
BFES: Towards Optimal Bayesian Frequency
Estimation Sketches in Data-Streams

Francesco Da Dalt, ETH Zürich, francesco.dadalt@inf.ethz.ch
Adrian Perrig, ETH Zürich, aperrig@inf.ethz.ch

Abstract—Measuring the frequency of items in data streams is
a relevant and wide-spread problem in stream analysis and Inter-
net traffic monitoring. This paper studies the problem of sketch-
based frequency estimation from a Bayesian statistics point of
view which captures uncertainties regarding the frequencies of
items in a more flexible and quantitative way compared to the
state of the art. We design and implement, based on Markov
chain Monte Carlo, a Bayesian frequency estimation sketch that
provides both state of the art accuracy, as well as greater
functionality compared to other sketches such as confidence
bounds for arbitrary levels, and error-function aware frequency
estimates. In our theoretical work we derive information-theory
related equations such as the expected information gain of a
sketch, as well as the optimal least-squares Bayesian frequency
estimator. In benchmarks comparing the state of the art, the
proposed method achieves the lowest absolute error across all real
world data streams, as well as outperforming all sketches on 4
out of 5 metrics on synthetic data. We also show that our method
can provide, for multiple confidence levels simultaneously, good
confidence levels on both synthetic as well as real data.

Index Terms—Data Stream, Sketch, Bayesian Inference

I. INTRODUCTION

Extracting the frequency of keys from data streams is useful
in many domains such as Internet traffic monitoring [1]–[4],
sensor networks [5]–[7], and resource provisioning [8], [9].
Measuring the frequencies of keys in a memory- and compute-
efficient manner by keeping one counter per key often incurs
prohibitive spatial complexity [2]. In practice however it
is often sufficient to have an approximate estimate of the
frequencies of items. This observation motivated lossy com-
pression data structures known as sketches where frequency
counters are shared amongst the keys in the data stream. A
reconstruction procedure then estimates the frequency of some
key based on the contents of the shared counters.

Due to the lossy compression, random error is introduced
into the frequency estimates. The State Of The Art (SOTA)
addresses this issue by providing confidence intervals for the
estimates. The size and confidence levels of these intervals
depend strictly on the amount of counters used, as well as
their structure [10], [11]. However, since the pseudorandom
compression of sketches induces a loss of information, there
does not exist one best frequency estimate for all cases. Rather,
the optimality of the estimate depends on the concrete error
metric which one aims to minimize [12]. While SOTA methods
may be aware of this fact, no existing solution so far addressed
this problem constructively since the proposed algorithms are
by design invariant to the error metric by which the estimates
are judged [13].

Given these observations, there are two opportunities for
improvement: First, a method by which the frequency esti-
mates produced by the sketch are influenced by the error-
metric used to measure performance. Secondly, a sketch that is
able to provide Confidence Intervals (CIs) of arbitrary strength,
irrespective of the amount of counters and their structure. This
is a special case of the first point since CIs are estimates that
minimize a particular error metric [14].

Main Contributions: We approach the problem of fre-
quency estimation from a Bayesian viewpoint: By formulating
prior assumptions on the frequencies of keys as probabil-
ity distributions, we derive a posterior distribution for the
frequencies after having observed the set of counters of a
sketch data structure. The posterior distribution then allows
the computation of arbitrary confidence intervals, as well
as error-function aware frequency estimates. We construct
a concrete algorithm BFES that approximately solves the
problem of Bayesian frequency estimation and we demonstrate
in benchmark experiments that it improves on the state of the
art in the desired aspects.

Section III-D lays the theoretic foundations of Bayesian
frequency estimation using counter-based sketches in a con-
strained setting and states the conditions required for efficient
computation. Section IV then constructs and analyzes a con-
crete algorithm that approximately solves the Bayesian equa-
tions and we elaborate on the relation between the Bayesian
frequency estimation method and other state of the art meth-
ods. Lastly, Section V evaluates our method against SOTA
sketches and we demonstrate the ability to provide flexible
confidence intervals, as well as robust performance across
different error metrics. Given the utility of the algorithms and
to enable repeatability of results, all code is open-source [15].

II. RELATED WORK

We abstract a data stream S as a sequence of key-value
pairs S = ⟨(ki, vi)|i ∈ N⟩. We use the terms “key” and “item”
interchangeably. The frequency ak of key k is the sum over
all values associated with k.

The most widely adopted sketching-algorithms are the
COUNT-SKETCH (CS) [10] and COUNTMIN-SKETCH (CMS)
[11]. At their core, these methods use a two-dimensional array
of counters c. The counter-array c has d rows and w columns.
In the case of CMS, a key-value pair (k, v) in the stream
is processed by hashing k into each row of c, using row-
wise independent hash functions, and increasing the indexed
counter by v. When queried, the CMS estimates the frequency

XXX-X-XXXX-XXXX-X ©2025 IEEE

of k as the minimum over the d counters indexed by k.
Assuming that the frequencies of all items are non-negative,
CMS provides bounds that state that the estimation error is
within some ε with probability at least δ. The CS is similar
to the CMS and even provides ε-δ bounds on the error when
frequencies are negative. For both the CS and CMS however,
the bound parameters ε and δ depend on the number of rows
d and columns w. Despite the CS and CMS remaining widely
used, other competitive algorithms have since been developed
and advancements made came generally in one of three flavors:

1) Implementation Optimization: This class of methods
augments the implementation of existing sketches such as
CMS and CS. SALSA [16] provides a statically-sized array
of counters c but with dynamically sized individual counters
within c, which improves memory efficiency at the cost of
increased processing needs. AUGMENTED- [17], PYRAMID-
[18], and STINGY-SKETCH [19] optimize the sketch through-
put by improving the cache-locality and memory management
of c. These methods optimize the management of the counters
c, without changing the estimation algorithm at its core.

2) Sketch Specializations: Particularly in the context of
computer networks, special sketches such as ELASTIC-
SKETCH [20], LOFT [21], NITROSKETCH [22], and UNIV-
MON [23] have been developed to address network-operation
specific needs such as; dissecting network-traffic into “ele-
phant” and “mice” flows and adaptively sub-sampling the
stream S based on traffic load. Recently, approaches such
as META-SKETCH [24] explored how a machine can learn
to estimate frequencies based on training tasks, requiring
however expensive re-training to change the sketch size.

3) Estimation Advancement: The CU-SKETCH (CUS) [2]
has improved upon the CMS by introducing a policy that
updates c more conservatively, and other methods such as
PR- [25], SEQ- [26], and CB-SKETCHES [27] (PRS, SEQS,
CBS) estimate item frequencies by solving optimization prob-
lems that aim to minimize frequency estimation error as a
function of c. The DIRICHLETPROCESS-SKETCH (DPS) [28]
augments the CMS and derives equations for the likelihood
of item frequencies given c based on a Dirichlet process prior,
which improves the expected estimation error in many cases.
Followup work [29] expands on the theory of DPS by using
a inverse Gaussian process prior (NIGPS).

Our work is an estimation advancement that approaches
sketch-based frequency estimation from a new point of view.
It is thus orthogonal to the SOTA related to implementation
optimizations and sketch specializations. Despite considerable
progress, no single SOTA method has yet been able to address
the following three combined desiderata:
• Detailed Uncertainty Quantification: When a sketching al-

gorithm is queried about the frequency ak, it will return
the estimate âk and depending on the algorithm also a
confidence interval, as is the case for the CMS and CS. The
confidence level is however fixed and cannot be changed
without changing the dimensions of c. The method we
propose returns a distribution of likely values for ak and
therefore enables a more detailed and flexible quantification

of uncertainty. To our knowledge the only methods that
allow this are the DPS and NIGPS but these methods do
not meet our next desiderata; efficiency and flexibility.

• High Efficiency: Frequency estimation algorithms need to
process the data stream at a high rate in realistic scenarios.
All SOTA methods provide very fast stream processing but
DPS and NIGPS are comparatively slow when computing
the estimates âk due to the frequent use of expensive
functions such as the Log-Gamma, as well as employing
iterative optimization methods for parameter estimation.

• Adaptability to Prior Knowledge and Assumptions: In prac-
tice one often knows or assumes some characteristics about
the data stream. For example the CMS assumes non-
negative item frequencies, while the CBS and PRS assume
to a certain degree that item-frequencies follow a normal
distribution, and lastly the DPS assumes item frequencies
follow a Chinese restaurant process. Such prior information
can be used to increase frequency estimation accuracy. All
current methods lack a principled way to support a wider
range of prior assumptions. The system we propose in
this paper allows multiple different prior beliefs, thereby
providing greater flexibility and significant performance
gains when applied properly.

This paper explains how Bayesian statistics can provide an el-
egant approach, both in theory and practice, towards achieving
these three desiderata.

III. THEORETIC MODEL

Given a stream S, we denote with K the set of all keys that
appear in the stream. |K| = n therefore indicates the number
of unique keys. The goal of on-line frequency estimation is
to manage a small amount of memory m ≪ n in order to
keep track of the frequencies ak for all keys k ∈ K given one
sequential pass over the stream S. We denote with âXk the
estimate for ak computed by some algorithm X . To simplify
notation regarding the frequencies of items, we define

a =

ak1

...
akn

 where aki
is the i-th element of K (1)

Next, we define c as a m-dimensional vector representing
the flattened sketch data structure which is populated by
a frequency-estimation algorithm. For many SOTA methods
such as CS and CMS, the relation between c and a can be
described by the following matrix-vector operation:

cX = HX a (2)

where HX is a matrix specific to the algorithm X . For exam-
ple, in the case of CMS, HCMS

i,j is 1 if key kj contributes to
the i-th counter, and 0 otherwise. We may omit the algorithm
indicator X for the sake of clarity.

A. Bayesian Theory

Frequency estimation in Bayesian statistics is based on the
assumption there exist more and less likely values for a. We

XXX-X-XXXX-XXXX-X ©2025 IEEE

introduce A as the n-dimensional Random Variable (RV) from
which a is assumed to be a sample of. By extension, since a
is a random sample, so is c. Therefore we define the RV C
from which c is an instantiation of:

C = H A ⇐⇒ P[C = c] = P[H A = c]

Where P[Y = y] denotes the probability density of RV Y at
y. Having defined A and C, the core idea of Bayesiansim is
to ask the question: Suppose we know that H A = c where
c are some counters we have measured based on 2, how does
this knowledge change our belief of A? In other words, we
are looking for A | H A = c which denotes the distribution
of A, conditioned on the knowledge H A = c. Bayes theorem
tells us that this change in belief of A is described by:

P[A = α | H A = c] =
P[H A = c | A = α] P[A = α]

P[H A = c]

Note that P[H A = c] is constant in α so it is only a propor-
tionality factor and that furthermore P[H A = c | A = α] is
only non-zero when H α = c. Therefore we have the following
proportional relation:

P[A = α | H A = c] ∝ 1{Hα=c} · P[A = α] (3)

where 1 is the indicator function. The relation makes intuitive
sense as after having seen c, we only consider instantiations α
of A possible, if α coincides with the counters c after passing
through H .

The probability measure in 3 has in general no closed form
solution, however we can use computational methods to draw
samples from P[A = α | H A = c] and thereby approximate
the true distribution up to arbitrary accuracy.

1) Running Example: To illustrate some core ideas pre-
sented in this paper we use a toy example with a stream S
with n = 4 distinct keys and a sketch with m = 2 counters:

a =

0.5410.097
0.180
4.299

 and H =

[
1 0 1 0
0 1 0 1

]
, thus c = H a =

[
0.72
4.39

]
We model three different prior beliefs:

A =


A1

A2

A3

A4

where Ai=̂



P[Ai = x] ∝ (x+ 1)−2

P[Ai = x] ∝ exp(−x)

P[Ai = x] ∝ exp(−x2)

0 1 2 3

(4)

where the solid, dashed, and dotted densities illustrate three
exemplary prior belief distributions – a Pareto, an exponential,
and a Gaussian. Given matrix H , counters c, and prior beliefs
A, the posterior beliefs of the item frequencies are given by

0 0.720.36︸ ︷︷ ︸
=(A1|H A=c)=(A3|H A=c)

0 2.2 4.39︸ ︷︷ ︸
=(A2|H A=c)=(A4|H A=c)

(5)

Sym Definition Sym Definition
K Set of items in stream U Set of possible items
n Number of unique items m Number of counters
a Item frequencies, see 1 A The RV associated to a
c Sketch counters, see 2 C The RV associated to c
H Compression matrix N The null-space of H
α Samples of A | HA = c β Hidden variable, see 6

TABLE I: List of Symbols

where the solid, dashed, and dotted curves indicate the den-
sities under assumption of the three different prior beliefs
depicted in 4. Note that if we believe in extremely frequent
items, i.e., the solid Pareto prior, then we see from the curve
for (A4 | H A = c) that after having observed c we consider
a4 to be likely either very big, or very small, but unlikely
to be something in between. On the other hand, conditioned
on a Gaussian prior belief, our posterior belief behaves the
opposite, as depicted by the dotted density function in 5.

B. Sampling

Having illustrated in the previous section what posterior
beliefs convey, we now move on to the problem of how to
compute these posterior distributions. In order to efficiently
sample from the distribution described in 3, we must first
remove 1{Hα=c}. Linear algebra entails that if n ≥ m, then
Hα = c if and only if α = H†c + Nβ where H† is the
pseuodinverse of H , N is a n× (m− n) matrix representing
the null-space of H , and β is a (n−m) dimensional vector.

The intuition behind this decomposition of α is the follow-
ing: H†c captures the constraint that if α were to be the ground
truth vector of frequencies a, then Hα = c. In addition, Nβ
provides α with (n−m) degrees of freedom in which it may
vary. The larger the array of counters c, the bigger m becomes,
and therefore the fewer possible values α can achieve. The
intuition in mathematical terms is given by:

α = H†c+Nβ =⇒ H α = H (H†c+Nβ)

= H H†︸ ︷︷ ︸
I

c+H N︸ ︷︷ ︸
0

β = c (6)

If we consider our running example from Section III-A, then

N =

 1 0
0 1
−1 0
0 −1

 and H†c =

 0
4.39
0.72
0

 (7)

and the intuition is that if we add some value x to a1 and
subtract x from a3, then the array of counters c stays the
same. The same happens for a2 and a4.

With these considerations, for any sample α′ drawn from
3, there must exist a β′ such that α′ = H†c + Nβ′. This
correspondence is one-to-one. Hence, generating a sample α
is equivalent to generating a sample β. The distribution B of
the β-values is implicitly defined as:

P[B = β | HA = c] = P[A = H†c+Nβ | H A = c]

∝ 1{H(H†c+Nβ)=c} · P[A = H†c+Nβ]

= P[A = H†c+Nβ] (8)

XXX-X-XXXX-XXXX-X ©2025 IEEE

Since the probability measure of the initial belief-distribution
A is know, 8 provides us with a formula for the distribution
of (B | H A = c) up to an unknown scale parameter.

1) Stochastic Simulation: The primary difficulty with sam-
pling from 8 is that the distribution is (n −m)-dimensional.
Due to the “curse of dimensionality” [30], most sampling
algorithms suffer from performance loss when applied to such
high-dimensional distributions. One of the few methods known
to work well even in the high-dimensional case is Markov
chain Monte Carlo (MCMC). Out of the state of the art MCMC
methods, we opt for Gibbs Sampling (GS) [31] over other
schemes such as Hamiltonian Monte Carlo [32] and MALA
[33] because GS requires no hyper-parameter tuning and puts
the fewest assumptions on the distribution to be sampled.

On a high level, GS starts from an initial sample β0 of
dimension (n−m). It then iteratively generates new samples
βi from βi−1. This is done by first setting βi ← βi−1, and
then changing one entry in βi. Assume we change the j-th
entry, then the equations describing how to sample the new
j-th entry are given by

P[B̂i = βi] = P[B = βi | H A = c, βi
−j = βi−1

−j] (9)

where B̂i denotes the random distribution of βi and the
subscript −j indicates all elements of a vector except for the j-
th one. Note that we know the probability measure in 9 from 8.
The sequence of values β0, β1, . . . are samples drawn from the
target distribution (B | H A = c). These samples are however
not independent from each other, but theory guarantees us that
a large number of samples will follow the target distribution
[34]. There are various ways of optimizing GS which we will
not detail here.

2) Transforming Samples: Section III-B1 describes how to
computationally evaluate the distribution of (B | A H = c) us-
ing MCMC. We are however ultimately not interested in how
our belief of B has changed based on AH = c, but rather what
our updated belief of A is instead. In particular, we want to
computationally evaluate (A | A H = c). To that end, we can
transform the samples β0, β1, . . . generated in Section III-B1
into samples α0, α1, . . . drawn from (A | A H = c) based on
the relation in 6:

αi = H†c+Nβi

C. Usage
Section III-B discusses how to computationally evaluate the

posterior belief of A conditioned on the observed sketch coun-
ters c. We now show three concrete use cases that motivate
how Bayesian posterior samples can be used in practice:

1) l2-Optimal Frequency Estimates: Given H and some
measurements c and an initial belief-distribution A, we want
to find the single best estimate â that minimizes the expected
loss

Ea∼A[||â− a||22 | H A = c]

By taking the gradient and setting it to zero we get the solution

â = Ea∼A[a | H A = c] ≈ x−1
x∑

i=1

αi

which means that we can approximate the optimal solution by
taking the average over the generated samples αi. The more
samples we use, the more accurate the prediction will be.
Note that this technique of expected loss minimization can
be applied to any loss function, not only the l2 norm. For
example, the single estimate that minimizes the expected l1
loss is given by the median over the samples αi, instead of the
mean as is the case with l2. Additionally, we can estimate the
expected error of our frequency estimates in a similar fashion.

2) Confidence Intervals for Item Frequencies: Given some
p ∈ [0; 1], an initial belief A for a, and sketch counters c, we
want to know for every k ∈ K a confidence interval [lk; uk]
such that ak ∈ [lk; uk] with probability p. A solution to this
is given by:

lk = QA|A H=c

(1− p

2

)
≈ Q{α1

k,α
2
k,... }

(1− p

2

)
uk = QA|A H=c

(1 + p

2

)
≈ Q{α1

k,α
2
k,... }

(1 + p

2

)
where QX(q) is the q-th quantile of X . We can therefore
leverage the samples αi to compute Confidence Intervals (CIs)
for arbitrary confidence levels p. With respect to the running
example, the centered 90% CI for the item frequencies a3 and
a4 are given by:

â90%2 = â90%4 = [0.1; 4.29] , [0.22; 4.17] , [1.38; 3.02]

3) Frequency Estimates for Asymmetric Losses: In some
settings, overestimating the frequency ak of an item k incurs
a different cost compared to underestimating it. Concretely,
assume the loss between ak and âk is given by

l(ak, âk) = |ak − âk| · c1 · 1ak>âk
+ |ak − âk| · c2 · 1ak<âk

Here, overestimations are weighted by c2 while underestima-
tions are weighted by c1. Based on an initial belief A and
the observed counters c, we can find the single best âk that
minimizes the expected asymmetric loss:

âk = argmin
x

Eak∼Ak
[l(ak, x) | A H = c]

⇐⇒ ∂

∂âk
Eak∼Ak

[l(ak, âk) | A H = c] = 0

⇐⇒ c2 · P[Ak < âk]− c1 · P[Ak > âk] = 0

⇐⇒ P[Ak < âk] =
(c2
c1

+ 1
)−1

=⇒ âk ≈ Q{α1
k,α

2
k,... }

((c2
c1

+ 1
)−1)

Note that if c1 =∞ we conceptually recover the COUNTMIN-
SKETCH. Concretely, let for example c1 = 10 and c2 = 1, i.e.
underestimations are 10× worse than overestimations. Then,
for a2 and a4 in our toy example from Section III-A we find

â2 = â4 = 4.17681 , 3.99 , 2.8659

D. Analysis

Before moving on to the practical application of the ideas
presented in this section, we analyse the behavior of a
hypothetical optimal Bayesian Frequency Estimation (BFE)

XXX-X-XXXX-XXXX-X ©2025 IEEE

algorithm in three aspects: accuracy, optimality, and infor-
mation gain. In this subsection we consider the simplifying
assumption that the set of distinct keys K, and therefore H , is
known, as well as that H† exist, i.e. that H has full row-rank.

Theorem 1 (l2-optimal Prediction Performance). Assume the
vector of item frequencies a is an instance of a random
variable A. Furthermore, we are given a prior belief Ã which
may be different from A, as well as H , and an array of
counters c = Ha. Then, the estimate â that minimizes the
expected error in l2-norm is equal to:

â = argmin
x

E[||x− a||22] = H†c+ (I−H†H) · E[Ã]

and the total square error is characterized by

||â− a||22 = ||(I−H†H)(E[Ã]− a)||22
≤ (n−m)||E[Ã]− a||22

where n ≥ m are the number of columns and rows of H
respectively.

Therefore, there are two ways to reduce the estimation error.
The first is that we can increase the dimension m of the array
of counters c up to the point where n = m and we achieve
zero error since we are using as many counters as there are
items in the stream. Secondly, we can set E[Ã] such that it
reduces the error.

Proof. We make use of 6 and compute

â = E[Ã | HÃ = c]

=

∫
x · P[Ã = x]P[HÃ = c | Ã = x]

P[HÃ = c]
dx

=

∫
(H†c+Nb) · P[Ã = (H†c+Nb)]

P[HÃ = c]
db

= H†c+N

∫
b · P[N

†(Ã−H†c) = b]

P[HÃ = c]
db

= H†c+N E[N†(Ã−H†c)]

= H†c+ (In −H†H)E[Ã]

We omitted the scaling factor
√
|H†TH†| from the change

of variables formula as it cancels out. By using the Frobenius-
norm matrix-vector inequality and its relation to the trace
function we derive

||â− a||22 = ||(In −H†H)(E[Ã]− a)||22
≤ ||In −H†H||2F ||E[Ã]− a||22
= (trace(In)− 2 trace(H†H)+

trace(H†HH†H))||E[Ã]− a||22
= (n−m)||E[Ã]− a||22

We made use of the fact that (H†H)T = H†H . This
concludes the proof.

Theorem 2 (Optimality Gap). Assume the vector of item
frequencies a is an instance of a random variable A. Further-
more, we are given a prior belief Ã which may be different
from A, as well as H , and an array of counters c = Ha. The

expected loss of information due to using Ã opposed to the
optimal ground-truth prior A is given by

Ec∼HA[KL(A | HA = c || Ã | HÃ = c)]

= KL(A || Ã)−KL(HA || HÃ)

where KL(X || Y) is the Kullback-Leibler divergence be-
tween distribution X and Y , also known as relative entropy,
defined as

KL(X || Y) =

∫
P[X = x] log

(P[X = x]

P[Y = x]

)
dx

This provides two insights: If H is the identity matrix, the
information loss is zero no matter the prior belief Ã since
we have as many counters as items in the stream and hence
the prior is of no relevance. Secondly, for a fixed m and
assuming the frequencies of items are independent from each
other, as n→∞, HA and HÃ will both converge to normal
distributions by the central limit theorem. Therefore if the
moments of HA and HÃ match, the KL divergence between
the two goes to zero, meaning that the majority of information
loss is due to the divergence between A and Ã. This shows that
the use of prior knowledge can greatly reduce the difference
between the best possible estimate and the computed estimates.
We now prove the theorem.

Proof.

Ec∼HA[KL(A | HA = c || Ã | HÃ = c)]

=

∫
P[HA = c]

∫
P[A = x | HA = c]

· log(P[A = x | HA = c]

P[Ã = x | HÃ = c]
)dxdc

=

∫
P[HA = c]

∫
P[A = x | HA = c] · log

(
P[A = x]

P[Ã = x]

)
dxdc

+

∫
P[HA = c]

∫
P[A = x | HA = c] · log

(
P[HÃ = c]

P[HA = c]

)
dxdc

=

∫ ∫
P[HA = c]P[A = x | HA = c]dc︸ ︷︷ ︸

=P[A=x]

· log
(
P[A = x]

P[Ã = x]

)
dx

+

∫
P[HA = c] log

(
P[HÃ = c]

P[HA = c]

)∫
P[A = x | HA = c]dx︸ ︷︷ ︸

=1

dc

= KL(A || Ã)−KL(HA || HÃ)

Bayes theorem applied to Line 2 yields Line 3. This concludes
the proof.

Theorem 3 (Expected Information Gain). Assume the vector
of item frequencies a is an instance of a random variable
A. Furthermore, we are given a prior belief Ã which may
be different from A, as well as H . The expected amount of
information gained by observing the array of counters c = Ha
is equal to

Ec∼HA[KL(Ã | HÃ = c || Ã)]

= Entropy(|HHT |−1
2mHA) +KL(HA || HÃ)

XXX-X-XXXX-XXXX-X ©2025 IEEE

where we use the following definition of information gain for
X observing Y

KL(X | Y || X)

First, the scaling factor |HHT |−1
2m arises in order for the

transformation H to be volume-preserving. For example if H
is a semi-orthogonal matrix, then |HHT |−1

2m = 1. We omit
this scaling factor from the discussion as it is of no immediate
relevance. Let us now consider a special case of the theorem:
If we are using a perfect prior belief, i.e. A = Ã, then the
expected information gain is equal to the entropy of HA.
To our knowledge there is no closed form expression for the
entropy of HA. However, if we study a toy example in which
A = N (µ, σ2I) is a n-dimensional normal distribution and H
is semi-orthogonal, then the entropy of HA is given by

Entropy(HA) =
m

2
log(2πeσ2)

and therefore the information gain is linear in m, the dimen-
sion of c. If m = n then the entropy of HA is equal to the
entropy of A and thus we gain as much information as there
is entropy, i.e., we have gained all possible information since
we use as many counters as there are items in the stream.

More generally, if A ̸= Â, then the information gain of
observing c is greater than if A = Â. The reason is that
observing c not only gives us some baseline information, but
it additionally implicitly corrects our wrong prior belief Ã.
Thus in a sense, if A ̸= Â, we have more to learn and thus
every counter c we observe contains more information.

Proof.

KL(Ã | HÃ = c || Ã)

=

∫
P[Ã = x | HÃ = c] · log

(P[Ã = x | HA = c]

P[Ã = x]

)
dx

=

∫
P[Ã = x]P[HÃ = c | Ã = x]

P[HÃ = c]
· log

(P[HÃ = c | Ã = x]

P[HÃ = c]

)
dx

=

∫
P[Ã = H†c+Nb]

P[HÃ = c]
· log

(√|H†TH†|
P[HÃ = c]

)
db

= log
(√

|H†TH†|
)
− log(P[HÃ = c])

=⇒ Ec∼HA[KL(Ã | HÃ = c || Ã)]

= Ec∼HA[− log(P[HÃ = c])] + log
(√

|H†TH†|
)

= Ec∼HA[− log(
P[HÃ = c]

P[HA = c]
)− log(P[HA = c])]

− log
(√

|(H†TH†)−1|
)

= Entropy(HA) +KL(HA || HÃ)− log
(√

|HHT |
)

By picking H ′ = |HHT |−1
2mH and inserting it back into

the derivation, the logarithmic term vanishes. The factor√
|H†TH†| arises due to the metric tensor that ensures cor-

rect integration over the m-dimensional subspace in which
A | AH = c lives. We made use of the fact that |H†TH†| =
|(HHT)−1| which can be derived using the singular value
decomposition of H . This concludes the proof.

IV. ALGORITHMIC IMPLEMENTATION

This section constructs an approximate Bayesian Frequency
Estimation Sketch (BFES) based on the ideas presented in
the previous section. There are three primary issues with the
basic idea from Section III that need to be solved in order to
make the sketch generally applicable: Firstly, how to address
the case when keys are not known in advance. Secondly, what
should the prior A be. Lastly, how do we make Gibbs sampling
efficient.

A. Unknown Keys

The model in Section III requires H to have as many
columns as there are possible keys k ∈ K. Assuming U is
the set of all possible keys, such as for example the set of
64-bit integers or 128-bit IP addresses, then K is an a-priori
unknown subset of U defined as

K = {k ∈ U | ak ̸= 0} ⊂ U
Clearly, it is not computationally feasible for H to have
N = |U| many columns. Instead, we perform an initial
projection step which maps the space U down onto a smaller
space {0, . . . , d − 1} where a key k ∈ U is projected by the
function p:

p(k) : U → {0, . . . , d− 1}
Concretely, p may for example be any kind of reasonable
pseudo-random hash function modulo d. For the sake of
notation, we can write p as a projection-matrix P where

Pi,j = 1{p(j)=i}

Therefore the augmented model looks like

ã = P a Ã = P A

c = H ã C = H Ã = H P A

where H is a known matrix and P is an unknown matrix
implicitly defined by the hash function p. This problem
factorization allows us to apply a two-step approach towards
solving Bayesian frequency estimation:

1) First, draw samples α̃1, α̃2, . . . that approximate the
distribution Ã | HÃ = c using Gibbs sampling as
described in Section III-B1.

2) Secondly, given some key k, for each α̃j draw samples
jα1

k,
jα2

k, . . . that approximate the distribution Ak |
P A = α̃j using Gibbs sampling.

3) Then, the set
⋃

j{jα1
k,

jα2
k, . . . } approximates the distri-

bution Ak | H P A = c.
Since P must in general be regarded as a random matrix, the
probability P[Ak = jαi | P A = α̃j] can in general not
be directly computed efficiently as in Section III. Instead, we
perform an approximation:

Let k′ = p(k), then P[Ak = jαi | P A = α̃j]

= P
[
Ak = jαi|

d−1∧
l=0

(P A)l = α̃j
l

]

XXX-X-XXXX-XXXX-X ©2025 IEEE

Algorithm 1 Insertion subroutine
1: p← PsuedoRandomHash(U → {0, . . . , d− 1})
2: h← KnownHash({0, . . . , d− 1} → {0, . . . , m− 1})
3: c← ZeroV ec(m)
4: ctotal ← 0
5: s← CountUniqueItemsSketch
6: procedure INSERT(key k, value v, hash p, hash h)
7: k′ ← p(k) ▷ p is the hash mapping to {0, . . . , d− 1}
8: index list← h(k′) ▷ h represents the matrix H
9: c[index list].add(v)

10: ctotal.add(v) ▷ Needed for µ̃A

11: s.INSERT(k)

Algorithm 2 Prior adjustment

1: procedure PREPAREPRIOR(distrib A, distrib Ã)
2: ñ← s.count()
3: µ̃A ← ctotal/ñ
4: A← fitScaleToMean(µ̃A)
5: µ̃Ã ← µ̃A · ñ/d
6: σ̃2

Ã
← (ñ/d)2 · V[A] + ñ · (d− 1)/d2 · E[A]

7: Ã← fitToMeanAndV ariance(µ̃Ã, σ̃
2
Ã
)

≈ P[Ak = jαi | (P A)k′ = α̃j
k′]

Where (P A)k′ = Ak +

Q∑
x=1

Acoll(k,x)

In this notation, u = coll(k, x) is the x-th key which collides
with k, i.e., p(u) = p(k). The number of collisions Q is in
general unknown and therefore Q is a random variable. In
theory, if p is a perfect hash, Q will be binomially distributed.
To allow for efficient computation of the density of (P A)k′

we approximate it by a proxy-distribution (̃P A)k′ ;

(P A)k′ ≈ (̃P A)k′ = Ak +

f∑
x=1

Xx (10)

where we have substituted the sum over an unknown number
of RVs by a fixed finite sum over f RVs. f is a user-
defined parameter. Upcoming sections explain how Xx is
defined but the main takeaway is that for pragmatic reasons
we approximate

P [Ak = jαi | P A = α̃j] ≈ P[Ak = jαi | (̃P A)k′ = α̃j
k′]

which allows us to apply default Gibbs sampling as described
in Section III-B1 to draw samples jα1, jα2, We would
like to point out that these simplifications imply that the
frequency estimates only approximate the optimal method
analyzed in Section III-D.

B. Prior Belief in Practice

A user providing some prior belief may know the shape
of A, but not its concrete mean or variance. To fully specify
A we therefore need to fix its scale, which we accomplish
by making use of a secondary sketch s that estimates the

Algorithm 3 Query subroutine
1: (w1, w2)← numGibbsSamples ▷ w1 · w2 is the total

number of Gibbs samples.
2: procedure QUERY(key k, distrib A, distrib Ã)
3: k′ ← p(k)
4: PREPAREPRIOR(A, Ã)
5: fstLvlSmpls← gibbsSample(Ãk′ | H Ã = c, w1)
6: ▷ Returns the list of samples {α̃1

k′ , . . . , α̃w1

k′ }
7: totalSamples← EmptyList(w1 · w2)
8: for ãik′ in fstLvlSmpls do
9: PREPAPPROXPRIOR((̃P A)k′ , ãik′)

10: sndLvlSmpls ← gibbsSample(Ak | (̃P A)k′ =
ãik′ , w2)

11: ▷ Returns the list of samples {iα1
k, . . . ,

iαw2

k }
12: totalSamples.append(sndLvlSmpls)

13: return (fstLvlSmpls, totalSamples)

Algorithm 4 Auxiliary prior adjustment

1: procedure PREPAPPROXPRIOR(distrib (̃P A)k′ ,
scalar ãik′)

2: X1, . . . , Xf ← getFrom((̃P A)k′)
3: pno collision ← estimateNoCollProb(ñ, d, ãik′)

4: P[(̃P A)k′ = Ak]← pno collision

5: µ, σ2 ← estMeanAndV ariance((̃P A)k′ −
Ak, ãik′)

6: X1, . . . , Xf ← fitToMeanAndV ariance(µ, σ2)

number of unique items in the stream n and we then estimate
the average item frequency µ̃A based on s. We then adjust
the scale of A such that E[A] = µ̃A. The complete insertion
routine is given in Alg. 1.

When a user queries the Bayesian frequency estimator
sketch and requests samples that approximate the posterior
belief of ak for some k, a number of statistics have to
be adjusted before Gibbs sampling can commence. This is
described in Alg. 2. The mean µ̃Ã and variance σ̃2

Ã
are

computed based on the law to total expectation and total
variance. In particular, σ̃2

Ã
captures both the variance of A

as well as the variance due to pseudo-random hashing.
Alg. 3 then shows the query subroutine where the user

provides some key k and prior beliefs A and Ã, and the
function returns samples that approximate the posterior belief
of the frequency ak of item k. We employ the two-stage Gibbs
sampling approach described in the preceding section.

An important aspect regarding QUERY is the auxil-
iary function PREPAPPROXPRIOR (see Alg. 4) that prepares
(̃P A)k′ for the second stage of Gibbs sampling. This function
explicitly estimates the probability that key k has no collisions
with other keys as this edge-case represents a discontinuity and
cannot be well-approximated by the sum of continuous RVs
X1, . . . , Xf from 10. In practice, this is only relevant when
n ≈ d.

XXX-X-XXXX-XXXX-X ©2025 IEEE

C. Efficient Gibbs Sampling

The last aspect left to discuss are the requirements for
performing fast Gibbs sampling in QUERY. As described in
Section III-B1, the requirement for Gibbs sampling to generate
samples from the distribution A | H A = c is that we must
be able to draw samples from the distribution

P[B = βi,j | H A = c, βi,j
−j = βi,j−1

−j]

∝ P[A = H†c+Nβi,j | βi,j
−j = βi,j−1

−j]

= P[A = H†c+N(βi,j−1 + ej∆)]

where ej is the j-th unit vector and ej∆ is therefore the exact
difference between the previous Gibbs sample β̂i,j−1 and β̂i,j .
Therefore, we only need to sample ∆. Let D denote the RV
related to ∆, then

P[D = ∆] = P[A = H†c+N(β̂i,j−1 + ej∆)]

= P[A−H†c−Nβ̂i,j−1 = N:,j∆)]

∝
d∏

l=1

P[(A−H†c−Nβ̂i,j−1)l = Nl,j∆)] (11)

where N:,j is the j-th column of N . Note that if Nl,j = 0,
then the l-th term in the product of 11 is constant with
respect to ∆ and therefore irrelevant. Hence we can reduce the
computational cost of sampling D by reducing the number of
nonzero elements in N . We achieve this by smartly choosing
H such that both H and its nullspace N are sparse. In
particular we construct H and N based on Low-Density
Parity-Check (LDPC) [35] codes, inspired by the first use of
LDPC codes in the domain of compressive sensing which is
closely related to the field of sketching algorithms [36].

The discussion until now primarily regards the first-stage
Gibbs sampling from Line 5 in QUERY. The sampling
process in the second stage (Line 10) is analogous to the first
stage except that the matrix H is different and dependent on
f . The degrees of freedom in the second stage of GS are
f − 1 and the density of D, from which we sample our ∆’s,
is proportional to the product of two densities, which ensures
low computational cost.

D. Complexity Analysis

We now analyze the computational complexity of BFES.
First, we assume that A and Ã may either be a Pareto,
exponential, or Gaussian distribution. This limits the choice
of prior beliefs to a range of distributions for which we can
ensure that Gibbs sampling can be done rapidly, while still
leaving enough room to model different beliefs that capture
distinct behaviors. In theory arbitrary prior beliefs, such as
Gaussian-Mixture-Models, can be chosen at the cost of higher
computational complexity of the query procedure.

Secondly, we have parametrized H and N by an integer u
which specifies the length of the index list in Line 8. Infor-
mally speaking, u is analogous to the “depth” parameter from
the COUNT- or COUNTMIN-SKETCH. Due to the construction
of H with LDPC codes, N is guaranteed to have 2u non-zero

entries per column, and d is equal to (m− 2 · (u− 1)) · 2u−1.
For details we refer to our implementation.

1) Memory Complexity: Sketch algorithms work with a
limited amount of memory M that we assume to be given.
Naturally, the INSERT procedure of the Bayesian frequency
sketch as proposed in this section has an on-line memory
complexity of

O(M) = O(m′ +m)

where m′ is the size of the sketch s used to count the
number of distinct keys, and m is the size of the array of
counters c. In our implementation, given M , we set m′ ∈
O(log(M)) and m = M−m′. In practice, when employing the
HYPERLOGLOG-HIP estimator [37]–[39] in our experiments,
the sketch s requires a very small amount (< 1%) of memory
compared to m. In benchmarks, M is enforced to be identical
to all other sketches.

2) Insertion Complexity: The complexity of INSERT is
given by

O(log(m′) + u)

if we assume constant-time hashing. The term log(m′) cap-
tures the computational complexity of updating the auxiliary
sketch s which has size m′. Computing the list of indices
in Line 8 of INSERT can be done in O(u) time as well.
Therefore, the insertion complexity of BFES is comparable
to SOTA methods such as COUNTMIN- and COUNT-SKETCH
in terms of on-line computational requirements. Empirical
evaluations in Section V-E demonstrate that also in practical
deployment BFES matches SOTA insertion throughput.

3) Query Complexity: The cost of computing a single
Bayesian frequency query according to QUERY is in

O(w1 · (||N ||0 + w2 · f) + χsolve init)

= O(w1 · ((d−m)2u + w2 · f) + χsolve init)

The terms w1 and w2 come from the number of first-
and second-stage Gibbs samples that have to be computed.
χsolve init is the cost of finding an initial point α̃0 for the first-
stage Gibbs sampling and varies between solvers and problem
parameters. ||N ||0 is the cost of producing one first-stage
Gibbs sample and f is the cost of producing one second-stage
Gibbs sample. Additionally, ||N ||0 is the number of non-zero
entries of N and as explained in Section III-B, N has (d−m)
columns and therefore since every column has at most 2u

nonzero entries, the total number of non-zero entries of N is
bounded by (d−m)2u.

Considering these asymptotic costs, u has to be chosen
small in order to remain efficient and we have done bench-
marks with u equal to 1, 2, and 4. If u = 1 then χsolve init

can be omitted since the solution to the optimization problem
is trivial and the computational cost of QUERY becomes

O(w1 · w2 · f)
where w1 ·w2 is the total number of samples generated. These
samples may then be used as described in Section III-C. In

XXX-X-XXXX-XXXX-X ©2025 IEEE

Section V we show that BFES produces good results at low
cost for different values of u.

E. Relation to other Sketches

Before moving on to benchmarks, we will position the
proposed Bayesian Frequency Estimation (BFE) in relation to
other relevant SOTA techniques.

1) CountMin-Sketch: As stated in Section III-C, the CMS
[11] is from a theory point of view equivalent to the optimal
Bayesian frequency estimator with asymmetric loss that penal-
izes underestimations by an infinite factor. The implicit prior
used by the CMS is that the frequencies of items are strictly
non-negative. Furthermore, the CMS provides error bounds
which, for one specific instance of the sketch, state that with
some fixed probability δ, the error is less than some ϵ times
||a||1. There are two differences to Confidence Intervals (CIs)
computed based on BFE:

1) BFE-CIs can be computed for arbitrary confidence levels
without alterations needed to the sketch. The CMS can
only ever give performance bounds for one specific choice
of δ and ϵ.

2) BFE-CIs depend on the prior belief provided, while the
CMS has a fixed incorporated prior belief.

2) CountBayes-Sketch: The CBS [27] computes
Maximum-A-Posteriori (MAP) estimates for frequencies
of items based on the Central-Limit-Theorem (CLT). The
CBS computes these estimates in closed form and prior
beliefs can be provided in form of a mean µ and an
uncertainty-factor χ2. In contrast to BFE it does not allow
estimating expected errors or computing estimates that
minimize a specific error function.

3) PR-Sketch: At its core, the PRS [25] computes fre-
quency estimates âPRS based on

âPRS = argmin
a

||a||2 such that HPRSa = cPRS

Implicitly, âPRS is also the solution to the following two
optimization problems:

Let A ∼ N (⃗0, σ2I)
âPRS = argmax

a
P[A = a | HPRSA = cPRS]

i.e., âPRS is the MAP-estimate for a assuming a Gaussian
prior. Since the mode of a Gaussian is also its mean and
therefore least-squares estimator , on a high level the PRS
is a special instance of BFE with Gaussian prior beliefs.

4) Seq-Sketch: Fundamentally, the frequency-estimate âSeq

computed by the SEQS [26] is the solution to the following
problem:

âSeq = argmin
a

||a||1 such that HSeqa = cSeq

This is known as the Basis Pursuit (BP) problem [40] which
has been shown [41] to be equivalent to the solution of

Let A ∼ Laplace(⃗0, σ2I)
âSeq = argmax

a
P[A = a | HSeqA = cSeq]

i.e., the MAP-estimate for a assuming a Laplacian prior. While
BFES, as presented in this paper, is unable to compute MAP-
estimates directly, SEQS can nevertheless be conceptually
understood as a special case of BFE with a Laplace prior
belief.

5) DirichletProcess-Sketch: The DPS [28] assumes that the
item frequencies are drawn from a Dirichlet process (DP).
The DP models both the prior assumption of the frequencies
of items, as well as a prior on the number of distinct items
that exist. In comparison, the optimal Bayesian frequency
estimator as described by Section III requires to know the set
of distinct keys K, while BFES uses an auxiliary sketch [39]
to estimate the size of K. Furthermore, DPS provides a closed-
form theoretic solution to the frequency estimation problem,
while BFES presents a computational method. Evaluating
DPS requires many evaluations of the Gamma function as
well as solving an optimization problem and is therefore in
empirical experiments slower than BFES. Lastly, DPS only
allows for one prior belief – the Dirichlet process – while
BFE supports a wider range of prior beliefs such as Gaussians,
exponentials, and Paretos.

V. BENCHMARKS AND EVALUATION

After discussing the theoretical aspects of Bayesian fre-
quency estimation, we will now evaluate the performance of
BFES in relation to other SOTA methods on both synthetic
and real-world data traces, comparing both prediction accuracy
as well as computational cost. In particular, we compare
against all methods described as estimation-advancements
in Section II, except for NIGPS which has shown to be
computationally too expensive in our experiments.

A. Experiment Details and Notation

Regarding BFES, we measure its performance using three
different priors; a Pareto (BFESP), an exponential (BFESE),
and a Gaussian (BFESG), to demonstrate that the prior belief
affects the frequency estimates. When we write BFESu, u
indicates the sketch parameter as described in Section IV-D.
Details aside, u is the depth of the multi-level array of counters
that comprise the primary sketch data structure.

Furthermore, BFES has been configured to generate 100
samples per query, i.e., w1 · w2 = 100. Additionally, the
algorithms BFES, CBS, and CCBS require estimating the
number of distinct keys ñ in the data stream. To that end,
given M amount of memory, these three algorithms allocate
m′ = 4 · log2(M) counters to the task of estimating ñ and use
the remaining counters for frequency estimation. We use the
HYPERLOGLOG-HIP sketch [39] to compute ñ.

The algorithms CCBS, SEQS, and PRS require an estimate
of K for estimating the frequencies. For these three algorithms
we allocate, as suggested by the respective publications, 12.5%
of the available memory M to a Bloom filter for detecting
duplicate keys and furthermore allow an additional list to keep
track of K. This causes larger effective memory footprint and
an advantage

XXX-X-XXXX-XXXX-X ©2025 IEEE

e↓ e↑ erel1 e1 e2
BFESP|E|G4 40.73 9.75 0.99 7.93 17.71
BFESP|E|G2 44.57 9.77 0.99 7.95 18.29
BFESP|E|G1 48.73 9.78 0.99 8.04 19.14

DPS 100.00 10.00 1.00 10.00 20.13
CMS 4509.30 4.51e+4 4995.61 4509.30 4516.56
CUS 1965.31 1.97e+4 2187.31 1965.31 1965.42
CS 1001.66 1000.26 201.06 181.99 229.02

CBS 50.09 46.07 9.77 8.74 17.41
CCBS 48.93 63.64 12.11 10.23 18.18
PRS 320.87 3204.71 361.88 320.51 398.88
SEQS 413.01 347.59 70.08 69.15 492.26

(a) Pareto (n=1000000)

e↓ e↑ erel1 e1 e2
24.78 9.63 1.00 7.02 10.08
24.74 9.62 1.00 7.01 10.07
24.52 9.60 1.00 6.99 10.05

100.00 10.00 1.00 10.00 14.14
4637.46 4.64e+4 4008.98 4637.46 4641.83
2007.71 2.01e+4 1742.89 2007.71 2007.76

738.05 735.35 115.53 133.95 168.08
41.87 37.85 7.50 7.25 10.01
40.05 54.78 9.31 8.62 11.28

320.49 3204.87 281.57 320.49 395.47
348.32 264.76 43.98 55.73 443.81

(b) Exponential (n=1000000)

e↓ e↑ erel1 e1 e2
12.70 9.03 1.00 5.05 6.22
12.68 9.02 1.00 5.05 6.21
12.62 8.99 0.99 5.03 6.20

100.00 10.00 1.00 10.00 11.75
4697.40 4.70e+4 1985.45 4697.40 4700.43
2038.65 2.04e+4 864.92 2038.65 2038.67

613.35 611.12 46.68 111.32 139.69
29.59 25.57 3.33 5.02 6.22
28.29 43.03 4.19 6.48 8.11

320.41 3204.14 137.94 320.41 394.04
309.30 223.28 17.02 48.42 466.06

(c) Gaussian (n=1000000)

TABLE II: Benchmarks on synthetic data. The streams have 1 million unique items and have been normalized such that the
average item frequency is 10. BFESP|E|Gu indicates that the results show BFES using a Pareto prior on the Pareto dataset,
and analogously for the exponential and Gaussian benchmarks. The u indicates the parameter u as described in Section IV-D.
The colors indicate the ranking of the various methods, where green means better. See Section V-B for a discussion.

Regarding CMS, CUS, DPS, CS, CBS, and CCBS, the
two-dimensional counter tables were configured to have a
fixed depth of 5 throughout all experiments, based on common
configurations used in the literature [42]–[44].

All algorithms have been implemented in C++ with the
gnu++17 language dialect and were compiled using LLVM
at optimization level Ofast. The source-code is publicly
available at the git repository associated with this paper [15].
We used Eigen [45] for the implementation of PRS and the
commercial solver MOSEK [46] for SEQS. Benchmarking has
been performed on a system with 16GB LPDDR5 memory
and an Apple M1 Pro processor with 8 cores.

Frequency estimation accuracy is measured based on six
different error metrics described in Tab. III. Results are always
averaged over 10 runs.

B. Experiments on Synthetic Data

We have benchmarked BFES and SOTA methods on
synthetic datasets based on three distinct generative item-
frequency distributions: a Pareto, an exponential, and a Gaus-
sian. The mean error statistics are shown in Tab. II. Each
synthetic trace contains one million distinct items and each
sketch was configured to use 10000 32-bit counters, i.e. , 40
KB of memory. For the BFES, CBS, and CCBS these 40
KB include also the auxiliary HYPERLOGLOG-HIP sketch.
The PRS, CCBS, and SEQS require additional memory for
key de-duplication which results in additional 160 KB used
by these three methods.

1) Observations: Tab. II clearly shows that across the five
benchmarked metrics, BFES provides the most consistent
performance; it achieves the lowest error in 4 out of 5
metrics and is a close second in the fifth metric. Other SOTA
methods, in particular the CBS and CCBS, achieve their best
performance in terms of absolute (e1) and root square error
(e2) where they perform similarly to BFES. This is partially
to be expected since absolute and square error is the primary
performance target of the benchmarked SOTA methods. The
difference in performance between BFES and other methods
widens when looking at e↓, e↑, and erel1 since these are

Sym Error Sym Error
e2 Root mean square error ê2 Root median square error
e1 Mean absolute error erel1 Mean absolute relative error
ecal Mean calibration error e↑, e↓ Mean asymmetric error

TABLE III: Error metrics. Asymmetric errors are defined as
in Section III-C3 where e↑ penalizes overestimations 10 times
more than underestimations, and e↓ does the opposite. The
calibration error is discussed in Section V-D.

the cases where BFES can make the most use out of the
Bayesian item-frequency samples it has generated and employ
the methods discussed in Section III-C. The only method that
in theory provides similar capabilities as BFES, in the sense
of providing a distribution of frequency estimates, is DPS.
However, the optimization problem part of the DPS query
procedure does not find a solution in a numerically stable
range in these experiments on synthetic data and therefore
the algorithm produces degenerate frequency estimates as is
visible in Tab. II. These experiments show that BFES provides
very good performance on various synthetic data streams of
large size.

C. Experiments on Real Traces

To show that Bayesian frequency estimation is also com-
petitive on real data streams, we conduct experiments on two
click-stream traces Kosarak [47] and Retail [48], as well
as four network-packet traces UNIV1 [49], MACCDC [50],
CAIDA [51], and MAWI [52]. Throughout these experiments
the sketches use M = 10% · n many 32-bit counters and
the remaining configuration options are the same as with
the synthetic experiments in Section V-B. In particular, PRS,
CCBS, and SEQS again require additional memory which
ranges from an additional 91.7 KB in the case of MACCDC,
to 1.45 GB in the case of the larger CAIDA trace.

1) Observations: In Tab. IV we have tabulated the perfor-
mance of BFES using three different priors (Pareto, exponen-
tial, and Gaussian) against other SOTA methods. Note that
e2 indicates the root mean square error, while ê2 is the root
median square error.

XXX-X-XXXX-XXXX-X ©2025 IEEE

e↓ e↑ erel1 e1 e2 ê2
BFESP1 97.82 11.32 0.81 11.28 945.15 1.67
BFESE1 98.43 13.10 0.81 12.31 946.18 2.18
BFESG1 98.63 22.83 4.40 13.85 943.63 2.67

DPS 21.78 176.87 35.37 21.78 23.72 17.73
CMS 21.78 217.75 168.68 21.78 24.78 18.82
CUS 12.35 123.47 98.70 12.35 13.93 10.92
CS 90.50 90.06 127.25 16.41 39.67 7.85

CBS 349.42 349.73 425.66 63.56 901.24 29.77
CCBS 348.27 348.41 419.92 63.33 908.40 29.72
PRS 97.25 261.73 198.05 32.63 1013.82 1.23
SEQS 165.25 80.83 97.22 22.37 1030.42 0.24

(a) MAWI (n=339950)

e↓ e↑ erel1 e1 e2 ê2
59.01 10.58 0.92 9.89 101.88 4.98
60.40 11.85 0.88 10.92 102.84 8.02
62.05 19.25 1.12 12.27 102.00 8.66
99.97 22.50 1.01 26.16 97.47 32.45

258.89 2588.88 359.19 258.89 266.87 253.78
142.83 1428.34 206.86 142.83 144.04 147.19
332.21 330.51 83.84 60.25 77.97 49.67

97.96 98.58 17.17 17.87 98.49 6.71
96.20 91.04 15.78 17.02 98.85 6.45
60.24 229.24 36.70 26.32 107.81 15.50

965.11 140.54 59.06 100.51 3391.51 3.97

(b) Retail (n=16470)

e↓ e↑ erel1 e1 e2 ê2
88.82 11.87 0.83 11.68 252.96 4.04
90.31 14.63 0.86 13.34 253.54 6.91
90.66 28.08 3.60 15.42 251.92 8.66
91.06 164.78 8.25 68.54 70.85 52.76
91.12 911.24 494.51 91.12 103.43 80.83
52.74 527.45 296.03 52.74 58.60 48.80

328.44 328.54 324.11 59.73 99.10 35.22
199.72 208.23 160.36 37.09 242.62 17.43
194.81 205.35 158.55 36.38 243.77 16.85
90.12 294.05 168.51 34.92 301.45 5.93

495.52 179.11 276.41 61.33 1269.01 0.52

(c) UNI1 (n=63172)
e↓ e↑ erel1 e1 e2 ê2

BFESP1 80.99 12.03 0.88 11.53 226.12 4.48
BFESE1 83.23 14.48 1.00 13.09 226.68 7.87
BFESG1 84.42 25.69 2.93 14.97 225.21 9.06

DPS 132.28 95.06 4.15 61.97 158.74 58.16
CMS 146.43 1464.32 936.81 146.43 159.84 136.64
CUS 91.17 911.65 605.13 91.17 94.56 93.51
CS 362.62 359.04 419.97 65.61 92.00 47.86

CBS 157.15 160.52 137.89 28.88 217.02 11.07
CCBS 156.34 147.30 128.04 27.60 217.70 10.74
PRS 82.28 245.97 176.69 29.84 243.06 9.55
SEQS 134.11 108.77 89.03 22.08 298.85 1.18

(d) Kosarak (n=41270)

e↓ e↑ erel1 e1 e2 ê2
98.30 11.65 0.90 11.44 207.78 1.21
98.63 13.60 1.03 12.44 208.65 1.53
98.78 27.22 10.97 14.24 206.98 1.77
19.59 195.44 154.51 19.59 28.72 15.77
19.59 195.87 269.63 19.59 28.87 15.92
12.11 121.08 172.43 12.11 20.56 10.16

202.97 196.74 529.77 36.34 127.79 9.86
229.63 221.64 442.74 41.02 199.48 21.83
226.89 223.23 440.73 40.92 200.98 21.84
101.26 308.56 464.92 37.26 263.46 0.83
122.55 123.79 132.02 22.39 302.26 0.15

(e) MACCDC (n=13500)

e↓ e↑ erel1 e1 e2 ê2
85.03 10.47 0.91 10.94 179.92 3.83
88.09 12.66 0.84 12.84 180.79 6.80
88.19 26.44 1.48 15.32 179.44 8.52

103.48 137.10 2.09 67.62 75.46 57.29
105.93 1059.33 177.40 105.93 114.09 97.89

60.31 603.07 104.51 60.31 63.31 58.90
297.00 296.09 90.36 53.92 102.69 29.32
180.78 178.29 42.93 32.64 172.58 16.97
176.52 173.41 41.43 31.81 173.65 16.47

84.31 263.50 44.86 31.62 211.71 6.28
174.51 109.24 27.36 25.79 323.41 1.23

(f) CAIDA (n=988404)

TABLE IV: Benchmarks on real data streams. The traces have been normalized such that the average item frequency is 10.
The colors indicate the ranking of the various methods across the datasets. See Section V-C for a discussion.

Firstly, by comparing the three versions of BFES that have
been benchmarked, we see that on these datasets, BFESP
with the Pareto assumption produces on average significantly
better results than BFESE or BFESG with the exponential
and Gaussian assumptions. This is no surprise since all these
data streams have very heavy-tailed frequency distributions:
MAWI is the most extreme case where the kurtosis (a measure
of tailed-ness of a distribution) is 105727 and where the top
1% of items make up 81% of the total stream volume. On
the more moderate end we have Retail with a kurtosis of
5750 and where the top 1% of items make up 20% of the total
volume. In comparison, the synthetic Pareto data stream has a
kurtosis of 504 and the top 1% of most frequent items make
up 2.7% of the total. With this in mind, amongst the available
prior assumptions for BFES, Pareto is by far the most heavy-
tailed distribution and therefore yields the best results. The
performance of BFES is qualitatively worse in the case of real
compared to empirical data because of the mismatch between
the Pareto prior and the stream distribution.

This brings us to the next point where it is evident from
Tab. IV that BFES does not perform best in terms of root mean
square error e2. The reason is that BFESP’s Pareto prior un-
derestimates the occurrence of a few extremely frequent items.
The estimation error for these few items is then squared and
therefore amplifies the average error considerably. To support
this explanation we have displayed the root median square
error ê2 which shows that the median squared frequency esti-
mation error for BFES is considerably lower than the average
error. In fact, considering that as explained in Section V-C,
CCBS, PRS, and SEQS make use of a considerable amount
of additional memory, BFESP shows very strong performance

Par. Exp. Gaus. Kos. Ret. UNI1 MAWI MAC. CAI.
BFESP4 0.02 0.07 0.14 0.06 0.08 0.12 0.37 0.32 0.23
BFESE4 0.06 0.01 0.08 0.05 0.05 0.07 0.37 0.33 0.31
BFESG4 0.13 0.08 0.02 0.08 0.08 0.06 0.38 0.34 0.38
DPS 0.5 0.5 0.5 0.43 0.25 0.47 0.50 0.50 0.46

TABLE V: Average absolute calibration errors ecal1 of appli-
cable methods across synthetic and real datasets. Section V-D
elaborates on the measurements.

in terms of root median square error.
Thirdly, BFES consistently shows the strongest perfor-

mance in terms of e↑, erel1 , and in particular the commonly
used mean absolute error e1. CMS, CUS, and DPS display oc-
casionally strong performance in terms of the underestimation-
penalized error e↓ which makes sense since in particular CMS
and CUS always over-estimate the item frequencies, which
is why these two methods show consistently very poor e↑

performance.

D. Calibration Error and Confidence Intervals

The calibration error ecal1 is the average over p ∈ [0; 1] of
the absolute difference between P[ak < Q{α1

k,α
2
k,... }(p)] and

p. A calibration error of 0 therefore means that the sketch
can for any arbitrary confidence level p, return confidence
intervals that are on average perfect, i.e. , as tight as possible.
Apart from BFES, amongst the methods we know of, only
DPS and NIGPS provide functionality to give confidence
intervals for any and all desired confidence levels p. We
have however not been able to benchmark NIGPS due to its
extreme computational cost which we found scales poorly in
terms of the sketch size.

XXX-X-XXXX-XXXX-X ©2025 IEEE

BFES4
BFES2

BFES1
DPS

CMS
CUS

CS
CBS

CCBS
PRS

SeqS

2× 101

3× 101
4× 101

6× 101

M
Ip

S

(a) Throughput in Million Insertions per Second

BFESp4
BFESp1

BFESg1
DPS

CMS
CUS

CS
CBS

CCBS
PRS

SeqS

100

101

M
Q

p
S

(b) Throughput in Million Queries per Second

Fig. 1: Computational throughput in the setting with n = 106

distinct items and M = 104 counters.

In Tab. V we show the average absolute calibration error
for BFES and DPS across all datasets. Note how in the
case of synthetic data, BFES achieves between 1% and 2%
calibration error if the right prior is used. On the other hand
the DPS displays significantly worse calibration which in the
case of the synthetic data is due to the issue described in
Section V-B1, while in the cases of the real data traces this is
due to a systematic over-estimation of item frequencies which
leads to biased and hence erroneous confidence intervals. In
contrast, BFES achieves calibration errors between 5% and
6% on 3 of the 6 real streams which is still quite low. For the
remaining 3 streams however BFES has a calibration error
between 23% and 37% which is not very useful. This is again
due to the strong tailed-ness of these three traces which is
why the calibration error is the worst in the case of MAWI
for reasons detailed in Section V-C1.

E. Computational Speed

To demonstrate that the BFES is not only accurate but
also computationally competitive we have benchmarked the
throughput of all sketches in terms of insertion and query
speed. Fig. 1 shows that the BFES is competitive with the
SOTA both in terms of querying and inserting items. As Sec-
tion IV-D points out, the insertion speed of BFESu changes
with u. Also, in practice the query speed of the BFES varies
depending on the prior belief we choose: BFESG1 is faster
than BFESP1 since the Gibbs sampling from Section III-B1
is more difficult in the case of a Pareto prior compared to a
Gaussian prior.

F. Limitations

A first point of consideration is that the implementation of
BFES’s QUERY is significantly more complicated compared
to the other benchmarked methods discussed in this paper.
Therefore the query procedure is unsuited for FPGAs, ASICS,
and software-programmable network switches like Tofino.
This can be worked around by implementing the insertion

routine in hardware, while performing the query procedure
on a general purpose CPU. So all in all while BFES can be
implemented efficiently, it is in general slower than the simpler
sketches such as CMS and CS, although faster than e.g. DPS.

Secondly, Bayesian frequency estimation requires an as-
sumption (formulated as a Bayesian prior distribution) to work,
unlike for example the CS. It is therefore a double-edged
method which can provide great functionality, at the downside
of having to provide a prior distribution. As can be seen
from Tab. IV and Tab. V, if the prior belief does not match
the actual distribution of item frequencies, item frequencies
predicted by BFES will be biased, despite providing the
lowest mean absolute error. In practice, the distribution of
item frequencies in data streams often follows Zipf’s law [53]–
[55] which is why a power-law prior like the Pareto will in
many cases provide solid baseline performance. Alternatively,
statistics such as entropy [56] and variance [57] collected on
representative data streams may be used to chose a prior [58].

Lastly, the analysis in Section III-D relies on the hash-matrix
H to be known. This assumption creates a difference between
the theoretic optimal Bayesian frequency estimator, and what
can be implemented in a realistic setting. Future work can
explore using additional memory such as SEQS and PRS do,
in order to estimate the set of unique keys K. In this setting
one would incur a greater memory cost but come closer to the
optimal Bayesian frequency estimation.

VI. CONCLUSION

This paper presented a novel perspective on the possi-
bilities that Bayesian frequency estimation can provide. We
have analysed the problem in a constrained setting from a
theory point of view and derived sufficient requirements for
efficient MCMC-based frequency estimation. The theoretic
insights were translated into an algorithm that solves Bayesian
frequency estimation in an approximate away. A comparison to
other methods such as for example the COUNTMIN- and PR-
SKETCH indicates that these methods can be seen as special
instances of Bayesian frequency estimation. Benchmarks on
both synthetic and real data show in particular the ability
of BFES to adapt to individual error metrics, as well as
provide good confidence intervals for arbitrary confidence
levels. These are two qualities that existing methods lack.

Nevertheless, BFES also has its limitations, namely a more
complicated frequency estimation algorithm that is difficult
to implement in hardware. And although BFES requires a
Bayesian prior on the item frequencies to work, empirical ex-
periments show that BFES can keep up with SOTA methods in
terms of throughput and that even when the prior assumptions
are wrong, performance is still strong in multiple error metrics;
in particular in terms of absolute estimation error.

We see opportunities for future research on improving the
computational complexity of Bayesian frequency estimation,
as well as developing efficient computational methods to use
more heavy-tailed prior distributions, such that BFES can
reach a better calibration and even lower error on challenging
traces such as MAWI.

XXX-X-XXXX-XXXX-X ©2025 IEEE

REFERENCES

[1] R. Ben Basat, G. Einziger, R. Friedman, and Y. Kassner, “Randomized
admission policy for efficient top-k and frequency estimation,” in IEEE
INFOCOM 2017 - IEEE Conference on Computer Communications,
2017, pp. 1–9.

[2] C. Estan and G. Varghese, “New Directions in Traffic Measurement
and Accounting: Focusing on the Elephants, Ignoring the Mice,” ACM
Trans. Comput. Syst., vol. 21, no. 3, p. 270–313, aug 2003. [Online].
Available: https://doi.org/10.1145/859716.859719

[3] T. Holterbach, E. C. Molero, M. Apostolaki, A. Dainotti, S. Vissicchio,
and L. Vanbever, “Blink: Fast Connectivity Recovery Entirely
in the Data Plane,” in 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19). Boston, MA:
USENIX Association, Feb. 2019, pp. 161–176. [Online]. Available:
https://www.usenix.org/conference/nsdi19/presentation/holterbach

[4] H. Wu, H.-C. Hsiao, and Y.-C. Hu, “Efficient Large Flow Detection
over Arbitrary Windows: An Algorithm Exact Outside an Ambiguity
Region,” in Proceedings of the 2014 Conference on Internet
Measurement Conference, ser. IMC ’14. New York, NY, USA:
Association for Computing Machinery, 2014, p. 209–222. [Online].
Available: https://doi.org/10.1145/2663716.2663724

[5] A. L. de Aquino, C. M. Figueiredo, E. F. Nakamura, L. S. Buriol,
A. A. Loureiro, A. O. Fernandes, and C. J. J. Coelho, “Data Stream
Based Algorithms For Wireless Sensor Network Applications,” in 21st
International Conference on Advanced Information Networking and
Applications (AINA ’07), 2007, pp. 869–876.

[6] W. Wu, J. Cao, H. Wu, and J. Li, “Robust and Dynamic Data Aggrega-
tion in Wireless Sensor Networks: A Cross-Layer Approach,” in 2012
9th International Conference on Ubiquitous Intelligence and Computing
and 9th International Conference on Autonomic and Trusted Computing,
2012, pp. 306–313.

[7] A. L. L. de Aquino, C. M. S. Figueiredo, E. F. Nakamura, L. S. Buriol,
A. A. F. Loureiro, A. O. Fernandes, and C. J. N. Coelho Jr., “A Sampling
Data Stream Algorithm For Wireless Sensor Networks,” in 2007 IEEE
International Conference on Communications, 2007, pp. 3207–3212.

[8] C.-C. Wu, K.-T. Chen, C.-Y. Huang, and C.-L. Lei, “An empirical
evaluation of VoIP playout buffer dimensioning in Skype, Google talk,
and MSN Messenger,” 06 2009, pp. 97–102.

[9] A. G. Kumbhare, Y. Simmhan, M. Frincu, and V. K. Prasanna, “Reactive
Resource Provisioning Heuristics for Dynamic Dataflows on Cloud
Infrastructure,” IEEE Transactions on Cloud Computing, vol. 3, no. 2,
pp. 105–118, 2015.

[10] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items in
data streams,” in Automata, Languages and Programming, P. Widmayer,
S. Eidenbenz, F. Triguero, R. Morales, R. Conejo, and M. Hennessy, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 693–703.

[11] G. Cormode and S. Muthukrishnan, “An improved data stream
summary: the count-min sketch and its applications,” Journal of
Algorithms, vol. 55, no. 1, pp. 58–75, 2005. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0196677403001913

[12] M. J. Kochenderfer, Decision making under uncertainty: theory and
application. MIT press, 2015.

[13] H. Han, Z. Yan, X. Jing, and W. Pedrycz, “Applications of
sketches in network traffic measurement: A survey,” Inf. Fusion,
vol. 82, no. C, p. 58–85, Jun. 2022. [Online]. Available: https:
//doi.org/10.1016/j.inffus.2021.12.007

[14] L. D. Brown, G. Casella, and J. T. G. Hwang, “Optimal confidence sets,
bioequivalence, and the limaçon of pascal,” Journal of the American
Statistical Association, vol. 90, no. 431, pp. 880–889, 1995. [Online].
Available: http://www.jstor.org/stable/2291322

[15] F. Da Dalt, “BFES Repository,” https://github.com/FrancescoDaDalt/
BFES, 2024, github repository for the BFES algorithm.

[16] R. B. Basat, G. Einziger, M. Mitzenmacher, and S. Vargaftik, “Salsa:
Self-adjusting lean streaming analytics,” in 2021 IEEE 37th Interna-
tional Conference on Data Engineering (ICDE), 2021, pp. 864–875.

[17] P. Roy, A. Khan, and G. Alonso, “Augmented sketch: Faster and more
accurate stream processing,” in Proceedings of the 2016 International
Conference on Management of Data, ser. SIGMOD ’16. New York,
NY, USA: Association for Computing Machinery, 2016, p. 1449–1463.
[Online]. Available: https://doi.org/10.1145/2882903.2882948

[18] T. Yang, Y. Zhou, H. Jin, S. Chen, and X. Li, “Pyramid sketch: a
sketch framework for frequency estimation of data streams,” Proc.

VLDB Endow., vol. 10, no. 11, p. 1442–1453, aug 2017. [Online].
Available: https://doi.org/10.14778/3137628.3137652

[19] H. Li, Q. Chen, Y. Zhang, T. Yang, and B. Cui, “Stingy sketch: a
sketch framework for accurate and fast frequency estimation,” Proc.
VLDB Endow., vol. 15, no. 7, p. 1426–1438, mar 2022. [Online].
Available: https://doi.org/10.14778/3523210.3523220

[20] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic sketch: adaptive and fast network-wide
measurements,” in Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, ser. SIGCOMM ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
561–575. [Online]. Available: https://doi.org/10.1145/3230543.3230544

[21] S. Scherrer, C.-Y. Wu, Y.-H. Chiang, B. Rothenberger, D. E. Asoni,
A. Sateesan, J. Vliegen, N. Mentens, H.-C. Hsiao, and A. Perrig, “Low-
rate overuse flow tracer (loft): An efficient and scalable algorithm for
detecting overuse flows,” in 2021 40th International Symposium on
Reliable Distributed Systems (SRDS), 2021, pp. 265–276.

[22] Z. Liu, R. Ben-Basat, G. Einziger, Y. Kassner, V. Braverman,
R. Friedman, and V. Sekar, “Nitrosketch: robust and general sketch-
based monitoring in software switches,” in Proceedings of the ACM
Special Interest Group on Data Communication, ser. SIGCOMM ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
334–350. [Online]. Available: https://doi.org/10.1145/3341302.3342076

[23] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman,
“One sketch to rule them all: Rethinking network flow monitoring
with univmon,” in Proceedings of the 2016 ACM SIGCOMM
Conference, ser. SIGCOMM ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 101–114. [Online]. Available:
https://doi.org/10.1145/2934872.2934906

[24] Y. Cao, Y. Feng, H. Wang, X. Xie, and S. K. Zhou, “Learning to
sketch: A neural approach to item frequency estimation in streaming
data,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 46, no. 11, pp. 7136–7153, 2024.

[25] S. Sheng, Q. Huang, S. Wang, and Y. Bao, “PR-Sketch: Monitoring
per-Key Aggregation of Streaming Data with Nearly Full Accuracy,”
Proc. VLDB Endow., vol. 14, no. 10, p. 1783–1796, jun 2021. [Online].
Available: https://doi.org/10.14778/3467861.3467868

[26] Q. Huang, S. Sheng, X. Chen, Y. Bao, R. Zhang, Y. Xu, and G. Zhang,
“Toward Nearly-Zero-Error Sketching via Compressive Sensing,” in 18th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 21). USENIX Association, Apr. 2021, pp. 1027–1044. [Online].
Available: https://www.usenix.org/conference/nsdi21/presentation/huang

[27] F. Da Dalt, S. Scherrer, and A. Perrig, “Bayesian Sketches
for Volume Estimation in Data Streams,” Proc. VLDB Endow.,
vol. 16, no. 4, p. 657–669, dec 2022. [Online]. Available: https:
//doi.org/10.14778/3574245.3574252

[28] D. Cai, M. Mitzenmacher, and R. P. Adams, “A bayesian nonparametric
view on count-min sketch,” in Advances in Neural Information
Processing Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, Eds., vol. 31. Curran Associates,
Inc., 2018. [Online]. Available: https://proceedings.neurips.cc/paper
files/paper/2018/file/0b9e57c46de934cee33b0e8d1839bfc2-Paper.pdf

[29] E. Dolera, S. Favaro, and S. Peluchetti, “A bayesian nonparametric
approach to count-min sketch under power-law data streams,” 2021.
[Online]. Available: https://arxiv.org/abs/2102.03743

[30] R. Bellman, R. Corporation, and K. M. R. Collection, Dynamic
Programming, ser. Rand Corporation research study. Princeton
University Press, 1957. [Online]. Available: https://books.google.ch/
books?id=wdtoPwAACAAJ

[31] S. Geman and D. Geman, “Stochastic relaxation, gibbs distributions,
and the bayesian restoration of images,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. PAMI-6, no. 6, pp. 721–741,
1984.

[32] S. Duane, A. Kennedy, B. J. Pendleton, and D. Roweth, “Hybrid
monte carlo,” Physics Letters B, vol. 195, no. 2, pp. 216–222, 1987.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
037026938791197X

[33] U. Grenander and M. I. Miller, “Representations of knowledge in
complex systems,” Journal of the Royal Statistical Society. Series
B (Methodological), vol. 56, no. 4, pp. 549–603, 1994. [Online].
Available: http://www.jstor.org/stable/2346184

[34] W. Gilks, S. Richardson, and D. Spiegelhalter, Eds., Markov Chain
Monte Carlo in Practice, 1st ed. Chapman and Hall/CRC, 1995.

XXX-X-XXXX-XXXX-X ©2025 IEEE

[35] R. Gallager, “Low-density parity-check codes,” IRE Transactions on
Information Theory, vol. 8, no. 1, pp. 21–28, 1962.

[36] F. Zhang and H. D. Pfister, “Compressed sensing and linear codes over
real numbers,” in 2008 Information Theory and Applications Workshop,
2008, pp. 558–561.

[37] E. Cohen, “All-distances sketches, revisited: Hip estimators for massive
graphs analysis,” 2015.

[38] P. Flajolet, E. Fusy, O. Gandouet, and F. Meunier, “Hyperloglog: The
analysis of a near-optimal cardinality estimation algorithm,” Discrete
Mathematics Theoretical Computer Science, vol. DMTCS Proceedings
vol. AH,..., 03 2012.

[39] T. Akiba, “hyperloglog-hip,” https://github.com/iwiwi/hyperloglog-hip,
2014, accessed: 2024-06-10.

[40] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM Review, vol. 43, no. 1, pp. 129–159, 2001.
[Online]. Available: https://doi.org/10.1137/S003614450037906X

[41] D. Wipf and B. Rao, “Sparse bayesian learning for basis selection,”
Signal Processing, IEEE Transactions on, vol. 52, pp. 2153 – 2164, 09
2004.

[42] Y. Ben Mazziane, S. Alouf, and G. Neglia, “A Formal Analysis of the
Count-Min Sketch with Conservative Updates,” in IEEE INFOCOM
WNA 2022 - The second Workshop on Networking Algorithms
(WNA), New York, United States, May 2022. [Online]. Available:
https://hal.science/hal-03613957

[43] Y. B. Mazziane, S. Alouf, and G. Neglia, “Analyzing count min
sketch with conservative updates,” Computer Networks, vol. 217,
p. 109315, 2022. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1389128622003607

[44] D. Ting, “Count-min: Optimal estimation and tight error bounds
using empirical error distributions,” 2018. [Online]. Available: https:
//arxiv.org/abs/1811.04150

[45] G. Guennebaud, B. Jacob et al., “Eigen v3.4.0,” http://eigen.tuxfamily.
org, 2010, accessed on: 23.02.2022.

[46] MOSEK ApS, “MOSEK Optimization Suite,” https://www.mosek.com/,
2023, accessed on: 30.05.2023.

[47] F. Bodon, “KOSARAK dataset,” http://fimi.uantwerpen.be/data/kosarak.
dat.gz, 2003, last accessed 05.08.2022.

[48] T. Brijs, “RETAIL dataset,” http://fimi.uantwerpen.be/data/retail.dat.gz,
2003, last accessed 05.08.2022.

[49] F. Bodon, “UNIV1 dataset,” https://pages.cs.wisc.edu/∼tbenson/IMC10
Data.html, 2010, last accessed 05.08.2022.

[50] Netresec, “MACCDC Dataset,” https://www.netresec.com/?page=
MACCDC, 2012.

[51] CAIDA, “Caida Anonymized Internet Traces 2016.” https://data.caida.
org/datasets/passive-2016/, 2016, last accessed 05.08.2022.

[52] K. Cho, K. Mitsuya, and A. Kato, “Traffic Data Repository at the WIDE
Project,” in USENIX 2000 FREENIX Track, San Diego, CA, June 2000.

[53] P. Jurkiewicz, G. Rzym, and P. Boryło, “Flow length and size
distributions in campus internet traffic,” Computer Communications,
vol. 167, p. 15–30, Feb. 2021. [Online]. Available: http://dx.doi.org/10.
1016/j.comcom.2020.12.016

[54] C. Furusawa and K. Kaneko, “Zipf’s law in gene expression,” Physical
Review Letters, vol. 90, no. 8, p. 088102, 2003.

[55] S. T. Piantadosi, “Zipf’s word frequency law in natural language: a
critical review and future directions,” Psychonomic Bulletin & Review,
vol. 21, no. 5, pp. 1112–1130, 2014.

[56] P. Clifford and I. A. Cosma, “A simple sketching algorithm for entropy
estimation,” 2013. [Online]. Available: https://arxiv.org/abs/0908.3961

[57] G. Cormode, AMS Sketch. New York, NY: Springer New
York, 2016, pp. 76–78. [Online]. Available: https://doi.org/10.1007/
978-1-4939-2864-4 578

[58] N. Ebrahimi, E. Maasoumi, and E. S. Soofi, “Ordering univariate
distributions by entropy and variance,” Journal of Econometrics,
vol. 90, no. 2, pp. 317–336, 1999. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0304407698000463

XXX-X-XXXX-XXXX-X ©2025 IEEE

