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Abstract

New privacy concerns arise with chatbots on group messag-
ing platforms. Chatbots may access information beyond their
intended functionalities, such as sender identities or messages
unintended for chatbots. Chatbot developers may exploit such
information to infer personal information and link users across
groups, potentially leading to data breaches, pervasive track-
ing, or targeted advertising. Our analysis of conversation
datasets shows that (1) chatbots often access far more mes-
sages than needed, and (2) when a user joins a new group
with chatbots, there is a 3.6% chance that at least one of the
chatbots can recognize and associate the user with their pre-
vious interactions in other groups. Although state-of-the-art
(SoA) group messaging protocols provide robust end-to-end
encryption and some platforms have implemented policies to
limit chatbot access, no platforms successfully combine these
features. This paper introduces SnoopGuard, a secure group
messaging protocol that ensures user privacy against chat-
bots while maintaining strong end-to-end security. Our proto-
col offers (1) selective message access, preventing chatbots
from accessing unrelated messages, and (2) sender anonymity,
hiding user identities from chatbots. SnoopGuard achieves
O(logn+m) message-sending complexity for a group of n
users and m chatbots, compared to O(log(n+m)) in SoA pro-
tocols, with acceptable overhead for enhanced privacy. Our
prototype implementation shows that sending a message to a
group of 50 users and 10 chatbots takes about 10 milliseconds
when integrated with Message Layer Security (MLS).

1 Introduction

Chatbots have recently soared in popularity, partially thanks
to the development of powerful Large Language Models
(LLMs) [11, 18]. Even before the advent of LLMs, sophis-
ticated rule-based conversational agents have been part of
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group messaging platforms. They provide a range of func-
tions, from facilitating multilingual communication [66] to
regulating chat content and group members [17]. However,
this integration into group chats presents complex security
challenges that go beyond the scope of typical one-on-one in-
teractions. Unlike one-on-one interactions, where chatbots are
the direct recipients, group conversations can inadvertently
expose more information than necessary for the chatbot’s
functionality. For instance, granting full access to all group
messages to a chatbot, which is only triggered by predefined
commands, clearly violates the principle of least privilege,
raising significant privacy concerns. In this work, we focus
on two types of excessive information exposure:

(1) Irrelevant Messages: Those messages irrelevant to chat-
bots might contain sensitive data, including personally identi-
fiable information (PII) like phone numbers and credit card
numbers. Even in the absence of explicitly sensitive data, sig-
nificant personal details can be inferred from dialogues. For
instance, arranging a dinner can inadvertently reveal partici-
pants’ locations. Staab et al. have shown that large language
models (LLMs) can accurately infer personal attributes such
as gender and location from conversations, even without ex-
plicitly mentioning these attributes [62]. These details can
be used to build comprehensive profiles of group members,
raising significant privacy concerns and exposing users to
potential eavesdropping by seemingly harmless chatbots. Edu
et al. reported a case where a chatbot developer was caught
opening a URL shared in a honeypot group chat [33], reinforc-
ing the claim that chatbots can be used to gather information
beyond their intended functionality.

(2) User Identities. Besides processing irrelevant messages,
a chatbot developer can link private information to specific
users using metadata associated with each message. For ex-
ample, the Telegram chatbot “Dr.Web” provides a service to
check for malicious links in group messages [31]. Since Tele-
gram’s API includes a user ID with each message, Dr.Web
could potentially record users’ browsing history when ana-
lyzing shared links, even across multiple groups. This risk is



Alice

Where do we meet? 

Bob

Foo Bar at 9PM.

⓪ Normal View

Alice

https://a.com/news/4/

➂ Sender Anonymity with Pseudonyms➁ Sender Anonymity

Alice

https://b.com/news/7/

Bob

https://c.com/post/2/

➀ Selective Message Access

Alice

https://a.com/news/4/

Alice

https://b.com/news/7/

Bob

https://c.com/post/2/

???

https://b.com/news/7/

???

https://a.com/news/4/

???

https://c.com/post/2/

0a7a8f66

https://b.com/news/7/

0a7a8f66

https://a.com/news/4/

217b3f4c

https://c.com/post/2/

Figure 1: Example views of typical group messages from a
URL-checking bot ( 0⃝) and messages when our desired pri-
vacy policy is enforced ( 1⃝– 3⃝). Selective message access 1⃝
ensures that the chatbot can only view messages relevant to its
functionality (i.e., containing URLs). With sender anonymity
2⃝, the chatbot does not know the sender’s identity. With

sender anonymity featuring pseudonyms ( 3⃝), the chatbot can
distinguish between senders using pseudonymous identifiers
that may change over time.

akin to the privacy concerns posed by ubiquitous third-party
cookies, which enable trackers to covertly collect parts of
users’ browsing histories. In this context, the access to user
metadata, which is not essential for Dr.Web’s functionality,
exemplifies excessive exposure of user identities to chatbots.
This risk is exacerbated when user messages not intended
for chatbots are linked to users’ identities, facilitating online
profiling.

To address such privacy concerns, Platforms like Telegram,
Slack, and Keybase have introduced various measures to re-
duce the exposure of user information to chatbots. However,
there is a tension between these measures and the goal of
implementing end-to-end encryption (E2EE), a common stan-
dard in messaging applications that protects user privacy from
service providers. Our case studies (§4) reveal that none of
the existing platforms sufficiently resolve this tension, high-
lighting the need for new solutions.

1.1 Our Contributions

This paper identifies two significant privacy issues in group
messaging platforms with chatbots: (1) chatbots accessing

all messages, regardless of relevance to their functions, and
(2) unnecessary disclosure of message senders’ identities to
chatbots.

To understand the significance of privacy concerns, we con-
ducted case studies on two conversation datasets and show
that these problems are prevalence. First, our case study of
a Discord chatbot shows that while only 0.24% of messages
are intended to the chatbot, it has access to all messages, re-
sulting in excessive information access. Second, our analysis
on a Telegram dataset shows that 3.6% of users encounter the
same chatbots in multiple groups. This highlights the preva-
lence of users being identified by the same chatbots across
multiple groups. We also conducted a survey on messag-
ing platforms to explore how they address privacy issues. By
building chatbots on various platforms, we examined the con-
sistency between their policies and implementations. None of
the platforms studied mitigates privacy concerns while main-
taining modern E2EE. We highlighted the tension, which our
proposed protocol aims to address.

We highlight two key properties for secure group mes-
saging: (1) Selective Message Access, which prevents chat-
bots from accessing irrelevant messages, and (2) Sender
Anonymity, which hides user identities from chatbots, each
addressing a distinct privacy issue. Figure 1 illustrates the
impact of the two properties from the perspective of a chatbot,
showcasing how they enhance privacy within group chats.

To realize these critical privacy properties, we propose
SnoopGuard, a secure group messaging protocol that supports
both while ensuring strong E2EE. Our design leverages con-
tinuous group key agreement (CGKA) schemes to maintain
robust security, incorporates individual key management for
each chatbot to enable selective message access, and extends
existing CGKA protocols to support sender anonymity.

Theoretical analysis shows that SnoopGuard requires
O(logn+m) cryptographic operations to send a message
in a group of n users and m chatbots, compared to the
O(log(n+m)) required by Message Layer Security (MLS).
This demonstrates that our additional privacy protections in-
troduce a manageable overhead for groups with a small num-
ber of chatbots, suitable for most practical scenarios. Our
prototype implementation, which is based on Signal’s Proto-
col and MLS, demonstrates that sending a message within a
group of 50 users and 10 chatbots takes roughly 10 millisec-
onds on a Mac mini with an M2 processor.

2 Background on Group Chat and Chatbot

2.1 Messaging Platforms
Messaging platforms like WhatsApp, Telegram, LINE, and
Slack facilitate real-time communication between users, ei-
ther one-on-one or in groups. Specifically, their group (multi-
user) chat functionality allows a group of people to converse
asynchronously. The group initiator has the authority to se-
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Figure 2: A typical messaging platform involves a service
provider forwarding messages among group members. Two
primary adversaries against users’ privacy in this setting are
➊ malicious service providers with key-compromise capa-
bility and ➋ overprivileged chatbots. While state-of-the-art
secure group messaging can address ➊ only, our work aims to
address both. The icons in the figure are from Font Awesome.

lect members for the group, while other users can join later.
Members can send and receive messages at their convenience,
without the need to be online simultaneously, as the messag-
ing platform relays messages sent by users to other users
when they are online.

Many messaging platforms support adding chatbots to
groups, such as Telegram, Discord, and LINE. Group mem-
bers can interact with chatbots using text-based commands
or natural-language prompts, enhancing group communica-
tion and productivity by providing convenient access to on-
line services. For example, chatbots can assist multilingual
groups with real-time translation [66] and help detect phish-
ing URLs [31] or false information [1] shared by group mem-
bers. Figure 2 illustrates how messages are delivered within
a group of four members, including users 1-3 and a chatbot.
The messaging platform runs a centralized server called ser-
vice provider that facilitates the delivery of user 1’s messages
to both users 2 and 3, as well as to the chatbot.

2.2 Secure Messaging
Modern messaging applications rely on service providers, the
servers of messaging platforms, to buffer and deliver mes-
sages (as shown in Figure 2). This centralized design presents
a risk, as a curious service provider could potentially eaves-
drop on user messages. Therefore, the primary goal of secure
messaging protocols is to ensure that only senders and re-
ceivers can decrypt messages using end-to-end encryption
(E2EE). E2EE guarantees that only the parties involved in
the communication group can access the plaintext messages,
and is now widely accepted as the security standard for mes-
saging platforms. In addition, it is desirable that this security
guarantee be resilient to key compromise.

Secure messaging protocols were initially developed for
two-party communications and later extended to group set-
tings. In two-party secure messaging, Borisov et al. [16] high-

lighted the vulnerability of key compromise, showing that
traditional public key cryptography, like Pretty Good Privacy
(PGP), does not protect messages encrypted before a com-
promise. They introduced the off-the-record (OTR) messag-
ing, where parties continuously negotiate new Diffie-Hellman
(DH) session keys and delete old keys to achieve forward
secrecy (FS) [40]. Cohn et al. [25] expanded the notion of FS
to protect message confidentiality and integrity after key com-
promise, introducing post-compromise secrecy (PCS). They
demonstrated that only stateful protocols can provide PCS
against full key compromise. Building on OTR, the double
ratchet algorithm [54] uses OTR’s ratcheting design to gener-
ate fresh session keys for each message. This algorithm is the
foundation for key agreement in popular messaging apps like
WhatsApp, Signal, and Messenger’s secret conversations, and
has been formally proven to ensure both FS and PCS [3, 24].

To extend secure messaging from two to multiple parties,
a straightforward design is to use pairwise secure channels
between each two members, but the updating complexity is
linear to the group size, lacking scalability for large groups.
Another approach is the Sender Keys Protocol [69], which
Signal and WhatsApp use for large groups; each member
generates their own encryption key called a sender key and
distributes the key to each group member through pairwise
secure channels. The Sender Keys Protocol provides constant-
time update and FS, but does not provide PCS [7, 13].

Recently, continuous group key agreement (CGKA) [4] was
introduced as a unifying framework for group key agreement
schemes, supporting asynchronous operations and strong se-
curity guarantees. CGKA schemes frequently update group
keys to maintain confidentiality after potential key compro-
mises, achieving FS and PCS. Tree-based CGKA protocols
use key trees to reduce update complexity to logarithmic time.
For example, Asynchronous Ratcheting Tree (ART) [26] is
based on a Diffie-Hellman tree [48], while TreeKEM [12]
uses a hash tree for greater efficiency. Message Layer Security
(MLS), an IETF standard [9], adopts TreeKEM for group key
management, and the security of MLS, TreeKEM, and related
variants has been thoroughly analyzed [4–6]. Although state-
of-the-art secure group messaging, such as MLS, can defend
against malicious service providers with key compromise
capability (➊ in Figure 2), to our knowledge, no existing pro-
tocols can protect user privacy against overprivileged chatbots
as well (➋ in Figure 2).

2.3 Threat Model and Assumptions
We consider two types of adversaries: overprivileged chatbots
and external adversaries, as shown in Figure 2. External ad-
versaries include common adversaries considered in previous
literature on secure messaging [55, 67].
Overprivileged Chatbots. Overprivileged chatbots are in-
sider adversaries participating in group conversations as regu-
lar members. They have access to the group messages, group
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metadata, and group events. We assume that chatbots are
passive adversaries. In other words, active attacks, such as
sending malicious group modification messages [55], are out
of scope. While collusion between chatbots is possible, we
assume no collusion between a chatbot and a group mem-
ber, since such collusion would allow the chatbot to trivially
access all information known to the member.
External Adversaries. External adversaries, including semi-
honest service providers, have key compromise capabilities,
allowing them to learn the keys on a user’s device [25]. Fol-
lowing the typical assumption in PCS literature, we assume
that a device will be compromised for only a finite period,
after which the user will regain control and perform at least
one secure operation. We assume that the service provider
and chatbots do not collude with each other and acknowledge
that such collusion could introduce new privacy risks outside
the scope of this work.

We assume that the service provider removes users’
network-level metadata (such as source IP addresses) before
forwarding messages to chatbots. This assumption is practi-
cal in real-world scenarios and allows us to focus solely on
ensuring application-level anonymity.

3 Privacy Issues of Chatbots in Group Chats

We present two case studies examining privacy risks from
overprivileged chatbots in group settings. These studies ana-
lyze to what extent chatbots can access excessive message con-
tent and metadata beyond their functional requirements. Our
analysis addresses the following research questions (RQs):

• RQ1-a: Are chatbots overprivileged in a single group?

• RQ1-b: If so, how many unnecessary messages and
sender identities can a chatbot access in a group?

• RQ2: How likely are users to be identified by the same
chatbots across multiple groups?

Our case studies used two datasets: DISCO [63] and
Pushshift [10]. DISCO contains 1.5M Discord messages from
323.6K users across four groups (November 2019-October
2020). With readable English content but little group overlap,
DISCO is better suited for analyzing excessive access in a sin-
gle group (RQ1). Pushshift comprises 2.2M Telegram users
across 27.8K groups (September 2015-November 2019), mak-
ing it ideal for studying privacy leaks related to cross-group
user linkage (RQ2).1

For ethical considerations and practical constraints, we
focus on analyzing public datasets. Although these public
datasets have limitations in representing private group chat

1The Pushshift dataset includes only Telegram “channels,” which are
public chatrooms open to any user. In Telegram, “groups” are chatrooms
restricted to approved users. For consistency, we will use the term “group” to
refer to “Telegram channels” throughout this discussion.

dynamics, they enable a glance at potential privacy concerns,
particularly regarding excessive access permissions and bot
presence across multiple groups. We leave it to future work to
investigate the exposure of sensitive content in private group
conversations.

3.1 Case Study 1: Unnecessary Access

Methodology. To answer RQ1, we conducted a case study
of one chatbot in the DISCO dataset, analyzed its access
privileges, and measured the amount of data exposure. We
chose depth over breadth due to the time-intensive nature of
manual code and documentation analysis.

Since the dataset predated the widespread adoption of
large language models, we focused on identifying rule-
based chatbots by searching for recurring message pat-
terns. This approach led us to discover the “Discord Go-
phers Bot,” which responds to messages prefixed with
?go by providing tutorial links.2 For instance, sending
?go tour to the group prompts the chatbot to reply
with “A Tour of Go <https://tour.golang.org/welcome/1>,”
directing the user to the official Go tutorial. Simi-
larly, the chatbot responds to ?go channels by provid-
ing a YouTube tutorial link: “Understanding channels
<https://www.youtube.com/watch?v=KBZlN0izeiY>.”

Overprivileged Bots. To investigate whether a chat-
bot is overprivileged, we reviewed Discord Gophers
Bot’s source code and discovered a command handler
snippet that processes messages starting with ?go: if
!strings.HasPrefix(m.Content, "?go") { return
}. Additionally, we found that the chatbot accesses the
message sender’s user ID and username through Author.ID
and Author.Username attributes. Although the exact
permissions granted to the chatbot are undocumented, this
code analysis indicates that it requires broad permissions to
read all messages and identify their senders, which is beyond
its functional requirements.

Disclosure of Irrelevant Messages. Our analysis revealed
that of 246,685 messages in the bot’s group, only 580 (0.24%)
started with ?go command. However, the bot had access to
all messages—424 times more than necessary ((246,685−
580)/580). Among those messages the chatbot should not
have access, we discovered several containing PII, includ-
ing one case where a user accidentally shared his/her email
address while pasting error logs. Such an incident exempli-
fies the privacy risks overprivileged chatbots pose in group
settings. As of this writing, the bot remains active in the
Gophers server, though a January 2022 update implemented
Discord slash commands, restricting the bot’s access to only
pre-registered command messages. As Section 4.2 will dis-

2Although the chatbot’s name was anonymized, consultation with the
Gophers community confirmed it as the open-source project Discord Gophers
Bot” (https://github.com/discord-gophers/dgobot).

https://github.com/discord-gophers/dgobot


cuss, slash commands are now officially recommended due
to their enhanced privacy and usability.

Unnecessary Disclosure of User Metadata. Recall that our
code review revealed the chatbot’s access to the sender’s user
ID and username. However, the primary purpose of Discord
Gophers Bot is to recommend tutorials, a function that does
not require the sender’s information. While the bot includes
an admin feature to modify tutorial links, this feature only
requires distinguishing admin from non-admin users, which
is achievable through methods using pseudonyms. Moreover,
our analysis of 246,685 messages revealed no instances of
link modifications by admins, suggesting that the sender iden-
tification was unnecessary for all recorded conversations.

This case study shows how chatbots can be overprivi-
leged by accessing unnecessary message content and metadata
(RQ1-a). Moreover, when overprivileged, bots can accumu-
late large volumes of potentially sensitive information beyond
their operational needs (RQ1-b).

3.2 Case Study 2: Cross-Group Identification

Methodology. When a user encounters the same chatbot
in multiple groups where sender identities are exposed, the
chatbot can link the user across these groups and aggregate
inferred information. To quantify the probability of cross-
group user identification (RQ2), we analyzed the Pushshift
dataset [10], focusing on Telegram chatbots with disabled pri-
vacy restrictions. Despite Telegram’s default message access
limitations, the chatbot metadata revealed that 718 (45.5%)
of 1,577 analyzed chatbots operated with the privacy mode
disabled, granting them complete message access. We recon-
structed a member list for each group by analyzing account
metadata and messages.3 We quantified user-chatbot relation-
ships by counting how many groups each unique user-chatbot
pair shared (i.e., encounter count).

Prevalence of Cross-Group Chatbots. Among the 718 chat-
bots studied, 253 (35.2%) appeared in multiple groups, 44
(6%) appeared in more than 10 groups, and three appeared
in over 100 groups, significantly increasing the possibility of
cross-group tracking.

User-Chatbot Encounters. Among 1,168,344 users who
joined at least one group, 42,508 (3.6%) users encountered
the same chatbot in multiple groups, with one user having
repeated encounters with 134 different chatbots. Moreover,
among the 4,155,927 user-chatbot pairs encountered at least
once, 97,813 pairs (2.4%) were encountered multiple times,
and 96 pairs were encountered more than 10 times, with ex-
treme cases of two pairs being encountered 55 times. These
patterns demonstrate the extensive user data collection poten-
tial of an overprivileged chatbot.

3We focused only on active members who sent messages, as the dataset
does not include complete member lists.

4 Tension Between Mitigating Privacy Issues
and Achieving E2EE

This section examines the privacy practices of popular group
messaging platforms. Our survey shows that these messaging
platforms face a fundamental tension between protecting user
privacy from chatbots and enabling E2EE. While some plat-
forms protect user privacy by filtering messages and hiding
metadata, these protections are not trivially enforceable in
the presence of E2EE, which prevents the inspection of mes-
sage content. Our findings highlight the need for a practical
solution to reconcile the two competing privacy goals.

4.1 Methodology
To understand the tension, we examined how popular messag-
ing services address below privacy goals and analyzed their
design decisions.

• Mitigating Privacy Issues of Chatbots: (1) Chatbots
should only have access to necessary messages for their
intended function. (2) Chatbots should be unable to
identify the sender of any message (e.g., through the
permanent user identifier or profile information).

• Achieving E2EE: Messages should always be sent over
E2EE channels that provide both FS and PCS.

We focused on globally popular platforms [28] that sup-
port either E2EE or chatbot policies for analysis, including
WhatsApp, Viber, Telegram, LINE, Discord, and Signal. We
also included Slack, which is mentioned in previous work
on chatbot-related security issue [20], and Keybase, which
features cryptography-based restrictions on bot access control
in groups [46].

For platforms that officially support chatbots (§4.2), we
investigated chatbot permissions by creating chatbots using
the official APIs and following the respective platform guide-
lines. On each platform, we set up a group, added a chat-
bot, and tested its behavior by sending messages in various
formats. These included standard messages, messages that
mentioned or tagged the chatbot, and messages that use pre-
defined formats (e.g., commands) on platforms that support
such functionalities. We then used the chatbot APIs to analyze
the messages the chatbot received and the metadata included
in these messages. We also investigated whether message
contents were encrypted using E2EE by using Wireshark to
capture and analyze network packets.

For platforms without official chatbot support (§4.3), we
searched for well-known unofficial open source libraries that
claim to enable chatbot functionality, and analyzed their code.
We chose not to create chatbots using these libraries because
the programmatically-simulated user’s E2EE status and mes-
sage access policies are predictably identical to those of reg-
ular users. Also, using these libraries would violate the plat-
forms’ terms of service.



4.2 Platforms with Chatbot Support

Most platforms that support chatbots in group chats enforce
policies to regulate their access control. In the following dis-
cussion, we examine the design measures these platforms
employ to prevent chatbots from learning excessive informa-
tion, and evaluate whether they maintain E2EE in the presence
of chatbots.

Telegram. Telegram restricts message access for chatbots,
but still exposes the sender’s identity in messages and does
not supports E2EE. By default, chatbots in a group operate in
Privacy Mode, allowing them to access only system messages
or messages that mention them using pre-registered com-
mands [64]. However, they can still access metadata about
the sender [43]. Additionally, Telegram’s MTProto 2.0 pro-
tocol [42] only implements group chats using server-client
encryption rather than E2EE [65].

Slack. Slack provides two different permission models for
chatbots: the granular bot permission scopes and the legacy
bot permission scopes [60]. The granular bot permission
scopes are designed to improve privacy by implementing
a new scope that limits chatbots to messages in which they
are specifically mentioned. When mentioned, the chatbot can
identify the sender within the group using a unique identifier,
but this identifier does not directly link to the sender’s profile,
thereby achieving pseudonymity against chatbots. In contrast,
chatbots under the legacy bot permission scopes have unre-
stricted access to messages. Slack encrypts all messages and
data at rest and in transit. However, it does not provide E2EE,
which means that messages can be decrypted by Slack on
their servers [61].

Discord. Discord employs a fine-grained permission model
for chatbots, covering message access in groups. By default,
chatbots cannot read messages unless explicitly mentioned.
Discord recommends using the new Interactions API [29],
where chatbots can interact with messages with slash com-
mands, buttons, or menus. Additionally, chatbot developers
can request permission to access all messages, but this re-
quires manual verification and approval, including checking
the presence of a privacy policy, as outlined in Discord’s cri-
teria for approval [30]. On top of that, Discord does not hide
the sender identities from the chatbots and does not support
E2EE.

LINE. Group chats involving chatbots in LINE are not end-
to-end encrypted, and privacy issues from chatbots are not
mitigated. LINE offers group E2EE through a mechanism
called “Letter Sealing,” which is similar to the Sender Keys
Protocol and provides FS [50, 51]. However, Letter Sealing
is automatically disabled in groups when a chatbot is added.
Furthermore, LINE does not implement any specific measures
to reduce the privacy risks associated with chatbots, which
have the same access privileges as regular users, including
full access to messages and sender identities [27].

Keybase. All messages shared in Keybase Chat are trans-
mitted through channels with E2EE, and it allows certain
messages to be revealed to the chatbot while maintaining
E2EE. Keybase [45] uses a strategy similar to Telegram’s
privacy mode to restrict the chatbot’s access to messages. In
addition to messages that explicitly mention the chatbot using
@Bot, Keybase also shares messages that match commands
pre-registered by the chatbot, offering flexibility. Message
metadata reveals the sender’s username, allowing the chatbot
to learn the sender’s identity.

For messages intended for the chatbot, Keybase uses bot-
specific keys shared between the group members and the chat-
bot to encrypt the messages. The bot-specific key is derived
from the team key, a key shared by all group members except
the chatbots, and is then sent to the chatbot, encrypted with
the chatbot’s user key. By encrypting with the bot-specific
key, both the chatbot and the group members can decrypt the
message. Messages not intended for the chatbot are encrypted
using the team key. As a result, the chatbot is aware of these
messages but cannot decrypt the content since it lacks ac-
cess to the team key [46, 47]. Due to its similar design to the
Sender Keys protocol, it likely does not support PCS. This
claim is supported by the absence of PCS in their documenta-
tion [47] or security assessment reports [56], and the lack of
key renegotiation features in the current design. Furthermore,
because group members are responsible for initiating the cre-
ation of bot-specific keys, chatbots cannot initiate interactions
or update keys, even if the keys are compromised.

4.3 Platforms Lacking Chatbot Support
Platforms like WhatsApp, Viber, and Signal do not natively
support chatbot functionality in group chats. As a workaround,
some developers create automated users to simulate chatbots
on these platforms. This has been confirmed by reviewing
the source code of third-party chatbots [23, 52]. Since these
unofficial chatbots operate as regular users, they have the
same permissions, including full access to all group messages
and sender identities. While WhatsApp, Viber, and Signal
offer E2EE in group chats, as outlined in their respective
documentation [58, 68, 69], most of these platforms use a
Sender Keys-like protocol, which does not support PCS. Only
Signal’s private groups [59], which use pairwise encryption
for small groups, support PCS.

4.4 Findings
Our survey revealed two common approaches among popular
group messaging platforms, highlighting the tension between
mitigating overprivileged chatbots and achieving E2EE.

Most platforms, such as Telegram, Discord, and Slack,
forgo E2EE when interacting with chatbots, allowing ser-
vice providers to control what information should be shared
with chatbots. In contrast, some platforms, such as WhatsApp,



Viber, and Signal, focus on providing E2EE for group chats
and do not support chatbots in group chats. However, the de-
velopment of unregulated third-party bots, while retaining full
E2EE capabilities, may have access to all messages. A notable
exception to these two approaches is Keybase. It allows E2EE
and message filtering to coexist, but lacks some essential se-
curity features found in modern E2EE protocols. In addition,
none of these group messaging platforms effectively address
the privacy concerns associated with unnecessarily revealing
sender identities. Table 1 summarizes each platform’s support
for the desired privacy goals.

Our findings suggest that a novel technique is needed to re-
solve the tension between mitigating overprivileged chatbots
and achieving E2EE. In the rest of the paper, we will present
our proposed protocol to resolve this tension.
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Table 1: Comparison of security properties on popular messag-
ing platforms. Signal partially supports PCS only in private
groups. Platforms marked with * do not officially support
chatbots.

5 SnoopGuard: A Privacy-Preserving Secure
Group Messaging Protocol

We aim to design a secure group messaging protocol that
addresses two privacy concerns posed by overprivileged chat-
bots: (1) lack of message access control, and (2) unnecessary
disclosure of sender identities, all while ensuring robust E2EE
with FS and PCS. Our solution, SnoopGuard, builds on a
tree-based continuous group key agreement (CGKA) scheme,
enhancing the traditional key tree structure to overcome its
limitations and support our desired properties. This design
enables selective message access and sender anonymity. Ad-
ditionally, we introduce extensions to support pseudonymity
and enhance user privacy by hiding message triggers from
service providers.

5.1 Desired Properties and Challenges
We first outline the desired properties of our messaging proto-
col: selective message access and sender anonymity to address
the two privacy issues, and challenges achieving them using
existing protocols.

Selective Message Access. The concept of selective message
access refers to the ability to restrict chatbots from accessing
messages that are irrelevant to their functionality. Implement-
ing this poses several challenges. First, E2EE makes it im-
practical for service providers to filter messages for chatbots,
as platforms like Telegram and Discord currently do, since
the providers cannot read the encrypted messages. Second,
to maintain confidentiality, chatbots should not have access
to the encryption keys used for messages not intended for
them, as possessing the ciphertext alone would allow them to
decrypt the messages if they had the necessary keys.

However, existing group messaging protocols such as
Sender Keys do not facilitate selective key access, as they
use static keys that do not change per message. Similarly,
CGKA-based protocols that treat chatbots as users require
all participants, including chatbots, to catch up with all key
updates, also preventing selective access. Keybase’s proto-
col allows selective key access by having a chatbot-specific
sender key that is shared by all group members, but does not
allow chatbots to update their keys and does not achieve PCS.
Therefore, there is a need for a group messaging protocol that
performs message filtering on the client side and implements
a key management strategy that allows selective key access
for chatbots, ensuring that they can only decrypt messages
meant for them.
Sender Anonymity. Sender anonymity aims to hide the
sender’s identity from chatbots. Chen et al. define a form
of sender anonymity called internal group anonymity (IGA),
which guarantees sender indistinguishability among all group
members [19]. However, our scenario requires a directional
version: while users should be indistinguishable to chatbots,
users should still be able to distinguish chatbots. To address
this, we introduce a new notion called selective IGA, which
provides directional sender anonymity. We also aim to achieve
pseudonymity, another notion of sender anonymity that allows
chatbots to differentiate between users without knowing their
real identities, as in the case of anti-spam bots.

Despite this, no existing group messaging protocol pro-
vides the required level of sender anonymity. In the Sender
Keys protocol, each sender can be uniquely identified through
their individual sender keys. Similarly, in tree-based CGKA
schemes like ART and TreeKEM, the “update path” [9] re-
veals node information from the sender’s node to the root,
which can be used to identify the sender. To address this,
Chen et al. proposed Anonymous ART (AART) [19], which
supports IGA, but does not support selective message access
for the same reasons as other CGKA schemes.

5.2 Design Overview

Our solution is built on a tree-based CGKA scheme, as
it is the most common key agreement scheme that achieves
both FS and PCS. Before detailing the specific components of



(a) Users perform an update to
obtain the group secret G and
update the shared secrets for
C1,C2. Secrets updated in this
phase are colored blue.

(b) Users perform an update to
obtain the group secret G′ and
update the shared secrets for C1.
Secrets updated in this phase
are colored red.

(c) C2 performs an update. Se-
crets updated during this phase
are colored green. Updates initi-
ated by chatbots will not trigger
an update for the user subtree.

(d) Users trigger an update only
for user subtree, resulting the
group secret G′′. Secrets up-
dated during this phase are col-
ored yellow.

Figure 3: Illustration of CMRT with users u1, . . . ,un and chatbots c1,c2. Users share the group secret G from the user subtrees
(triangles), while C1,C2 are secrets for chatbots c1,c2, respectively. The rectangles represent secrets shared between the group
and each chatbot. The arrows indicate secret assignments, and the lines indicate parent-child relationships, where a child knows
the secret of its parent. For example, in (b), G′ represents the group secret, while S′1 is the secret shared between u1, . . . ,un and
C1. In (c), the chatbot can send the fresh key S′2 to the users using the public key derived from G.

our protocol, we first explain how our approach addresses the
challenges outlined in Section 5.1. The core of our approach
lies in modifying the structure of key tree used in CGKA. We
concatenate the tree root of the CGKA with several new “root
nodes,” each representing a separate group key.

Selective Message Access. One of the main challenge achiev-
ing selective message access is that chatbots may share in-
consistent keys with users, since if chatbots do not receive
all messages, they may miss key updates. However, chatbots
using traditional CGKA require all key update messages to
maintain key consistency. To solve this, our construction em-
ploys multiple root nodes, each corresponding to a separate
group key—one for each chatbot. Each chatbot maintains its
own key state shared with the user group, and its key is up-
dated only when a message is specifically intended for that
chatbot (as illustrated in Figure 3). If no key update occurs
for a given chatbot, its key remains unchanged, allowing it to
continue encrypting messages with the current key.

Selective IGA. Tree-based CGKA protocols typically fail to
provide sender anonymity because the sender’s identity can
be inferred from the update path—the path from the sender’s
node to the root. To mitigate this, we modify the structure of
key tree by separating group members into two subtrees: a
user subtree containing all user nodes, and a chatbot subtree
containing only the chatbot nodes (as shown in Figure 3).
During a user-initiated key update, the chatbot is only made
aware of the root of the user subtree, rather than the full de-
tails of the individual nodes within the subtree. This design
allows the chatbot to compute a shared secret with the en-
tire group without knowing which specific user initiated the
update, thereby preserving the sender’s anonymity.

The resulting structure of key tree, called the Compressed
Multi-Roots Tree (CMRT), achieves these two additional se-
curity properties by assigning each chatbot a dedicated sub-

tree while sharing a root node with the user subtree. From the
users’ perspective, their tree connects to multiple root nodes,
each corresponding to a different chatbot. In contrast, each
chatbot perceives itself as part of a smaller 3-node tree that
links only to the root of the user subtree. Key updates are man-
aged efficiently, with users only storing the root nodes, opti-
mizing storage while maintaining asynchronous states across
different chatbots, as shown in Figure 3. This “multi-root”
structure is “compressed” to balance data storage efficiency
with strong security guarantees.

5.3 Building Blocks

This subsection presents the building blocks of our con-
struction, including cryptographic primitives, a formal defini-
tion of CGKA, and TreeKEM, the CGKA construction that
serves as the foundation for our solution. Throughout this
section,←$ denotes assignment from a randomized algorithm,
while← represents assignment from a deterministic one.

Cryptographic Primitives. The public-key encryption
(PKE) scheme PKE = (PKEG,PKEnc,PKDec) consists
of key generation (sk,pk)←$ PKEG(1λ), encryption c←$

PKEnc(pk,m) using the public key pk, and decryption m←
PKDec(sk,c) that retrieves the original message m from
the ciphertext c. We also use a digital signature scheme
Sig = (Sign,Vf), where s←$ Sign(sk,m) signs a message m,
and Vf(pk,s,m) verifies it using the corresponding public key.
Additionally, a collision-resistant hash function H : {0,1}λ→
{0,1}λ is used.

Continuous Group Key Agreement (CGKA). As detailed
in Alwen et al. [4], a CGKA scheme comprises operations
for key agreement in secure group communication, enabling
all members to share a common secret key. This scheme



allows for dynamic adjustments in group membership, includ-
ing adding or removing members. The shared key is updated
whenever there are changes to the membership or upon re-
quest by any group member. For instance, the key can be
refreshed with every sent message, which helps guarantee
that future key compromises do not impact the security of
previously sent messages. The syntax of CGKA is defined as
follows, as outlined by Alwen et al. [4].

Definition 1. A CGKA scheme is a tuple of the following
algorithms CGKA= (init,create,add, rem,upd,proc):

• γ←$ init(ID) takes a user ID ID and outputs an initial
state γ.

• (γ ′,T )←$ create(γ, ID1, . . . , IDn) takes a state γ and a
list of user IDs ID1, . . . , IDn. This outputs a new state γ ′

and control message T .

• (γ ′,T )←$ add(γ, ID) takes a state γ and a user ID to
add, and outputs a new state γ ′ and control message T .

• (γ ′,T )←$ rem(γ, ID) takes a state γ and a user ID to
remove, and outputs a new state γ ′ and control message
T .

• (γ ′,T )←$ upd(γ) takes a state γ and outputs a new state
γ ′ and control message T .

• (γ ′,k)← proc(γ,T ) takes a state γ and a control mes-
sage T or W. This outputs an updated state γ ′ and a
fresh group key k.

To initiate the CGKA scheme, each user, identified by ID,
starts by initializing their state with init(ID). Upon initial-
ized, a user can create a group using create with the initial
members’ identifiers. Subsequent group modifications, such
as adding members with add, removing them via rem, or up-
dating personal key material with upd, each triggers an update
to the group key and generates a control message T . Group
members keep their states synchronized by processing these
control messages via proc, ensuring they all share the same
group key k.
TreeKEM. TreeKEM [12] is a tree-based CGKA scheme con-
structed with a hashing key tree. Each node in this tree holds
a secret accessible only to the members within its subtree,
and each member is assigned to a leaf node. The secret of the
root node serves as the shared secret for the entire group. In
TreeKEM, let Si ∈ {0,1}λ denote a member’s i-th secret from
the leaf. The secret Si is computed as the hash of the secret
Si−1 from one of its child nodes, specifically the last child
that updates the secret. Additionally, each node contains a
pair of public-private keys (ski, pki) generated from its secret
Si using PKEG. The node information can be computed by
(ski, pki)← PKEG(Si) where Si← H(Si−1).

To perform key update, a member (associated with one
of the leaf node) randomly generates a new secret and itera-
tively computes the secrets along the path to the root node via

hashing. The member then notifies other members of the new
secrets by encrypting them with the public keys of the sibling
nodes. Specifically, for a node v with a new secret S′, the mem-
ber encrypts S′ using the public key of node sibling(v) and
sends the ciphertext to the members under sibling(v), where
sibling(v) denotes the sibling node of v. The member also
publishes all new public keys along the updated path.

5.4 SnoopGuard Operations

We now introduce the core operations of our secure group mes-
saging protocol, SnoopGuard. SnoopGuard extends existing
secure group messaging protocols by adding chatbot-specific
operations: chatbot addition/removal, message sending by
chatbots, and trigger functions. It uses CMRT, which relies on
an existing tree-based CGKA scheme for user subtree manage-
ment, to enable selective message access and selective IGA.
While SnoopGuard handles communication between users
and chatbots, interactions among users continue to rely on
the underlying secure group messaging protocols. We assume
that the service provider acts as a public key infrastructure
(PKI) where chatbots register their public keys and signed
trigger functions. The pseudocode for the baseline protocol is
presented in Appendix B.

Trigger Function. To enable client-side message filtering,
we introduce the concept of trigger function represented as
fCID : M →{0,1}, where M denotes the message space and
CID denotes the unique identifier of a chatbot. The function
returns 1 if a message is considered relevant to a chatbot
identified by CID, and 0 otherwise. The function is evaluated
on user’s device before a message is sent. The function can
be implemented in various form, such as a snippet code exe-
cuted in a sandbox environment, or a checkbox that asks for
permission.

State Initialization. The CMRT state for each entity, includ-
ing a user or a chatbot, is denoted as γ. For users, the CMRT
state includes the state of the underlying CGKA scheme γ.s0
and a dictionary γ.cbts indexed by chatbot identifier to record
leaf nodes information for each chatbot in a group. For chat-
bots, the CMRT state consists of its identifier γ.ME, the root
public key of the user subtree γ.gpk, a long-term PKE key
pair (γ.skCID,γ.pkCID) for identity authentication, and a PKE
key pair (γ.csk,γ.cpk) associated with the chatbot’s tree node.

When a chatbot identified by CID is initialized, it registers
the long-term public key pkCID, the trigger function fCID and
its signature s← Sign(skCID, fCID) to the service provider.

Group Creation. We assume only a user can create a group,
and a group initially contains only users. The process of
creating a group with identities ID1, . . . , IDn involves the
following steps: (1) A user with state γ initiates the group
using the CGKA scheme’s create algorithm: (γ.s0,T ) ←
CGKA.create(γ, ID1, . . . , IDn). (2) This user then broadcasts



the control message T to the users identified by ID1, . . . , IDn.
(3) Upon receiving the message, each user processes the con-
trol message T : (γ.s0,k)← proc(T ).

Adding or Removing Users. Similar to group creation, a
user with state γ calls the CGKA scheme using (γ.s0,T )←
CGKA.add(ID′) or (γ.s0,T )← CGKA.rem(ID′), where ID′

is the identifier of the user to be added or removed. After that,
the user broadcasts the control message T to all user members,
which is then processed by (γ.s0,k)← proc(T ), resulting in
a fresh group key k.

Adding a Chatbot. Adding a chatbot identified by a chatbot
ID CID to a group involves four steps: (1) The initiating user
retrieves chatbot’s public key pkCID, samples a leaf secret k,
computes chatbot subtree’s public key cpk by (csk,cpk)←
PKEG(k), and encrypts the secret: e← PKEnc(pkCID,k). (2)
The user broadcasts root public key of user’s subtree γ.s0.gpk,
the encrypted secret e, and public key cpk of chatbot’s sub-
tree, to all group members and the chatbot. (3) All users
retrieve the chatbot’s public key pkCID, trigger function fCID,
and the associated signature s from the service provider and
store the chatbot’s information into their respective states:
γ.cbts[CID]← ( fCID,γ.s0.gsk,cpk) if the signature is success-
fully verified by Vf(pkCID,s, fCID). (4) The chatbot decrypts
the initial secret k← PKDec(γ.skCID,e), and stores the re-
ceived root public key gpk, and the derived PKE key pair
(csk,cpk)← PKEG(k). This process initializes a TreeKEM
key tree between the user group and the chatbot.

Removing a Chatbot. Removing a chatbot identified by a
chatbot ID CID involves the following steps. (1) The initiating
user broadcasts the decision to remove the chatbot to all group
members. (2) All users then clear the corresponding entry
from their records: γ.cbts[CID]←⊥. (3) The removed chatbot
also clears its information about the user group: γ.gpk←⊥.

Users Sending a Message to Chatbot. When a user with
state γ sends a message to chatbots, the process involves
initiating an underlying CGKA (user subtree) key update
(step 2) and a TreeKEM update (step 2 and 4), and en-
crypting the message using the newly derived shared se-
cret (step 3). The steps are as follows: (1) Obtains a
fresh group key k from the CGKA scheme: (γ.s0,T0) ←
CGKA.upd(γ.s0);(γ.s0,k) ← proc(γ.s0,T0). (2) Computes
the group PKE key pair (gsk,gpk)← PKEG(k) and a new
message encryption key k′ ← H(k). (3) Encrypts the mes-
sage m: c ← Enc(k′,m) and prepares the control mes-
sage T = (T0,c,gpk). (4) For each chatbot identified by
CID that requires the message (i.e., fCID(m) = 1), retrieves
the chatbot’s public key cpk ← γ.cbts[CID].cpk, appends
(CID,PKEnc(cpk,k′)) to the control message T , and updates
the group secret key for that chatbot γ.cbts[CID].gsk← gsk.
(5) Finally, broadcasts the control message T to the group,
including the chatbots.

We require that either the CGKA’s control message T0 is
removed from the control message T before forwarded to the

chatbots, or T0 is encrypted in a way similar to MLS’s Private
Message [9], so that chatbots cannot decrypt T0 nor learn the
sender’s identity. When sending a message to both users and
chatbots, this process operates in parallel with the original
secure group messaging protocol, which handles ciphertext
generation and key updates for users.

A user with state γ receiving the control message T updates
the keys using the following steps: (1) Computes the fresh
group key through: (γ.s0,k)← CGKA.proc(T0). (2) Com-
putes the group PKE key pair (gsk,gpk)← PKEG(k). (3) For
each CID in the control message, updates the group secret key
γ.cbts[CID].gsk← gsk.

A chatbot with state γ receiving the control message T first
checks if its identifier CID is included. If not, the message
is deemed unrelated to this bot. If the identifier is found, the
chatbot proceeds to decrypt the message using the following
steps: (1) Decrypts the chatbot encryption key k′ from the
ciphertext e associated with CID: k′← PKDec(γ.csk,e). (2)
Decrypts the message content m using m← Dec(k′,c). (3)
Updates the group public key in its state to γ.gpk← gpk.
Chatbot Sending a Message. When a chatbot with state γ

and identified by CID sends a message to users, it issues a
TreeKEM update and encrypts the message using the newly
derived shared secret. The steps are as follows: (1) Randomly
generates a key: k ←$ {0,1}λ. (2) Computes the message
encryption key k′← H(k) and the PKE key pair (csk,cpk)←
PKEG(k) for chatbot’s tree node. (3) Encrypts the message m:
c← Enc(k′,m) and encrypts the encryption key using group
public key: e← PKEnc(γ.gpk,k′) (4) Updates the chatbot
private key γ.csk← csk. (5) Finally, broadcasts the entire
control message T = (CID,c,e,cpk) to the group.

A user with state γ receiving the control message T de-
crypts the message using the following steps: (1) Decrypts
the encryption key using the dedicated group private key for
CID: k′← PKDec(γ.cbts[CID].gsk,e). (2) Decrypts the mes-
sage content: m← Dec(k′,c). (3) Updates the chatbot public
key γ.cbts[CID].cpk← cpk.

5.5 SnoopGuard Extensions
We present two SnoopGuard extensions: pseudonym visibility
for stateful chatbot applications and trigger concealment from
service providers for enhanced user privacy.

Pseudonymity Achieving pseudonymity involves addi-
tional two steps: (1) The group member registers a pseudonym
anonymously ; (2) When a group member sends a message us-
ing the pseudonym, the chatbot verifies that the message truly
comes from the authenticated sender behind the pseudonym.
Our protocol should ensure that in both steps, the chatbot
remains unaware of the exact identity of the member.

In our protocol, a pseudonym contains a PKE key pair used
as message signing key. In the first step, a member generates
an ephemeral identity key pair (ske, pke) and registers the



identity by broadcasting the public key pke to all chatbots
using the baseline protocol, then each chatbot records pke as
a new ephemeral identity in the group. In the second step,
the member signs the message using ske, and the chatbot
verifies the signature with pke to check the legitimacy of the
message sender. Because baseline protocol provides sender
anonymity, the chatbot cannot associate two pseudonyms with
the same user. The users can easily change their pseudonyms
by registering new ones.

Trigger Concealment from Service Providers Chatbots
are typically triggered by messages matching specific patterns,
which leaks information about message content to service
providers. For example, if a phishing detection bot is triggered,
the provider might deduce the message contains a URL. To
enhance user privacy, senders can transmit control messages
to chatbots without including key updates for those that should
not be triggered. In step (4) of the procedure for sending a
message to a chatbot, described in Section 5.4, when fCID(m)
is false, meaning that the chatbot identified by CID should
not receive the message, the sender appends (CID,r), where r
represents the random bytes that should be indistinguishable
from the actual ciphertext of the key update, thereby “hiding”
the triggering event. These chatbots would not be able to
decrypt the new secret and would therefore drop the message.

5.6 Integration with Existing Secure Group
Messaging Protocols

SnoopGuard needs to run alongside a secure group messaging
protocol. There are two strategies for integration, depending
on whether the underlying secure group messaging protocol
uses a CGKA key tree.

Protocols without CGKA. Our protocol can coexist with
secure group messaging protocols that do not rely on CGKA,
such as the Sender Keys Protocol, without interfering with
their operations. When creating a group and updating mem-
bers, in addition to the original key exchange procedures, such
as sharing sender keys, users also maintain a complete CMRT,
including the user’s subtree. When sending a message, the
sender follows the original procedure to communicate with
other users, which, in the case of the Sender Keys Protocol,
involves encrypting messages with their sender key, and fol-
lows SnoopGuard to send messages to chatbots by encrypting
with each chatbot’s root key and issuing key updates.

Protocols with CGKA. The advantages of our protocol can
be highlighted when integrated with secure group messaging
protocols that use tree-based CGKA, such as MLS. In these
cases, the protocol’s key management already relies on a tree-
based CGKA key tree to generate a shared secret for group
members, and CMRT can utilize the existing tree as the user’s
subtree. This further reduces the overhead of maintaining the
SnoopGuard, since the effort of storing and maintaining the

user’s subtree is already included in these protocols.

6 Evaluation

6.1 Security Analysis

E2EE Sender
SMA

FS PCS Anonymity
Sender Keys  - - -

Keybase  - -  
MLS (TreeKEM)   - -

AART [19]   IGA -
SnoopGuard   Selective IGA  

Table 2: Security comparisons between secure group messag-
ing protocols. SMA stands for Selective Message Access.

This section provides a security analysis to show that our
protocol satisfies the desired security properties, while achiev-
ing FS and PCS, as shown in Table 2. The analysis is based on
the assumption that the underlying CGKA scheme satisfies
FS and PCS. We use this fact to conclude that our protocol
also satisfies the two properties, while also achieving selective
message access. For sender anonymity, the analysis relies on
the assumption that leaf secret chosen during key updates of
TreeKEM is uniformly random.

We assume that the hash function H, used in both TreeKEM
and our protocol, functions as a pseudorandom generator
(PRG). This implies that if H receives random input, its out-
put will be uniformly random. Furthermore, we assume the
public key encryption (PKE) scheme employed is IND-CPA
secure, which guarantees that an adversary cannot distinguish
between the ciphertexts of any two chosen plaintexts. The
formal security definition for these cryptographic primitives
is included in Appendix A.

Also, a CGKA scheme should already satisfy the following
two security properties, according to the security definition of
key indistinguishability by Alwen et al. [4]. To formalize, we
first define the epoch t, which is a protocol execution counter
that advances whenever a control message is processed. Let
γt denotes the state at epoch t and kt denotes the group key
at epoch t, we have the following relation for each group
member: (γt ,kt)← proc(γt−1,T ) for any legitimate control
message T .

• Forward Secrecy: For an external adversary who has
access to all control messages T and compromises a
member’s state γt , the adversary should not be able to
distinguish any key ki for i < t from a uniform random
distribution.

• Post-Compromise Security: For an external adversary
who has access to all control messages T and compro-
mises a member’s state, but a group member successfully



creates a commit at epoch t without the adversary’s con-
trol, the adversary should not be able to distinguish any
key ki for i > t from a uniform random distribution.

Forward Secrecy. Assuming that no chatbot is compromised,
we show that for an external adversary with access to mes-
sages T and a compromised member state γt , any key ki for
i < t remains indistinguishable from uniform random. First,
the adversary gains no meaningful information about previ-
ous keys from the compromised keys because the underlying
CGKA protocol ensures forward secrecy, making any key k
generated before the compromise indistinguishable from ran-
dom. By the definition of PRG, the group keys k′ generated
before the compromise also retain this indistinguishability,
as k′ = PRG(k). Second, the adversary gains no meaning-
ful information from control messages containing encrypted
previous keys, as the IND-CPA security of the PKE scheme
ensures that these ciphertexts reveal no meaningful informa-
tion about the plaintext keys and are indistinguishable from
encryptions of random values.

Post-Compromise Security. Assuming that no chatbot is
compromised, we show that for an external adversary with ac-
cess to messages T and the state of a compromised member,
if a group member performs an uncompromised operation
at epoch t, then the subsequent key ki for i > t is indistin-
guishable from a uniform random distribution. This claim
is based on principles similar to those supporting FS, where
post-compromise group keys generated by a PRG are indis-
tinguishable from random. In addition, the IND-CPA security
of the PKE scheme ensures that control messages reveal no
meaningful information about the future keys to an attacker.

Sender Anonymity. Assuming that the new leaf secret cho-
sen during key updates of TreeKEM is uniformly random, we
show that a chatbot adversary cannot significantly distinguish
any message bundle between any two group members. Infor-
mation in the message bundle comprises a constant chatbot
identifier, a group public key derived from a uniformly ran-
dom leaf secret via PRG operations, and a ciphertext secured
under IND-CPA is indistinguishable from random.

Selective Message Access. We show that a chatbot adversary
within a group cannot distinguish any unauthorized key k from
a uniform random distribution by adhering to both forward se-
crecy and post-compromise security. For a chatbot adversary
A authorized with key kt at epoch t, forward secrecy ensures
that all previous keys ki for i < t are secure and indistinguish-
able from random because they are generated via a PRG from
a uniformly random source. In addition, these keys maintain
indistinguishability under IND-CPA security because the con-
trol messages do not contain ciphertexts encrypted with the
public key of A . On the other hand, post-compromise secu-
rity protects all subsequent keys ki for i > t, preventing A
from obtaining knowledge of these unauthorized keys and
thus protecting future communications within the group.

6.2 Performance Analysis
This section analyzes the overhead of our protocol, both the-
oretically and empirically, and compares it to other secure
group messaging protocols.

6.2.1 Theoretical Performance Analysis

In our protocol, the setup phase for a group with n users and m
chatbots involves O(n+m) public-key encryption (PKE) and
hash operations, where the TreeKEM of user subtree construc-
tion requires O(n) PKE and hashes, and computing shared
keys for each chatbot takes O(m) PKE and hashes. Sending a
message to chatbots requires O(logn+m) complexity, where
updating user subtree requires O(logn) PKE and hashes, and
computing shared keys for each chatbot takes O(m) PKE and
hashes. Pseudonymity adds minimal overhead. The storage
requirement is O(n+m) for users and O(1) for chatbots. The
comparative result is presented in Table 3, and a more detailed
analysis is presented in Appendix C.

6.2.2 Experimental Performance Evaluation

We implemented SnoopGuard using Go. Our prototype im-
plementation includes two versions: one extends the existing
libsignal library [58], where individual chats follow the
Signal Protocol and group chats follow the Sender Keys Pro-
tocol; the other version is based on the Messaging Layer
Security (MLS) protocol, using the go-mls library [22]. We
conducted our experiments on a Mac mini equipped with
Apple M2 processor and 16GB of RAM.

Figure 4 shows the time required to add a chatbot to groups
of different sizes, measured from the initiation of the addi-
tion process to its completion for all users. Regardless of the
underlying protocol, adding a chatbot to a group of 50 mem-
bers takes about 2 milliseconds in our protocol, while it takes
about 30 milliseconds in both original protocols. Adding a
pseudonymous chatbot to a group incurs higher overhead due
to pseudonym registration, but this can be minimized by com-
bining registration with the user’s first message to the chatbot,
avoiding extra roundtrips.

Figure 5 shows the time required to send a message to
group members and chatbots, from the start of encryption to
the point where all users and chatbots have decrypted the mes-
sage. Sending a message to 50 members and 10 chatbots takes
about 10 milliseconds when integrated with MLS and about 5
milliseconds when integrated with the Sender Keys Protocol.
The overhead of sending a message increases linearly with
the number of chatbots, which is consistent with the theo-
retical analysis. Pseudonymity introduces a small additional
overhead due to the signature processes involved.

To evaluate the performance of our protocol on resource-
constrained devices, we also benchmarked chatbot addition
and message encryption on low-end containers, as shown in
Figure 7 and Figure 8 in the appendix. We conclude that our



number of exponentiations number of encryptions or hashes
sender per user per chatbot sender per user per chatbot

Sender Keys
setup O(n+m) O(n+m) O(n+m) O(n+m) O(n+m) O(n+m)

ongoing 0 0 0 O(1) O(1) O(1)

(A)ART
setup O(n+m) O(log(n+m)) O(log(n+m)) 0 0 0

ongoing O(n+m) O(n+m) O(n+m) O(1) O(1) O(1)

MLS
setup O(n+m) O(1) O(1) O(n+m) O(log(n+m)) O(log(n+m))

ongoing O(log(n+m)) O(1) O(1) O(log(n+m)) O(log(n+m)) O(log(n+m))

Ours
setup* O(n+m) O(1) O(1) O(n+m) O(logn) O(1)

ongoing O(logn+m) O(1) O(1) O(logn+m) O(logn) O(1)

*: The overhead for registering pseudonyms, which is equivalent to sending a message from each user to the chatbot, is omitted.

Table 3: Computation complexity comparison. n = number of group members, m = number of chatbots.

messaging protocol does not introduce prohibitive overhead
for users or chatbots, even on lower-end devices. A more
detailed analysis and the full results of our experiment are
presented in Appendix D.
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7 Discussions

7.1 Integrating Other Privacy Mechanisms
Our modular design supports seamless integration with ex-
isting privacy solutions for group messaging. The user sub-
tree component of CMRT is built on an abstraction of the
CGKA scheme, allowing it to be replaced by other CGKA-
based protocols, provided they satisfy the requirements for FS
and PCS. For instance, integrating administrated CGKA [8]
could additionally strengthen group administrative controls.
Metadata-hiding techniques can also be employed to enhance
user privacy against group outsiders. For instance, applying
CGKA-based membership-hiding methods [34, 41], which
encrypts and authenticates group metadata using the shared
group key, can ensure membership anonymity. Similarly, ap-
plying MLS’s Private Message [9], which encrypts control
messages, can conceal sender identities.

7.2 Limitations of SnoopGuard
The effectiveness of SnoopGuard heavily relies on the ac-
curacy of the trigger function in determining the relevance
of messages. A poorly designed or maliciously crafted trig-
ger function could mark all messages as relevant, granting
a chatbot unrestricted access despite SnoopGuard’s protec-
tions. Addressing this issue may be beyond the scope of the
messaging protocol itself. Instead, a vetting process, either
manual or automated, could be implemented to mitigate such
abuses of trigger functions. Additionally, while we identify
two key privacy properties against overprivileged chatbots,
namely selective message access and sender anonymity, the
list may not be exhaustive. As new risks emerge and addi-
tional privacy properties are proposed, SnoopGuard can serve
as a foundation for future refinements.

7.3 Roadmap Toward a Privacy-Preserving So-
lution for Chatbots

Developing privacy-preserving chatbots for group messaging
platforms is a complex challenge that involves both technical
and user-centric considerations. While SnoopGuard provides
a foundational framework by addressing two key privacy prop-
erties at the protocol level, there remain broader areas for
exploration.

Enhancing Usability. One important direction is to improve
the usability of privacy-preserving chatbots. This includes
designing intuitive interfaces that inform users of the chat-
bot’s presence, clearly communicate chatbot permissions, and
enable seamless workflows for granting or restricting access.
For example, Keybase displays chatbot permissions on instal-
lation pages and notifies users that a chatbot can read their
messages by displaying an icon next to those messages [45].
However, to our knowledge, no user studies have been con-
ducted to evaluate the effectiveness of design approaches for
communicating chatbot permissions.

Designing Permission Model. Refining permission models
for chatbots is another important area of research to enhance
privacy protections. Previous research on Android permis-



sions has explored automated, context-aware permission deci-
sion support [37, 70]. Building on this approach, future work
could focus on developing dynamic and adaptive permission
frameworks designed for evolving group dynamics and user
needs. These frameworks could integrate natural language
processing (NLP) techniques to help users decide whether
a chatbot can read certain messages or a message should be
sent anonymously, thereby reducing users’ cognitive load.

Understanding User Perceptions. Understanding users per-
ceptions, acceptance, and trust of privacy-preserving chat-
bots is critical. Several studies have explored users’ privacy
concerns and perceptions of chatbots in one-on-one interac-
tions [38, 39, 44], but group chat settings remain underex-
plored. Understanding how users perceive privacy features,
what concerns they prioritize, and how they interact with these
systems is essential to improving adoption and engagement.

8 Related Work

This work presents a secure group messaging protocol pro-
tecting users’ privacy from chatbots. In the previous sections,
we reviewed secure messaging protocols and messaging plat-
forms supporting chatbots. This section further considers
related work on chatbots’ security and privacy issues and
permission frameworks in smart devices.

8.1 Chatbot Security

Several studies have conducted large-scale security evalua-
tions of chatbots on modern messaging platforms. Edu et
al. [33] analyzed over 15,000 Discord chatbots and found
that over 40% of the chatbots examined ask for permission
to access message history, but less than 5% of them offer a
privacy policy. Similarly, Chen et al. [20] analyzed design
flaws in chatbot-like third-party apps on Business Collabora-
tion Platforms (BCP), such as Slack. Their analysis showed
that these apps can steal messages or impersonate users. The
use of runtime policy checks and explicit user confirmation
are suggested as countermeasures. These studies underscore
the privacy risks associated with chatbots, providing strong
motivation for our work.

Biswas [14] proposed methods for service providers to
filter encrypted messages sent to chatbots using searchable
encryption [15]. While their objective aligns with our goal of
selective message access, their approach lacks robust E2EE
properties like FS. Nonetheless, their work highlights the po-
tential for achieving selective message access through service
providers while protecting message confidentiality.

8.2 Permission Frameworks in Smart Devices

Mobile and web app permissions are well-studied, with find-
ings showing that user-consent models often fail to inform

users effectively about privacy risks. Chia et al. [21] con-
ducted a large-scale study on Facebook apps, Chrome exten-
sions, and Android apps. They revealed that many apps use
misleading tactics to request excessive permissions. Simi-
larly, Felt et al. [35, 36] found Android’s permission system
ineffective because developers often fail to follow the least
privilege principle, leading to over-privileged apps, and users
often ignore or misunderstand permission warnings, leading
to uninformed decisions. These challenges highlight the im-
portance of ensuring that the trigger function in our protocol
is both developer-friendly and capable of clearly communi-
cating permissions to users.

Smart speakers, like chatbots that constantly listen to mes-
sages, face similar challenges due to their always-on mi-
crophones. Manikonda et al. [53] found that users reported
heightened privacy concerns after learning about the always-
listening nature of smart speakers. Lau et al. [49] identified
widespread user misunderstandings and limited use of privacy
controls. Moreover, both Dubois et al. [32] and Schönherr et
al. [57] demonstrated that smart speakers, when actively lis-
tening for activation words, can be unintentionally triggered,
leading to unintended recordings. Chatbots in group chats,
which may also operate in an always-on mode, could raise
similar concerns when chatbots are mistakenly triggered.

9 Conclusion

This paper identifies two key privacy issues in group messag-
ing protocols involving chatbots, and highlights the lack of
existing platform that adequately addresses these issues while
preserving robust E2EE. To address these challenges, we in-
troduce selective message access and two forms of sender
anonymity, and propose a secure group messaging protocol
called SnoopGuard, which efficiently manages multiple keys
among group members and chatbots while ensuring sender
anonymity. The theoretical analysis confirms the possibility
of achieving the claimed properties without significant over-
head, and our implementation demonstrates both its efficiency
and its seamless integration into existing secure messaging
services. Finally, we present a roadmap toward a more com-
prehensive solution to this problem, aiming to raise awareness
and inspire future research on this critical issue.
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Ethical Consideration

Our study is based on two publicly available conversation
datasets, both of which were collected from public chat rooms
and compliant with the policies of the respective messaging
services. The datasets are fully anonymized, and we do not
attempt to re-identify any member, except a chatbot as clearly
discussed in Section 3. When consulting about the chatbot,
one of the researchers used their authentic Discord account
and asked in a public channel.

Telegram, Slack, and Discord are aware of the chatbot secu-
rity issues to the extent that they already provide mitigations
that do not work with E2EE. For platforms without official
chatbot support, such as WhatsApp, disguising chatbots as
users is against their terms of service. Therefore, we see no
imminent need to inform them about the issues. We are in the
process of informing LINE about the issues.

Open Science

The analysis scripts for the Pushshift Telegram dataset
used in Section 3.2, the basic chatbot implementations for
various messaging services discussed in Section 4.2, and
the prototype implementation of SnoopGuard mentioned
in Section 6.2.2 are available at https://github.com/
csienslab/snoopguard-artifact and https://zenodo.
org/records/14729613.
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A Cryptographic Primitives

A.1 Pseudorandom Generators

Let W be the domain and range of the pseudorandom genera-
tor (PRG). A PRG is a function PRG : W →W that, given
an input U uniformly sampled from W , produces an output
PRG(U) that is indistinguishable from a uniformly random
element U ′ ∈W . The security of a PRG is measured by the
advantage for an attacker A has in distinguishing between
PRG(U) and U ′, denoted as AdvPRGprg (A).

Definition 2. A PRG scheme is secure if for all efficient ad-
versaries A and a security parameter λ, there is a negligible
function negl such that AdvPRGprg (A)≤ negl(λ).

A.2 Public Key Encryption
A public-key encryption (PKE) scheme PKE =
(PKEG,PKEnc,PKDec) consists of the following al-
gorithms:

• (sk,pk)←$ PKEG(s): Generates a PKE key pair from a
secret s.

• c←$ PKEnc(pk,m): Encrypts the message m using the
public key pk and outputs a ciphertext c.

• m← PKDec(sk,c): Decrypts the ciphertext c using sk
and outputs the message m.

IND-CPA security. Consider the following game:

IND-CPAA
PKE(λ)

b←$ {0,1}

(sk,pk)←$ PKEG(1λ)

(m0,m1)←$ A(1λ,pk)

c←$ Enc(pk,mb)

b′←$ A(1λ,c)

return 1b=b′

Definition 3. Let AdvPKEIND-CPA(A) denote the advantage of
adversary A winning the IND-CPA game, A PKE scheme is
CPA− secure if for all efficient adversaries A and a security
parameter λ, there is a negligible function negl such that

AdvPKEIND-CPA(A)≤ negl(λ).

B Pseudoprocedure of SnoopGuard

This section presents the pseudoprocedure of our group mes-
saging protocol in Figure 6. A user with state γ sends a mes-
sage m by invoking usr–send(γ,m), which generates a con-
trol message T . Other users update their states by calling
proc(γ,T ), while only the triggered chatbots can successfully
decrypts the message m by invoking cbt–recv(γ,T ), where γ

represents their respective states. Similarly, the chatbots send
a message with cbt–send, which generates control message
T to be processed by usr–recv. The operations set–pk and
get–pk represent incorruptible operations for registering and
retrieving metadata associated with a chatbot identified by
CID from the service provider.

C Theoretical Performance Analysis of the Se-
cure Group Messaging

This section extends Section 6.2.1 by presenting a more de-
tailed analysis of the theoretical performance of our secure
group messaging protocol.
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init(ID)

1 : γ.s0← CGKA.init(ID)

2 : γ.cbts[·]←⊥
3 : return γ

create(γ, ID1, . . . , IDn)

1 : (γ.s0,T )← CGKA.create(γ.s0, ID1, . . . , IDn)

2 : return (γ,T )

add–cbt(γ,CID)

1 : gpk← γ.s0.gpk // user subtree’s pk

2 : (pkCID, fCID,s)← get–pk(CID)

3 : k←$ {0,1}λ;(csk,cpk)← PKEG(k)

4 : e← PKEnc(pkCID,k)

5 : T ← (add–cbt,CID,gpk,cpk,e)

6 : return (γ,T )

proc(γ,T = (add–cbt,CID,gpk,cpk,e))

1 : (pkCID, fCID,s)← get–pk(CID)

2 : assert Vf(pkCID,s, fCID) // checks integrity

3 : γ.cbts[CID]← ( fCID,γ.s0.gsk,cpk)

4 : return γ

rem–cbt(γ,CID)

1 : T ← (rem–cbt,CID)

2 : return (γ,T )

proc(γ,T = (rem–cbt,CID))

1 : γ.cbts[CID]←⊥
2 : return γ

usr–send(γ,m)

1 : (γ.s0,T0),← CGKA.upd(γ.s0)

2 : (γ.s0,k)← CGKA.proc(γ.s0,T0)

3 : (gsk,gpk)← PKEG(k)

4 : k′←H(k)

5 : c← Enc(k′,m) // encrypts the message

6 : T ← (T0,c,gpk)

7 : for CID : fCID(m) = 1

8 : cpk← γ.cbts[CID].cpk

9 : e← PKEnc(cpk,k′)

10 : T ← T ∥ (CID,e)

11 : γ.cbts[CID].gsk← gsk

12 : return (γ,T )

proc(γ,T = (T0,c,gpk,(CIDi,ei)i=1...n))

// This processes T generated by usr–send

1 : (γ.s0,k)← CGKA.proc(γ.s0,T0)

2 : (gsk,gpk)← PKEG(k)

3 : for i = 1 . . .n

4 : γ.cbts[CIDi].gsk← gsk

5 : return γ

usr–recv(γ,T = (CID,c,e,cpk))

1 : k′← PKDec(γ.cbts[CID].gsk,e)

2 : m←Dec(k′,c)

3 : γ.cbts[CID].cpk← cpk

4 : return (γ,m)

init(CID, fCID,(skCID,pkCID))

1 : γ.ME← CID

2 : γ.gpk←⊥
3 : (γ.skCID,γ.pkCID)← (skCID,pkCID)

4 : (γ.csk,γ.cpk)← (⊥,⊥)
5 : s← Sign(skCID, fCID)

6 : set–pk(CID,pkCID, fCID,s)

7 : return γ

proc(γ,T = (add–cbt,CID,gpk,cpk,e))

1 : γ.gpk← gpk

2 : k← PKDec(γ.skCID,e)

3 : (γ.csk,γ.cpk)← PKEG(k)

4 : return γ

cbt–send(γ,m)

1 : k←$ {0,1}λ

2 : (γ.csk,γ.cpk)← PKEG(k)

3 : k′←H(k)

4 : c← Enc(k′,m) // encrypts the message

5 : e← PKEnc(γ.gpk,k′)

6 : T ← (γ.ME,c,e,γ.cpk)

7 : return (γ,T )

cbt–recv(γ,T = (T0,c,gpk,(CIDi,ei)))

// Only processes (CIDi,ei) where CIDi = γ.ME

1 : k′← PKDec(γ.csk,ei)

2 : m←Dec(k′,c)

3 : γ.gpk← gpk

4 : return (γ,m)

Figure 6: The SnoopGuard protocol. Unboxed algorithms are used by users while boxed algorithms are used by chatbots.

Baseline. For setup phase, the group initiator uses O(n+m)
PKE operations and O(n+m) symmetric operations. The
construction of the TreeKEM with n members involves O(n)
PKE operations and hash operations, respectively. To compute
the shared secret for each chatbot, the initiator also performs
O(m) PKE operations and hash operations, respectively. For
the receivers, each user requires O(1) PKE operations and
O(logn) hash operations to initiate the TreeKEM. For each
chatbot, it takes O(1) PKE operations to decrypt the secret,
but only O(1) hash operations to compute the shared secret
due to the unbalanced tree structure.

Suppose a user sends a message to the chatbots. The mes-
sage sender performs O(logn+m) PKE operations and sym-
metric operations, respectively. Updating the TreeKEM in-
volves O(logn) public key generations and hash operations.
Each chatbot takes O(1) PKE operations and hash operations
for the sender to do the key update and message encryption,
respectively, and there are m chatbots, imposing O(m) over-
head. Message recipients, including users and chatbots, per-
form identical actions as in the setup phase to update the
secret, resulting in the same overhead.

Adding a chatbot to the group is almost the same as sending

a message to a chatbot. The initiator performs O(logn) PKE
operations and symmetric operations, respectively, to update
the TreeKEM. Both the chatbot and other members perform
the same actions as in the setup phase to update the secret.

Pseudonymity. For the setup phase, registering a pseudonym
is equivalent to sending a message to the chatbot. For the
ongoing phase, using pseudonyms requires both sender and
receiver O(1) additional PKE operations to create and verify
the signature. This does not affect the overall complexity.

Trigger Concealment. The sender fakes key updates using
random bytes and sends them to chatbots that should not
receive the message. This is equivalent to triggering all chat-
bots, and therefore maintaining the same complexity for the
ongoing phase.

Storage Overhead. The storage overhead for each user is
O(n+m), which includes O(n) keys for the TreeKEM and
O(m) keys for all the chatbots. This is equivalent to the MLS
with n+m members. However, each chatbot only needs to
store O(1) public key for users’ subtree. This represents an ad-
vantage compared to MLS, which requires O(m+n) storage
for each chatbot.



D Experimental Performance Evaluation of
the Secure Group Messaging

This section extends Section 6.2.2 and presents the full results
of our experiments, as well as a more detailed analysis of the
results.

Adding a Chatbot. To demonstrate that adding a chatbot
has an acceptable overhead, we measure the time from the
initiation of the invitation to the chatbot until all members and
chatbots complete the necessary key exchanges. In the case of
a pseudonymous chatbot, all users register their pseudonyms.

Figure 4 illustrates the time spent adding a chatbot to a
group with varying group sizes, based on different levels of
sender anonymity. For comparison, we also include the tra-
ditional scenario where the chatbot is treated as a user. For
the Signal Protocol (Sender Keys Protocol), adding a chatbot
to an IGA-secure group takes significantly less time because
there is no need to distribute sender keys. For the MLS pro-
tocol, the original protocol takes slightly more time due to
the larger group size, as chatbots are counted as members and
therefore cause more overhead when adding members.

Sending a Message. The timer starts when the sender’s client
takes the plaintext and stops when the last receiver decrypts
and outputs the message content. For each experiment, we
maintain a fixed group size of 50 members and measure the
time it takes for all group members and chatbots to receive the
message. We assume that all chatbots will receive the message
regardless of the content, showing the worst-case scenario.
Our experiments focus on the efficiency of our protocols with
respect to the number of chatbots. We did not consider the
effect of group size because we use the underlying protocol
for group members, and the efficiency of the Sender Keys
Protocol and MLS are not relevant in our experiments.

Figure 5 shows the time required to send a message to
group members and chatbots with varying levels of sender
anonymity, as well as whether to conceal triggers from the
service provider. We also include the traditional scenario
for comparison. Consistent with the theoretical analysis, our
protocol introduces overhead linear to the number of chatbots.
Pseudonymity results in slightly higher overhead, possibly
due to the additional signature processes.

Performance on Resource-Constrained Devices. Most
users access messaging services on mobile devices. To demon-
strate that our protocol performs well under mobile-like con-
straints, we simulate its behavior in environments with limited
CPU resources. Specifically, we run our protocol in Docker
containers with CPU allocations ranging from 0.5 to 1.0 CPUs.
Each container was benchmarked using Geekbench 6 [2], a
widely-used tool for assessing mobile device performance, to
understand how the allocated resources perform. After estab-
lishing the performance baseline, we simulate the protocol in
the constrained environment. For the chatbot addition experi-

ment, we measure the time required for the device to generate
all the necessary information, complete the key exchange, and
register a pseudonym, if applicable. For the message send-
ing scenario, we compute the time required for the device
to generate all ciphertexts of the messages and, if necessary,
the required signatures. Unlike previous experiments that
evaluate overall system performance, this setup isolates the
computation performed on a single device to evaluate the
protocol’s suitability for resource-constrained environments.

The CPU constraints used in our experiments resulted in
Geekbench 6 single-core scores ranging from 1,171 to 2,629.
These scores represent a spectrum from budget smartphones
(e.g., Qualcomm Snapdragon 865, MediaTek Dimensity 8100)
to high-end devices (e.g., Apple M2, Apple A16) as of 2024.

Figure 7 shows the results of the chatbot addition experi-
ment for a group with 50 members and 30 chatbots. Without
pseudonymity, the overhead remains below 15 ms for all CPU
configurations. With pseudonymity enabled, the overhead in-
creases slightly due to pseudonym generation, but remains
below 20 ms even on the most constrained CPU setting. Fig-
ure 8 shows the results of the message sending experiment
for the same group configuration. Using the Signal protocol,
the time to generate ciphertexts remains below 5 ms, even
with the lowest CPU allocation. While MLS introduces more
overhead, it remains below 10 ms for all configurations.

These results show that SnoopGuard performs efficiently
across devices, from low-end to high-end, with minimal la-
tency even under significant CPU constraints, making it suit-
able for diverse mobile devices.
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Figure 7: Adding chatbot with sender anonymity under vari-
ous CPU constraints
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