
Inter-domain Routing with Extensible Criteria
Seyedali Tabaeiaghdaei∗

Anapaya Systems AG
Zurich, Switzerland

Jelte van Bommel
ETH Zürich

Zurich, Switzerland

Marc Wyss
ETH Zürich

Zurich, Switzerland

João Luis Sobrinho
Instituto de Telecomunicações,
Instituto Superior Técnico

Lisbon, Portugal

Giovanni Barbiero†
UBS AG

Zurich, Switzerland

Giacomo Giuliari
Mysten Labs

London, United Kingdom

Ahad N. Zehmakan
Australian National University

Canberra, Australia

Adrian Perrig
ETH Zürich

Zurich, Switzerland

Abstract
With the rapid evolution and diversification of Internet applications,
their communication-quality criteria are continuously evolving. To
globally optimize communication quality, the Internet’s control
plane thus needs to optimize inter-domain paths on diverse criteria,
and should provide extensibility for adding new criteria or modify-
ing existing ones. However, current inter-domain routing protocols
and proposals satisfy these requirements at best to a limited degree.

We argue that an inter-domain routing architecture with extensi-
ble routing criteria can be realized in path-aware networks, due to
their stateless forwarding. We thus propose IREC, an inter-domain
routing architecture for the SCION path-aware Internet architec-
ture that enables path optimization with extensible criteria. IREC
achieves this through parallel execution and real-time addition of
independent route computations, together enabling end domains
to express their desired criteria to the control plane. Through large-
scale simulations with realistic Internet topologies, we show IREC’s
viability via implementation and emulation, and its negligible global
cost compared to static routing protocols.

CCS Concepts
•Networks→Routing protocols;Public Internet; Programmable
networks; Programming interfaces;

Keywords
SCION, routing protocols, routing on multiple optimality criteria,
routing extensibility, inter-domain routing, path-aware networking,
remote code execution
ACM Reference Format:
Seyedali Tabaeiaghdaei, Jelte van Bommel, Marc Wyss, João Luis Sobrinho,
Giovanni Barbiero, Giacomo Giuliari, Ahad N. Zehmakan, and Adrian Perrig.
2025. Inter-domain Routingwith Extensible Criteria. InACM SIGCOMM 2025

∗Most contributions while at ETH Zürich.
†All contributions while at ETH Zürich.

This work is licensed under a Creative Commons Attribution 4.0 International License.
SIGCOMM ’25, Coimbra, Portugal
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1524-2/2025/09
https://doi.org/10.1145/3718958.3750528

Conference (SIGCOMM ’25), September 8–11, 2025, Coimbra, Portugal. ACM,
New York, NY, USA, 20 pages. https://doi.org/10.1145/3718958.3750528

1 Introduction
The wide variety of today’s networked applications requires a di-
verse set of communication quality criteria that need to be satisfied
by the network for an optimal quality of experience. For example,
video conferencing, Voice over IP (VoIP), and online gaming ap-
plications, each have specific criteria for communication quality.
Furthermore, applications are rapidly evolving, and so are their
communication quality criteria. For example, new criteria are ex-
pected to emerge with holographic communication [27], or the
tactile Internet [24].

To meet these diverse criteria, the network must forward each
application’s traffic along paths optimized for its specific require-
ments, which necessitates discovering such paths within the net-
work. Within the domain of wide-area network (WAN) providers,
these optimizations have long been achieved through software-
defined networking (SDN) and maintaining a complete, real-time
view of the network. On the contrary, the public Internet, as an
inter-domain network, has struggled to address the evolving needs
of applications [31, 56]. This has driven the expansion of the pri-
vate networks of hypergiants and the emergence of Network-as-a-
Service (NaaS) providers. However, this trend has raised concerns
about inheriting third-party policies and practices, vulnerability to
outages, and industry consolidation [16].

The public Internet falls behind private networks primarily due
to the stateful inter-domain forwarding and the limitations of the
Border Gateway Protocol (BGP). Stateful forwarding restricts for-
warding table sizes to the limited and expensive memory available
on routers. Therefore, despite the existence of a super-exponentially
large number of paths in the public Internet, routers usually only
store a single path per destination in their forwarding tables. While
this constraint limits the flexibility of route selection, the rudimen-
tary and ossified route selection logic of BGP is also a consequence
of operator choices, where paths are primarily optimized for mone-
tary cost and hop length. Proposed changes to BGP for computing
multiple paths per destination [25, 34, 36, 39, 41, 52, 57, 58] will
also eventually hit the barrier of limited forwarding state in routers.
Overlay architectures such as TANGO [16] also cannot find optimal

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3718958.3750528
https://doi.org/10.1145/3718958.3750528

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal S. Tabaeiaghdaei et al.

paths for diverse and evolving criteria as they can only discover a
small number of paths and rely on BGP route computation.

Path-aware networking (PAN), on the other hand, takes a state-
less approach to inter-domain packet forwarding by encoding the
full inter-domain path in packet headers. This method eliminates
the limitations imposed by stateful forwarding and BGP, with
the control plane able to compute many paths between two Au-
tonomous Systems (ASes). These paths are provided to endpoints
(hosts within an AS), which can choose the most suitable one based
on their criteria and the associated path metadata. The SCION [22]
Internet architecture is a PAN commercially deployed by over 20
Internet service providers [23, 26, 30, 32, 48, 50]. In the current
SCION network, though still relatively small yet expanding, we
already observe that the current routing algorithm with a rudi-
mentary path filtering computes a median of 100 paths between
a pair of ASes, computing up to 400 distinct paths between some
AS pairs. Note that this large number of paths is the number of
computed paths by the control plane and not all paths. In the larger
and denser topology of the Internet, the total number of paths can
be super-exponentially large [35]. Lee et al. [16] count a median of
around 5000 Gao-Rexford compliant paths between 1000 AS pairs
randomly chosen from the CAIDA topology [20]. The number of
paths can be even larger if we consider (1) the highest-degree ASes
instead of random ones, (2) multiple connections between neighbor-
ing ASes, which are discoverable in SCION, and (3) the possibility
of violating Gao-Rexford conditions in the core part of the SCION
architecture [43].

The large number of paths will likely prompt the desire for even
more optimality criteria, further increasing the importance of multi-
criteria path optimization. Allowing endpoints to choose not only
their local providers but also their wide-area provider [55], opens
up the opportunity for network providers to convince more end-
points to steer their traffic through them to increase their revenue.
Therefore, it is expected that providers introduce novel path metrics
(e.g., the carbon intensity of paths [44, 49]) and advertise informa-
tion regarding those metrics about segments of paths traversing
their networks. Accordingly, the endpoints might update their op-
timality criteria to incorporate the novel metrics, accelerating the
emergence of new optimality criteria.

While a promising opportunity, the explosive number of paths
on the dense topology of the Internet poses considerable control-
plane scalability challenges. Note that these scalability issues arise
at a number of paths far exceeding those encountered in state-
ful forwarding. While PANs are capable of discovering and using
thousands of paths per destination, stateful forwarding cannot go
beyond a few. However, even PANs cannot support a combinatorial
explosion in the number of paths.

In such circumstances, computing optimal paths for a specific
criterion appears unattainable. First, due to the super-exponential
overhead, it is not scalable to compute all paths and provide them
to endpoints for optimization. Second, unlike a WAN provider’s net-
work, where optimal paths can be centrally computed, inter-domain
routing is distributed across independent, competing entities, lack-
ing a centralized map of the network. Third, optimizing paths on
a fixed and arbitrary set of criteria (e.g., shortest AS-path length),

which is oblivious to the criteria of end domains, can hide the opti-
mal paths for a variety of other criteria and result in suboptimal
performance.

However, scalable computation of optimal paths for various cri-
teria is achievable if the inter-domain routing protocol optimizes
paths during route computation. This approach allows routing nodes
at each AS to only disseminate the optimal paths to neighboring
ASes, avoiding the overhead of computing all paths. Given the wide
variety of criteria, the routing protocol needs to route on multiple
optimality criteria. Sobrinho et al. [47] lay the algebraic founda-
tions for routing on multiple optimality criteria by proposing to
route on the largest isotonic reduction of intersections of criteria
(cf. Section 2). While being a major breakthrough in routing alge-
bra, practical implementation of their principles remains missing,
which is mainly due to the limitations of BGP. Furthermore, by fo-
cusing on the algebraic foundations, Sobrinho et al. do not answer
the following operational questions that will appear in real-world
deployments:
• How to make inter-domain routing nodes distributed in different do-
mains aware of the routing criteria on which they need to optimize
paths?

• How to extend the routing criteria, i.e., how can new criteria effi-
ciently be added, or old ones removed across the network?

In this paper, we answer these questions by designing and imple-
menting a new routing architecture for the deployed SCION PAN.
Essentially, our architecture instantiates the principles by Sobrinho
et al. [47] in an extensible manner from the operational viewpoint,
minimizing the effort for introducing new routing criteria.

1.1 Obstacles to Criteria Extensibility
Our goal is to overcome the operational obstacles to the extensibil-
ity of inter-domain routing criteria. We thus highlight the major
challenges.
Standardization.

The main obstacle to routing extensibility is the Internet Engi-
neering Task Force’s (IETF) time-consuming adoption of changes
proposed by network operators, which hinders routing based on
desired criteria. Even adopted changes take years to standardize,
with BGP extension RFCs taking a median of 3.5 years to publish,
and some taking up to 10 years [53]. This lengthy pace means stan-
dardization will likely lag behind the evolving optimality criteria
of operators and applications.
Development andDeploymentCycle. Implementing inter-domain
routing features is often expensive and time-consuming, requir-
ing significant design and testing efforts, especially for hardware
changes. Not all vendors or network operators adopt these stan-
dards, making updates tedious and resulting in incomplete deploy-
ments and suboptimal routing paths. xBGP [53] offers a vendor-
neutral BGP architecture that facilitates the deployment of exten-
sions in multi-vendor networks through an extended Berkeley
Packet Filter (eBPF)-based API [3]. It advances routing extensi-
bility but only within one domain, i.e., operators of one domain
can change their BGP policies without waiting for standardization
or vendor support. Therefore, it lacks cross-domain coordination
mechanisms for introducing new routing criteria and does not
provision for domains to express their desired routing criteria.

Inter-domain Routing with Extensible Criteria SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

Inconsistent Implementation and Deployment across the In-
ternet. Vendors may implement the same standard differently. For
example, they use different algorithms for path selection based on
the BGP MED attribute [6]. Routers from the same vendor across
the network can have inconsistent software versions, possibly caus-
ing suboptimal or nondeterministic routing. For instance, a router
with new software optimizing for latency and carbon emission
may conflict with one optimizing only for latency. xBGP amplifies
this issue by allowing each AS to create unique BGP extensions,
increasing implementation variants.
Control-plane Interruption. Updating router software or hard-
ware requires restarting routing sessions with neighboring routers,
leading to route re-exchanges that may flood the network with
routing messages. Frequent updates for optimality criteria can over-
whelm some routers with an excessive number of routing messages.
Data-plane Interruption. Updating routers can disrupt the data
plane by: (1) necessitating traffic rerouting to backups during restarts,
(2) causing forwarding loops and blackholes due to inconsistent
network views during control-plane convergence, and (3) over-
whelming routers with heavy control-plane processing, disrupting
their forwarding capabilities. Such interruptions are not relevant
to PAN architectures as data and control planes are decoupled.

1.2 Contributions
We design IREC, i.e., Inter-domainRoutingwithExtensibleCriteria,
a new routing architecture for the SCION PAN that enables (1)
multi-criteria inter-domain routing, and (2) real-time and auto-
mated addition and removal of criteria. We build IREC on two key
intuitions. First, separately optimizing paths for different sets of
criteria in parallel, allowing the design of a flexible system that adds
or removes criteria without interrupting other optimization pro-
cesses. Second, allowing end ASes (destination or source of traffic)
to communicate their routing criteria using the routing messages
they originate, while other ASes—incentivized by receiving more
traffic and increasing revenue—optimize routes according to the
specified criteria. To realize these intuitions, we design a system to
be deployed in participating ASes. The system uses eBPF technol-
ogy [3] to automatically deploy and execute an arbitrary number of
route selection programs in parallel. Every route selection program
is an eBPF program that selects paths for a separate set of criteria.
Each AS can independently deploy their desired selection programs.
The second intuition is realized by using routing messages as a ves-
sel to deliver the bytecodes of programs desired by end ASes and
automatically deploy and execute them in all other ASes for the
routes pertaining to the end AS.

We show IREC’s viability through implementation and emulation
on a realistic topology, where it achieves reductions in median CPU
and memory usage compared to the existing monolithic implemen-
tation of the SCION control plane. Furthermore, using simulations
on a much larger Internet topology, we examine the impact of rout-
ing with separate but smaller sets of criteria and compare it with
that of routing with one larger set of criteria. We observe similar
message complexity and convergence time, suggesting that IREC
can achieve extensibility with negligible cost.

In summary, we contribute to a performant and extensible Internet
by:

• designing IREC, a control-plane architecture for the SCION PAN,
enabling extensible and multi-criteria path optimization (cf. Sec-
tions 4 and 5);

• implementing IREC in the open-source codebase [12] of the
SCION PAN architecture [22] using user-space eBPF (uBPF) [14]
(Section 6), and emulating it using the Kathará emulator [17];
and

• evaluating IREC on a realistic Internet topology by developing
and using a simulator based on ns-3 [51] (cf. Section 7).
This work does not raise any ethical issues.

2 Background on Routing Algebras
Routing algebra provides the formal and mathematical foundation
of routing protocols, and designing a sound routing protocol re-
quires meticulous attention to its algebraic underpinnings. We build
IREC on the solid routing algebraic foundations of multi-criteria
path optimization laid by Sobrinho et al. [47]. Therefore, a basic
knowledge of these concepts and constructs, which we provide
in this section, is necessary to read and understand IREC. In this
section, we represent these concepts in a less mathematical and
more SCION-tailored language.

SCION beaconing is a path discovery protocol capable of enu-
merating all possible simple paths between AS pairs. However, the
number of such paths may grow super-exponentially with the size
of the network—it is Θ(𝑛!), if every one of 𝑛 ASes directly connects
to every other [35]—making path discovery protocols fundamen-
tally unscalable. In contrast, a multi-path routing protocol has ASes
collectively select specific paths between AS pairs based on prede-
fined criteria, filtering out all others in the process. Routing algebras
provide the abstractions needed to transform a path discovery pro-
tocol into a general-purpose multi-path routing protocol. A routing
algebra (𝐴, ⪯, ⊕) consists of a set 𝐴 of attributes equipped with
a comparison relation ⪯ and an extension operation ⊕. Attributes
represent arbitrary routing metrics and/or policies. Each link in
a network is assigned an attribute, and the attribute of a path is
computed by successively applying the extension operation to the
attributes of its constituent links. The comparison relation defines
a preference between pairs of attributes, and thus between pairs
of paths. A selection operation is then derived from the compari-
son relation to identify the most preferred attributes within a set.
Routing algebras explore algebraic relationships between ⪯ and
⊕, remaining agnostic to the semantics of attributes. In scenarios
where routing computations are initiated by destinations, one key
algebraic property is left-isotonicity:

∀𝑎, 𝑏, 𝑐 ∈ 𝐴, 𝑏 ⪯ 𝑐 ⇒ 𝑎 ⊕ 𝑏 ⪯ 𝑎 ⊕ 𝑐.

This property states that the relative preference between two at-
tributes is inherited by their left extensions with a common, third
attribute. Left-isotonicity has strong implications for the design
of routing protocols. Consider attribute 𝑎, associated with link 𝑢𝑣 ,
and attributes 𝑏 and 𝑐 , each associated with one of two paths from
AS 𝑣 to a common destination. Suppose that 𝑏 ≺ 𝑐 , and that AS
𝑣 selects optimal attribute 𝑏. Left-isotonicity determines that AS
𝑢 prefers 𝑎 ⊕ 𝑏 over 𝑎 ⊕ 𝑐 , or that the two extensions are equal.
Therefore, as long as AS 𝑣 advertises its optimal attribute to AS 𝑢,
the latter will also select its own optimal attribute 𝑎 ⊕ 𝑏. Moreover,

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal S. Tabaeiaghdaei et al.

if AS 𝑣 does not advertise non-optimal attribute 𝑐 to AS 𝑢, then
neither the extension of 𝑎 with 𝑐 nor the comparison between 𝑎 ⊕ 𝑏

and 𝑎 ⊕ 𝑐 are performed—saving one extension operation and one
comparison. This atomic example illustrates how left-isotonicity
paves the way to optimal and efficient routing protocols.

The earliest routing algebras were developed to reason about the
routing protocols of the current Internet, where the comparison
relation is a total order, multi-path routing is limited to Equal-
Cost Multi-Path (ECMP), and left-isotonicity does not hold in gen-
eral [46]. Sobrinho and Ferreira [47] addressed these limitations
by lifting the comparison relation from a total order to a partial
order, thereby allowing some pairs of attributes to be incomparable,
with neither attribute of the pair preferred to the other. Particularly
relevant is the possibility of transforming a total order that violates
left-isotonicity into a partial order that satisfies it, by judiciously
declaring certain pairs of attributes incomparable. Such a partial
order is called a left-isotonic reduction.

To illustrate, consider the shortest-widest algebra consisting of
pairs (𝑤, 𝑙), where 𝑤 is a width and 𝑙 is a length, representing
metrics such as capacity and delay, respectively.Widths extend with
the minimum operator and lengths with addition. The comparison
relation is the shortest-widest (total) order, denoted ⪯𝑆−𝑊 , where
(𝑤, 𝑙) ⪯𝑆−𝑊 (𝑤 ′, 𝑙 ′) if𝑤 > 𝑤 ′, or𝑤 = 𝑤 ′ and 𝑙 ≤ 𝑙 ′. This routing
algebra is not left-isotone. In Figure 1a, every link is annotated
with a pair width-length. AS 𝑣 has two alternative paths to reach 𝑡2:
through link 𝑣𝑡2, with width-length (40, 3); and through path 𝑣𝑤𝑡2,
with width-length (20, 2) = (20, 1) ⊕ (20, 1). AS 𝑣 selects the former
width-length because it has greater width, and advertises it to AS 𝑠 .
As a consequence, AS 𝑠 learns only (20, 4) = (20, 1) ⊕ (40, 3) from 𝑣 .
It selects this width-length, which is not that of the shortest-widest
path from 𝑠 to 𝑡2. The shortest-widest path from 𝑠 to 𝑡2 is path 𝑠𝑣𝑤𝑡2
with width-length (20, 3) = (20, 1) ⊕ (20, 1) ⊕ (20, 1).

Instead, consider the product order on width-lengths, denoted
⪯𝑊 ×𝐿 , where (𝑤, 𝑙) ⪯𝑊 ×𝐿 (𝑤 ′, 𝑙 ′) if both𝑤 ≥ 𝑤 ′ and 𝑙 ≤ 𝑙 ′. The
product order is a left-isotonic reduction of the shortest-widest order
that renders incomparable any two width-lengths where one has
both greater width and greater length than the other. Figure 1b
shows the same network as Figure 1a, but operated with a multi-
path routing protocol that selects width-lengths according to the
product order. AS 𝑣 selects both (40, 3) and (20, 2), since these two
width-length are incomparable. Consequently, AS 𝑠 learns both
(20, 4) = (20, 1) ⊕ (40, 3) and (20, 3) = (20, 1) ⊕ (20, 2) from 𝑣 . It
selects (20, 3), which indeed is the width-length of the shortest-
widest path from 𝑠 to 𝑡2, and filters out (20, 4). Notably, the product
order is also a reduction of thewidest-shortest order, denoted ⪯𝑊 −𝑆 ,
where (𝑤, 𝑙) ⪯𝑊 −𝑆 (𝑤 ′, 𝑙 ′) if 𝑙 < 𝑙 ′, or 𝑙 = 𝑙 ′ and 𝑤 ≥ 𝑤 ′. Thus,
AS 𝑠 also selects width-length (10, 2), learned from AS𝑤 , which is
that of the widest-shortest path from 𝑠 to 𝑡2. AS 𝑠 has the ability to
forward data-packets on either shortest-widest or widest-shortest
paths, a user decision that may depend on the application.

Alongside left-isotonic reductions, Sobrinho and Ferreira [47]
introduce the concept of intersecting multiple orders into a single
partial order. To illustrate, consider attributes given as pairs of
lengths (𝑙1, 𝑙2), where 𝑙1 and 𝑙2 represent metrics such as delay and
carbon emission, respectively. The preferences of a network user
among such pairs can be captured by the 𝛼-linear-combination of

𝑠

𝑤

𝑣

𝑡2
⪯𝑆−𝑊

(20, 4) : 𝑠𝑣𝑡2
⪯𝑆−𝑊

(40, 3) : 𝑣𝑡2

⪯𝑆−𝑊
(20, 1) : 𝑤𝑡2(10, 1)

(20, 1)

(20, 1)

(40, 3)

(20, 1)

(a) Selections according to the
shortest-widest order.

𝑠

𝑤

𝑣

𝑡2
⪯𝑊 ×𝐿

(20, 3) : 𝑠𝑣𝑤𝑡2
(10, 2) : 𝑠𝑤𝑡2

⪯𝑊 ×𝐿
(40, 3) : 𝑣𝑡2
(20, 2) : 𝑣𝑤𝑡2

⪯𝑊 ×𝐿
(20, 1) : 𝑤𝑡2(10, 1)

(20, 1)

(20, 1)

(40, 3)

(20, 1)

(b) Selections according to the
product order on width-lengths.

Figure 1: Examples of routing algebras on width and length.
Links annotated with width-length.

𝑠

𝑤

𝑣

𝑡2
⪯0.7−𝐿2

(2, 6) : 𝑠𝑤𝑡2

⪯0.7−𝐿2
(3, 1) : 𝑣𝑡2

⪯0.7−𝐿2
(1, 5) : 𝑤𝑡2(1, 1)

(1, 1)

(1, 1)

(3, 1)

(1, 5)

(a) Selections according to 0.7-
linear combination of the two
lengths.

𝑠

𝑤

𝑣

𝑡2
⪯∩[0,0.7]−𝐿2
(2, 6) : 𝑠𝑤𝑡2
(4, 2) : 𝑠𝑣𝑡2 ⪯∩[0,0.7]−𝐿2

(3, 1) : 𝑣𝑡2

⪯∩[0,0.7]−𝐿2
(1, 5) : 𝑤𝑡2(1, 1)

(1, 1)

(1, 1)

(3, 1)

(1, 5)

(b) Selections according to the
intersection of the 𝛼-linear-
combination of the two lengths
for 𝛼 ∈ [0, .0.7]

Figure 2: Examples of routing algebras on pairs of lengths.
Links annotated with pairs of lengths.

the lengths of a pair, defined as

𝐿𝛼 (𝑙1, 𝑙2) = 𝛼 × 𝑙1 + (1 − 𝛼) × 𝑙2,

with 𝛼 ∈ [0, 1]. The induced comparison relation, ≺𝛼−𝐿2 , is such
that (𝑙1, 𝑙2) ≺𝛼−𝐿2 (𝑙 ′1, 𝑙

′
2) if 𝐿𝛼 (𝑙1, 𝑙2) < 𝐿𝛼 (𝑙 ′1, 𝑙

′
2).

1 Different net-
work users may have different choices for the value of 𝛼 . Therefore,
the network should be able to provide paths optimized over an
entire range [𝛼𝑚 ..𝛼𝑀] of values of 𝛼 . This can be achieved by a
comparison relation ≺∩[𝛼𝑚 ..𝛼𝑀]−𝐿2 that intersects all of the ≺𝛼−𝐿2 ,
for 𝛼 ∈ [𝛼𝑚 ..𝛼𝑀]. We have (𝑙1, 𝑙2) ≺∩[𝛼𝑚 ..𝛼𝑀]−𝐿2 (𝑙 ′1, 𝑙

′
2) if both

𝐿𝛼𝑚 (𝑙1, 𝑙2) < 𝐿𝛼𝑚 (𝑙 ′1, 𝑙
′
2) and 𝐿𝛼𝑀

(𝑙1, 𝑙2) < 𝐿𝛼𝑀
(𝑙 ′1, 𝑙

′
2). In Figure 2a,

every link is annotated with a pair of lengths. According to the 0.7-
linear-combination of the two lengths, AS 𝑣 selects (3, 1), learned
from 𝑡2, over (2, 6), learned from 𝑤 , since 𝐿0.7 (3, 1) = 2.4 < 3.2 =

𝐿0.7 (2, 6). AS 𝑠 learns (2, 6) from AS 𝑤 and (4, 2) from AS 𝑣 . It
prefers (2, 6) because 𝐿0.7 (2, 6) = 3.2 < 3.4 = 𝐿0.7 (4, 2). Figure 2b
shows the same network as Figure 2a, but operated with a multi-
path routing protocol that selects all optimal pairs of lengths for
every 𝛼-linear-combination with 𝛼 ∈ [0..0.7]. AS 𝑣 still selects only
(3, 1), since 𝐿0.7 (3, 1) < 𝐿0.7 (2, 6) and 𝐿0 (3, 1) = 1 < 6 = 𝐿0 (2, 6).
However, AS 𝑠 now selects both (2, 6) and (4, 2), because although
𝐿0.7 (2, 6) < 𝐿0.7 (4, 2), we now have 𝐿0 (2, 6) = 6 > 2 = 𝐿0 (4, 2). A
user of AS 𝑠 requiring an optimal 0.7-linear-combination path to 𝑡2
adopts the 𝑠𝑤𝑡2 path provided by the multi-path routing protocol,
1For simplicity of presentation, we let (𝑙1, 𝑙2) and (𝑙 ′1, 𝑙 ′2) be incomparable when
𝐿𝛼 (𝑙1, 𝑙2) = 𝐿𝛼 (𝑙 ′1, 𝑙 ′2) , rather than adding a tie-break between the two pairs.

Inter-domain Routing with Extensible Criteria SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

𝑠

𝑤

𝑣

𝑡2 𝑡1

𝑡1, ⪯𝑆−𝑊
(20, 4) : 𝑣,𝑤, 𝑡1

𝑡1, ⪯𝑊 −𝑆
(10, 3) : 𝑤, 𝑡1

𝑡2, ⪯𝑊 −𝑆
(10, 2) : 𝑤, 𝑡2

(10, 1)

(20, 1)

(20, 1)

(40, 3)

(20, 1)

(40, 4)

(20, 2)

Figure 3: Example of multi-criteria path optimization.

𝑠

𝑤

𝑣

𝑡2 𝑡1

𝑡1, ⪯𝑆−𝑊
(20, 4, 3) : 𝑣,𝑤, 𝑡1

𝑡1, ⪯𝑊 −𝑆
(10, 3, 2) : 𝑤, 𝑡1

𝑡2, ⪯0.7−𝐶𝐸−𝐿
(20, 4, 2) : 𝑣, 𝑡2

(10, 1, 1)

(20, 1, 1)

(20, 1, 1)
(40, 3, 1)

(20, 1, 5)

(40, 4, 1)

(20, 2, 1)

Figure 4: The need for extensibility of routing criteria.

whereas a user requiring an optimal fifty-fifty balance between the
two lengths (𝛼 = 0.5) adopts 𝑠𝑣𝑡2.

We use the algebraic concepts introduced in this section to in-
stantiate realistic motivating examples for the design of IREC and
to design the routing mechanisms of IREC. Therefore, IREC builds
on the concepts and principles of routing algebras summarized
above to implement an operational, flexible multi-path routing pro-
tocol for path-aware network architectures, supporting multiple
optimality criteria.

3 Motivating Examples
Building upon the algebraic introduction provided in Section 2, in
this section, we provide two motivating examples for designing
IREC, which guide the reader through the design section, i.e., Sec-
tion 4. In these examples, we introduce a real-world instantiation
of the concept of path attributes introduced in Section 2: Attributes
are tuples of elementary metrics, each of which is intrinsically as-
sociated with an extension operation. For example, a metric such
as delay extends with addition, while a metric such as bandwidth
extends with min. The extension operation associated with a given
elementary metric is known, i.e., standardized a priori. The con-
stitution of attributes as tuples of concrete metrics is also known,
i.e., standardized, in advance to all nodes involved in routing com-
putations, although it is also possible to introduce dynamism in
that constitution. What changes dynamically among routing com-
putations is the selection criteria on attributes, or, equivalently, the
order among attributes.

3.1 Multi-Criteria Path Optimization
Figure 3 illustrates an inter-domain topology in which each node
represents an AS and each edge represents an inter-domain link
with attribute (𝑤, 𝑙), where𝑤 is bandwidth in Gbit/s and 𝑙 is latency
in ms. Using this topology, we provide an example of the need for
path optimization on different criteria for different applications and
end domains. Suppose AS 𝑡1 hosts two services: a video-call service
to which customers should reach via paths primarily with high

bandwidth and secondarily with low latency, and a VoIP service to
which customers should reach via paths primarily with low latency
and secondarily with high bandwidth. Concurrently, suppose that
AS 𝑡2 is hosting a VoIP application that also needs to be reached
through primarily low-latency and secondarily high-bandwidth
paths. The video call’s optimality criterion is the shortest-widest
order, ⪯𝑆−𝑊 . The VoIP’s optimality criterion is the widest-shortest
order, ⪯𝑊 −𝑆 . The blue box at the left of node 𝑠 in Figure 3 shows
the desired final state of routing protocol at 𝑠 for each destination
𝑡1 and 𝑡2. To reach this final state, the control plane needs to be
aware of different routing criteria for 𝑡1 and 𝑡2 and optimize paths
accordingly.

3.2 Criteria Extensibility
Suppose that link attributes in the topology can be augmented with
a new quality metric, e.g., the carbon emission of paths in terms
of carbon intensity of data transmission in g/(Gbit s) . Figure 4
illustrates the updated topology, where the link attribute (𝑤, 𝑙,𝐶𝐸)
represents bandwidth𝑤 , latency 𝑙 , and carbon emission 𝐶𝐸, which
is also a length. With such a new metric, new optimality criteria
are expected to emerge. For example, suppose the AS 𝑠 wants to
incorporate greenness into its path selection criterion to AS 𝑡2 by
defining a total order ⪯𝛼−𝐶𝐸−𝐿 . An 𝛼 value of 0.7 results in the
change of the desired path to 𝑡2 for 𝑠 compared to the previous
widest-shortest criteria. For this path to be advertised to 𝑠 , 𝑣 needs
to be aware of this change of routing criteria (and possibly the value
or the range of 𝛼 at 𝑠) and update the routing logic for destination
𝑡2 and source 𝑠 accordingly. Importantly, the value of 𝛼 can differ
for different source and destination AS pairs, resulting in distinct
criteria, all of which should be accommodated by the control plane.

4 IREC’s Routing Mechanisms
In this section, we define our design goals and introduce IREC’s rout-
ing mechanisms to achieve these goals: (1) Orthogonal route compu-
tations (RCs), (2) On-demand RCs and (3) Reverse On-demand RCs.
Together, these mechanisms achieve all four goals of extensibility
of routing criteria, as we describe next.

4.1 Design Goals
To realize the extensibility of inter-domain routing criteria in SCION,
our design must overcome the challenges mentioned in Section 1.1.
Therefore, we specify the following concrete goals, the achievement
of which is essential for a design to overcome those challenges:
G1 Enabling the addition and removal of routing criteria without

interrupting the routing on other criteria.
G2 Allowing each domain to develop and deploy routing criteria

of their choice without waiting for standardization or vendors.
G3 Providing a mechanism for automated, real-time, and consis-

tent deployment of new routing criteria in multiple domains
without standardization, vendor support, or involvement of
their network operators.

G4 Providing end domains, i.e., any domain that can be the source
or destination of traffic, with a real-time mechanism to ex-
press their desired routing criteria with immediate effect, i.e.,
a new route computation according to the expressed criteria is
instantly started.

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal S. Tabaeiaghdaei et al.

4.2 Overview
IREC introduces two distinct routing mechanisms. The first mecha-
nism, orthogonal RCs, enables multiple route computations (RCs)
to run in parallel. Each of these RCs optimizes routes based on
an independent set of criteria. Because these RCs are orthogonal
to each other, i.e., they execute independently of each other, new
criteria can be added or removed without affecting other RCs. Each
RC uses a dedicated route selection program (SP) that defines its
optimization criteria.

The second mechanism, on-demand RCs, builds on the indepen-
dent SPs to provide an interactive interface through which end do-
mains can express their desired routing criteria. In this mechanism,
an AS embeds the bytecode of its desired SP directly within the
routing messages it originates. This SP defines the route optimiza-
tion criteria from the perspective of the originating AS. Motivated
by the potential to receive more traffic and increase revenue (cf.
Section 8), ASes other than the originating AS deploy and execute
these SPs in real time – but only for the routes pertaining to the
originating AS. This enables ASes to implicitly agree on the route
optimization, without standardization, vendor support, or human
involvement.

On-demand RCs enable route computations in one direction, us-
ing an SP specified by the originating AS, to optimize the paths
that other ASes will use to reach it. The originating AS itself cannot
directly use the paths discovered through this mechanism 2, unless
additional steps are taken – such as explicitly requesting the paths
from the receivers or having the receivers register them. However,
these paths are not always desirable in the opposite direction, due
to asymmetry the characteristics of a path may differ significantly
from those of that same path in the reverse. Optimizing only in
one direction with an SP can lead to suboptimal performance for
bidirectional communication.

To address this limitation, we introduce our third mechanism:
Reverse On-Demand RCs. This mechanism allows the originating
AS to initiate a separate route computation that explicitly initiates
path discovery in the reverse direction, i.e., from the originator to
the remote ASes, according to a specified SP.

4.3 Orthogonal Route Computations
Orthogonal RCs are independent RCs computing paths using distinct
selection operations without interfering with each other. This con-
trasts with the conventional routing, where a single RC computes
routes using a unified selection operation.

The selection operation of an RC selects paths using either of
the following methods:
• It sorts path attributes based on a total order that satisfies iso-
tonicity, and selects the most preferred attributes or

• It sorts path attributes based on the largest isotonic reduction of
the intersection of multiple total orders, and selects the sets of
most preferred attributes [47].

We refer to the executable implementation of a selection operation
as a selection program (SP), which is executed by ASes participating
in the corresponding RC.

2In SCION, any path can be reversed, such that it can be used for bidirectional
communication.

𝑠

𝑤

𝑣

𝑡2 𝑡1

⪯𝑊 ×𝐿
𝑡1:
(40, 4, 1) : 𝑡1
(20, 3, 2) : 𝑤, 𝑡1

𝑡2:
(40, 3, 1) : 𝑡2
(20, 2, 6) : 𝑤, 𝑡2

⪯0.7−𝐶𝐸−𝐿
𝑡1:
(40, 4, 1) : 𝑡1

𝑡2:
(40, 3, 1) : 𝑡2

⪯𝑊 ×𝐿
𝑡1:
(20, 2, 1) : 𝑡1

𝑡2:
(20, 1, 5) : 𝑡2

⪯0.7−𝐶𝐸−𝐿
𝑡1:
(20, 2, 1) : 𝑡1

𝑡2:
(20, 1, 5) : 𝑡2

⪯0.7−𝐶𝐸−𝐿
𝑡1:
(10, 3, 2) : 𝑤, 𝑡1

𝑡2:
(20, 4, 2) : 𝑣, 𝑡2

⪯𝑊 ×𝐿
𝑡1:
(10, 3, 2) : 𝑤, 𝑡1
(20, 4, 3) : 𝑣,𝑤, 𝑡1

𝑡2:
(10, 2, 6) : 𝑤, 𝑡2
(20, 3, 7) : 𝑣,𝑤, 𝑡2

(10, 1, 1)

(20, 1, 1)

(20, 1, 1)
(40, 3, 1)

(20, 1, 5)

(40, 4, 1)

(20, 2, 1)

Figure 5: An example of orthogonal RCs.

Each SP is a plug-and-play and isolated program that takes into
account a subset of performance metrics present in the path at-
tributes. As an example, assume that the path attributes are in
(𝑤, 𝑙,𝐶𝐸), where 𝑤 , 𝑙 , and 𝐶𝐸 represent the bandwidth, latency,
and carbon emission of a path, respectively. There can exist two
parallel RCs: one with a selection operation that selects paths based
on their bandwidth and latency (𝑤, 𝑙), and another with a selec-
tion operation that only considers the latency and carbon emission
(𝑙,𝐶𝐸).

IREC achieves multi-criteria path optimization with a different
approach than the one proposed by Sobrinho et al. [45]: As an alter-
native to routing on a single intersection of all criteria, IREC enables
routing on different subsets of optimality criteria. This allows for
the extensibility of routing criteria from an operational perspective.
Nevertheless, IREC does not introduce new algebraic concepts but
re-uses the ones introduced by Sobrinho et al. [45] in a new way.

4.3.1 Examples Revisited. Figure 5 re-uses the example in Figure 4
to show how orthogonal RCs work and optimize paths for multiple
criteria in practice. In this example, nodes 𝑣 , 𝑤 , and 𝑠 all deploy
the same two SPs. The first SP computes the set of most preferred
attributes according to the product order of bandwidth and latency
(⪯𝑊 ×𝐿) [29]. The second SP sorts attributes based on the linear
combination of latency and carbon emission, i.e., 𝛼 × 𝐶𝐸 + (1 −
𝛼) × 𝑙 , where 𝛼 is 0.7. As the example shows, the SPs that run in
parallel may select the same attributes, which means redundant
computation. This computational overhead is the inevitable price
that needs to be paid for extensibility. However, bandwidth-use
overhead can be avoided by an optimization where advertisements
that would repeat the same path across different criteria are omitted.
For example, if 𝑃 is a selected path according to both criteria 𝐴
and criteria 𝐵, then 𝑃 and its attribute is advertised only once
(cf. Section 5).

Inter-domain Routing with Extensible Criteria SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

𝑠

𝑤

𝑣

𝑡2 𝑡1

𝑡1, ⪯𝑊 ×𝐿

(40, 4, 1) : 𝑡1
(20, 3, 2) : 𝑤, 𝑡1

𝑡2, ⪯𝑊 −𝑆

(20, 2, 6) : 𝑤, 𝑡2

𝑡2, ⪯0.7−𝐶𝐸−𝐿

(40, 3, 1) : 𝑡2

𝑡1, ⪯𝑊 ×𝐿

(20, 2, 1) : 𝑡1

𝑡2, ⪯0.7−𝐶𝐸−𝐿

(20, 1, 5) : 𝑡2

𝑡2, ⪯𝑊 −𝑆

(20, 1, 5) : 𝑡2

𝑡2, ⪯𝑊 −𝑆

(10, 2, 6) : 𝑤, 𝑡2

𝑡1, ⪯𝑊 ×𝐿

(10, 3, 2) : 𝑤, 𝑡1
(20, 4, 3) : 𝑣,𝑤, 𝑡1 𝑡2, ⪯0.7−𝐶𝐸−𝐿

(20, 4, 2) : 𝑣, 𝑡2

(10, 1, 1)

(20, 1, 1)

(20, 1, 1)
(40, 3, 1)

(20, 1, 5)

(40, 4, 1)

(20, 2, 1)

Figure 6: Examples of on-demand RCs.

4.4 On-demand RCs
On-demand RCs make use of the ability to add new independent
RCs provided by the orthogonal routing mechanism. On-demand
RCs enable each AS to independently express its desired optimiza-
tion criteria for paths pertaining to itself, and ensure that other
ASes optimize those paths according to these expressed criteria.
Therefore, it eliminates the need for SP standardization, vendor sup-
port, or manual deployment efforts in other ASes. An on-demand
RC optimizes paths from any AS to the originating AS. In a client-
server model, this means optimizing the path from clients to the
server.

To communicate the routing criteria, the AS develops and builds
a corresponding SP into executable bytecodes (e.g., eBPF [3] or
WebAssembly [15]) and serves it on a server within its AS. It then
originates routing messages, so called path-construction beacons
(PCBs),3 which contain a new extension that specifies the URL of
the SP. Motivated by increasing the probability of receiving more
traffic and increasing revenue (cf. Section 8), every AS receiving
such PCBs will likely fetch the SP from the originating AS, executes
it on the set of PCBs specifying that same SP, and propagates the
PCBs selected by the SP to its neighbors. Due to orthogonal RCs,
these SPs are executed in parallel to other SPs, thus not interrupting
or interfering with each other. To fetch the SP, the receiving AS
can use any of the already received paths to the originating AS.

3In SCION, paths are computed by the beaconing protocol. The routing messages in
beaconing are called path-construction beacons (PCBs.), PCBs are originated from a
specific set of ASes (core ASes) and propagated through the network. ASes evaluate,
select and disseminate the most suitable PCBs based on their routing criteria and
policies. Each AS that disseminates a PCB, appends information about its AS hop,
including the ingress and egress interfaces of the AS from which the PCB entered and
exited the network. ASes can also add metadata about their AS hop, which can be used
for path optimization. PCBs construct segments of SCION paths, and are registered at
each AS’s control service. To construct the full paths, endpoints request path segments
from control services in the network, and concatenate them into complete paths, which
can be encoded in packet headers. For more information on SCION routing please
refer to Appendix E.

4.4.1 Examples Revisited. Figure 6 provides an example of an an
on-demand RCs satisfying the criteria presented in Figure 3 and Fig-
ure 4 (cf. Section 3). In this example, there is no standardized generic
RC and that all RCs are defined by destinations.

Some applications in destination 𝑡1 prefer the widest-shortest
paths, and some prefer the shortest-widest paths. However, the
shortest-widest order is not isotone [45]. Therefore, destination 𝑡1
starts an RC that computes the set of most preferred attributes to 𝑡1
according to the product order of bandwidth and latency (𝑡1, ⪯𝑊 ×𝐿),
which is the largest isotonic reduction of the shortest-widest order.
This order also allows for routing on the widest-shortest order.

Destination 𝑡2, on the other hand, initially prefers the widest
shortest paths. Since the widest-shortest order is an isotone total
order, destination 𝑡2 starts an RC that sorts path attributes to 𝑡2
using the widest shortest order (𝑡2, ⪯𝑊 −𝑆) and selects the best one.
Later, when the carbon emission of the paths is introduced as a
valid performance metric, the destination 𝑡2 starts another RC that
selects the attribute to 𝑡2 with the lowest 0.7-linear combination
of latency and carbon emission (𝑡2, ⪯0.7−𝐶𝐸−𝐿). If destination 𝑡2
wants to completely discontinue the RC with the widest-shortest
order, it just needs to stop originating such PCBs from its AS. Since
SCION PCBs have a limited lifespan, such PCBs are automatically
removed from the control plane.

4.5 Reverse On-Demand RCs
In case of asymmetric inter-domain paths, which is the common
case in the Internet, and in case of different criteria for forward and
backward paths, on-demand RCs are not sufficient to achieve the
optimal quality of service for both directions of communication as
on-demand RCs only optimize paths from any AS to the originating
AS, i.e, from clients to the server. To achieve optimal quality in both
directions of communication, we introduce Reverse On-Demand
RCs.

An AS initiates a new Reverse On-Demand RC with an on-demand
SP to discover and optimize paths in the reverse direction of tradi-
tional routing protocols, i.e., from itself to other ASes. In a typical
client-server setting, a Reverse On-Demand RC can be initiated
from the server side to optimize the return path from server to
clients according to the server’s criteria. This enhances the quality
of experience, as the server knows the best about the criteria of
both the forward and backward paths.

The core novelty of this mechanism is the computation of paths
in the same direction as data traffic typically flows. Unlike con-
ventional routing protocols, where routing messages flow from
the destination of the path toward the ASes that will use the path,
i.e. constructing paths from any source to a specific destination,
reverse on-demand RCs invert this flow. PCBs now propagate from
the source of the path toward the potential destinations of the re-
sulting paths, i.e. constructing paths from a specific source to all
potential destinations.

Reverse on-demand RCs deviates from traditional beaconing
model in SCION, requiring specific modifications to enable the
correct propagation and handling of routing messages, i.e., PCBs,
in the reverse direction. The following changes are necessary for
reverse on-demand RCs.

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal S. Tabaeiaghdaei et al.

𝑠

𝑤

𝑣

𝑡

𝑠 → 𝑣 , ⪯𝑊 −𝑆

(20, 1, 1) : 𝑣

𝑠 → 𝑣 , ⪯0.7−𝐶𝐸−𝐿

(20, 1, 1) : 𝑣

𝑠 → 𝑤 , ⪯0.7−𝐶𝐸−𝐿

(10, 1, 1) : 𝑤

𝑠 → 𝑡 , ⪯𝑊 −𝑆

(10, 2, 6) : 𝑤, 𝑡

𝑠 → 𝑡 , ⪯0.7−𝐶𝐸−𝐿

(20, 4, 2) : 𝑣, 𝑡

𝑠 → 𝑤 , ⪯𝑊 −𝑆

(10, 1, 1) : 𝑤

(10, 1, 1)

(20, 1, 1)

(20, 1, 1)
(40, 3, 1)

(20, 1, 5)

Figure 7: Example of reverse on-demand RCs.

• Every AS receiving such a PCB extends its path attribute in the
direction of PCB traversal. This is in contrast to conventional
routing, where the path attributes of the PCBs are extended in
the opposite direction of PCB flow.

• Every AS receiving such a PCB, in addition to storing and ad-
vertising it if elected, executes the SP on all received PCBs for
the specific OD-DC RC. Every AS sends one copy of the selected
PCBs back to the source AS. This is because any AS is a destina-
tion to which the routes are being computed. The copy is sent
back over the path described in the PCB. The source executes
the SP on the received PCB copies to find the optimal path.

• The encoded path in the PCB is the optimized path from the
source to a destination and should be used as is. In conventional
routing, the optimized path is the reverse of what is encoded in
the PCB and should be reversed.

Figure 7 shows an example of a reversed on-demand RCs.
Note that reverse RCs are only possible in a PAN architecture

that benefits from stateless forwarding. This is because, in state-
ful forwarding (like traditional BGP with longest-prefix match),
routers can only look up how to reach a specific destination in their
forwarding tables; thus, routes can only be computed to a specific
destination. Forwarding tables are not indexed by source, making
it hard to install a reverse path, i.e. from a specific source to any
destination.

4.6 Deployment Considerations
With parallel routing. ISPs deploy (new) SPs in a plug-and-play
manner, giving them free choice in deploying SP. However, rout-
ing is a collaborative effort whose outcome greatly benefits from
having as many ISPs as possible participating in RCs. To reconcile
the latter and the former objective, we introduce a guideline for
ISPs on the deployment of SPs. The principle behind this guideline
is to prioritize primary network functions, which are crucial to all
parties, e.g., connectivity, over the properties that are not crucial
for the network function, e.g., computing environment-friendly
paths. Therefore, we introduce three categories of SPs, which are
organized in a pyramid depicted in Figure 8 whose bottom repre-
sents more critical SPs with less extensibility and opportunity for
optimization, while the top represents the least critical SPs but with
the highest extensibility and optimization opportunity. ISPs must
prioritize the deployment of SPs closer to the bottom, and only
deploy the higher levels if enough resources are available and such

Pre-configured,
standardized

Pre-configured,
non-standardized

On-demand

Essentiality
Priority

Extensibility
Optimization

Figure 8: Three main categories of SP

deployment is beneficial to their business. These categories are as
follows:

(1) At the base, there are SPs that must be standardized, i.e., the
ISP cannot change the logic individually, and pre-configured
by participating ISPs, i.e., end domains cannot influence path
selection. These SPs are designed to enable the most basic
network functions, e.g., connectivity. SPs to optimize paths
for fundamental performance metrics, e.g., latency, can also
be standardized and fall into this category.

(2) In the middle, there are SPs that are not standardized but are
selected and pre-configured by each ISP, i.e., end domains
cannot influence path selection. ISPs can choose to deploy
these SPs according to their business and their analysis of
their customers preferences. Note that such SPs can still
be publicly published to be used by ISPs as plug-and-play
programs without needing the ISPs to necessarily develop
them in-house.

(3) At the top, there are on-demand SPs, a new way of route
computation we propose in Sections 4.4 and 4.5, allowing
end domains to influence route computation in ISPs on the
path. End domains initiate a routing message containing
their desired SP for optimizing paths. Upon receiving it, ISPs
temporarily deploy the specified SP and execute it for all rout-
ing messages that pertain to the originator and include the
same SP. These programs provide the most extensibility and
opportunity for path optimization. They substitute standard-
ization as all ISPs that accept them execute the very same
program. However, in contrast to standardization, which can
take years, on-demand SPs are instantly distributed.

IREC is an architecture that accommodates all three categories
of SPs in a unified way using the eBPF technology [3], which is
described in the next section.

5 Control Service Design
The control service of each SCION AS is responsible for inter-
domain control-plane tasks, including beaconing (cf. Appendix E).
This section describes a new design of the SCION control service
that supports IREC routing mechanisms (cf. Section 4). To support
IREC, an AS deploys this new control service. This new version is
backward compatible and can be incrementally deployed.

5.1 Overview
The IREC-enabled control service has three main components: (1)
the ingress gateway, receiving PCBs, storing them, and filtering

Inter-domain Routing with Extensible Criteria SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

Ingress Gateway
PCBs

PCBs

Ingress DB

SPC 1 ... SPC N

Egress Gateway Egress DB

GetPCBs (...)PCBs

Selected PCBs

AS

Figure 9: IREC-enabled control service for SCION.

them based on the AS-local policies, (2) SP containers (SPCs), ex-
ecuting SPs in isolation, and (3) the egress gateway, collecting the
selected PCBs from the SPCs, filtering duplicate ones, and adver-
tising them further to neighboring ASes. The egress gateway is
also responsible for starting new RCs through originating PCBs.
Figure 9 provides an overview of this design of the control service.

5.2 Ingress Gateway
When receiving a PCB from a neighboring AS, the ingress gateway
verifies the included signatures andwhether the path constructed by
the PCB complies with the local AS’ policies. The ingress gateway
then stores the PCB in its ingress database. The ingress database
stores PCBs indexed by their RC they belong to. The ingress gateway
retrieves the SP from the originating AS if it has not yet cached the
SP and caches it as long as there are PCBs specifying that SP. Note
that there is no cyclic dependency in SP retrieval: The originating
AS can always be reached via the path contained in one of the PCBs.
The gateway periodically removes expired PCBs from the database.

5.3 SP Containers (SPCs)
A SPC is a sandboxed environment for executing the pluggable SPs.
We design two types of SPCs: (1) static, executing one generic SP
configured by the local AS, and (2) dynamic, which, in a round-robin
way, executes various on-demand SPs and reverse on-demand SPs.

Instances of both SPC types request PCBs from the ingress gate-
way in a round-robin way. The ingress gateway serves requests of
these two types of SPCs differently. A static SPC is provided with
all received PCBs. A dynamic SPC is provided with the set of PCBs
associated with an unprocessed IDRC together with the correspond-
ing SP. An unprocessed IDRC is one with at least one new received
PCB that is not processed by a dynamic SPC. After receiving the
PCBs from the ingress gateway, a static SPC executes its statically
configured SP. A dynamic SPC, on the other hand, executes the
received SP per interface of the local AS since the received PCBs in
each round all belong to the same IDRC. Before every execution, a
SPC excludes the PCBs that are not allowed to be propagated on
the considered interface according to the AS-local policies. Upon
execution, a SPC provides the SP with an interface through which
the SP can request (1) the set of PCBs allowed to be propagated
on the considered interface according to AS-local policies, and (2)
available performance metric information about the intra-AS paths
connecting all AS’ interfaces to the considered interface, allowing
for extending PCB attributes before selection (cf. Appendix B.2.2).
The SP returns the set of selected PCBs for that execution. Since

SPs defined by one ASes must be executed by other ASes, the pro-
grammatical interface between the SPC and the SP, which is used to
retrieve the input PCBs, query available performance metrics and
submit the selected results, must be standardized to ensure interop-
erability. Once all executions are performed, the SPC communicates
the selected PCBs for each interface to the egress gateway. At this
point, the system iterates and again requests new PCBs from the
ingress gateway. The maximum number of SPs an AS can execute
in parallel, therefore, corresponds to the number of SPCs in that
AS.

5.4 Egress Gateway
PCBOrigination.When creating new PCBs, the egress gateway of
the originating AS adds the attribute of the inter-domain link from
which the PCB is being emitted. To benefit from an on-demand or
reverse on-demand RCs, the egress gateway adds an extension to
the PCB with the URL of the respective SP and a flag specifying
the reverse RC (cf. Appendix C). The egress gateway then signs
the PCB and sends it to the ingress gateway of the neighboring AS
connected to the considered interface.
PCB Propagation.When receiving selected PCBs for each inter-
face from the SPCs, the egress gateway filters them by consulting its
egress database. If a received PCB is not yet present in this database,
the PCB is inserted together with the egress interface IDs for which
it is selected. The egress gateway then performs the extension op-
eration for each PCB selected for each interface: It appends an AS
entry that, in addition to other necessary information, contains (1)
the attributes of the intra-AS path connecting the interfaces where
the PCB entered the AS and is going to exist the AS, and (2) the at-
tributes of the inter-AS links connected to those two interfaces. The
egress gateway sends the extended selected PCB over the selected
inter-domain interface to the ingress gateway of the neighboring
AS on the other end of the interface. If the Rev flag is set in the PCB,
a copy of the PCB is also sent to its originating AS. If a received
PCB is already present in the egress database, which can happen
for PCBs selected by multiple SPCs or in different rounds of selec-
tion, the PCB is only propagated over those interfaces whose IDs
are newly added to the database. Similarly to the ingress database,
(soon-to-be) expired PCBs are removed from the egress database.
Path-segment Registration. To make the computed path seg-
ments available to endpoints, the egress gateway registers them at
the path service of the AS. To allow usability, it tags each segment
with the identifiers of the routing SPs by which it is computed.

6 Implementation and Evaluation
We first implement a proof-of-concept of IREC in a fork of the
SCION open-source codebase [12] and then evaluate it through
emulation using the Kathará network emulator [7, 17]. We further
evaluate IREC’s performance in terms of message complexity and
convergence time using a simulation on a larger topology.

6.1 Implementation
We implement the control service proposed in Section 5 in the Go
programming language as two separate applications bundled in
two Docker [2] images: One application that implements the ag-
gregated functionalities of ingress and egress gateways (GWs), and

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal S. Tabaeiaghdaei et al.

another that implements SPCs. An instance of the SPC application
can be configured to be a static or a dynamic SPC. SPCs communi-
cate with gateways using remote procedure (gRPC) [5] calls. We
use SQLite [13] for the ingress and egress databases. To ensure
interoperability with neighboring ASes not supporting IREC, the
ingress gateway listens on the same service address as the globally
standardized service address of the legacy control service [11].
SPCs. To reduce maintenance effort and cost, we develop a unified
implementation for static and dynamic SPCs. The type of SPC is
configured upon initialization.

SPCs use eBPF [3] technology to execute SPs. This allows for
(1) extensibility, as SPs can be written in various languages and
compiled into eBPF bytecodes, and (2) safety, thanks to eBPF’s
built-in guarantees. Specifically, since eBPF is designed to run in
the Linux kernel, a static verifier has been developed that performs
a comprehensive analysis of the program before execution, check-
ing for properties such as guaranteed termination, bounded loops
and safe memory access. Programs that could potentially loop in-
definitely, access invalid memory are rejected by the verifier. We
use the user-space variant of eBPF, uBPF [14], as we do not want
to run alien code from other ASes in the kernel. uBPF runs the
eBPF bytecode within a virtual machine (VM) in the user space.
As uBPF has limited helper functions compared to eBPF, we use
the libxbgp [9] library, which enhances the uBPF VM with more
helper functions and introduces a user-space verifier. Since uBPF
is a library written in C and SPCs are written in Go, we define a
C interface for calls to the library, export it, and invoke it from
Go using Cgo [1]. As an alternative to eBPF, one may consider a
runtime based on WebAssembly [15], which provides similar ex-
tensibility and isolation guarantees, but may only provide resource
restrictions, and not termination guarantee.

A dynamic SPC creates a new VM for every execution of a SP
and destroys it afterward. A static SPC creates the VM only once
upon initialization. To enhance performance, we use the just-in-
time compiler to translate eBPF bytecode to x86 instructions upon
creating the VM. Before every execution, a SPC prepares the mem-
ory region for the SP. The memory region is used to provide PCBs
to the SP as well as a working memory. PCBs are provided to the
SP using FlatBuffers [4], allowing for fast access to variable-sized
constructs without parsing or unpacking.

The SPC exposes helper functions with fixed identifiers that
each SP must use to (1) retrieve the length and offset of the PCBs
in memory, (2) query performance metrics and (3) submit selection
results. Local performance metrics, such as latency on intra-AS
and inter-AS links, are exposed via a key-value interface, using
fixed semi-standardized keys that match the metadata an AS would
include in a PCB. Metadata from other ASes is already available in
the PCB extensions of the input PCBs.

We develop one SP in C, implementing the same selection op-
eration as the one in the master branch of the SCION codebase at
the time of writing this paper. The selection operation sorts paths
based on their AS-hop lengths and selects the N-shortest paths
with a configurable N4. The bytecode size of this SP is 12kB. The
execution time of an algorithm depends on both the complexity of

4The SP selects 𝑁 − 1 shortest paths and one path that is most disjoint to the other
𝑁 − 1s. For simplicity, we say it selects the N-shortest paths.

the SP and the number of input PCBs. Empirically, evaluations with
varying input PCB sizes show that the SP completes in the order
of milliseconds on modern hardware. More details are given in
Appendix F. To prevent excessive resource usage, ASes can impose
limits on the execution time of SPs. Given that most ASes operate
multiple SPCs in parallel, this enables the execution of thousands
of SPs per second.

6.2 Evaluation
We evaluate our implementation by emulating a SCION network
comprising 15 core ASes and a total of 581 inter-AS links. This
topology is extracted from the CAIDA AS relationships with ge-
ographic annotations [21] data set, containing relationships and
the locations of links between more than 12 000 ASes across the
Internet. The extracted ASes are the ones with the highest degree
in the data set. The distance between all pairs of extracted ASes,
except one pair, is one. The distance of that single pair is two.

Due to the size of the topology, which cannot be emulated on a
single machine, we use a variant of the Kathará emulator, Mega-
los [42], that performs network emulations in a Kubernetes [8]
cluster. Megalos automates the creation of the cluster, deployment
of containers of emulated network devices, and the connections be-
tween them. For our emulations, we instantiate 10 compute nodes
in a data center of a cloud provider, all of the same instance type,
with 8 vCPUs and 16GB main memory. We carry out three experi-
ments, each for one hour: (1) an IREC experiment in which all ASes
deploy IREC with only one dynamic SPC and each AS starts one
on-demand RC (cf. Section 4.4), (2) Current CS-30s, an experiment
in which ASes deploy the current SCION control service (CS) with
a beacon propagation interval of 30 seconds, and (3) Current CS-
20m, an experiment with the current control service with a beacon
propagation interval of 20 minutes. In all experiments, PCBs are
originated only once at the beginning of the experiment, i.e. the
origination interval is set longer than the experiment duration. In
SCION experiments, we have a total of 83 virtual devices (contain-
ers), from which 53 are border routers, 15 are control services, one
per AS, and another 15 are end hosts, one per AS. In the IREC
experiment, there are 98 devices, where the 15 additional devices
are the SPCs, one per AS. In all experiments, we disable the signa-
ture verification of PCBs as it is an expensive operation requiring
more resources for emulations. In practice, the signature verifica-
tion would not be a problem for the scalability of SPs, since the
signature verification can be done outside the SP only once for all
received PCBs. The verification requires the same per-PCB effort
in the current control service as in IREC. The additional effort for
signature verification would have been proportional to the number
of PCBs received by the control service.

We sample CPU, memory, and bandwidth usage of every con-
tainer every 5 s during each experiment and collect the metrics
using Prometheus [10].
Bandwidth. Figure 10 illustrates the network transmit bandwidth
use of selected containers in the three experiments. Figure 10a
shows three distributions of the median bandwidth usages of (1)
the current CS containers in the Current CS-30s experiment, (2) the
current CS containers in the Current CS-20m experiment, and (3)
the gateway containers (GWs) in the IREC experiment. Similarly,

Inter-domain Routing with Extensible Criteria SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

0 250 500 750 1000
Network TX (KB/s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Cur. CS-30s

Cur. CS-20m

IREC GWs

(a) Median

0 1 2
Network TX (MB/s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Cur. CS-30s

Cur. CS-20m

IREC GWs

(b) Peak

Figure 10: Bandwidth usage of containers.

Figure 10b demonstrates the distributions of the peak bandwidth us-
ages. The median and peak usages for each container are computed
over the time series collected over the course of each experiment.

Among the three experiments, IREC and Current CS-20m both
have a median TX rate of 0. This is because both do not propagate
PCBs most of the time but for different reasons. Current CS-20m
propagates PCBs only every 20min, meaning that it does not prop-
agate anything most of the time. IREC, on the other hand, keeps
track of propagated PCBs in the egress gateway. PCBs selected by
the SPC are not propagated if they have already been propagated
(cf. Section 5.4). As the origination interval is longer than the dura-
tion of the experiment, there is only one origination of PCBs. Since
the SP selects the same set of PCBs repeatedly, PCB propagation
thus occurs only at the very beginning of the experiment. The peak
network transmit rate, however, is similar in all experiments. This
is because the peak rate represents the peak PCB propagation rate
in all experiments, which is equal across experiments because the
selection operation is the same across all of them.
CPU. Figure 11 illustrates the CPU, in the percentage of one CPU
core, of selected containers in the three experiments. Figure 11a
shows three distributions of the median CPU usages of (1) the
current CS containers in the Current CS-30s experiment, (2) the
current CS containers in the Current CS-20m experiment, and (3)
the gateway containers (GWs) in the IREC experiment. Similarly,
Figure 11b demonstrates the distributions of the peak CPU usages.
Lastly, Figure 11c shows the distributions of median and peak CPU
usages of the SPC containers in the IREC experiment. The median
and peak usages for each container are computed over the time
series collected over the course of each experiment.

Among the three experiments, IREC has the lowest median CPU
usage of all because of a very low rate of PCB propagation as a
result of filtering and not propagating duplicate PCBs at the egress
gateway. Current CS-20m also has much lower CPU usage than
Current CS-30s because of a much lower PCB propagation rate,
i.e., 40× lower. The peak CPU usages, however, are similar in all
experiments because of a similar peak PCB propagation rate.

The most important result is the very low CPU usage of SPCs,
both at the peak and the median, compared to the current control
service and gateways. This suggests the feasibility and scalability
of SPs in uBPF VMs. This allows for running many SPCs in parallel
with modest compute resources, allowing for the deployment of
many SPs and the extensibility of routing criteria. Note that SPCs

0 50 100 150
CPU (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Cur. CS-30s

Cur. CS-20m

IREC GWs

(a) Cur. CS vs. GWs - Median CPU

0 100 200 300
CPU (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Cur. CS-30s

Cur. CS-20m

IREC GWs

(b) Cur. CS vs. GWs - Peak CPU

0.00 0.50 1.00 1.50
CPU (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

peak

median

(c) SPC CPU

0 250 500 750 1000
Memory (MB)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Cur. CS-30s

Cur. CS-20m

IREC GWs

(d) Cur. CS vs. GWs -MedianMem

0 500 1000 1500 2000
Memory (MB)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Cur. CS-30s

Cur. CS-20m

IREC GWs

(e) Cur. CS vs. GWs - Peak Mem

11.50 12.00 12.50
Memory (MB)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

peak

median

(f) SPC Mem

Figure 11: CPU and memory use of containers.

are always running and are executing SPs every 5 s even though
they are filtered by the egress gateway.
Memory. Figure 11 illustrates the memory use, in MB, of selected
containers in the three experiments. Figure 11d shows three dis-
tributions of the median memory usages of: (1) the current CS
containers in the Current CS-30s experiment, (2) the current CS
containers in the Current CS-20m experiment, and (3) the gateway
containers (GWs) in the IREC experiment. Similarly, Figure 11e
demonstrates the distributions of the peak memory usages. Lastly,
Figure 11f shows the distributions of median and peak memory
usages of the SPC containers in the IREC experiment. The median
and peak usages for each container are computed over the time
series collected over the course of each experiment.

We see similar trends for memory usage as we see for CPU usage,
suggesting the superiority of IREC and the feasibility and scalability
of SPCs (less than 13MB peak memory use for any SPC), enabling
the extensibility of routing criteria.

7 Large-Scale Simulations
In this section, we study the inter-domain behavior of parallel
routing in a large network using simulations. By abstracting the
implementations of IREC and the current control service, large-scale

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal S. Tabaeiaghdaei et al.

simulations are significantly less resource-intensive than large-scale
emulations (cf. Section 6.2) for the same large topology.

7.1 Simulation Setup and Topology
We simulate IREC in the ns-3-based [51] SCION simulator on the
topology of the highest-degree 500 ASes extracted from the CAIDA
AS relationships with geographic annotations [21] with more than
90 000 inter-AS links in the extracted topology. Using the locations
of inter-AS links, we estimate the great circle propagation delay
between border routers of each AS. We also annotate inter-AS links
with bandwidths using degree gravity, which sets the link capacity
proportionally to the product of the degrees of ASes at the two
ends of the link. The bandwidth of a link is chosen from the set
{1, 10, 25, 40, 100, 400}.

7.2 Experiments
We perform the following experiments:

Parallel RC Experiments
• All ASes advertise the union of optimal attributes according
to two total orders ⪯𝛼−𝐶𝐸−𝐿 , one with 𝛼 = 1 and the other
with 𝛼 = 1

2 . Each total order selects the attribute with the
lowest linear combination of carbon emission and latency,
i.e., 𝛼 × 𝐶𝐸 + (1 − 𝛼) × 𝐿. We refer to this experiment as⋃
𝛼∈{ 1

2 ,1}
⊓⪯𝛼−𝐶𝐸−𝐿𝐴, where 𝐴 represents the set of attributes

and ⊓⪯𝛼−𝐶𝐸−𝐿𝐴 represents the set of selected attributes from
𝐴 according to order ⪯𝛼−𝐶𝐸−𝐿 .

• Similar experiment but with three 𝛼 ∈ { 12 ,
2
3 , 1}. We refer to

this experiment as
⋃

𝛼∈{ 1
2 ,

2
3 ,1}

⊓⪯𝛼−𝐶𝐸−𝐿𝐴.

Single RC Experiments
• All ASes advertise the most preferred attributes on the in-
tersection of the two total orders ⪯𝛼−𝐶𝐸−𝐿 with 𝛼 ∈ { 12 , 1}.
We refer to this experiment as ⪯ ⋂

𝛼 ∈{ 12 ,1}
𝛼−𝐶𝐸−𝐿 .

• All ASes advertise the most preferred attributes on the inter-
section of the three total orders ⪯𝛼−𝐶𝐸−𝐿 with 𝛼 ∈ { 12 ,

2
3 , 1}.

We refer to this experiment as ⪯ ⋂
𝛼 ∈{ 12 ,

2
3 ,1}

𝛼−𝐶𝐸−𝐿 .

• All ASes advertise the most preferred attributes on the prod-
uct order of the bandwidth and latency. In the product order,
(𝑤, 𝑙) is preferred to (𝑤 ′, 𝑙 ′) if they are different and𝑤 ≥ 𝑤 ′

and 𝑙 ≤ 𝑙 ′ [29]. We refer to this experiment as ⪯𝑊 ×𝐿 .
In all experiments, there is only one PCB origination event at the

beginning of the simulation. PCB selection and propagation at each
AS happens periodically with the same period across all ASes. ASes
are assumed to be perfectly time-synchronized. At every interval 𝑖 ,
only PCBs received up to the previous interval 𝑖 − 1 are considered
as candidates for the selection operation. In all experiments, if there
are multiple paths corresponding to the selected attribute, only
one of the paths is selected. To ensure determinism, with regard to
selection and not arrival order, we use the following tie-breaker:
(1) The path with the fewest hops is preferred; (2) Among paths
with the same number of AS hops, the one whose sequence of AS
numbers and interface identifiers is lexicographically the smallest is
selected. This tie-breaker ensures determinism only in the simulated

periodic beaconing explained above, where non-determinism in the
arrival order of PCBs cannot impact path selection. In such a setup,
it is guaranteed that selected paths with the same AS-hop length 𝑙
are propagated and received by the next AS at the 𝑙 − 1th interval
of the simulation (starting from 0) and are considered as candidates
only at the next interval, i.e., 𝑙 th interval.

7.3 Results
Figure 12 compares the results of different experiments.
Convergence. Figure 12a shows the distribution of convergence
times (in intervals) for all AS pairs, defined as the first interval after
which no new PCBs are received. Despite a network diameter of
3, convergence takes 5–9 intervals depending on the experiment.
Parallel RCs converge the fastest, with >95% within 7 intervals.
Intersection-based routing converges >90% by interval 7. Product-
order routing is the slowest: 10% by 7, 75% by 8, and 97% by 9
intervals—its full convergence requiring 9 intervals, compared to 7
(parallel) and 8 (intersection).
Selected Attributes at the Stable State. Figure 12b presents the
distribution of the number of attributes selected by each AS from
each of its interfaces toward any destination AS after convergence,
across over 95 million data points. In all scenarios, over 70% of
interface–AS pairs select a single attribute, indicating consistent
choices across parallel RCs. Since parallel RCs take the union of
individually selected attributes, the maximum number of selected
attributes is bounded by the number of parallel RCs (two or three).
For intersection-based routing, 99% of cases select fewer than six
attributes, though the count can reach up to 20 in rare cases. Product-
order routing shows a similar distribution but with a noticeably
shorter tail, capped at six.
Message Complexity. Figure 12c Shows PCB count distributions
per inter-domain interface across > 192,000 points (from 96,000
links). Message complexity of different experiments compares as
follows: parallel routing (2 linear combinations) < parallel routing
(3 linear combinations) < intersection-based routing < bandwidth-
latency product-order, with the latter having the highest complexity
and longest tail (>12,500 PCBs/interface), over twice that of parallel
routing with 3 linear combinations.

8 Discussion
End-to-End Performance. RCs optimize paths at the interface
group level, but end-to-end optimality requires clients to know
the correct interface group for reaching a server—information not
included in PCBs to reduce overhead. For metrics like latency or
bandwidth, clients can probe across interface groups to find optimal
paths, though this introduces delay. Future work may augment DNS
responses with metric hints for interface group selection.
Executing Alien Code.

Executing code from other ASes in on-demand RCs raises secu-
rity concerns. However, authenticated PCBs, our system design,
and best practices mitigate major threats. Malicious SPs may aim
to access confidential data or launch denial-of-service (DoS) at-
tacks by exhausting SPC resources. First, SCION’s signed PCBs
reveal the identity of misbehaving ASes, discouraging abuse due to
reputational risk. Second, IREC’s architecture (Section 5) ensures
complete isolation of SPCs, so even if one is overloaded, others

Inter-domain Routing with Extensible Criteria SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

⋃
α∈{1

2 ,1}
u�α−CE−LA

⋃
α∈{1

2 ,
2
3 ,1}
u�α−CE−LA � ⋂

α∈{1
2 ,1}

α−CE−L � ⋂
α∈{1

2 ,
2
3 ,1}

α−CE−L �W×L

5 6 7 8 9
Convergence Time (in Beaconing Intervals)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(a) Convergence time per AS
pair.

0 5 10 15 20
Selected Attributes

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
(b) Selected attributes per
source-destination pair at the
stable state.

2500 5000 7500 10000 12500
Propagated PCBs per Link until Convergence

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(c) Total propagated PCBs on
each interface.

Figure 12: Simulation results

remain unaffected. Operators can limit resource usage and evict
long-running SPs; the eBPF verifier guarantees termination. To
ensure basic connectivity, each AS must run a static SPC with a
generic SP. Third, SPs execute as uBPF bytecode within isolated
VMs, providing two layers of isolation. uBPF code accesses only
local memory, cannot interact with the network stack, and returns
results to its SPC. As a best practice, sensitive data should not be
stored on SPC hosts.
Ensuring that ASes Execute (Reverse) On-Demand SPs. On-
demand and reverse on-demand RCs are only useful if ASes are
committed to executing their associated SPs. We argue that ASes
willingly execute the programs as it is to their best benefit; thus,
there is no need for an enforcement mechanism. The reason is that
end ASes specifying such programs want to later use the optimal
paths computed by those programs for sending traffic. Therefore,
if an AS on the optimal path executes the program, the traffic goes
through that AS, increasing its revenue. Thus, they have a strong
incentive to execute the programs. If an AS can somehow realize
that it is not on the optimal path for a program, it probably does
not execute it. In this case, there is no harm in not executing the
program because even if it were executed, the resulting path would
not have been selected by endpoints. It is, however, highly unlikely
that an AS can realize whether or not it is on an optimal path for a
SP because (1) an AS only sees the path attributes up to its AS and
not further downstream, and (2) a non-curious AS only sees the
bytecode of the SP and not the source code; thus, they do not see
the selection criteria unless they perform analysis on the bytecode.

9 Related Work
Extensible Inter-Domain Routing. XIA [40], Trotsky [38], and
xBGP [53] advance Internet extensibility. XIA supports evolving
principals; Trotsky enables backward-compatible architectural changes;
xBGP allows BGP extensions via user-defined eBPF bytecode, let-
ting operators deploy features without vendor support or stan-
dardization delays. However, xBGP lacks support for multi-criteria
optimization and criteria defined by end domains.
Multi-Criteria Path Optimization. Multi-objective routing mod-
els path metrics as Cartesian products ordered via product or-
ders [18, 28, 37], but cover limited criteria. Sobrinho et al. [47]
ensure optimality on multiple routing criteria by advertising the
set of most preferred paths on the intersection of criteria. However,
they do not count for extensibility of criteria.
On-DemandRouting. Yampolskiy et al. [54] and Route Bazaar[19]
enable QoS-aware routing via endpoint requests and AS agree-
ments. In contrast, IREC is a general-purpose architecture decou-
pled from bilateral QoS negotiations and targets optimal path com-
putation rather than constraint satisfaction—though it can support
constraints via (reverse) on-demand RCs.

10 Conclusion
Despite tremendous advancements witnessed in the realm of infor-
mation technology over the past decades, along with a continuous
increase in dependence on communication networks, inter-domain
routing has endured a conspicuous lack of transformation over the
course of the past 25 years. In particular, despite the ever-increasing
diversity of applications’ communication requirements, BGP has
largely remained static over the past 25 years.

IREC overcomes those limitations by enabling the extension of
routing optimality criteria. Taking advantage of the opportunities
provided by the SCION path-aware Internet architecture, IREC
introduces parallel RCs, laying the foundation for the extension of
path optimization criteria. Building on parallel RCs, we introduce
on-demand and reverse on-demand RCs, enabling both end ASes of
traffic to express their path optimality criteria to the control plane
without waiting for standardization, vendor implementation, or
adoption by operators.

By emulating our uBPF-based implementation in the SCION
codebase for a realistic topology, we showed the practicality of the
introduced mechanisms. The ns-3 simulations on large realistic
topologies demonstrate that parallel RCs, i.e., the building block
of IREC, require less effort in terms of message complexity, than a
single RC selecting most preferred attributes on the intersection of
the same criteria.

IREC opens up new opportunities for exciting research in inter-
domain routing, with the potential to enhance communication
quality for endpoints and applications.

Acknowledgment
Wewould like to thank the anonymous reviewers and our shepherd
Panda Aurojit for their valuable feedback. We gratefully acknowl-
edge support from ETH Zurich, and from the Zurich Information
Security and Privacy Center (ZISC). The work of J. L. Sobrinho is
supported by FCT/MECI through national funds and, when appli-
cable, EU funds under UID/50008: Instituto de Telecomunicações.

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal S. Tabaeiaghdaei et al.

References
[1] [n. d.]. Cgo Documentation. https://pkg.go.dev/cmd/cgo archived at https://

perma.cc/5N5A-2UND.
[2] [n. d.]. docker. https://www.docker.com/ archived at https://perma.cc/4APP-

FENR.
[3] [n. d.]. eBPF-Dynamically program the kernel for efficient networking, observ-

ability, tracing, and security. https://ebpf.io archived at https://perma.cc/7TSN-
89WR.

[4] [n. d.]. FlatBuffers: Memory Efficient Serialization Library. https://flatbuffers.dev/
archived at https://perma.cc/MC9D-DNVQ.

[5] [n. d.]. gRPC. https://grpc.io/ archived at https://perma.cc/G8C5-VBCT.
[6] [n. d.]. Juniper vs Cisco BGP Med Attribute. https://skminhaj.wordpress.com/

2014/12/23/juniper-vs-cisco-bgp-med-attribute/ archived at https://perma.cc/
4STV-P6DW.

[7] [n. d.]. Kathará. https://www.kathara.org/index.html archived at https://perma.
cc/KUE4-Q6AA.

[8] [n. d.]. Kubernetes. https://kubernetes.io/ archived at https://perma.cc/9WXX-
5B5N.

[9] [n. d.]. libxBGP. https://github.com/pluginized-protocols/libxbgp archived at
https://perma.cc/9F8N-BB4D.

[10] [n. d.]. Prometheus. https://prometheus.io/ archive at https://perma.cc/3JA6-
MTGY.

[11] [n. d.]. SCION Control Service Documentation. https://docs.scion.org/en/latest/
manuals/control.html archived at https://perma.cc/M8ZB-U4AD.

[12] [n. d.]. scionproto. https://github.com/scionproto/scion.
[13] [n. d.]. SQLite. https://www.sqlite.org/index.html archived at https://perma.cc/

34PT-R3EC.
[14] [n. d.]. Userspace eBPF VM - Github.com. https://github.com/iovisor/ubpf

archived at https://perma.cc/6TVX-7AA3.
[15] [n. d.]. WebAssembly. https://webassembly.org archived at https://perma.cc/

DWT5-EMJW.
[16] Henry Birge-Lee, Sophia Yoo, Benjamin Herber, Jennifer Rexford, and Maria

Apostolaki. 2024. TANGO: Secure Collaborative Route Control across the Public
Internet. In Proceedings of the USENIX Symposium on Networked Systems Design
and Implementation (NSDI).

[17] Gaetano Bonofiglio, Veronica Iovinella, Gabriele Lospoto, and Giuseppe Di Bat-
tista. 2018. Kathará: A container-based framework for implementing network
function virtualization and software defined networks. In Proceedings of the
IEEE/IFIP Network Operations and Management Symposium (NOMS).

[18] James Brumbaugh-Smith and Douglas Shier. 1989. An Empirical Investigation
of some Bicriterion Shortest Path Algorithms. European Journal of Operational
Research (1989).

[19] Ignacio Castro, Aurojit Panda, Barath Raghavan, Scott Shenker, and Sergey
Gorinsky. 2015. Route Bazaar: Automatic Interdomain Contract Negotiation.
In Proceedings of the USENIX Conference on Hot Topics in Operating Systems
(HOTOS).

[20] Center for Applied Internet Data Analysis (CAIDA). [n. d.]. AS-Relationships.
https://www.caida.org/data/as-relationships/ archived at https://perma.cc/RYN2-
BSNB.

[21] Center for Applied Internet Data Analysis (CAIDA). [n. d.]. AS Relationships –
with Geographic Annotations. https://www.caida.org/data/as-relationships-geo/
archived at https://perma.cc/S4XX-Y2EK.

[22] Laurent Chuat, Markus Legner, David Basin, David Hausheer, Samuel Hitz, Peter
Müller, and Adrian Perrig. 2022. The Complete Guide to SCION. Springer.

[23] cyberlink. [n. d.]. SCION-Internet - Hochsicherer Datenaustausch. https://www.
cyberlink.ch/scion archived at https://perma.cc/G7XC-ZBKK.

[24] Bin Da and Marco Carugi. 2020. Representative use cases and key network require-
ments for Network 2030. Technical Report. ITU-T.

[25] Igor Ganichev, Bin Dai, P. Brighten Godfrey, and Scott Shenker. 2010. YAMR: Yet
Another Multipath Routing Protocol. ACM SIGCOMM Computer Communication
Review (CCR) (2010).

[26] GÉANT. [n. d.]. Infoshare: SCION Access for Universities and Research
Institutes. https://connect.geant.org/2022/11/18/infoshare-scion-access-for-
universities-and-research-institutes-24-nov-2022 archived at https://perma.cc/
PE4K-S36K.

[27] K. Oanh Ha. [n. d.]. When Your Boss Becomes a Hologram.
https://www.bloomberg.com/news/articles/2022-03-03/big-tech-and-
startups-look-to-3d-hologram-for-travel-free-communication archived
at https://perma.cc/5KXV-LMUX.

[28] Pierre Hansen. 1980. Bicriterion Path Problems. In Proceedings of the Multiple
Criteria Decision Making Theory and Application.

[29] Egbert Harzheim. 2005. Ordered Sets. Springer.
[30] Intercloud. [n. d.]. Securing cloud connectivity with SCION. https://www.

intercloud.com/our-resources/blog/securing-cloud-connectivity-with-scion
archived at https://perma.cc/CYX4-2H25.

[31] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Ar-
jun Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jon Zolla,

Urs Hölzle, Stephen Stuart, and Amin Vahdat. 2013. B4: Experience with a
Globally-Deployed Software Defined Wan. In Proceedings of the ACM SIGCOMM
Conference.

[32] Karrierone. [n. d.]. Building the future of connectivity. https://scion.karrier.one
archived at https://perma.cc/UH8S-DBZM.

[33] Cyrill Krähenbühl, Seyedali Tabaeiaghdaei, Christelle Gloor, Jonghoon Kwon,
Adrian Perrig, David Hausheer, and Dominik Roos. 2021. Deployment and Scala-
bility of an Inter-Domain Multi-Path Routing Infrastructure. In Proceedings of the
ACM SIGCOMM International Conference on Emerging Networking EXperiments
and Technologies (CoNEXT).

[34] Nate Kushman, Srikanth Kandula, Dina Katabi, and Bruce M. Maggs. 2007. R-
BGP: Staying Connected In a Connected World. In Proceedings of the USENIX
Symposium on Networked Systems Design and Implementation (NSDI).

[35] Craig Labovitz, Abha Ahuja, Abhijit Bose, and Farnam Jahanian. 2001. Delayed
Internet routing convergence. IEEE/ACM Transactions on Networking (2001).

[36] Yong Liao, Lixin Gao, Roch Guerin, and Zhi-Li Zhang. 2008. Reliable Interdomain
Routing through Multiple Complementary Routing Processes. In Proceedings of
the ACMSIGCOMM International Conference on Emerging Networking EXperiments
and Technologies (CoNEXT).

[37] Ernesto Queirós Vieira Martins. 1984. On a Multicriteria Shortest Path Problem.
European Journal of Operational Research (1984).

[38] James McCauley, Yotam Harchol, Aurojit Panda, Barath Raghavan, and Scott
Shenker. 2019. Enabling a Permanent Revolution in Internet Architecture. In
Proceedings of the ACM SIGCOMM Conference.

[39] Murtaza Motiwala, Megan Elmore, Nick Feamster, and Santosh Vempala. 2008.
Path Splicing. In Proceedings of the ACM SIGCOMM Conference.

[40] David Naylor, Matthew K. Mukerjee, Patrick Agyapong, Robert Grandl, Ruogu
Kang, Michel Machado, Stephanie Brown, Cody Doucette, Hsu-Chun Hsiao,
Dongsu Han, Tiffany Hyun-Jin Kim, Hyeontaek Lim, Carol Ovon, Dong Zhou,
Soo Bum Lee, Yue-Hsun Lin, Colleen Stuart, Daniel Barrett, Aditya Akella, David
Andersen, John Byers, Laura Dabbish, Michael Kaminsky, Sara Kiesler, Jon Peha,
Adrian Perrig, Srinivasan Seshan, Marvin Sirbu, and Peter Steenkiste. 2014. XIA:
Architecting a More Trustworthy and Evolvable Internet. SIGCOMM Computer
Communication Reviews (CCR) (2014).

[41] Donghong Qin, Jiahai Yang, Zhuolin Liu, Jessie Wang, Bin Zhang, andWei Zhang.
2012. AMIR: Another Multipath Interdomain Routing. In Proceedings of the IEEE
International Conference on Advanced Information Networking and Applications
(AINA).

[42] Mariano Scazzariello, Lorenzo Ariemma, Giuseppe Di Battista, and Maurizio
Patrignani. 2021. Megalos: A Scalable Architecture for the Virtualization of Large
Network Scenarios. Future Internet (2021).

[43] Simon Scherrer, Markus Legner, Adrian Perrig, and Stefan Schmid. 2021. Enabling
Novel Interconnection Agreements with Path-Aware Networking Architectures.
In 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). 116–128. doi:10.1109/DSN48987.2021.00027

[44] Simon Scherrer, Seyedali Tabaeiaghdaei, and Adrian Perrig. 2023. Quality Com-
petition Among Internet Service Providers. In Proceedings of the IFIP International
Symposium on Computer Performance, Modeling, Measurements and Evaluation
(PERFORMANCE).

[45] João Luís Sobrinho. 2002. Algebra and Algorithms for QoS Path Computation
and Hop-by-Hop Routing in the Internet. IEEE/ACM Transactions on Networking
(2002).

[46] João Luís Sobrinho. 2005. An algebraic theory of dynamic network routing.
IEEE/ACM Transactions on Networking (2005).

[47] João Luís Sobrinho and Miguel Alves Ferreira. 2020. Routing on Multiple Opti-
mality Criteria. In Proceedings of the ACM SIGCOMM Conference.

[48] Swisscom. [n. d.]. SCION – for secure data transmission. https://www.swisscom.
ch/en/business/enterprise/offer/wireline/scion.html archived at https://perma.cc/
8MDB-62PS.

[49] Seyedali Tabaeiaghdaei, Simon Scherrer, Jonghoon Kwon, and Adrian Perrig.
2023. Carbon-Aware Global Routing in Path-Aware Networks. In Proceedings of
ACM International Conference on Future Energy Systems (e-Energy).

[50] Telindus. [n. d.]. SCiON A New Architecture that Overcomes the Limitations of
the Internet. https://www.proximusnxt.lu/en/scion archived at https://perma.cc/
5QQK-J2GP.

[51] University of Washington NS-3 Consortium. [n. d.]. ns-3 Network Simulator.
https://www.nsnam.org/ archived at https://perma.cc/4S4N-8VGV.

[52] Feng Wang and Lixin Gao. 2009. Path Diversity Aware Interdomain Routing. In
Proceedings of the IEEE International Conference on Computer Communications
(INFOCOM).

[53] ThomasWirtgen, TomRousseaux, Quentin De Coninck, Nicolas Rybowski, Randy
Bush, Laurent Vanbever, Axel Legay, and Olivier Bonaventure. 2023. xBGP: Faster
Innovation in Routing Protocols. In Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI).

[54] Mark Yampolskiy, Wolfgang Hommel, Bernhard Lichtinger, Wolfgang Fritz, and
Matthias K. Hamm. 2010. Multi-domain End-to-End (E2E) Routing with Multi-
ple QoS Parameters – Considering Real World User Requirements and Service
Provider Constraints. In Proceedings of the IARIA International Conference on

https://pkg.go.dev/cmd/cgo
https://perma.cc/5N5A-2UND
https://perma.cc/5N5A-2UND
https://www.docker.com/
https://perma.cc/4APP-FENR
https://perma.cc/4APP-FENR
https://ebpf.io
https://perma.cc/7TSN-89WR
https://perma.cc/7TSN-89WR
https://flatbuffers.dev/
https://perma.cc/MC9D-DNVQ
https://grpc.io/
https://perma.cc/G8C5-VBCT
https://skminhaj.wordpress.com/2014/12/23/juniper-vs-cisco-bgp-med-attribute/
https://skminhaj.wordpress.com/2014/12/23/juniper-vs-cisco-bgp-med-attribute/
https://perma.cc/4STV-P6DW
https://perma.cc/4STV-P6DW
https://www.kathara.org/index.html
https://perma.cc/KUE4-Q6AA
https://perma.cc/KUE4-Q6AA
https://perma.cc/9WXX-5B5N
https://perma.cc/9WXX-5B5N
https://github.com/pluginized-protocols/libxbgp
https://perma.cc/9F8N-BB4D
https://prometheus.io/
https://perma.cc/3JA6-MTGY
https://perma.cc/3JA6-MTGY
https://docs.scion.org/en/latest/manuals/control.html
https://docs.scion.org/en/latest/manuals/control.html
https://perma.cc/M8ZB-U4AD
https://github.com/scionproto/scion
https://www.sqlite.org/index.html
https://perma.cc/34PT-R3EC
https://perma.cc/34PT-R3EC
https://github.com/iovisor/ubpf
https://perma.cc/6TVX-7AA3
https://webassembly.org
https://perma.cc/DWT5-EMJW
https://perma.cc/DWT5-EMJW
https://www.caida.org/data/as-relationships/
https://perma.cc/RYN2-BSNB
https://perma.cc/RYN2-BSNB
https://www.caida.org/data/as-relationships-geo/
https://perma.cc/S4XX-Y2EK
https://www.cyberlink.ch/scion
https://www.cyberlink.ch/scion
https://perma.cc/G7XC-ZBKK
https://connect.geant.org/2022/11/18/infoshare-scion-access-for-universities-and-research-institutes-24-nov-2022
https://connect.geant.org/2022/11/18/infoshare-scion-access-for-universities-and-research-institutes-24-nov-2022
https://perma.cc/PE4K-S36K
https://perma.cc/PE4K-S36K
https://www.bloomberg.com/news/articles/2022-03-03/big-tech-and-startups-look-to-3d-hologram-for-travel-free-communication
https://www.bloomberg.com/news/articles/2022-03-03/big-tech-and-startups-look-to-3d-hologram-for-travel-free-communication
https://perma.cc/5KXV-LMUX
https://www.intercloud.com/our-resources/blog/securing-cloud-connectivity-with-scion
https://www.intercloud.com/our-resources/blog/securing-cloud-connectivity-with-scion
https://perma.cc/CYX4-2H25
https://scion.karrier.one
https://perma.cc/UH8S-DBZM
https://doi.org/10.1109/DSN48987.2021.00027
https://www.swisscom.ch/en/business/enterprise/offer/wireline/scion.html
https://www.swisscom.ch/en/business/enterprise/offer/wireline/scion.html
https://perma.cc/8MDB-62PS
https://perma.cc/8MDB-62PS
https://www.proximusnxt.lu/en/scion
https://perma.cc/5QQK-J2GP
https://perma.cc/5QQK-J2GP
https://www.nsnam.org/
https://perma.cc/4S4N-8VGV

Inter-domain Routing with Extensible Criteria SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

Evolving Internet (INTERNET).
[55] Xiaowei Yang, David Clark, and Arthur W. Berger. 2007. NIRA: A New Inter-

Domain Routing Architecture. IEEE/ACM Transactions on Networking (2007).
[56] Kok-Kiong Yap, Murtaza Motiwala, Jeremy Rahe, Steve Padgett, Matthew Holli-

man, Gary Baldus, Marcus Hines, Taeeun Kim, Ashok Narayanan, Ankur Jain,
Victor Lin, Colin Rice, Brian Rogan, Arjun Singh, Bert Tanaka, Manish Verma,
Puneet Sood, Mukarram Tariq, Matt Tierney, Dzevad Trumic, Vytautas Valancius,
Calvin Ying, Mahesh Kallahalla, Bikash Koley, and Amin Vahdat. 2017. Taking
the Edge off with Espresso: Scale, Reliability and Programmability for Global
Internet Peering. In Proceedings of the ACM SIGCOMM Conference.

[57] Xia Yin, Dan Wu, Zhiliang Wang, Xingang Shi, and Jianping Wu. 2015. DIMR.
Computer Networks (2015).

[58] Ming Zhu, Dan Li, Ying Liu, Dan Pei, KK Ramakrishnan, Lili Liu, and Jianping
Wu. 2015. MIFO: Multi-path Interdomain Forwarding. In Proceedings of the ACM
International Conference on Parallel Processing (ICPP).

A Considerations Regarding Hierarchical
Routing of SCION

A.1 IREC Only for Core Beaconing
Given the two levels of routing hierarchy in SCION, i.e., core and
intra-ISD beaconing, we argue that IREC is essential to the core
beaconing and is unnecessary for the intra-ISD beaconing.

In the core of the network, the number of core-path segments
is super-exponentially large because of the dense interconnection
of ASes and the possibility of valley-full routing. In such circum-
stances, discovering all possible core-path segments is practically
impossible due to the overwhelming communication and compu-
tation costs. Therefore, to discover core-path segments that are
optimal according to specific criteria, it is necessary to take the op-
timality criteria into account for core-segment computation during
core beaconing.

In contrast, sparse intra-ISD topologies, together with the uni-
directional intra-ISD beaconing from core to leaf ASes that builds
a directed acyclic graph (DAG), make it possible to discover all
possible up- and down-path segments with negligible cost. This is
empirically shown by Krähenbühl et al. [33]. Hence, taking into ac-
count optimality criteria for intra-ISD beaconing does not provide
any benefit and is therefore unnecessary.

B Incorporating Intra-AS Topologies for
Optimality

Every AS on an inter-domain path is a network of routers dis-
tributed across different locations. Consequently, an inter-domain
path is a sequence of intra-AS paths connected by inter-domain
links. Therefore, the attributes of intra-AS paths contribute to the
attributes of inter-domain paths. However, the SCION control plane
abstracts away the internal topology of ASes by modeling them
as abstract nodes. This means that the attributes of intra-AS paths
within ASes are not taken into account in computing the attributes
of inter-domain paths, potentially resulting in the selection of sub-
optimal inter-domain paths. In the following two sections, we elab-
orate on how this modeling can cause suboptimality and how we
address these problems.

B.1 Last-Mile Path Matters
B.1.1 Problem. Modeling ASes as abstract nodes ignores the last-
mile intra-AS path from the last border router to the traffic desti-
nation within the end AS. Such modeling falsely assumes that any
inter-domain path that is optimal for reaching a border router of

End AS t

Endpoint 1

100

90

3

100: w, t

50: z, t

50: y, t1

Intf. 1

Endpoint 2

2100

90
99: x, t

Intf. 2

Intf. 3

Intf. 4
1

Figure 13: An example of per-AS RC resulting in suboptimal
end-to-end paths. Each line represents a path. Lines within
the AS represent intra-AS paths to endpoints, and lines out
of the AS represent inter-domain paths to AS 𝑡 received by
an AS 𝑣 (not shown). While the shortest path to endpoint
1 enters AS 𝑡 at interface 1, a per-AS RC according to the
shortest order ⪯𝑆 results in selecting the two paths reaching
interfaces 3 and 4.

an AS is also optimal for reaching any endpoint within that AS.
SCION beaconing, until the time of writing this paper, works based
on this assumption: It computes routes on a per-AS basis, i.e., it
selects optimal paths to reach any entry point of an AS, which can
result in suboptimal paths to endpoints.

Figure 13 illustrates an example of per-AS RC resulting in sub-
optimal paths to endpoints. A per-AS RC according to the shortest
order ⪯𝑆 selects the shortest inter-domain paths to AS 𝑡 , i.e., the
ones with length 50 to interfaces 3 and 4. Using these paths to reach
endpoint 1 results in data packets being forwarded on intra-AS
paths with lengths 90 or 100 from interfaces 3 or 4 to endpoint 1.
This results in a total length of 140 or 150 to endpoint 1. On the
other hand, selecting and using the inter-domain path to interface
1 results in a total length of 101 to endpoint 1, i.e., the shortest
possible length to that endpoint. However, the per-AS RC never
selects the path to interface 1, resulting in suboptimal end-to-end
performance.

For core-path segments combined with up- or down-path seg-
ments, the endpoint in the above example is the border router where
the up or down segment ends or starts, respectively.

B.1.2 Solution. To better account for the last-mile intra-AS paths
to endpoints, we propose computing routes pertaining to groups of
interfaces of each AS. This means selecting and advertising optimal
attributes to reach every group of AS interfaces. This approach is
equivalent to considering every group of interfaces as a different
AS to which routes are computed without creating new ASes.

The intuition behind this approach is that the interfaces of an
AS can be grouped together based on the attributes of the paths
connecting them to different services hosted in the AS. Interfaces in
the same group offer similar performance, with regard to a subset
of metrics, to reach all services hosted in the AS. Therefore, this ap-
proach can provide benefits similar to announcing different prefixes
from different subsets of routers with BGP in today’s Internet.

RC pertaining to interface groups requires the following actions:
ASes Starting RCs (End ASes)

• Defining interface groups and assigning an identifier to them.
Different ways of grouping can co-exist according to dif-
ferent performance metrics. For example, location-based

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal S. Tabaeiaghdaei et al.

End AS t

Endpoint 1

100

90

3

100: w, t

50: z, t

50: y, t1

Intf. 1

Endpoint 2

2100

90
99: x, t

Intf. 2

Intf. 3

Intf. 4

Interface
Group 1

Interface
Group 2

1

Figure 14: An example of interface groups enhancing the
optimality of paths to endpoint 1 with regard to shortest
order ⪯𝑆 . The shortest path to interface group 1 is 99: 𝑥, 𝑡 to
interface 2, resulting in a length of 102 to endpoint 1.Without
interface groups, the shortest paths to AS 𝑡 are 50: 𝑦, 𝑡 and
50: 𝑧, 𝑡 , resulting in a length of 140 to endpoint 1.

groups and bandwidth-based groups can co-exist for latency
and bandwidth optimizations, respectively. Therefore, the
interface groups are not mutually exclusive. An interface in
the central Europe location-based group can be part of the
high-bandwidth group together with other high-bandwidth
interfaces around the world.

• Starting at least one RC for every interface group. This is done
by originating PCBs, each containing the interface group
identifier, from all interfaces that are part of that interface
group. The inclusion of an interface-group identifier is inde-
pendent of whether the RC is generic, on-demand, or reverse
on-demand, depending on whether the AS includes a SP in
the PCBs as well. Multiple RCs with different SPs can be
started for the same interface group.

Note that an AS can modify its interface groups. In that case, it
needs to start new RCs accordingly.

ASes Receiving PCBs with Interface-Group Identifiers

• Performing the selection operation separately on PCBs pertain-
ing to every interface group of every AS. In doing so, they
group PCBs based on their interface group identifier (and
ISD-AS number, to avoid collision of interface group identi-
fiers in different ASes).

• Advertising selected PCBs pertaining to every interface group
to neighboring ASes.

Figure 14 shows how interface groups can be defined in the
same topology as Figure 13 to enhance the optimality of paths
to endpoint 1 with regard to shortest order ⪯𝑆 . AS 𝑡 defines two
interface groups: group 1, including interfaces 1 and 2, and group 2,
including interfaces 3 and 4. AS 𝑣 (not shown in the figure) receives
paths starting from these four interfaces and groups these paths
according to their interface groups: Two paths pertaining to group
1, i.e., 99: 𝑥, 𝑡 and 100: 𝑤, 𝑡 , and two paths pertaining to group 2,
i.e., 50: 𝑦, 𝑡 and 50: 𝑧, 𝑡 . The selection operation is performed for
every interface group separately: Path 99: 𝑥, 𝑡 is elected for reaching
interface group 1 of AS 𝑡 , and both 50: 𝑦, 𝑡 and 50: 𝑧, 𝑡 are selected
to reach interface group 2 of AS 𝑡 . Using 99: 𝑥, 𝑡 to reach endpoint
1 results in a near-optimal length to the endpoint, i.e., 102, while a
per-AS path computation only selects 50: 𝑦, 𝑡 and 50: 𝑧, 𝑡 , resulting
in at least a length of 140 to endpoint 1.

99: x, t

100: w, t

Intf. 3

100

95

AS v

Intf. 1

Intf. 2

AS z

0

Figure 15: An example of how abstracting internal AS topol-
ogy results in advertising suboptimal attributes. Attribute
𝑏 = 99: 𝑥, 𝑡 is preferred to attribute 𝑐 = 100: 𝑤, 𝑡 according to
the shortest order ⪯𝑆 . By abstracting the internal topology
of AS 𝑣 , attribute 𝑏 is chosen to be advertised to AS 𝑧. This
results in a length of 199, while selecting 𝑐 would result in a
length of 195.

Note that the selected path to interface group 1, i.e., 99: 𝑥, 𝑡 , still
does not result in the optimal length to endpoint 1. The optimal
length to endpoint 1, i.e., 101, only results from using 100: 𝑤, 𝑡 ,
which is not selected as it is longer than 99: 𝑥, 𝑡 to the same inter-
face group 1. To address this issue, AS 𝑡 can define more granular
interface groups by creating an interface group that only contains
interface 1 and another interface group that only contains interface
2. In that case, 100:𝑤, 𝑡 , is also selected, resulting in optimal length
to endpoint 1.

The remaining research question is how to realize that endpoint
1 should be reached over interface group 1. Unless this question is
answered, the proposed mechanism cannot provide a significant
benefit. This problem is also due to per-AS instead of per-prefix
routing in SCION. One way to solve this problem is to use DNS
to provide information on the optimal interface groups to reach a
service. However, providing a concrete solution to this problem is
out of the scope of this paper.

B.2 A False Notion of Non-Isotonicity
B.2.1 Problem. Modeling ASes as abstract nodes can result in ad-
vertising suboptimal paths by selecting attributes that do not remain
optimal after extension by intra-AS attributes. Figure 15 provides
an example of this phenomenon for a RC according to the shortest
order ⪯𝑆 , selecting the attribute with the shortest length. There are
two received attributes, i.e., 𝑏 = 99: 𝑥, 𝑡 and 𝑐 = 100: 𝑤, 𝑡 . Clearly,
𝑏 ⪯𝑆 𝑐 because of the shorter length. By abstracting the internal
topology of AS 𝑣 , attribute𝑏 is chosen to be advertised to AS 𝑧. How-
ever, 𝑎[𝑧𝑣] ⊕𝑎[𝐼𝑛𝑡 𝑓 . 3, 𝐼𝑛𝑡 𝑓 . 2] ⊕𝑐 ⪯𝑆 𝑎[𝑧𝑣] ⊕𝑎[𝐼𝑛𝑡 𝑓 . 3, 𝐼𝑛𝑡 𝑓 . 1] ⊕𝑏,
because 𝑎[𝑧𝑣] ⊕ 𝑎[𝐼𝑛𝑡 𝑓 . 3, 𝐼𝑛𝑡 𝑓 . 2] ⊕ 𝑐 = 195 : 𝑣,𝑤, 𝑡 , while 𝑎[𝑧𝑣] ⊕
𝑎[𝐼𝑛𝑡 𝑓 . 3, 𝐼𝑛𝑡 𝑓 . 1]⊕𝑏 = 199 : 𝑣, 𝑥, 𝑡 . In other words, the relative pref-
erence between 𝑏 and 𝑐 is not preserved when they are advertised
to the next AS despite the fact that ⪯𝑆 is isotone. This is because
the attributes of the two paths from interface 3 to 𝑡 are in fact not
𝑏 and 𝑐 but are 𝑎[𝐼𝑛𝑡 𝑓 . 3, 𝐼𝑛𝑡 𝑓 . 1] ⊕ 𝑏 and 𝑎[𝐼𝑛𝑡 𝑓 . 3, 𝐼𝑛𝑡 𝑓 . 2] ⊕ 𝑐 .

Note that this is not a problem in routing protocols in which
every router computes routes from itself to the destination: Routes
received from a peer router in the same AS are already extended by
the attributes of the intra-AS path that connects them. Therefore,
the differences in intra-AS paths are visible in inter-domain paths.
In SCION, however, it is the logically centralized control service of

Inter-domain Routing with Extensible Criteria SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

each AS that participates in inter-domain routing, not the border
routers.

B.2.2 Solution. To address this problem, we propose that the con-
trol service of each AS selects and extends routes from the per-
spective of every border router such that it computes the same set
of paths that the routers themselves would select. Therefore, for
every RC, the control service performs the following steps for every
interface 𝑖 in the set of interfaces 𝐼 :

(1) Extend every inter-domain attribute pertaining to the RC
that is received from any interface 𝑜 other than 𝑖 by 𝑎[𝑖𝑜],
i.e., the attribute of the intra-AS path connecting interfaces 𝑖
and 𝑜 . This step builds set 𝐸𝑖 := {𝑎[𝑖𝑜] ⊕𝑐 |𝑐 ∈ 𝐶 [𝑜], 𝑜 ∈ 𝐼 \𝑖},
where 𝐶 [𝑜] represents inter-domain attributes pertaining to
the RC that are received from interface 𝑜 .

(2) Perform selection operation on 𝐸𝑖 .

In Figure 15, when selection is performed on 𝐸3 =

{𝑎[𝐼𝑛𝑡 𝑓 . 3, 𝐼𝑛𝑡 𝑓 . 1] ⊕ 𝑏 = 199 : 𝑣, 𝑥, 𝑡 , 𝑎[𝐼𝑛𝑡 𝑓 . 3, 𝐼𝑛𝑡 𝑓 . 2] ⊕ 𝑐 = 195 :
𝑣,𝑤, 𝑡}, the optimal attribute 𝑎[𝐼𝑛𝑡 𝑓 . 3, 𝐼𝑛𝑡 𝑓 . 2] ⊕ 𝑐 = 195 : 𝑣,𝑤, 𝑡 ,
is selected.

C PCB Extension
We introduce the IREC PCB extension that provides information to
ASes participating in IREC. Each PCB can have at most one IREC
extension included in its first AS entry. Only the AS starting a RC,
i.e., the AS originating the PCB, can include this extension. ASes
receiving such a PCB must not modify this extension. ASes not
supporting IRECmust ignore the extension, meaning that theymust
neither discard the PCB nor remove the extension. This ensures
connectivity and allows for partial optimization by IREC-enabled
ASes.

This extension contains the following fields:

• SP Identifier (SP): Specifying the URL using which the SP
can be retrieved from the originating AS. This field is used
for on-demand and reverse on-demand RCs (cf. Sections 4.4
and 4.5). If not specified, the PCB is considered for generic
RCs.

• Reverse Computation Flag (Rev): This flag determineswhether
the PCB belongs to a reverse on-demand RC (cf. Section 4.5).
This flag can only be set if the SP is not null. If set, an AS
extends attributes in reverse and returns a copy of the PCB
to the originating AS.

• Interface Group Identifier (IG): An integer specifying the in-
terface group for which the RC computes the routes (cf. Ap-
pendix B.1.2). This field can be set independently of the other
two fields.

A RC can be uniquely identified by (Originating ISD, Originating
AS, SP, IG, Rev). We call this tuple the RC Identifier (IDRC).

Note that IREC can also work on PCBswithout such an extension.
PCBs without the extension are considered for all parallel generic
RCs. This is because generic RCs are oblivious to SP and Rev fields,
and IG is optional.

D Case Study: Optimizing Paths for
Client-Server Applications

We study how the IREC architecture can be used to enhance the
quality of experience for client-server applications by allowing
optimization of SCION core-path segments for the criteria desired
by each application. In this study, we assume a common case in
modern applications, where the client application is developed by
the same entity that develops and operates the server side. For
example, the YouTube app is developed by Google, and the content
is served by Google-developed servers on the cloud run by Google.
In such cases, the entity (e.g., Google) knows which path optimality
criteria suit either direction of the communication (i.e., client-to-
server and server-to-client) the best. This also applies to tenants of
cloud providers.
Which Side Should Start the RCs?. We argue that the server
side of such applications should leverage the mechanisms provided
by IREC to optimize paths in both directions between clients and
servers. The reasons are fourfold:

• It is significantly more scalable to start one RC from the
server side (or a handful if the server is in the customer
cones of multiple core ASes) than to start thousands of com-
putations from all core ASes with clients in their customer
cones.

• A cloud provider that hosts a service can operate core AS(es)
and have full control over its core-segment computations
or have an influence on its providers’ core-segment com-
putations. This control can be offered as a service to cloud
tenants. On the other hand, client applications are not ex-
pected to have a significant, if any, influence on which RCs
their ISP starts.

• Starting RCs from the client side would require either the
involvement of end users or the standardization and devel-
opment of an interface between client applications and ISPs
to automate the expression of the SP to ISPs. None of these
are required on the server side. The cloud provider offers a
user interface (UI) or an infrastructure as code (IaC) model
to tenants, using which they can define their SPs.

• Changing SPs on the server side is dramatically easier, in
terms of operational effort, than on the client side. On the
server side, the defined SP on the cloud UI or IaC needs to
be updated. On the client side, the application developer
would need to release a patch for (up to) billions of client
applications.

Required RCs. To optimize core-path segments between clients
and a server of an application, the core AS whose customer cone
includes the server’s AS needs to (1) start an on-demand optimiza-
tion that computes paths from clients to the server according to the
criteria for reaching the server, and (2) start a reverse on-demand
optimization that computes paths from the server to clients accord-
ing to the criteria for reaching the clients. Note that the SPs of
these RCs can use different orders. For example, for a streaming
service, a high-bandwidth path may be required from the server to
the clients, while a low-latency path may be required for acknowl-
edgment packets from the clients to the server.

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal S. Tabaeiaghdaei et al.

Path-segment Lookup. Once these core segments are computed,
they need to be looked up by the endpoints. We argue that the seg-
ments for both directions of the communication should be looked
up on the client side. This is because path lookup is an expensive
operation and can overwhelm a server for a large number of clients.
Furthermore, the core AS on the client side receives and stores
optimal segments for both directions of the communication. On the
contrary, the core AS on the server side receives the optimal paths
only for the server-to-client direction of communication through a
reverse on-demand RCs.
IREC-aware Core Segment Selection at Endpoints. The core-
segment lookup operation can result in multiple segments for each
direction of communication. If they are computed by a single RC, a
random one can be returned to the client. However, it can be the
case that the segments are computed by different RCs, and each
is optimal for different sets of criteria. In such cases, the client
application should know which RC is tailored to its communica-
tion criteria. To solve this problem, we propose the IREC-aware
core-path segment selection procedure. This means that endpoints
choose the segments that are computed by their desired RC instead
of performing segment optimization themselves. This saves end-
points from repeating the same computation already performed by
RCs. In addition, it significantly reduces the number of segments
returned to clients from the path service, enhancing the scalability
of segment lookup. Most importantly, client applications remain
much simpler, as changing the optimality criteria does not require
modifying the client application code.

We propose the following IREC-aware segment selection proce-
dure:

(1) The client endpoint looks up for core-path segments to and
from the destination ISD where the server AS is located.

(2) For each direction, if there is only one RC, the path service
returns the optimal segments computed by the RC. If there
is more than one RC, the path service returns a segment
together with the list of RC identifiers (IDRC, cf. Appendix C)
existing for each direction of communication.

(3) If the result of the lookup contains a list of IDRCs, the client
contacts the application server to ask for the desired IDRC
out of the provided list. Note that the application developer
who controls the server is aware of both the desired criteria
for the application and the corresponding RCs.

(4) The client performs another segment lookup for each direc-
tion of the communication, providing the path service with
the IDRC chosen by the server. The path service returns the
optimal segments computed by the specified RC.

E Background on SCION
As this paper designs and builds systems for the SCION Internet
architecture, we provide a brief background on SCION.
Architecture. SCION groups ASes in Isolation Domains (ISDs).
Each isolation domain is organized hierarchically into two levels:
(1) Core ASes and (2) Non-core ASes. Core ASes, which constitute
the ISD core, govern the ISD and provide the non-core ASes in their
customer cones with connectivity to other ISDs. Neighboring ASes
can have one of the three following relationships: (1) Core, between

two neighboring core ASes, within or across ISDs, (2) Customer-
provider, within an ISD, and (3) Peering, between two peer ASes
within or across ISDs.
Data Plane. SCIONuses packet-carried forwarding state to forward
inter-domain traffic. This means that endpoints encode AS-level
inter-domain paths into packet headers based on which border
router of every AS forwards packets. SCION paths are specified at
the granularity of inter-domain (or inter-AS) interfaces representing
links between neighboring ASes, providing endpoints with fine-
grained control over paths. Border routers do not need to store inter-
domain forwarding tables to make forwarding decisions, enabling
scalable multi-path forwarding.

Because of the hierarchical organization of ASes in ISDs, SCION
paths consist of up to three path segments: (1) an up-path segment,
connecting the non-core source AS to a core AS within the same
ISD, (2) a core-path segment, connecting the core ASes in the source
and destination ISDs, and (3) a down-path segment, connecting
the core AS in the destination ISD to the non-core destination AS
within the same ISD. A path can consist of just one or two of these
path segments depending on the logical location of source and
destination ASes in the network. Also, it is possible to use up- and
down-path segments partially to reach another non-core AS on the
same segment.

SCION paths are reversible: the destination of a packet can re-
verse the path in the header of the received packet and use the
reverse path in the header of the response packet.
Control Plane. Path segments are computed in the beaconing
process. Core segments are computed by core beaconing in which
all core ASes participate. Up- and down-segments within an ISD
are computed by the intra-ISD beaconing in which only the ASes of
the same ISD participate. Only core ASes can start a path-segment
computation.

To start a core-segment computation, the beacon service of a core
AS originates a path-construction beacon (PCB) and disseminates
it only to the beacon service of its neighboring core ASes. The
originator encodes an ASEntry in the PCB, containing information
about its AS hop. This information includes the identifier of the
inter-AS interface from which this PCB originated, i.e., the interface
at which the path segment arrives at the AS. When the beacon
service of a core AS receives PCBs pertaining to another core AS,
it selects a subset of such PCBs to be registered at the path service
of its AS so that the path segment can be looked up and used by
endpoints. The beacon service periodically selects a subset of PCBs
pertaining to any other core AS to propagate further to its core
neighbors. To propagate a PCB, the beacon service appends an
ASEntry to the PCB that contains information about its AS hop.
This information includes the identifier of the inter-AS interface
from which the PCB is received and the identifier of the inter-AS
interface on which the PCB is propagated. This process computes
core-path segments from any core AS to the originating core AS.

Intra-ISD beaconing computes down- and up-path segments in a
similar process but with two differences: (1) PCBs travel only from
providers to customers within the same ISD, and (2) The beacon
service extracts the down segment corresponding to each PCB,
reverses them to compute up-path segments, selects a subset of up-
path and a subset of down-path segments, registers the up segments

Inter-domain Routing with Extensible Criteria SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

ISD A ISD B

ISD C

A1

A2

A3 B1

B2 B3

B4

C1C2

C3

C4 C5

C6

C7 C8

Core Beaconing

Intra-ISD
Beaconing

Path Segments
Fetching

P1

P2

P3

P4

Figure 16: A SCION topology consisting of three ISDs and
several possible end-to-end paths.

with its local path service, and registers the down segments with
the path service of the originating core AS.

To construct an end-to-end forwarding path, an endpoint needs
to request the necessary path segments from the path service at
its AS in up to three steps. First, it requests the up-path segments
to the core ASes of its ISD. Second, the endpoint requests core-
path segments to the core ASes of the destination ISD. When the
local path service receives this request from an endpoint, it queries
the core path services of the core ASes of the local ISD for core-
path segments from each of the core ASes to any core AS in the
destination ISD. The local path service sends the responses back
to the endpoint and caches them. Third, the endpoint requests its
local path service for down-path segments to the destination AS
in the destination ISD. When the local path service receives such a
request, it requests the core path services of the core ASes in the
destination ISD for down-path segments to the destination AS. The
local path service sends the responses back to the endpoint and
caches them. To reach the core ASes of the destination ISD, the
local path service uses the core-path segments it has received in
the second step. Once the endpoint has received all the necessary
path segments, it combines them into a path and encodes them into
data packet headers.

Figure 16 illustrates a SCION topology consisting of three ISDs
and several possible end-to-end paths.

F SPC Performance
We evaluate the performance of SPCs by measuring their execu-
tion time for the SP described in Section 6.1. Benchmarks are run
on standard cloud infrastructure: DigitalOcean CPU-Optimized
droplets (32vCPUs, 64GiB RAM) using an Intel Xeon Platinum 8358
@ 2.60 GHz. The ingress and egress gateway are pinned to 16 cores,
whereas a single SPC is started and pinned to one specific core.

Our benchmark measures the end-to-end processing delay, in-
cluding SQLite database accesses and gRPC calls to both ingress

and egress gateways. We assume dynamic SPCs that refetch the
algorithm on each execution to capture the algorithm retrieval
timing. Each SPC processes 1000 SPs, and logs the per-SP latency,
reporting the mean and standard deviation per input PCB set size
(these are the PCBs the SP will select from). The output PCBs are
the selection of 20 PCBs. We group the processing delays into three
categories: (1) initialization time, (2) execution time, (3) gRPC and
marshaling and (4) the time required to fetch an algorithm.

As shown in Figure 17, the amount of time taken per execution
is on the order of milliseconds. Assuming that an AS runs multi-
ple SPCs in parallel, that means thousands of SPs can be executed
within a single second. This measurement assumes the worst-case
scenario, i.e. there is no algorithm caching, the algorithm is repeat-
edly just-in-time compiled, and the database used is SQLite and
on-disk. An in-memory PostgreSQL database with indices would
significantly reduce retrieval latency. As can be seen, the setup
overhead for Just-In-Time compilation becomes less significant rel-
ative to the execution time as the amount of input PCBs increases.
Just-In-Time compiling the eBPF code leads to higher performance
from an input PCB size of 32.

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal S. Tabaeiaghdaei et al.

1 2 4 8 16 32 64 128 256 512102
4
204

8
409

6
819

2
163

84
327

68

PCB Input Size

10−1

101

103

Ti
m

e
(m

s)

JIT-Compiled eBPF

1 2 4 8 16 32 64 128 256 512102
4
204

8
409

6
819

2
163

84
327

68

PCB Input Size

Ti
m

e
(m

s)

Interpreted eBPF

1. Environment Initialization
2. Algorithm Execution

3. gRPC & (De)serialization
4. Algorithm Retrieval

Figure 17: Processing timemeasured for SP execution in the SPC, comparing eBPF that is Just-In-Time compiled and interpreted.

	Abstract
	1 Introduction
	1.1 Obstacles to Criteria Extensibility
	1.2 Contributions

	2 Background on Routing Algebras
	3 Motivating Examples
	3.1 Multi-Criteria Path Optimization
	3.2 Criteria Extensibility

	4 IREC's Routing Mechanisms
	4.1 Design Goals
	4.2 Overview
	4.3 Orthogonal Route Computations
	4.4 On-demand RCs
	4.5 Reverse On-Demand RCs
	4.6 Deployment Considerations

	5 Control Service Design
	5.1 Overview
	5.2 Ingress Gateway
	5.3 SP Containers (SPCs)
	5.4 Egress Gateway

	6 Implementation and Evaluation
	6.1 Implementation
	6.2 Evaluation

	7 Large-Scale Simulations
	7.1 Simulation Setup and Topology
	7.2 Experiments
	7.3 Results

	8 Discussion
	9 Related Work
	10 Conclusion
	References
	A Considerations Regarding Hierarchical Routing of SCION
	A.1 IREC Only for Core Beaconing

	B Incorporating Intra-AS Topologies for Optimality
	B.1 Last-Mile Path Matters
	B.2 A False Notion of Non-Isotonicity

	C PCB Extension
	D Case Study: Optimizing Paths for Client-Server Applications
	E Background on SCION
	F SPC Performance

