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Abstract—Numerous vital applications depend on accurately
synchronized time, and disruptions can yield severe conse-
quences in terms of safety and security. Yet, establishing
cost-efficient and robust synchronization across geographically
distributed devices is challenging. Many solutions for global
time synchronization require placing trust in a single entity or
system, for example in Global Navigation Satellite Systems
(GNSSes) or leased infrastructure providers, constituting a
single point of failure and often incurring high costs. An alter-
native, cost-effective solution is to run time synchronization
over the Internet. However, this approach faces challenges
in achieving (i) precise time synchronization, (ii) robustness
to failing, misconfigured, or compromised nodes, and (iii) ro-
bustness to congestion-related issues such as volumetric DDoS
attacks. Existing proposals mostly attempt to solve challenges
(i) and (ii), but none provide robustness against congestion and
volumetric DDoS.

We address the challenges identified in previous work with
Everdeen. Everdeen minimizes costs by running on existing
Internet infrastructure and avoids relying on any single en-
tity by enabling nodes to mutually synchronize time. The
core innovation of Everdeen is its weighted neighbor-based
(WNB) synchronization mode, where participants synchronize
exclusively with their direct neighbors. Our evaluation shows
that Everdeen provides better time synchronization quality at
lower communication overhead compared to prior work. It is
also considerably more robust against failing, misconfigured,
or compromised hosts. Most importantly, we experimentally
demonstrate that time synchronization traffic protected with
Everdeen is unaffected by network congestion, including vol-
umetric DDoS attacks.

1. Introduction

In the ever-evolving landscape of distributed systems and
their diverse applications, attaining precise and reliable time
synchronization is imperative for seamless coordination,
data integrity, and secure communication. A wide range of
applications, from ATMs to seismic event monitoring and
power grid management, all depend on precisely synchro-
nized time. Notably, in critical sectors such as telecom-
munications, emergency services, energy, and finance, the
failure to attain synchronized time can jeopardize safety and
security [1], [2], [3]. In the Russian invasion of Ukraine,
for example, time synchronization is actively attacked to

prevent coordination between different parts of the electric
grid, resulting in outages [4].

While some services only require local synchronization,
such as among servers in a data center or hosts within a
single provider’s network, others require synchronization
across larger geographical areas, or even globally. Unfor-
tunately, current solutions for time synchronization across
large regions often necessitate placing trust in a single entity
or system, constituting a single point of failure.

A prime illustration of this dependency is the prevalent
reliance on GNSSes (Global Navigation Satellite Systems).
To synchronize clocks effectively, a common approach is to
deploy GNSS receivers across all servers involved in oper-
ating a distributed service. This practice essentially entrusts
the reliability of timing entirely to GNSSes. Similarly, in the
NTP (Network Time Protocol) architecture, the hierarchical
design mainly relies on primary time servers synchronizing
with GNSSes, where lower-tier servers synchronize with
those higher in the hierarchy, presenting a scalable solution
for achieving synchronized time even on a global scale.
However, this design heavily depends on the accuracy and
availability of GNSSes, which constitute the topmost layer
in this hierarchical structure and thus the architecture’s root
of trust. As such, this design poses significant risks. Both
GNSS receivers and systems are susceptible to various vul-
nerabilities, encompassing natural phenomena and deliberate
interference. GNSS receivers are faced by threats such as
jamming, spoofing, meaconing, and multipath reflections,
while GNSS systems are vulnerable to malfunctions, mis-
configurations, space debris, solar disturbances, and cyber
attacks aimed at the satellite control infrastructure [1], [5],
[6], [7], [8]. This broad spectrum of potential vulnerabilities
has resulted in increased regulatory demands for GNSS
independence [9], [10], [11].

To reduce this dependency, alternative solutions aim to
synchronize clocks over wide area networks. Still, central-
ization of trust and a large variety of possible attacks pose
significant challenges also to those solutions. For instance,
servers running distributed services requiring synchronized
time might be interconnected through leased infrastructure
to counter volumetric Distributed Denial of Service (DDoS)
attacks and to ensure necessary communication qualities
such as symmetric latency and low jitter. While effective,
leased infrastructure demands substantial trust in the infras-
tructure provider and incurs high costs. A more economical
alternative involves clock synchronization over the public
Internet. Yet, this avenue introduces potential communica-
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tion disruptions due to unpredictable jitter and necessitates
trust in the Internet’s resilience against attacks. Such trust
is often unwarranted, as synchronization methods reliant
on the Internet can be susceptible to manipulation by on-
path attackers who may tamper with, replay, delay, or drop
packets [12], [13], [14]. Moreover, congestion can lead to
asymmetric latencies and therefore erroneous time offset
calculations, or even complete communication disruptions.
Also, misconfigured or compromised time servers can po-
tentially propagate inaccurate time information.

Apparently, achieving affordable global time synchro-
nization without placing trust in a single entity or system is
challenging. As we elaborate in Section 8, existing solutions
from both industry and academia have proven unsatisfactory
in addressing this problem. This calls for mechanisms that
work in a federated way to overcome centralization and that
leverage existing Internet infrastructure to allow operating at
low costs. Such federated mechanisms synchronizing time
over the Internet need not only be scalable, but also be able
to achieve the necessary synchronization precision and be
robust to faulty, misconfigured, and compromised nodes as
well as to congestion, which can arise either naturally from
high demand or be caused by volumetric DDoS attacks.

As a concrete instantiation of such a mechanism, we
propose Everdeen.1 Everdeen is designed to deliver synchro-
nized time across large regions or even globally, encompass-
ing many Autonomous Systems (ASes), i.e., independent
networks forming the Internet. Compared to prior solutions,
Everdeen improves synchronization performance by reduc-
ing clock skew while simultaneously lowering communica-
tion overhead. It is also more robust against a larger fraction
of faulty, misconfigured, and compromised nodes in the net-
work. Most importantly, Everdeen addresses the previously
unsolved problem of protecting time synchronization traffic
from congestion, a common limitation of earlier systems.
Our key insight is that synchronization traffic on long inter-
domain forwarding paths is much harder to protect than
communication between neighboring ASes. Intuitively, the
longer the path, the higher the probability of encountering
at least one faulty or malicious on-path entity. Even if all
on-path entities are benign, protecting communication on
long paths against volumetric DDoS attacks (launched by
off-path attackers) is challenging.

This insight leads us to propose that nodes only synchro-
nize time with their immediate neighbors, rather than with
all nodes. In Everdeen, a node’s clock therefore influences
remote nodes only through transitive propagation over mul-
tiple synchronization rounds. We refer to this as weighted
neighbor-based (WNB) mode. In WNB, an AS does not
treat synchronization results of each neighboring AS the
same when deciding on how to adjust its clock. Instead,
it assigns a weight to each neighboring AS that specifies
the importance of the corresponding measurement results.
The weights are chosen in a way that ensures provable se-

1. Inspired by the character Katniss Everdeen from the "The Hunger
Games" series, known for her resilience and agility and for becoming a
symbol of resistance in a dystopian world.

curity properties compared to prior systems. Neighbor-based
synchronization allows early filtering of faulty or compro-
mised measurements instead of propagating this information
through the whole network. Furthermore, it enables effec-
tive protection against congestion: With Everdeen’s DDoS-
resistant One-hop Synchronization Channel (DOSC), even
volumetric DDoS attacks cannot cause time synchronization
packets between two ASes to be delayed or dropped.

We make the following contributions:
• Everdeen, with its key components WNB and DOSC,

the first low-cost solution for global time synchro-
nization that is robust against faulty, misconfigured,
compromised, and unavailable nodes and GNSSes, and,
in particular, against congestion.

• Formal proof that for every network topology and
adversary distribution, Everdeen is always at least as
robust to faulty, misconfigured, compromised, unavail-
able, and actively malicious nodes as prior solutions.

• Simulations on the CAIDA Internet topology showing
that Everdeen is ∼3× less affected by faulty, mis-
configured, or compromised time servers than existing
solutions. It also achieves better skew, reduces message
overhead by ∼2×, and cuts communication overhead
by ∼4×, all while running on commodity hardware.

• Evaluation of the impact of volumetric DDoS showing
that, without DOSC, time synchronization traffic is
highly vulnerable; however, with DOSC, it remains
working correctly even under heavy congestion.

• Incremental deployability, benefiting early adopters
with better synchronization, performance, and security.

All our code is open-source, reproducible, and designed for
simple installation, execution, and customization.2

2. Internet Time Synchronization Challenges

Implementing time synchronization over the Internet
faces three main challenges: (i) precise synchronization, (ii)
robustness against faulty nodes, and (iii) defense against
congestion and DDoS attacks. This section explores how
different proposed systems address these challenges and
examines the limitations of each approach. An overview is
given in Table 1, with further discussion in Section 8.
Precision (P). The goal of time synchronization is to
ensure that distributed participants agree on a common
time. As clocks naturally drift, synchronization systems
must regularly exchange information to maintain consistent
time across all participants. A key performance metric for
these systems is clock skew, which is the maximum time
difference between any two participants; lower clock skew
is preferable, indicating better synchronization. Internet time
synchronization faces challenges in terms of path latency
asymmetry and jitter. Asymmetric paths have unequal travel
times for messages in each direction, leading to incorrect
time offset calculations. Jitter introduces variability in packet
delay, causing fluctuations in these calculations. Internet

2. We will make our source code publicly available.



time synchronization is well-established, with the NTP be-
ing the most prominent example.
Fault Tolerance (F). Time synchronization needs to be
robust to faulty, misconfigured, and compromised nodes.
To achieve such robustness, synchronization algorithms are
often designed to be Byzantine fault-tolerant [16]. In a
topology corresponding to a complete graph, fault-tolerance
allows those algorithms to withstand up to one-third of
faulty, misconfigured, or compromised nodes, ensuring
that well-functioning nodes maintain closely synchronized
clocks [17]. However, the Internet does not correspond to
a fully connected graph: Not all ASes are peering directly
with each other, some ASes can only reach each other over
longer inter-domain paths. Consequently, there might exist
malicious entities on the path between two benign ASes that
can influence the corresponding time synchronization mea-
surements, for example by introducing asymmetric delay or
dropping packets. The existence of longer communication
paths in the Internet with potentially malicious on-path
entities implies that time synchronization algorithms can
only be robust against less than one third of malicious nodes.

In most of the proposed fault-tolerant time synchroniza-
tion systems, any node measures its time offset with any
other node, applies a fault-tolerant midpoint function, and
adapts the time value of its local clock accordingly. We refer
to this mode of operation as any-to-any (A2A) mode, which
encompasses various systems, including the most pertinent
and contemporary systems in the domain, for example G-
SINC [18]. In this paper, we will therefore extensively
evaluate Everdeen’s weighted neighbor-based (WNB) mode
against A2A, and thus implicitly assess Everdeen against all
systems adopting the A2A mode.
Congestion and Volumetric DDoS (C). Congestion can
happen naturally due to high demand or be caused by
network-targeting volumetric DDoS attacks aimed at net-
work links or routers. Due to packet drops or delayed
packets, which introduce asymmetric latency, congestion can
significantly disrupt time synchronization availability and
precision. Such disruptions thus allow malicious entities to
manipulate time offset measurements between synchroniza-
tion peers. With DDoS attacks, disruptions are possible even
if the entity is neither a synchronization peer nor on their
communication path. We stress that DDoS attacks cannot
simply be classified and handled as byzantine faults, as
a single malicious entity can potentially cause disruptions
between any two benign nodes in the network. While pre-
cisely targeted attacks may pose practical challenges, e.g.,
due to topological constraints limiting the reach of malicious
entities, defending against volumetric DDoS attacks remains
a complex task. Achieving availability is often considered
more challenging than other security properties such as
confidentiality or integrity [19].

Much work has focused on abusing time synchroniza-
tion systems for DDoS attacks, such as NTP amplification
attacks [20], [21], however, little attention has been given
to defending time synchronization communication against
volumetric DDoS. As discussed in the related works section,
existing volumetric DDoS defense solutions have signifi-

TABLE 1: Various systems and the challenges they address
(P: precision, F: fault tolerance, C: congestion).

Challenges
Mode System P F C

other NTP stratum model ✔ ✗a ✗
GTSP ✔ ✗ ✗

A2A Lynch-Welch ✔ ✔b ✗
G-SINC ✔ ✔b ✗

WNB Everdeen ✔ ✔ ✔

a Clients can query multiple servers, but the NTP model remains
centralized and thus vulnerable due to heavy reliance on GNSSes.
b Everdeen is robust against more faulty, misconfigured, compro-
mised, or unavailable participants than A2A systems (Section 5).

cant limitations. These include circular dependencies, where
traffic can only be protected if time is already closely
synchronized. Other approaches are reactive, attempting to
distinguish benign from DDoS traffic to block DDoS traffic,
and many are vulnerable to source address spoofing or fail to
defend against legitimate-looking attack traffic. To the best
of our knowledge, Everdeen is the first global Internet time
synchronization system designed to fundamentally address
the problem of volumetric DDoS.

3. Assumptions and Objectives

3.1. Time Synchronization Terminology

Our model is a graph G = (V , E), where V is the set
of nodes representing ASes, and E the set of (bidirectional)
inter-domain links. We use the terms AS and domain inter-
changeably. Every node v ∈ V runs a time server with a
GNSS receiver and a hardware clock, where we model the
latter as an increasing function Hv(t) returning the clock’s
output at real time t. Node v has no access to t; it can
only measure the progress of time by querying Hv(t). We
assume that the hardware clock drift is bounded, i.e., that
there exists some γ such that (1− γ) ≤ dHv

dt (t) ≤ (1 + γ).
The goal of clock synchronization is to compute a log-
ical clock Lv for every node v, such that (i) all nodes
closely track the real time (accuracy), (ii) their mutual
time difference is minimized (skew), and (iii) their clock
rates are bounded to prevent unpredictable jumps, rapid
increases, or reversals in time values. Consequently, our
aim is to minimize (i) A(t) := maxv ∈ V {|Lv(t) − t|},
(ii) S(t) := maxv,w ∈ V {Lv(t) − Lw(t)}, and (iii) µ, with
(1− µ) dHv

dt (t) ≤ dLv

dt (t) ≤ (1 + µ) dHv

dt (t). This also serves
the purpose of preventing trivial solutions, such as all logical
clocks simply reporting a constant time.

3.2. Threat and Network Model

Threat Model. For synchronization with GNSSes, we do
not make assumptions about attackers’ capabilities. Attack-
ers may use any mechanism including jamming or spoofing



to provide an arbitrary GNSS time to an AS’ time server or
to prevent it from receiving any time reference altogether.
For network-based synchronization, we model the Internet
as a graph of edges and nodes, where nodes can be benign
or malicious, with every node m in the set of malicious
nodes M ⊆ V capable of arbitrary behavior (Dolev-Yao
model).3 Our proofs and simulations operate at this level of
abstraction. In practice, nodes represent ASes, and malicious
ASes (including end hosts, internal and border routers, and
infrastructure services) can therefore also behave arbitrar-
ily, i.e., eavesdrop, inject, drop, modify, or delay packets.
Similarly, attackers on an inter-domain link between two
ASes can manipulate traffic in any way. In such cases,
our model considers the link as malicious, and implicitly
also the measurement results between the respective time
servers. Our model also allows any end host, including those
within benign ASes or ASes not participating in Everdeen,
to launch volumetric DDoS attacks against any link or
router on the Internet. Ensuring the robustness of network-
based time synchronization against such DDoS attacks is
the primary contribution of our work.
Network Model. ASes participating in Everdeen are ex-
pected to deploy time servers and be correctly configured.
Our network model assumes that neighboring ASes are
directly connected through dedicated links. If AS connec-
tivity is established by means of an Internet Exchange Point
(IXP), we expect the IXP to implement mechanisms for
traffic isolation, such that inter-AS communication cannot be
disrupted by excessive traffic volumes of an other customer
AS of the IXP. As an alternative, an IXP may instead
explicitly participate in inter-domain routing by registering
as an AS. Furthermore, we assume that border routers can
process packets at line rate, i.e., that ingress packets do
not randomly get dropped due to the router not being able
to process them in a timely manner. Lastly, we assume
consensus on the set of participants, ensuring that each par-
ticipant observes the same set. We consider the challenge of
achieving this consensus as a separate problem, orthogonal
to the core focus of this paper. While for smaller topologies
a shared configuration file (e.g., as provided by a commonly
agreed upon party) might be sufficient, larger deployments
might require a more scalable solution like dissemination
of authenticated topology information among parties with
limited mutual trust using smart contracts running on a
blockchain [22]. Participants do not need full topology
knowledge, just two key pieces: (i) the set of participants
and (ii) the next hop to each destination participant.

3.3. Objectives

We aim to achieve the following objectives:
O1 Achieve high accuracy and low skew when GNSSes

are available, i.e., minimize A(t) and S(t).
O2 Maintain low skew even when GNSSes are unavailable,

faulty, or suffer from malicious interference.

3. For simplicity, we use ’malicious’ to refer collectively to malicious,
misconfigured, compromised, or faulty nodes.
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Figure 1: Everdeen overview. Nodes (ASes) keep synchro-
nized with low skew even when GNSSes are compro-
mised or unavailable. Everdeen also provides Byzantine
fault-tolerance and robustness against congestion, including
DDoS.

O3 Establish robustness against misconfigured, unavail-
able, or compromised time servers in the network.

O4 Protect time synchronization availability and precision
against prevalent threats on the Internet, in particular
against congestion caused by volumetric DDoS attacks.

O5 Avoid relying on single entities and centralized systems
to avoid single points of failure.

O6 Minimize implementation and deployment costs.
As we elaborate in the related works section, no solution we
are aware of simultaneously achieves all these objectives.

4. Everdeen

4.1. System Overview

This section describes the strategies implemented by
Everdeen to fulfill the objectives outlined in Section 3.3,
in particular the key components WNB and DOSC, and
previews the subsequent content of this paper. A high-level
overview of Everdeen is shown in Figure 1 and details on
its algorithms can be found in Appendix A.
1. Robustness against GNSS Issues. In Everdeen, time
synchronization nodes correspond to ASes. To closely align
the ASes’ clocks with Coordinated Universal Time (UTC),
ASes in Everdeen rely on GNSSes as a time reference (O1).
However, GNSSes may not always be available or accurate.
Solely relying on GNSSes as a single point of trust could
lead to de-synchronization of ASes during GNSS issues,
resulting in low accuracy and high skew.4 Importantly, our
goal is not to enhance the robustness of GNSSes themselves,
but rather to achieve globally synchronized time even in
the event of GNSS failures, misconfigurations, and attacks.
To reduce dependence on the GNSS ecosystem, ASes in
Everdeen additionally synchronize time among themselves

4. The GNSS ecosystem is considered a single point of trust even with
multiple systems, e.g., GPS, Galileo, GLONASS, and BeiDou, as jamming
or disturbances like solar superstorms can impact multiple systems [8].



over the Internet. Each AS prioritizes this network-based
synchronization over GNSS-based synchronization by al-
lowing it to apply more substantial time corrections to its
logical clock. This process is fully automatic and requires
no operator intervention. A localized GNSS attack on a
few ASes does not affect accuracy or skew if enough
ASes continue to propagate correct time. In a global GNSS
attack, accuracy degrades linearly with the duration of the
outage, but low skew among all benign nodes is always
maintained (O2).
2. Byzantine Fault Tolerance. To achieve robustness
against malicious nodes, Everdeen follows a similar ap-
proach as previous Internet time synchronization solutions,
and lets nodes apply a Byzantine fault-tolerant midpoint
function (BFTMF) to their network-based time offset mea-
surements (O3). In contrast to an averaging function, for ex-
ample, the BFTMF allows to compute a result (the midpoint)
that is unaffected by a fraction of anomalous measurements.
In each synchronization round, a node corrects its logical
clock according to the computed midpoint. We stress that
Everdeen is independent of the specific BFTMF used. This
independence also extends to any proofs and simulations
presented in this work, which are abstracted from any partic-
ular BFTMF. BFTMFs can typically tolerate up to one-third
of malicious inputs; as long as this threshold is not exceeded,
the computed midpoint remains unaffected, regardless of the
number of synchronization rounds.
3. Neighbor-based Synchronization. Everdeen introduces
a new synchronization mode, the weighted neighbor-based
(WNB) mode. In WNB, each node synchronizes time ex-
clusively with its immediate neighbors. Thus, a node’s
clock value can only influence the entire network through
transitive propagation over multiple synchronization rounds.
Furthermore, an AS implementing WNB assigns a weight
(a natural number) to each neighboring AS. The weight
specifies a neighbor’s importance with respect to the cor-
responding offset measurement, and thus influences by how
much a node adjusts its clock. The weights are chosen in a
way that ensures provable security properties compared to
the family of all systems implementing the A2A mode (Sec-
tion 2), in which nodes synchronize with all other nodes
in the network. In Section 4.2 we specify WNB and show
how it can be incrementally deployed. In Section 5 we
prove that, with our particular choice of WNB weights,
malicious information does not propagate further in the
network compared to A2A. Furthermore, for the CAIDA
Internet core topology, we show that WNB is up to ∼3×
as robust to misconfigured, unavailable, or compromised
time servers. At the same time, WNB achieves superior
clock skew while inducing ∼2× lower message and ∼4×
lower communication overhead than the A2A mode. Lastly,
Appendix B shows that WNB enables orders of magnitude
faster midpoint computations than A2A.
4. Robustness against Congestion. Time synchronization
traffic is much more challenging to protect against conges-
tion on long inter-domain forwarding paths compared to
short ones (Section 8). In WNB, nodes synchronize time
exclusively with their immediate neighbors, meaning traffic

is forwarded only over one hop. This significantly simplifies
protection against congestion, including volumetric DDoS
attacks. This insight forms the basis of our proposed solution
for defending against congestion: the DDoS-resistant One-
hop Synchronization Channel (DOSC). DOSC guarantees
low-jitter forwarding of synchronization traffic up to a con-
figurable bandwidth threshold (O4). Thus, volumetric DDoS
cannot negatively impact accuracy or skew—Everdeen is
the first solution to achieve this in the public Internet. In
many deployments, DOSC only requires changes in router
configurations, and does not require additional hardware
or replacing existing one. Section 4.3 provides a detailed
description of DOSC and its incremental deployment. Sec-
tion 6 experimentally demonstrates that, with DOSC, time
synchronization traffic and thus time offset computations are
robust against DDoS.
5. Low-Cost Infrastructure. Everdeen leverages public
Internet infrastructure instead of leased communication ser-
vices, creating a cost-effective architecture that enables rapid
expansion of the synchronization topology (O5 and O6).
Notably, Everdeen operates without a hierarchy, eliminating
the need to trust any single entity.
6. Deployment. We consider two primary scenarios for
the deployment of Everdeen. First, deployments compris-
ing large geographical areas, where Everdeen is deployed
across various independent networks operated by different
entities, possibly spanning different countries. The objective
is to synchronize time among these networks without fully
relying on GNSSes or placing trust in any single participant
or third party. This deployment ensures robust synchroniza-
tion while maintaining a decentralized approach, vital for
scenarios where centralized trust is not acceptable. Second,
deployments aiming to achieve global time synchronization,
where Everdeen is deployed at the largest, most intercon-
nected (core) ASes in the Internet. In this scenario, non-core
ASes synchronize their time with core ASes, and end hosts
obtain their time references from their respective local ASes,
thus achieving the necessary scalability. We thus operate in
the same setting as related work [18].

4.2. The WNB Synchronization Mode

Description. In the weighted neighbor-based (WNB) mode,
each node synchronizes time exclusively with its immediate
neighbors. Despite being neighbor-based, these local actions
still achieve collective time synchronization. Not all neigh-
boring ASes are equally relevant, so WNB allows to weight
their measurements accordingly. In every synchronization
round, each node measures the time offset to each neighbor,
copies the results according to the corresponding weight,
computes the midpoint of all results, and adjusts its clock
towards that midpoint. This is fundamentally different from
A2A, where all nodes synchronize time with one another.
Nodes in WNB therefore transmit much fewer messages
per synchronization round, and as a consequence, they can
afford to synchronize more frequently to their neighbors
while at the same achieving better skew and lower message-
and communication overhead.
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Figure 2: Comparison between A2A and WNB. With A2A,
the green node measures time offsets to all other nodes and
stores them in an array. With WNB, it only measures the
time offset to each direct neighbor, where it stores the result
in all array slots that correspond to nodes for which the
communication path in A2A traverses that neighbor.

Weight Selection. The most important parameters in WNB
are the weights, which raises the question of how each node
should choose them, as there are many possible strategies.
The weights could be chosen to optimize a specific metric,
such as simplicity, low skew, or faster synchronization con-
vergence, for a specific family of topologies. However, this
would complicate a general comparison between WNB and
previous work, such as A2A. We require a weight selection
strategy that allows to formally prove WNB’s superiority
over A2A in any possible topology. Our primary metric
for comparison is robustness to faulty, misconfigured, and
compromised participants (Section 2). For this metric, the
weight selection strategy should enable a formal compari-
son between WNB and A2A, regardless of the adversary
distribution. We found that WNB achieves provable prop-
erties when each node assigns a measurement result from
a specific neighbor ni a weight of wi, where wi refers to
the number of paths that would traverse the neighbor during
synchronization with all ASes in A2A. This A2A-dependent
WNB weight assignment is necessary to derive a generally
applicable statement. After copying the results according to
their weights, the number of entries in the array for the
midpoint function is the same as in A2A. An example of
how WNB weights are derived is shown in Figure 2.
Incremental Deployment. History shows that the deploy-
ment of new Internet technologies can be challenging with-
out an incremental approach. We offer a concrete deploy-
ment path, where an AS can follow this path independently
of other ASes: (i) An AS starts by synchronizing only to
GNSSes. (ii) It then deploys a time server and synchronizes
with other, potentially non-adjacent, ASes that have a time
server deployed via A2A. (iii) The AS synchronizes with
participating neighboring ASes via WNB and with other
ASes via A2A, i.e., ASes to which the respective forwarding
paths lead through non-participating neighbors. Thereby,
it stores the measured offset to a neighbor ni as many
as wi times, while it stores the offsets measured to a
remote AS, for which the forwarding path leads through
a neighbor without time server deployed, only once. The
AS does not synchronize with remote ASes to which the

forwarding path would lead through a participating neighbor.
(iv) Finally, if all neighbors have a time server deployed,
the AS adopts WNB for synchronization with all of them.
Thereby, steps (i) and (ii) minimize entry barriers, while
steps (iii) and (iv) incentivize WNB adoption by gradually
improving efficiency and security. Specifically, ASes that
switch from A2A to WNB, even if only for a single link to
some neighbor, gain robustness against malicious nodes, as
the reasoning behind our proofs in Section 5.1 also applies
to incremental deployment; reduce communication overhead
since synchronization over this link is only needed to the
neighbor; improve skew and accuracy due to the ability to
synchronize more frequently (a consequence of the lower
communication overhead); and enhance robustness against
DDoS attacks through the use of DOSC.
Synchronization Precision. For network-based time syn-
chronization, the achieved synchronization precision de-
pends on the jitter introduced by (i) the time server and
(ii) the network. However, only the jitter introduced by
the network poses problems in practice. The time server
is fully under the control of its operator, and ingress- and
egress timestamping can remove potential timing variations.
Therefore, if a neighboring server has high jitter, this does
not imply that a node achieves lower precision with WNB
than with A2A. Network elements such as routers, on the
other hand, can receive different traffic volumes depending
on remote traffic sources’ demand or also due to volumetric
DDoS attacks. This can lead to queues building up, causing
asymmetric latency, or packets to get dropped completely.
If available, existing solutions such as PTP can mitigate
the effect of queuing delay during mild congestion. During
volumetric DDoS attacks, however, legitimate time synchro-
nization packets are not necessarily delayed, but get dropped
in the first place. To also achieve forwarding guarantees
during volumetric DDoS, DOSC is required. We highlight
that network communication in A2A experiences the same
or higher jitter to the next hop as WNB (if DOSC is
deployed then jitter is minimal in WNB), plus additional
jitter due to the longer forwarding paths.
Limitations. Transitioning from A2A to WNB comes at
the cost of a higher impact of time server failures. In A2A,
the failure of a neighboring AS’ time server has minimal
impact, given the numerous other ASes available for time
synchronization. However, in WNB, the complete loss of a
neighboring time server means that wi measurements are un-
available. The actual impact may not be severe due to ASes
often being highly interconnected, which ensures the avail-
ability of multiple neighbors with functioning time servers.
While deploying backup servers is a practical solution, the
simplest approach is to revert to step (iii) of the incremental
deployment process, using A2A to synchronize over the
affected neighbor until the neighboring AS’ time server is
restored. In WNB, an AS can monitor time differences with
its neighbors to detect deviations. This is more manageable
than monitoring hundreds or thousands of ASes in A2A. An
AS can take meaningful actions when it knows its neighbors
(e.g., contacting the corresponding network operator), but
for a remote AS, the appropriate response may be less



clear. In cases where synchronization with both GNSSes
and other ASes in the Internet is temporarily disrupted, an
AS must rely solely on its local clock until connectivity is
re-established. Lastly, we would like to clarify that entities
surrounded solely by attackers cannot achieve synchronized
time, as attackers could easily disrupt communication by
dropping all packets. This scenario could apply to edge ASes
with only a few (malicious) neighbors or end hosts within a
malicious AS. This is not specific to Everdeen, but applies
to any synchronization protocol.

4.3. Robustness against Congestion with DOSC

Overview. In this section, we show how effective mitigation
of congestion, including volumetric DDoS attacks, is possi-
ble due to (i) WNB communication being strictly neighbor-
based and (ii) the minimal bandwidth required for time
synchronization traffic. We refer to our proposed solution as
DDoS-resistant One-hop Synchronization Channel (DOSC),
a highly available bidirectional channel for time synchro-
nization traffic between neighboring ASes. Up to a certain
bandwidth, traffic sent over a DOSC-protected channel is
guaranteed not to be dropped and to maintain minimal
latency and jitter, even in the presence of volumetric DDoS
attacks. As such, it can be considered a scalable and cost-
effective alternative to a direct physical cable connecting the
two neighboring time servers. DOSC can be implemented
through simple router configurations, without the need for
additional hardware or router replacements.
Minimizing Latency and Jitter. DOSC protects commu-
nication between neighboring time servers by leveraging
Differentiated Services (DiffServ) [23]. Specifically, a time
server protects its traffic directed to a neighboring AS’
time server by marking the IP headers of its packets with
the expedited forwarding differentiated services codepoint
(EF DSCP, value 46). All devices along the communication
path—internal routers, border routers, and the destination
time server—prioritize these packets according to the per-
hop behavior (PHB) associated with their DSCP value. This
ensures forwarding with minimal latency and jitter.
Authentication. DOSC takes an unconventional yet practi-
cal and effective approach to mitigate the impact of source
address spoofing: routers either (i) clear the DSCP fields of
untrusted traffic or (ii) enforce an upper bound on the rate of
untrusted DSCP-enabled traffic such that it cannot cause any
harm in terms of its volume. Specifically, internal routers
allow only the time server to set the DSCP field, resetting
it for all end hosts. Resetting is enforced at specific router
interfaces, rather than based on source addresses, to prevent
spoofing. For DSCP-enabled traffic originating within the
domain (i.e., from a local interface), a border router can thus
confidently attribute it to its AS’ time server. For DSCP-
enabled traffic arriving from outside the domain (i.e., from
a non-local interface n), a border router does not make any
assumptions regarding its authenticity but instead rate limits
the traffic to a rate B(n), thus preventing excessive volumes.
Additionally, a border router resets the DSCP fields of traffic
forwarded between two non-local interfaces. DOSC supports

any IP-based synchronization protocol, making source and
payload authentication at time servers complementary, with
existing solutions like NTS [24] or DRKey [25], [26] easily
integrated. While we cannot claim to solve source address
spoofing across the Internet, DOSC mitigates its impact in
the specific context of time synchronization between neigh-
boring ASes.
Channel Bandwidth. Border routers impose an upper
limit on the rate of DSCP-enabled traffic between neigh-
boring ASes’ time servers. Specifically, for each interface n
connected to a neighboring AS, the router allocates band-
width B(n) in both directions between interface n and its
internal interface for traffic marked with the DSCP field.
This allocation represents the maximum allowed bandwidth,
meaning any DSCP-enabled traffic exceeding this rate will
be dropped. The value of B(n) is determined based on
the time synchronization bandwidth requirements between
the neighboring ASes. In typical WNB configurations (Sec-
tion 5), as little as 10 kbit/s is sufficient to meet Everdeen’s
time synchronization needs.
DDoS Defense. DDoS by end hosts targeting synchroniza-
tion traffic are ineffective because their traffic is always
forwarded without DSCP enabled, preventing it from im-
pacting priority queues at either routers or time servers.
Similarly, DDoS attacks from neighboring ASes have no
effect when DSCP is disabled. For DSCP-enabled traffic
arriving from border router interface n, the neighboring AS
is restricted to a very low transmission rate, B(n). As a
result, even if hundreds of neighboring ASes send large vol-
umes of DSCP-enabled traffic, the total traffic volume, after
applying rate limits (

∑
n B(n)), remains constrained to just

a few megabits per second. This is feasible only due to the
extremely low bandwidth requirements for time synchroniza-
tion traffic between neighboring ASes. Additionally, end-
to-end authentication at the time servers prevents reflection
attacks, where multiple malicious ASes neighboring AS A
spoof their source addresses to impersonate the time server
of AS N (a benign neighbor of AS A). This would cause
traffic to be reflected from AS A’s time server toward AS
N instead of the attacker, causing many legitimate packets
to be dropped due to the bandwidth limits imposed between
AS A and AS N.
Coordination and Configuration. In contrast to related
work on forwarding guarantees in the Internet, DOSC only
requires coordination between neighboring ASes. Key ele-
ments requiring coordination include the choice of synchro-
nization protocol (e.g., NTP), the channel bandwidth B, the
IP addresses of the time servers, and the shared authenti-
cation keys (e.g., for NTS). DOSC is built upon DiffServ
and rate limiting, both of which are well-established and
widely available components. DiffServ has been extensively
deployed across numerous networks [27] and is commonly
supported on modern routers [28], [29], as is rate limit-
ing [30], [31]. This means existing routers can be reused,
needing only to be reconfigured for use in DOSC. Internal
routers may not require any modifications at all, as they
typically prioritize packets marked with DSCP 46 by default,
placing them in a dedicated priority queue. Updates to



router configurations are expected to be infrequent, typically
occurring only when establishing Everdeen peering rela-
tionships with neighboring ASes. The ability to reconfigure
existing routers stands in stark contrast to the significant
costs associated with private or leased infrastructure, as
well as with related work on network availability, which
often has more demanding requirements—such as replacing
traditional routers with programmable switches [32], imple-
menting cryptographic support at routers [33], or managing
millions of queues [34]. Given the critical role of time syn-
chronization in the proper functioning of many applications,
both critical and non-critical, we consider the configuration
overhead of DOSC to be justifiable.
Contribution. We observe that the neighbor-based nature
of time synchronization with its low bandwidth require-
ments allows for a cost-effective and robust approach to
mitigating DDoS attacks by leveraging DiffServ alongside
traffic policing. Unlike many existing DDoS defense mech-
anisms (Section 8), which are reactive—allowing attacks to
continue until they are (hopefully) detected and blocked—
DOSC adopts a proactive approach. By design, it prevents
attacks from causing any harm, making it inherently robust
against congestion. Also, DOSC does not depend itself
on synchronized clocks, avoiding the circular dependencies
found in prior solutions.

5. Evaluation of WNB

We first prove that, for any topology, WNB is at least
as robust against faulty, misconfigured, compromised, or
actively malicious participants as A2A. Then, for the partic-
ular topology consisting of the most highly connected ASes
in the Internet, we evaluate the attack resistance, accuracy,
skew, and communication overhead achieved by WNB and
A2A, both with and without GNSS issues.

5.1. Proof of Robustness

Description. We prove that in WNB, adversely affected
information does not propagate further in the network com-
pared to A2A. The proof is applicable to any connected
graph and fault-tolerant function. The proof relies on our
specific selection of WNB’s weights.
Measurement-related Notation. We extend the general
notation introduced in Section 3.2. We define a path p from
node S to node D of length ℓ as a list of nodes [S, ...,D]
where ∀ i<ℓ−1

i=0 : (pi, pi+1) ∈ E. With this notation,
p0 = S, pℓ−1 = D, and p1 and pℓ−2 are neighbors of
S and D, respectively. We define p̃ as the set of nodes in
p without the source node: p̃ := {pi}1≤i≤ℓ−1. In A2A, a
node measures the time offsets to all other nodes, potentially
across different paths, storing them in an array denoted as
A. An entry in A is referred to as Ap, where p defines
the specific communication path to the destination node.
Therefore, A is not limited to a single path per destination,
but there could be multiple time synchronization measure-
ments over multiple different paths to the same destination.

The set of all paths used for measurements in A2A is
denoted as P . Contrarily, in WNB, a node only measures
the offset to each of its neighbors ni. It then adds the
measured offset wi times to its array W , resulting in an
array length identical to A (Figure 2). While the entries
corresponding to the measurements to a neighboring AS are
the same in W and A, W can contain several duplicates:
∀p ∈ P : Wp = A[p[0], p[1]].
Threat-related Notation. We define a path as compro-
mised, if it traverses at least one malicious node. This is
derived from the threat model, wherein a malicious destina-
tion can spoof time synchronization replies and malicious
on-path nodes can delay synchronization packets to skew
the measurements:

m(p) = 1 ⇐⇒ ∃a ∈ p̃ : a ∈ M (1)

We define an array entry as compromised if and only if the
path over which it was measured is compromised:

m(Ap) = 1 ⇐⇒ m(p) = 1 (2)
m(Wp) = 1 ⇐⇒ m([p[0], p[1]]) = 1 (3)

Lastly, we assume an arbitrary but reasonable fault-tolerant
function f(P, PM ), that returns 1 if it can tolerate PM ⊆
P of malicious paths. Here reasonable means that if the
function can tolerate a set of malicious paths, then it can
also tolerate any subset of it:

∀P ∗
M ⊆ PM : f(P, PM ) = 1 =⇒ f(P, P ∗

M ) = 1 (4)

An equivalent formulation would be that if the function
cannot tolerate some set of malicious paths, then it cannot
suddenly tolerate the same set plus additional malicious
paths.
Proof. We first prove Theorem 1, which states that every
compromised measurement entry Wp in array W of WNB
implies a compromised measurement entry Ap in array A of
A2A. Then, in Corollary 1, we show that any fault-tolerant
function capable of tolerating the compromised entries in A
can similarly tolerate the compromised entries in W .

Theorem 1. ∀p : m(Wp) =⇒ m(Ap).

Proof. Consider any path p ∈ P . Then:

m(Wp) ⇐⇒ m([p[0], p[1]]) = 1 (5)
=⇒ ∃a ∈ p̃ : a ∈ M (6)
⇐⇒ m(p) = 1 (7)
⇐⇒ m(Ap) (8)

Step (5) holds by definition of (3). Step (6) relies on the
presence of a malicious on-path node when the first on-path
node is malicious. Steps (7) and (8) follow by definition of
(1) and (2), respectively.

Corollary 1. In WNB, adversely affected information does
not propagate further in the network compared to A2A.

Proof. Let PA ⊆ P and PW ⊆ P be the set of malicious
paths in A and W , respectively. Theorem 1 implies that



PW ⊆ PA, and therefore, as f is a reasonable function
according to (4), we have:

f(P, PA) = 1 =⇒ f(P, PW ) = 1 (9)

So if the output of a fault-tolerant function is unaffected by
malicious nodes in A2A, it remains unaffected in WNB as
well, preventing propagation of malicious information.

5.2. Implementation

Description. We implement a simulator running A2A and
WNB on (i) realistic inter-domain topologies consisting
of either the 2000 highest-degree Tier-1 and Tier-2 ASes
according to the CAIDA AS relationships data set [35] or (ii)
random power-law degree graphs, which are found to well
approximate real-life technological networks [36]. The latter
enables testing WNB and A2A on topologies of various
sizes, which can for example be used to speed up the mea-
surements process by running them on smaller topologies.
In our topologies, a core AS corresponds to a node, and an
inter-domain link to an edge. All the measurement results
presented in this section were performed on the CAIDA
2000 topology, where nodes always choose the shortest path
towards their destination. Detailed characteristics for this
topology can be found in Appendix C.

Our simulator is written in Go [37] and is highly paral-
lelizable, thus achieving low completion times even on low-
end off-the-shelf devices. Together with the simple installa-
tion and execution steps, this contributes to the reproducibil-
ity of our work. We execute all our measurements on a
device with a 12th Gen Intel Core i7-1260P CPU (12 cores,
3.4 GHz) and 32 GiB of memory. We sample variables such
as the network error and clock drifts at random.

5.3. Malicious Information Propagation

Description. We first assess how much adversely affected
information propagates in a realistic topology. While our
proofs in Section 5.1 show that WNB performs at least
as well as A2A in this metric irrespective of the topology,
this experiment focuses on obtaining empirical results using
the CAIDA 2000 topology. We randomly select malicious
nodes in the network, varying their proportion from 5%
to 40%. Subsequently, we execute time synchronization
processes for both A2A and WNB. We consider a benign
node to become malicious if more than one third of the time
measurements traverse at least one malicious node. Given
the transitive impact malicious nodes can have on others, we
iterate this process until a stable state is achieved. Each such
measurement is repeated for a total of R = 100 iterations.
Results. Figure 3 shows that, for the same proportion of
initially malicious nodes, WNB significantly reduces the
impact on benign nodes compared to A2A. This difference
is particularly evident with 10% initially malicious nodes,
where WNB affects 3.26 times fewer benign nodes than
A2A. As anticipated, both protocols struggle to protect
against more than one third of initially malicious nodes.
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Figure 3: Ratio of transitively affected to initially unaffected
nodes, given a fraction of initially malicious nodes.

5.4. Time Synchronization Performance

Description. Section 5.3 evaluated the set of (transitively)
malicious nodes. For these malicious nodes, the behavior
is straightforward: the initially malicious ones can act arbi-
trarily, while the transitively affected ones become desyn-
chronized at a rate bounded by the sum of the maximum
drift, the maximum allowed GNSS-based correction, and the
maximum permitted network-based correction. Therefore,
we now focus on the set of benign nodes. By definition, their
time does not get affected by any of the malicious nodes.
We aim to verify that they achieve desirable time synchro-
nization quality and overhead. In the following experiments,
we assess the accuracy, skew, as well as message- and
communication overhead achieved by WNB in comparison
with A2A. For the GNSSes, we evaluate and compare two
extreme cases on the availability spectrum. In the first case,
GNSSes are available and report correct results. In the
second case, GNSSes are globally unavailable. Appendix D
expands our evaluation by considering globally operating
attackers specifically targeting GNSSes.5

Measurement Parameters. Initially, the simulator assigns
random clock times to the nodes, resulting in an initial skew
of S0. The simulator then performs time synchronization
measurements at regular intervals of duration I, for a total
of T time synchronization iterations. In each interval, the
simulator generates random drift values for every node’s
clock from a distribution within the range of [-D, D], and
assigns network delay asymmetries to every edge from a
random distribution within the range of [-E, E]. At the end
of each interval, the simulator reads the nodes’ clock val-
ues in order to calculate skew and accuracy. Subsequently,
every node’s clock is adjusted based on two factors: time
obtained from GNSSes, with a maximum correction limit of
CSat, and data collected from Internet measurements, with
a maximum correction limit of CNet. We emphasize that, in
order to successfully counter clock drift, it is necessary that
CNet > D and CSat > D, and to achieve resistance against
faulty, misconfigured, unavailable, and potentially malicious
GNSSes, it is crucial to set CNet > D+CSat. We define the
absolute message overhead of A2A and WNB, respectively,

5. Because Everdeen prioritizes network-based synchronization over
GNSS-based synchronization, it achieves synchronized time, i.e., bounded
skew, irrespective of the values provided by the GNSSes.



TABLE 2: Description of parameters ("Para.") and their
values ("Val.") for the skew, accuracy and overhead experi-
ments.

Para. Description Val. A2A Val. WNB
I Synchronization interval 3 s 0.6 s
T Nr. sync. iterations 1200 6000
D Max. drift per interval I 0.83ms 0.166ms
CSat Max. GNSS correction 1ms 0.2ms
CNet Max. network correction 2ms 0.4ms
S0 Initial skew 4 s
OMREL Rel. message overhead 2
OCREL Rel. comm. overhead 4
E Max. per-link error 0.1ms
X Network cutoff 0.2ms

and their relative overhead as follows:

OMA2A :=
mA2A
IA2A

, OMWNB :=
mWNB
IWNB

, OMREL :=
OMA2A
OMWNB

Here, mA2A and mWNB refer to the number of time synchro-
nization messages sent by all nodes in a single iteration for
A2A and WNB, respectively. With CAIDA 2000 and the
shortest-path strategy, mA2A ≈ 4 ∗ 106 and mWNB ≈ 4 ∗ 105.
Similar to the message overhead definitions, we define the
absolute communication overhead of A2A and WNB, as
well as their relative overhead, as follows:

OCA2A :=
eA2A
IA2A

, OCWNB :=
eWNB
IWNB

, OCREL :=
OCA2A
OCWNB

Here, eA2A and eWNB refer to the sum of edges traversed
by all time synchronization messages sent by all the nodes in
one iteration, for A2A and WNB, respectively. In our setting,
eA2A ≈ 8 ∗ 106 and eWNB = mWNB ≈ 4 ∗ 105. Therefore,
with I = IA2A = IWNB, we would have OMREL ≈ 10 and
OCREL ≈ 20. To partially compensate for this, we use a syn-
chronization interval for WNB that is five times shorter (with
five times lower drift per interval), such that OMREL ≈ 2 and
OCREL ≈ 4. This means that in A2A, nodes still disseminate
twice as many messages, and edges still carry four times
as many messages as in WNB, thus favoring A2A in our
experiments. Unless otherwise specified, our experiments
use the parameter configuration detailed in Table 2. We
discuss the rationale behind our assumed clock drift at the
end of this section. A full description of the A2A and WNB
algorithms can be found in Appendix A.
Accuracy. The results of the accuracy measurements are
shown in Figure 4. Both A2A and WNB achieve fast
convergence despite the initial skew of 4 s and attain good
accuracy when GNSSes are available.6 Specifically, A2A
achieves an accuracy of approximately 830 µs, while WNB
reaches about 160 µs. The superior performance of WNB
can be attributed to the fact that nodes synchronize more
frequently with GNSS time, even though a smaller max-
imum correction is applied. If WNB nodes synchronized
with GNSS sources as infrequently as in A2A and used
the same maximum correction, we would expect the same
accuracy as in A2A. When GNSS sources are unavailable,
the achieved accuracy worsens in both modes. However,

6. The y-axis is logarithmic; convergence is actually linear.
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Figure 4: Accuracy A(t) in milliseconds for A2A and WNB,
with (G) and without (-) GNSSes available.
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Figure 5: Skew S(t) in milliseconds for A2A and WNB,
with (G) and without (-) GNSSes available.

this trend is more pronounced in WNB (220ms) compared
to A2A (39ms). This is expected, as the nodes’ clocks
are initially set with a random distribution around the real
time, and in the first round of A2A, every node performs
time synchronization measurements with every other node,
thus closely approximating the real time. Nevertheless, when
GNSS sources are absent, maintaining accuracy is impos-
sible due to the continuous clock drift. However, achieving
low clock skew is often much more important for applica-
tions relying on globally synchronized time.
Skew. The results in Figure 5 show that A2A and WNB
effectively converge and maintain low clock skew across all
scenarios, with WNB notably outperforming in this critical
metric. When GNSS references are available, A2A achieves
a clock skew of ~1.6ms, while WNB reachs ~300 µs. In
the absence of GNSS sources, A2A and WNB stabilize at
~1.7ms and ~700 µs, respectively. Nodes in WNB send sig-
nificantly fewer messages per synchronization round com-
pared to A2A, allowing them to synchronize more frequently
with their neighbors. Interestingly, WNB achieves lower
message overhead and better skew during GNSS outages
than A2A. Both A2A and WNB measurements were con-
ducted using the same per-hop network error distribution.
However, in a real-world deployment, A2A would likely
experience higher jitter than WNB, as DOSC prioritizes
time synchronization traffic in WNB, keeping jitter mini-
mal. Thus, the simulation setup is more favorable to A2A
regarding accuracy and skew measurements.
Communication Overhead. In the previous experiments,
we used OMREL = 2 and OCREL = 4. We now aim to ex-
plore the impact on the clock skew when varying these
overheads. Specifically, we want to determine how much
WNB could enhance the nodes’ skew if it operated with
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the same overhead as A2A. Conversely, we also aim to find
out how much we can reduce WNB’s overhead while still
achieving superior skew. To answer these questions, we vary
IWNB while keeping IA2A unchanged. We deactivate GNSS
references to isolate the impact of the different overheads
on clock skew.

The results of this evaluation are presented in Figure 6.
We can observe that reducing OMREL from 2 to 1, meaning
that WNB disseminates as many messages per time interval
as A2A, leads to an improvement in maximum skew by
225 µs. Conversely, increasing OMREL from 2 to approximately
7.6, such that WNB disseminates 7.6 times fewer messages
per interval than A2A, results in a skew matching that of
A2A (2ms). Similar outcomes can be observed for the
communication overhead. Specifically, reducing the OCREL
from 4 to 1 enhances WNB’s maximum skew by 410 µs.
Conversely, increasing OCREL from 4 to approximately 15.3
leads to a maximum skew of 2ms, which is in line with
A2A’s performance.
Assumed Clock Drift. In our configuration (Table 2),
we assume a maximum clock drift of approximately 24 s
per day. This conservative assumption serves two main
purposes: demonstrating WNB’s minimal hardware require-
ments for seamless integration into AS infrastructure and
highlighting its relative advantages over A2A. Although
even low-cost clocks often found in commodity servers
can achieve lower clock drift, recent research has intro-
duced software-based solutions capable of further reducing
clock drift in commodity servers by a factor of around
2000 [38]. Implementing such solutions in our setup would
significantly enhance WNB’s clock skew performance while
reducing its message and computation overhead. Moreover,
absolute results in terms of skew and accuracy can be further
improved by, for example, increasing the synchronization
frequency.

6. Evaluation of DOSC

In this section, we implement DOSC and evaluate its
robustness against volumetric DDoS attacks. Our results
demonstrate that, without DOSC, these attacks can shift
time offsets by tens of milliseconds. In contrast, DOSC
effectively mitigates such attacks, maintaining accurate time
synchronization.

Orchestrator

AS AAS B

AS C

Figure 7: DOSC testbed on AWS. Grey boxes are EC2
instances.

Implementation. To implement DOSC, we need to con-
figure border routers to (i) classify packets according to
their DSCP field, (ii) implement rate limiting for traffic
with a DSCP value of 46, and (iii) forward packets passing
this check with strict priority. While all those features are
available on commercial routers [39], [40], we rely on
a software-based implementation for reproducibility. Con-
cretely, we extend an existing border router implementation
written in Go with the aforementioned configuration. With
the parameters from Table 2, the traffic volume per inter-
domain link for WNB when using NTP is only on the
order of a few kilobits per second. We therefore select a
conservative value of 100 kbit/s for the DOSC bandwidth
enforced by the border routers’ rate limiters. We implement
both a measurement client and server, where the client
conducts network-based time offset measurements to the
server based on NTP. Software timestamping in the kernel
is used to remove side effects of the time synchroniza-
tion applications on the measurements. To demonstrate that
DOSC is generally applicable and not tied to one specific
implementation, we also implement a version of the border
router only based on the traffic control subsystem in the
Linux kernel [41] and conduct the time offset measurements
using the state-of-the-art NTP server chrony [42].
Testbed. We perform our evaluation on a reproducible AWS
measurement testbed (Figure 7). We run three ASes, AS A,
AS B, and AS C, each based on production-ready routing
software deployed on a dedicated AWS EC2 instance. On
another two EC2 instances, we execute the time synchro-
nization client and server, respectively, where the client
initiates one offset measurement every second. To evaluate
the effects of a volumetric DDoS attack, a load generator in
ASC aims to overwhelm the border router in ASB , in an at-
tempt to create asymmetric delay or cause packets even to be
dropped. The entire topology and software can be deployed
using a simple, self-contained orchestrator application. The
orchestrator also allows to start and stop the attack traffic on
the load generator, to en- or disable DOSC, and to gather and
visualize the measured time offsets. We took precautions to
not harm any real network infrastructure: Our experiments
were directed at specific benchmarks and small in scale. We
ensured that traffic only targeted our own instances and did
not escape the AWS network into the public Internet.
Evaluation. The results of the offset measurements, with
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Figure 8: Time offset measurements between two neigh-
boring ASes with and without DOSC enabled. The border
router in AS B is under attack during an interval of one or
two minutes, respectively (interval highlighted in red).

and without DOSC enabled, are illustrated in Figure 8.
As expected, in both cases we observe low time offset
values during attack-free periods. However, once the DDoS
traffic generation at the load generator gets triggered, in
the non-DOSC-enabled setting the offset increases to over
21ms. This effect is due to one of the border router egress
queues growing (the one targeted by the load generator),
increasing the latency for the time synchronization traffic in
one direction, thus causing asymmetric latencies. In contrast,
with DOSC enabled, time synchronization traffic is always
forwarded in both directions without suffering increased
queuing latency despite the volumetric DDoS attack, result-
ing in a time offset which is two orders of magnitude lower
than without DOSC in place.

The maximum queuing latency is determined by the
router’s egress queue length, forwarding speed, and the
link’s capacity. Thus, longer paths are more vulnerable,
as latency can increase with each on-path border router,
potentially in one direction only. Reducing queue length
may alleviate asymmetric latency but also raises the risk
of time synchronization packets being dropped. In practice,
network operators typically require router manufacturers to
provide 250ms (or more) of buffering [43], where this value
is frequently exceeded [44]. With WNB, synchronization
happens only between neighboring nodes, which already
renders volumetric DDoS attacks more difficult—combined
with DOSC, the attacks can be effectively mitigated.

7. Discussion and Future Work

Path Transparency and Integrity. While multi-hop inter-
domain communication paths are not actively utilized for
time synchronization in WNB (as time synchronization traf-

fic is constrained to one hop), they still play a crucial role in
computing the weights assigned to neighboring ASes. Con-
sequently, WNB requires some level of path transparency
and path integrity. First, for a path to a specific destination,
the source time server must be able to determine the first
on-path AS, i.e., the correct neighboring AS. Achieving this
property is straightforward, as for any destination, the next
hop is readily provided by the routing protocol and might
vary over time. Second, the integrity of the forwarding path
needs to be protected. If attackers manage to manipulate
forwarding paths, they can influence the computed weights,
thereby controlling which neighbors an AS synchronizes
with. While protecting the integrity of the first on-path
AS is of paramount importance, the integrity of all other
ASes on the path should also not be neglected. Depending
on the source’s path selection strategy (e.g., shortest path),
a successful attacker can add or remove ASes from the
path, affecting the computed weights. Route integrity can
be implemented through AS signatures such as provided by
route origin attestation (ROA) and BGPSec, or by future
Internet architectures such as SCION [45].
Real-world Deployment. We are currently working on
rolling out attack-resistant time synchronization in A2A
mode as part of a pilot initiative involving multiple in-
dependent networks across two countries. The A2A mode
facilitates testing even without direct peering between par-
ticipants. As mentioned in Section 4.2, switching to WNB
can occur incrementally with each new peering connection.
Efforts to recruit additional participants for this pilot project
are ongoing.

8. Related Work

Today’s time synchronization deployments are often
confined to geographically restricted areas. While such local
synchronization can reduce clock skew for some appli-
cations, others need synchronization across larger regions
including multiple countries. However, existing solutions are
often not scalable, too expensive, too complex, not secure in
large networks with potentially malicious nodes, or require
centralized trust, thus introducing single points of failure.
Local Synchronization. In datacenters, DTP [46] provides
nano-second-precision synchronization at the physical layer
but requires hardware upgrades. Huygens [47] achieves
similar precision without them. Due to the sensitivity of
GNSS to interruptions, some regulators mandate GNSS-
independent time synchronization. Net Insight’s solution [9],
designed for 5G and critical networks, enables synchro-
nization over existing, non-PTP infrastructure. Redundant
reference clocks can be deployed at separate locations,
ensuring continuity if the master clock fails. Under NAVISP
Element 1 [48], GMV [49] evaluates combining a sparse
GNSS station network with time distribution via protocols
like NTP or Dynamic synchronous Transfer Mode (DTM),
demonstrating accurate synchronization over hundreds of
kilometers [50]. This approach requires centralized trust
and may need additional security to ensure synchroniza-
tion availability and precision. In wireless sensor networks,



unlike our inter-domain setting, the Gradient Time Syn-
chronization Protocol (GTSP) [51] uses Gradient Clock
Synchronization [52], where nodes synchronize their clocks
with neighbors by correcting their time based on average
offsets. However, this method is vulnerable to malicious
participants. PTPSec [53] mitigates on-path delay attacks
by sending synchronization messages over redundant paths.
Global Synchronization. Many global time synchroniza-
tion solutions require trusting a single system or operator
for scalability, creating a single point of failure.

A common approach is to equip servers with GNSS re-
ceivers for external clock synchronization. However, this can
be unsuitable in areas with weak GNSS signals, and makes
deployment complex and inflexible. In the hierarchical NTP
architecture [54], only primary time servers synchronize
with GNSS, while stratum n servers obtain their time from
stratum n − 1 servers. Recently, there has been growing
recognition that the NTP architecture must also be resilient
to Byzantine faults [55]. CesiumSpray [56] proposes de-
ploying GPS receivers in local area networks (LANs), al-
lowing hosts to synchronize time with nearby GPS servers.
This approach reliably avoids path asymmetries common in
inter-domain time synchronization. The Satellite Time and
Location (STL) system [57] is a time reference using low
Earth orbit (LEO) satellites. Compared to GPS, STL offers
stronger signals, reduced susceptibility to degradation, and
lower disruption potential. One recently proposed solution,
G-SINC [18], closely aligns with our requirements as a
distributed protocol among core ASes in the public Internet.
It is robust against faulty, misconfigured, unavailable, or
malicious participants and maintains low skew during GNSS
failures. However, unlike Everdeen, G-SINC is closely tied
to the SCION future Internet architecture [45], relying on its
path symmetry, transparency, control, and trust root configu-
rations for managing membership. As an A2A instantiation,
G-SINC’s paths traverse multiple ASes, complicating the
protection of time synchronization traffic from congestion-
related issues. While Everdeen performs well with low-
cost commodity clocks, G-SINC relies on more expensive
oscillators with a maximum drift of 10ms per year.
Protection against Congestion. Existing solutions to pro-
tect time synchronization traffic from congestion, especially
during volumetric DDoS attacks, are either costly, reactive,
vulnerable to source address spoofing, ineffective against
legitimate-looking attack traffic, or suffer from circular de-
pendencies. Securing traffic over longer forwarding paths
is particularly difficult due to inter-AS coordination chal-
lenges, source address spoofing, and broader trust assump-
tions. While NTP vulnerabilities and NTP amplification
attacks have been widely studied [20], [21], [58], [59], little
work addresses protecting time synchronization traffic from
volumetric DDoS. Some solutions filter outliers during brief
congestion [60], while others assume core infrastructure is
never congested [61].

General DDoS protections are often unsuitable for time
synchronization traffic. Network scrubbing introduces la-
tency and jitter, while leased infrastructure is inflexible,
centralized, costly, and limited in scalability. Secure inter-
domain bandwidth reservation systems [62], [63], [64], [65]

protect against DDoS but are unsuitable for time synchro-
nization traffic due to their reliance on synchronized clocks,
creating a cyclic dependency: desynchronized clocks inval-
idate reservations and thus protection against congestion.
Everdeen breaks this cycle with DOSC, which does not
require synchronized time, enabling robust global time syn-
chronization on which bandwidth reservation systems can
reliably be deployed.

DDoS solutions at routers include history-based IP fil-
tering [66], fairness enforcement for traffic flows [67], [68],
and attack mitigation on programmable switches [32], [69].
However, these reactive measures detect and classify attacks
post-event, often failing against spoofed IP packets and
offering no fundamental protection. In contrast, DOSC op-
erates proactively, providing instantaneous protection. It ef-
fectively mitigates (the impact of) address spoofing and en-
sures low-latency forwarding regardless of adversary attack
patterns, including pulse-wave [70] and botnet attacks [71].

9. Conclusion

Global time synchronization plays a central role in en-
suring the reliability and performance of many critical net-
worked applications, and there is growing recognition that
these systems must enhance their robustness, particularly by
reducing dependence on GNSSes.

To address the challenges associated with existing meth-
ods of global time synchronization—such as high costs, lim-
ited scalability, centralization, and lack of security—we in-
troduce Everdeen. Everdeen reduces reliance on GNSSes by
incorporating high-priority network-based synchronization,
cuts costs by leveraging existing infrastructure, achieves
scalability by exclusively synchronizing among neighboring
ASes, and operates in a fully decentralized manner. Most
importantly, Everdeen represents a significant step forward
in security. While it offers provably stronger Byzantine fault
tolerance than existing systems—an incremental but valu-
able advancement—its key innovation is robustness against
network congestion, including large-scale DDoS attacks.
This achievement is particularly surprising, given that time
synchronization protocols are inherently vulnerable to con-
gestion, and defending against DDoS attacks in globally
distributed deployments, where no single operator controls
the entire infrastructure, is notoriously difficult.

Beyond our ongoing efforts to collaborate with parties
interested in our testbed deployment, a promising direc-
tion for future research is to extend our DDoS defense
mechanism to protocols beyond time synchronization. This
approach is especially well-suited for critical protocols that
rely on (or can be adapted to rely on) neighbor-based
communication with minimal bandwidth requirements. By
broadening the scope of our solution, we aim to pave the
way for highly available critical communication.
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Algorithm 1: GNSS-based Clock Synchronization
Input:
J GNSS synchronization interval
CSat Max. GNSS correction

1 clock.SetTime(GNSS.Time())
2 while true do
3 gnssTime = GNSS.Time()
4 localTime = clock.AdjustedTime()
5 δ = gnssTime - localTime
6 if |δ| > 0 then
7 corr = sgn(δ) · min(|δ|, CSat)
8 clock.AdjustTime(corr, J)
9 end

10 clock.Sleep(J)
11 end

Algorithm 2: Network-based Clock Synchroniza-
tion

Input:
I Network synchronization interval
CNet Max. Network correction
X Network cutoff
P Set of neighboring synchronization peers

1 n = |P|
2 while true do
3 M = [0]
4 for p ∈ P do
5 m = offset(clock.AdjustedTime(), p); // Measure

time offset
6 for i = 0; i < p.Weight; i++ do
7 M = M + [m]
8 end
9 end

10 M = sort(M)
11 δ = (M[n

3
] + M[ 2n

3
]) / 2; // Fault-tolerant

midpoint function tolerating up to F
faults (N = 3F + 1)

12 if |δ| > X then
13 corr = sgn(δ) · min(|δ|, CNet)
14 clock.AdjustTime(corr, I)
15 end
16 clock.Sleep(I)
17 end

Appendix

1. Everdeen’s Algorithms

Global time synchronization among ASes is achieved
through two algorithms: one synchronizing via GNSS sig-
nals and the other through neighbor-based Internet synchro-
nization at each AS’s time server.
GNSS-based Clock Synchronization. In Algorithm 1, a
time server periodically synchronizes with GNSS signals at
intervals of duration J for precise, low-skew time synchro-
nization. Any time deviation is gradually corrected over the
next interval to avoid abrupt shifts, with corrections capped
by a constant CSat.
Network-based Clock Synchronization. In Algorithm 2,
every time server runs time offset measurements with the
time servers of neighboring ASes at regular intervals of
duration I. The algorithm gathers all the measured offsets
from these peers into an array, sorts the array, and then

applies a fault-tolerant midpoint function (here instantiated
with the function proposed by Lynch and Welch [72]). The
output of this function is used to uniformly adjust the AS’
clock during the subsequent synchronization interval. This
correction is bounded by the constant CNet. It is only ap-
plied if it is larger than the network cutoff X. A value for X
slightly above the network synchronization error ensures
that during normal operation when GNSSes are available,
Everdeen achieves the same precision as when solely relying
on GNSSes, i.e., without network-based synchronization.
The offset measured for a neighbor is added multiple times
based on the weight assigned to that neighbor, as shown in
Line 6 to Line 8 of Algorithm 2. Although this method is
simple, it is inefficient. In Appendix B, we demonstrate how
to remove this overhead.
Algorithm Coordination. Actual time retrieval from a
server’s clock is accomplished using clock.Time().
However, in the algorithms, we retrieve time as
clock.AdjustedTime() (as indicated in Line 4
of Algorithm 1 and Line 5 of Algorithm 2). This method
returns the current time with all fully applied time
corrections. The reason for this is to prevent the algorithms
from overcorrecting the time target. Such over-correction
could otherwise occur when time is already closely
synchronized with the GNSS value, and both algorithms
independently decide to apply a correction, where a single
correction would suffice to reach the GNSS value. Without
using clock.AdjustedTime(), this issue would arise
due to a lack of coordination between the two algorithms.

2. Midpoint Computation

A straightforward implementation of the midpoint com-
putation in WNB maintains an array of the same size as in
A2A. In this array, entries for non-neighboring nodes are du-
plicates of the first on-path node’s entry (see Figure 2). This
implementation results in a computation overhead equivalent
to that of A2A. However, a more efficient approach involves
computing the midpoint directly on a significantly smaller
array that contains only measurements to direct neighbors,
along with their respective weights. This optimization leads
to a substantial reduction in processing overhead.

As demonstrated in Table 3, the overhead reduction is
remarkable. For example, in a topology with 103 nodes,
each node’s midpoint computation in A2A takes 55.12 µs. In
contrast, for a node with degree (d) of 10 and per-neighbor
weight (w) of 102, the optimized WNB variant only requires
0.27 µs, corresponding to a speedup of 204. These speedup
results are particularly relevant in scenarios involving very
large topologies, low-end devices, or high-frequency time
synchronization. In other cases, the midpoint computation
as in A2A is likely fast enough for practical purposes.

3. CAIDA Graph Characteristics

Figure 9 shows characteristics of the CAIDA 2000 topol-
ogy. Figure 9a depicts the general distribution of node de-
grees, which closely adheres to a power law, indicating that
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Figure 10: Everdeen’s accuracy A(t) in milliseconds, both
under correct operation and under incorrect GNSS values.
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Figure 11: Everdeen’s skew S(t) in milliseconds, both under
correct operation and under incorrect GNSS values.

TABLE 3: Midpoint computation overhead in microseconds
for A2A compared to the optimized midpoint algorithm for
WNB. For the WNB evaluation, the weights w, the total
number of nodes n, and the node degree d are related as
w × d = n.

Total #ASes n 101 102 103 104

A2A 0.15 3.22 55.12 742.90
WNB, w = 101 0.08 0.27 4.27 70.56
WNB, w = 102 - 0.08 0.27 4.23
WNB, w = 103 - - 0.08 0.27
WNB, w = 104 - - - 0.08
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Figure 9: Characteristics of the CAIDA 2000 topology.

the topology exhibits characteristics of a scale-free network.
Figure 9b zooms in on the degree distribution of the lowest-
degree nodes, revealing that the lowest node degree in this
network is 2. Lastly, Figure 9c shows the distribution of the
shortest path lengths between all pairs of nodes, where the
maximum path length is 5.

4. GNSS Faults and Attacks

Everdeen ensures synchronized time with bounded skew,
regardless of GNSS values, by prioritizing network-based
synchronization over GNSS-based. Concretely, Everdeen
implements this by requiring that in each synchronization in-
terval CNet > D+CSat (Section 5.4), meaning the maximum
network-based correction exceeds the sum of the maximum
GNSS-based correction and clock drift. Therefore, even if
the clock drift and the GNSS-based synchronization maxi-
mally move the clock in one direction, the network-based
synchronization can still overrule this decision and move the
clock even in the complete opposite direction.

To verify this, we evaluate Everdeen under incorrect
GNSS values, representing GNSS faults, misconfigurations,
and attacks. We consider two particular cases on the spec-
trum of possible GNSSes value distributions. For both cases,
we consider the worst-case scenario in which GNSSes are
affected globally, impacting all the nodes and not just a
subset of them. In the first case, GNSS values are provided
in an attempt to maximally move the clocks in one consistent
direction (i.e., make the clocks move slower). In the second
case, GNSS values are provided that aim at maximally
desynchronizing the clocks by moving each in a different
(random) direction.

The impact on accuracy is shown in Figure 10. As ex-
pected, accurate time synchronization is not possible given
globally incorrect GNSS values. Figure 11 illustrates the
impact on the clock skew. In the first case with unidirectional
GNSS values, the skew increases from ~0.3ms to ~0.6ms,
which is comparable to a scenario with complete GNSS out-
age (~0.7ms, Section 5.4). In the second case with random
GNSS values, the skew increases to ~1.3ms. Importantly,
while incorrect GNSS values cause degraded clock skew
and slower convergence, the skew is still globally bounded,
i.e., the clocks remain synchronized and do not drift apart.
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