& g - L e '
o 04} -EEh i
& : i :
5 : :
B 02 i .|
= T T [
O L mimimimi
0 L Ll - | | 1l
0 0.2 0.4 0.6 0.8 1

Fraction of protected on-path nodes

Figure 10: CDF of path protection for different levels of
FFS deployment. Greater FFS participation shifts the curves
rightward, reflecting better path protection.

FFS node receives packets without FFS headers, by assigning
default labels it conceptually groups them into a single stream
aggregate per interface pair. This aggregate receives its fair
bandwidth share, but if demand exceeds that share, drops occur
across all underlying streams. In this case, the node cannot
distinguish among individual streams, so losses are distributed
uniformly across the aggregate.

Impact on RI. Incremental network deployment affects how
should be interpreted. If a sender transmits at the rate

indicated by but observes packet loss, the loss could
stem from either (i) congestion at an FFS-unaware on-path
node, or (ii) random loss. Since the sender cannot distinguish
between these cases, it must take a conservative approach
by reducing its rate to prevent congestion at FFS-unaware
nodes. During incremental deployment, algorithms such as
MinLoss and MinTime (Section IX) therefore cannot be used.
Instead, traditional congestion control algorithms (CCAs) like
BBR and Cubic remain necessary, as they can respond to
increased loss or RTT. However, RI-based feedback can still
provide guidance. Specifically, RI-based feedback can be used
to decrease the rate in response to overuse but not to increase
the rate when underutilization is detected.

D. Relative Rates

To optimize the space used for packet labels, an alternative
approach is to encode shorter labels instead of including ,
[p.f], and potentially [p.RI]. Specifically, this involves encoding
the following compact labels: |p.rf], which represents the ratio
between and [p.f|, and [p.RRI|, which stands for the
Relative Rate Indicator (RRI) and indicates by which factor
the source’s rate should be adapted (increased or decreased).

While this method substantially reduces the space required
for packet labels, it comes at the cost of increased state
and computational overhead, as well as potentially reduced
precision in the learned rate at the source.

Label Size. By encoding a single relative rate instead two
absolute rates, the label size can be drastically reduced.
With, e.g., logarithmic encoding, it is possible to encode
the values with a certain relative spacing between them. For
a given range RF,,;, < RF < RF,4, we can use a

Algorithm 3: Adapted version of Algorithm 1 working
on a single label p.rf instead of labels p.r and p.f.

e 0)
!

(11)
2fy<—m1n(1 7'/
+ o]~ o] 7

4 Call Algorithm 4 (for rate feedback)
5 Forward packet with probability v, otherwise drop it.

Algorithm 4: Adapted version of Algorithm 2 working
on p.RRI instead of p.RI

1 if [p.RRI] 1 then

// Congestion previously on the

path
> | [pRRI « [pRRI}

3 else

// No congestion at previous nodes
4 if R, > C then

// Congestion at egress

interface
: min(pRRI (7 / [pf))

6 else
// No congestion at egress
interface

7 RRI = max(R%, 1 /)
8 B + min(|p.RRI|, RRI)

logarithmic transformation (RF = log, (RF') with base b) to
get the corresponding range El?mm < RF < ﬁmm After
normalizing the transformed RF using N = %
the normalized value can be encoded to binary (with n-bit
precision) using B = [N - (2" — 1)] (B € [0,2" — 1)).

In summary, the function for encoding RF in n bits with
relative spacing is as follows:

RF — RF i
RFmaz - Rlen
Getting back RF from B can be achieved as follows:

B=|= (2" = 1)] 3)

M
REF—b = +RFmin (4)

This can be further adapted to piecewise logarithmic encoding,
e.g., to allocate more bits to represent values that are more
important or require higher precision, in our case around 1.0,
while using fewer bits for values at the extremes, i.e., for very
small or very large values.

Overhead. Performing all computations based on relative rates
requires the source to keep a history of its past sending rates.
When the source receives the relative feedback (p.RRI) via
notification from the destination, it has to look up the rate 1
RTT ago, and multiply it with the RRI to compute its end-to-
end fair rate. For this, the source has to keep additional state

in form of a history of its sending rates for a duration of at
least 1 RTT. If our system is deployed at every possible point
of congestion, all packets are forwarded with minimal latency
and jitter, thus the RTT remains constant and looking up past
rates becomes predictable and precise. But in an incremental
deployment scenario, latency and jitter may be unpredictably
high, thus making it challenging for the source to fetch the
correct rate corresponding to the received RRI, which might
lead to the source learning an incorrect rate.

Adaptations. We define rf] as the ratio r?/f, and adapt the
operations in Algorithm 1 to process packets labeled with
, replacing the separate labels and . These changes
are reflected in Algorithm 3. The update of in Line 1 of
Algorithm 1 is applied to the denominator of . Similarly,
for the computation of v in Line 2, the division of by
is replaced by taking the inverse of . Finally, the update
of in Line 3 is applied to the numerator of .

The process for updating is detailed in Algorithm 4.
If < 1, this indicates that the packet’s stream has
encountered congestion at a previous node along its path, and
the source must adjust its sending rate by the factor .
Consequently, any subsequent node on the path should only
reduce further, reflecting the extent to which the stream
exceeds its fair rate, as shown in Line 2. On the other hand,
if > 1, it implies that previous nodes have indicated
the source can increase its sending rate. The current node then
updates based on whether congestion exists at its egress
interface. In the event of congestion, the node calculates in
Line 5 the extent to which the stream’s rate could be increased

to achieve its fair rate. If there is no congestion, the node
determines in Line 8 the potential increase in the stream’s

rate, accounting for the fact that this feedback will guide the
source of every stream.
Lastly, the estimation of Fp;;(.;l’s) can be modified by replac-
ing the computation p.len~(/) with p.len-(1 /).
We implemented Algorithm 3 and Algorithm 4 and verified
their correct operation in the Mininet setup from Section VII.

E. Deployment Incentives

FFS provides strong incentives for deployment by benefiting
both endpoints (applications, end users) and Internet Service
Providers (ISPs).

For ISPs, FFS offers the following advantages:

o Maintaining communication availability for customers
even during volumetric DDoS attacks; if a customer’s
communication gets disrupted, the disruption can be
attributed to factors outside the ISP’s domain.

« Facilitating end-to-end traffic isolation without requiring
trust in other network providers.

« Enabling customers to use the MinTime or MinLoss al-
gorithms that minimize transfer time or loss, respectively.

« Creating new monetization opportunities, such as allow-
ing customers to bid for higher allocations by adjusting
fairness matrix entries.

« Improving latency characteristics and easing buffer pres-
sure, which can allow routers to operate with shallower
buffers and potentially reduce hardware requirements.

o Scaling across a range of deployment environments.

For endpoints, FFS offers the following advantages:

o Benefiting from fairness and traffic isolation without
requiring changes to existing systems, as current CCAs
can continue to operate.

« Maintaining communication availability even in the pres-
ence of DDoS (or any other) traffic.

o Experiencing low-latency, low-jitter forwarding that re-
duces the bandwidth-delay product and thus the buffering
required at senders.

¢ Using MinTime and MinLoss to achieve high throughput
or low loss when FFS is fully deployed along the forward-
ing path; these algorithms operate with negligible over-
head compared to reservation-based isolation approaches.

« Obtaining higher allocations through provider agreements
that map to larger entries in the fairness matrix.

F. FFS Header

Determining which header fields to utilize, which headers
to extend, or whether to introduce new headers is not a
challenge specific to FFS but a general issue faced by all
secure isolation mechanisms. FFS simplifies this design space,
since it only requires a low, constant number of bytes to
encode and (and optionally). The encoding
should satisfy three key requirements: (i) efficiency, (ii) ease
of parsing, and (iii) optionally also compatibility with FFS-
unaware nodes, ensuring they forward traffic without removing
the FFS header. These requirements align with those addressed
in prior work [4], [13]-[15], [17], [19], [22], [23], [26], [47],
[48]. Accordingly, FFS can leverage existing approaches such
as dedicated protocol headers for IPv4 and IPv6, hop-by-hop
extension headers (e.g., in IPv6 or SCION), packet trailers,
MPLS or TCP headers, or encapsulation protocols like GRE or
VXLAN. Although IPv4 options are straightforward to parse
using tools like DPDK or P4, their use is discouraged. In
today’s networks, IPv4 options often require processing by
router CPUs, which is slow, or the packets are directly dropped
due to security concerns [49]. Supporting FFS headers for
only a subset of packets (e.g., IPv6 but not IPv4) necessitates
isolating FFS-encoded packets from others, such as by using
a dedicated non-FFS queue. Furthermore, if an endpoint does
not append an IP extension, but the first on-path node does,
the node must ensure a lower MTU was previously announced

to accommodate the extension. We also considered using the
TOS field in our design, but ultimately decided against it, as
we could not guarantee that other protocols would not also
utilize this field (e.g., RFC 2474 [50]).

G. Further Related Work

The most closely related work is discussed in Section III,
and the Internet Congestion Control Research Group (IC-
CRQG) [51] serves as a valuable resource for further exploration

of Internet congestion control research.
This section focuses on work related to FFS’s bandwidth

isolation, but particularly its rate feedback mechanism. The
systems described here are primarily designed for closed,
fully controlled environments, such as data centers, rather than
deployments on the public Internet. These approaches rely
on assumptions that are impractical at Internet scale, such as
benign behavior or full support from all switches and clients.
As they can assume complete control over clients and can rely
on their compliance, many of these protocols do not implement
in-network isolation.

DiffServ [50] classifies and manages traffic by utilizing a
field in the IP header to prioritize specific types of data flows,
but its effectiveness is limited to benign and controlled set-
tings, and it works only when latency-critical communication
constitutes a minority of the traffic. HPCC [52] leverages fine-
grained Inband Network Telemetry (INT) information from
switches, such as queue sizes, to enable clients to compute pre-
cise flow rates, aiming for max-min fairness. It achieves high
utilization and near-zero latency by controlling the number of
in-flight bytes and applying packet pacing. Also Poseidon [53]
utilizes INT. It achieves low queuing delays, high throughput,
and fast convergence while ensuring max-min fairness across
traffic patterns. Homa [54] implements receiver-driven conges-
tion control, while Agarwal [55] eliminates congestion-related
packet drops entirely and ensures bounded network delays.
Bolt [56] reacts to congestion faster than one round-trip time
(RTT) by predicting flow completions and quickly occupying
released bandwidth. BFC [57] approximates per-hop, per-flow
flow control with limited switch state and a modest number of
switch queues, requiring state and dedicated queues only for
active flows with queued packets. However, its performance
degrades when the number of active flows exceeds the avail-
able queues. Similarly, AFQ [58] approximates FQ by using
a few queues to emulate many, storing per-flow counters in
a count-min sketch, but lacks support for HFQ. Gearbox [59]
approximates weighted max-min fairness.

	Introduction
	Objectives
	Background and Related Work
	Model and (Non-)Assumptions
	Fairness According to FFS
	Bandwidth Isolation
	Bandwidth Isolation Evaluation
	CCA Isolation
	Network Utilization

	Rate Feedback
	Rate Feedback Evaluation
	Security
	Security proofs
	High-Speed Implementation
	Discussion
	Conclusion
	References
	Appendix
	Computing
	Detailed Bandwidth Isolation Results
	Incremental Deployment
	Relative Rates
	Deployment Incentives
	FFS Header
	Further Related Work

