
SPArch: A hardware-oriented sketch-based architecture for
high-speed network flow measurements

ARISH SATEESAN, ES&S-COSIC, ESAT, KU Leuven, Belgium
JO VLIEGEN, ES&S-COSIC, ESAT, KU Leuven, Belgium
SIMON SCHERRER, Department of Computer Science, ETH Zurich, Switzerland
HSU-CHUN HSIAO, National Taiwan University & Academia Sinica, Taiwan
ADRIAN PERRIG, Department of Computer Science, ETH Zurich, Switzerland
NELEMENTENS, ES&S-COSIC, ESAT, KU Leuven, Belgium and LIACS, Leiden University, The Netherlands

Network flow measurement is an integral part of modern high-speed applications for network security
and data-stream processing. However, processing at line rate while maintaining the required data structure
within the on-chip memory of the hardware platform is a challenging task for measurement algorithms,
especially when accuracy is of primary importance, such as in network security applications. Most of the
existing measurement algorithms are no exception to such issues when deployed in high-speed networking
environments and are also not tailored for efficient hardware implementation. Sketch-based measurement
algorithms minimize the memory requirement and are suitable for high-speed networks but possess a low
memory-accuracy trade-off and lack the versatility of individual flow mapping. To address these challenges,
we present a hardware-friendly data structure named Sketch-based Pseudo-associative array Architecture
(SPArch). SPArch is highly accurate and extremely memory-efficient, making it suitable for network flow
measurement and security applications. The parallelism in SPArch ensures minimal and constant memory
access cycles. Unlike other sketch architectures, SPArch provides the functionality of individual flow mapping
similar to associative arrays, and the optimized version of SPArch allows the organization of counters in
multiple buckets based on the flow sizes. An in-depth analysis of SPArch is carried out in this paper and
implemented SPArch on the Alveo data center accelerator card, demonstrating its suitability for high-speed
networks.

CCS Concepts: • Theory of computation→ Sketching and sampling; •Computer systems organization
→ Embedded hardware; • Networks→ Network monitoring; Network measurement; • Security and
privacy→ Security in hardware; Network security.

Additional Key Words and Phrases: FPGA, Counter array, Probabilistic data structure

ACM Reference Format:
Arish Sateesan, Jo Vliegen, Simon Scherrer, Hsu-Chun Hsiao, Adrian Perrig, and Nele Mentens. 2024. SPArch:
A hardware-oriented sketch-based architecture for high-speed network flow measurements. ACM Transactions
on Privacy and Security 1, 1 (July 2024), 35 pages. https://doi.org/XXXXXXX.XXXXXXX

Authors’ addresses: Arish Sateesan, arish.sateesan@kuleuven.be, ES&S-COSIC, ESAT, KU Leuven, Belgium; Jo Vliegen,
jo.vliegen@kuleuven.be, ES&S-COSIC, ESAT, KU Leuven, Belgium; Simon Scherrer, simon.scherrer@inf.ethz.ch, Department
of Computer Science, ETH Zurich, Switzerland; Hsu-Chun Hsiao, hchsiao@csie.ntu.edu.tw, National Taiwan University
& Academia Sinica, Taiwan; Adrian Perrig, adrian.perrig@inf.ethz.ch, Department of Computer Science, ETH Zurich,
Switzerland; Nele Mentens, nele.mentens@kuleuven.be, ES&S-COSIC, ESAT, KU Leuven, Belgium and LIACS, Leiden
University, The Netherlands.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Association for Computing Machinery.
XXXX-XXXX/2024/7-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article . Publication date: July 2024.

HTTPS://ORCID.ORG/0000-0002-8197-0097
HTTPS://ORCID.ORG/0000-0003-4258-2208
HTTPS://ORCID.ORG/0000-0002-5280-5412
HTTPS://ORCID.ORG/0000-0001-8753-7895
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/0000-0002-8197-0097
https://orcid.org/0000-0003-4258-2208
https://orcid.org/0000-0002-5280-5412
https://orcid.org/0000-0001-8753-7895
https://doi.org/XXXXXXX.XXXXXXX

2 Sateesan et al.

1 INTRODUCTION
Network flow measurement plays a crucial role in many network applications, such as large flow
detection. A simple task like counting network packets poses a real challenge in such applications
when processing data streams at line rate in high-bandwidth networks. Although existing efforts
have managed to enhance accuracy and speed on software platforms, they often fail to harness the
complete potential for speed improvement offered by hardware platforms. In recent times, Field
Programmable Gate Arrays (FPGAs) have been widely employed in data center applications and
are proven to be a resilient foundation for high-performance networking applications [5, 24, 36, 37].
The advent of such high-performance computing platforms like FPGAs compels a re-evaluation
of measurement architectures to fully exploit parallelization capabilities and achieve maximum
throughput. Present algorithms are software-centric and sequential, making it difficult to exploit
the parallelism on hardware effectively. Terabit Ethernet networks, networks with speeds exceeding
100 Gigabits per second (Gbps), require immediate online handling of network packets for network
security applications, and hardware architectures play an indispensable role in real-time packet
processing.
Currently, associative array counters and sketches are the most commonly used flow measure-

ment architectures. However, associative array counters come at the cost of high memory usage,
high computational overhead, and low operating frequency [27]. Sketches [7] are probabilistic
measurement architectures requiring significantly less memory while having lower computational
overhead and higher operating frequency than associative array counters. However, the advan-
tages of sketches come at the expense of lower accuracy. A higher amount of memory has to be
allocated to sketches to increase accuracy (while the counter size remains constant), resulting in
a large percentage of the memory being unused, referred to as underutilization of memory. The
reason for underutilization is that the larger memory size leads to fewer hash collisions. Given
fewer hash collisions, the counter values will be lower due to reduced counter-sharing, leading
to unused higher-order bits in many counters, thereby underutilizing memory. In addition, the
amount of small or mouse flows is significant in the real network traffic data due to its skewed
nature, which is also attributed to the underutilization of memory as the counter sizes are defined
for large flows. Moreover, sketches are unsuitable for eviction-based algorithms, in which flows are
evicted when the flow sizes fall below a certain threshold. Eviction-based algorithms require each
flow to be mapped to a single counter (one-to-one mapping), making associative array counters a
necessity [38].
Proposed approach: In this work, we propose a hardware-efficient sketch-based counter ar-
chitecture, SPArch (Sketch-based Pseudo-associative array Architecture), for all-purpose flow
measurement and security applications to confront the drawbacks of existing probabilistic measure-
ment algorithms. SPArch combines the functionality of an associative array with thememory-saving
benefits of sketch architectures. SPArch addresses the challenges associated with existing flow
measurement solutions concerning hardware-friendliness, underutilization of memory, restricting
the overall memory usage to on-chip memory, and assigning counter sizes based on flow sizes.

Furthermore, we strive to fulfill the need for a standardized measurement unit suitable for both
eviction-based and sketch-based detection algorithms. As a standardized measurement unit, SPArch
can serve the purpose of a standalone monitoring algorithm as well as a supporting measurement
architecture. The primary focus of this work is on measurement architectures that are hardware-
friendly and are capable of processing the incoming network traffic at line rate in Terabit Ethernet
networks. Such architectures are particularly relevant for network security applications such as
DDoS attack detection, where the flow measurement is bound to a predetermined measurement
epoch.

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article . Publication date: July 2024.

SPArch: A hardware-oriented sketch-based architecture for high-speed network flow measurements 3

To the best of our knowledge, none of the existing sketch-based methods employ a one-to-one
mapping, akin to associative-array counters, for storing incoming flows. SPArch, on the other hand,
applies one-to-one mapping to the incoming flows, allowing the flexibility to map elephant and
mouse flows in separate buckets without incurring any additional memory accesses, as Section 6
explains. This functionality of mapping flows based on their sizes resembles that of some of
the existing sketch architectures, such as Elastic Sketch [41] or Diamond Sketch [40], but with
significantly lower memory usage. In addition to aiding the mapping of flows into appropriately
sized buckets, one-to-one mapping also facilitates deletion or decrement operations. In sketches,
deleting or decrementing the count value in a cell would affect the accuracy of other flows mapped
to the same cell. SPArch effectively addresses this problem. Also, hash collisions increase the
estimation error of sketches, whereas SPArch can detect hash collisions and identify two different
flows with the same hash index as separate flows (Section 4.1).
The main contributions of this paper are:
• The proposal of a hardware-oriented measurement algorithm termed Sketch-based Pseudo-
associative array Architecture (SPArch), which can achieve superior accuracy with the lowest
memory utilization compared to existing sketch/sketch-based measurement algorithms. SPArch
can detect hash collisions. Furthermore, SPArch mitigates the underutilization of memory, a
dominant drawback of sketches.
• The proposal of a flexible counter architecture that enables one-to-one mapping, allowing the
organization of counters in multiple buckets without affecting the latency. The multi-bucket
architecture enables the segregation of elephant flows and mouse flows into distinct buckets,
facilitating the possibility of different counter sizes for mouse and elephant flows. An approxima-
tion technique is presented to scale down the sizes of the buckets to reduce the memory footprint
even further.
• The evaluation of SPArch for large-flow detection.
• The implementation of SPArch on an FPGA and the evaluation of the performance.

This paper is organized as follows. Section 2 presents the problem definition and related work in
network flow measurements. Section 3 introduces the preceding data structures and terms that are
followed in this paper. Section 4 describes the architecture of SPArch. Section 5 provides the analysis
and evaluation of the performance of SPArch and a comparison with the existing work. Section 6
explains the architecture and organization of counters in multiple buckets in SPArch. Section 7
depicts the hardware architecture of SPArch, and Section 8 provides the evaluation of SPArch on
hardware and comparison with other existing architectures. Section 9 enlists the practical value of
SPArch. Finally, Section 10 presents the conclusions.

2 PROBLEM DEFINITION AND RELATEDWORK
This section provides a detailed description of the challenges associated with network flow mea-
surements and the drawbacks of existing related work.

2.1 Problems in network flow measurement
Issues regarding memory requirements: In high-speed networking environments, the pro-
cessing and storage of high-speed data streams require a large memory footprint. This is because
high-speed data streams are characterized by a high volume of data that arrives at a very fast rate,
and this data needs to be processed and stored in real-time. In order to fulfill the large storage
requirements, most present-day computing systems employ off-chip Double Data Rate Dynamic
Random Access Memories (DDR DRAM). However, using external DDR DRAMs considerably slows
down the system, making online traffic processing nearly impossible. Moreover, DDR memory

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article . Publication date: July 2024.

4 Sateesan et al.

access latency depends on various factors such as access patterns, transaction type (read or write),
and the DRAM state from previous accesses. Address bus multiplexing and a bi-directional data
bus also contribute to an increased access latency. The access latency of DDR3-1600 varies from 10
clock cycles (access request targeting an open row) to 72 clock cycles (access request targeting a
conflicting row) for a clock with a 1.5 ns period [12]. On the other hand, the FPGA’s on-chip Block
RAM (BRAM) has only a single clock cycle of access latency. Constraining the memory overhead
within the on-chip memory while keeping the accuracy high is the initial step to tackling the
challenges associated with the implementation of measurement algorithms on hardware.
Drawbacks of existing measurement architectures: Some of the existing measurement archi-
tectures, supporting various types of detection algorithms such as intrusion detection, anomaly
detection, and heavy-hitter detection, contribute well to minimizing the memory constraints using
probabilistic techniques [11, 13, 19, 22, 30, 41]. However, this reduction in memory comes at the
expense of reduced accuracy, higher execution delay, or complex arithmetic computations that
are difficult to implement efficiently in hardware. In addition to the underutilization of memory
probabilistic measurement data structures may not be suitable for all detection algorithms as
different algorithms adhere to different measurement mechanisms. Large flow detection algorithms
such as EARDet[38] use eviction-based measurements, whereas LOFT [30] employ sketch-based
measurements.
Mapping flows of different sizes to buckets of varying sizes is an ideal solution to reduce the

memory footprint while improving the relative accuracy [8]. This is because the majority of the
incoming flows are mouse flows that require smaller counter sizes. Despite efforts by architectures
such as Elastic Sketch [41] and count-less sketch [16] to address this problem of mapping different-
sized flows to different-sized buckets, these algorithms do not tackle eviction-based measurements.
This also demonstrates the reduced flexibility of probabilistic/sketch-based measurements.

When mapping a large number of network flows to corresponding buckets (one-to-one map-
ping) to assist eviction-based measurements, the most suitable architecture is a counter array. The
prevalent approach in hardware architectures involves using associative memories to implement
these counter arrays. Associative memory-based counter arrays offer support for various detection
algorithms, including eviction-based algorithms, thus making them highly flexible for diverse appli-
cations. Content addressable memory (CAM) is the hardware alternative to associative memories
used in most hardware platforms. However, CAM has several drawbacks compared to traditional
memory technologies. It is more complex, has slower write times, operates at a lower frequency,
requires a larger memory footprint, and consumes more power. Figure 1 illustrates a representation
of a counter array based on a content addressable memory. Not only are there downsides to using
CAM, but creating a counter array with CAM also requires additional computational logic. As
shown in the figure, an address to one-hot encoder is required to generate chip enable (CE) signals
for counters. This address to one-hot encoder is translated to a large multiplexer on hardware. The
drawbacks associated with associative array/CAM memories call for the development of a more
hardware-efficient alternative that offers comparable versatility.

2.2 Existing algorithmic approaches and challenges
Numerous approaches and techniques have been proposed to enhance the accuracy and efficiency
of network flow measurement systems. Nonetheless, the majority of these approaches are not
suitable for efficient implementation in hardware. There exist various algorithmic approaches for
flow measurement architectures, such as counting algorithms, sampling-based algorithms, and
sketch-based algorithms. We will provide a brief overview of these approaches, highlighting the
challenges associated with translating them to hardware.

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article . Publication date: July 2024.

SPArch: A hardware-oriented sketch-based architecture for high-speed network flow measurements 5

address to
one-hot
encoder

Counter array

CE

CE

CE

CAM

Fig. 1. CAM-based counter array

Counting algorithms process every packet in a data stream and map each flow to respective
counters. These algorithms employ associative counter array-based approaches or hash table-based
counters and are widely used for network measurements. Counting algorithms, such as eviction-
based algorithms, prioritize storing large flows while disregarding smaller ones in order to minimize
storage requirements. Exact-counting approaches on hardware that rely on associative arrays map
each flow to only a single counter, calling for expensive storage architectures such as content
addressable memories (CAM) [39] and additional computational overhead. Counting algorithms
require storing the complete flow IDs in contrast to probabilistic data structures like sketches [7],
which do not keep track of the flow IDs. This approach is unproductive unless sufficient on-chip
memory is available to accommodate all the counters, which is impractical and will not scale with
the growing bandwidth of networks.
There are several approaches proposed recently to improve the memory efficiency and perfor-

mance of counter arrays for flow measurements. Exact-counting with shared or virtual counters
and the use of hybrid SRAM-DRAM architectures somewhat reduce the memory overhead, but
the extent of improvement is not substantial [4, 20]. With insufficient fast on-chip memory and an
ever-increasing data rate, the feasibility of using exact counters for flow measurement is quite lim-
ited. Counter-based algorithms such as Hashpipe [33], Space-saving [22], and Lossy-counting [21]
have demonstrated their efficiency in network security applications. These algorithms selectively
store large flows while evicting small flows to minimize the storage requirements. However, the
space-saving algorithm is ill-fitted for hardware implementations, as operations like sorting a list
and finding the minimum in a list are not straightforward on hardware. Moreover, such compu-
tationally intensive operations adversely affect the performance when it comes to processing at
line rate. Moreover, these algorithms suffer from significant detection errors when operating under
limited memory constraints because they do not admit all the incoming flows in the flow summary.
Even though the lossy-counting algorithm is more accurate than the space-saving algorithm, it is
considerably slower [11]. Hashpipe guarantees accuracy but delivers a very low throughput.

Probabilistic or approximate counters [8, 14, 18, 23, 35] are one way to deal with large memory
requirements, but at the cost of accuracy. Such approximated measurements and techniques such as
counter sharing [4] can accommodate more data within the samememory space than exact counting
techniques. However, these approaches are significantly slower [4, 15, 20], and it is challenging to
deploy them at line rate. Furthermore, most of such approximation-based architectures are less
hardware-efficient because of the presence of complex logarithmic computations [8, 18].
Sampling-based measurement approaches, such as NetFlow [6], sFlow [32], and ANLS [14],
employ sampling in which one out of every 𝑁 incoming packets are captured. The sampling rate,
1
𝑁
, determines how frequently packets are captured. NetFlow employs very low sampling rates,

sometimes as low as 1% or 0.01% (depending on the traffic volume), to reduce processing and storage
overhead [33]. sFlow employs even lower sampling rates. While these approaches are helpful in
reducing memory requirements to some extent, they come at the expense of lower accuracy due

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article . Publication date: July 2024.

6 Sateesan et al.

to undersampling. This is further magnified for flow byte counting, where we count the packet
size in bytes rather than the number of packets. Several recent studies have proven that high
sampling causes a significant reduction in accuracy [13] and loss of information [19]. Techniques
like sample and hold [9], which employ a flow table to store sampled packets, can improve the
accuracy of sampling. Probabilistic data structures like hash tables can be used as flow tables, but
the addition of collision-resistant mechanisms for hash tables increases the system complexity.
Moreover, collision-resistant mechanisms are not easy to implement efficiently on hardware.
Sketches are probabilistic data structures that help to summarize large data streams within limited
(on-chip) memory [3, 7]. Unlike sampling-based approaches, Sketch-based approaches process
every packet in the incoming data stream. Sketches make use of the sub-linear space and provide a
compact synopsis of the data with some loss in accuracy. Moreover, sketching algorithms can deliver
better estimates than sampling/approximation-based algorithms. Nevertheless, with increasing line
rates and data explosion, sketches face many challenges in keeping up with the design requirements
of high-speed flow measurements. A probabilistic architecture always has a trade-off between
accuracy, speed, and memory usage. Unfortunately, even sketches cannot simultaneously guarantee
high accuracy and speed while operating within limited memory constraints. Sketches do not
keep track of the flow identifiers, making it challenging to filter the flows based on flow sizes or
delete flows at a later time. Nevertheless, because of the inherent hardware-friendliness of sketches
compared to other approaches, our focus in this work primarily revolves around sketch-based
methods.

2.3 A deep dive into sketch-based approaches
Sketches consist of multiple arrays of counters and are typically more memory-efficient than
associative counter arrays. A count-min (CM) sketch (introduced in Sect. 3) of size (𝑑,𝑤) maps
each flow to 𝑑 counters and can simultaneously process 𝑤 flows. Sketches are proven to be the
most efficient measurement architectures and have been used extensively in recent times. However,
there are multiple bottlenecks to take into account. The most important ones are the need for
multiple independent hash computations, multiple memory accesses to process a network packet,
computation-intensive arithmetic operations for counter updates, and underutilization of the
allocated resources as it requires [𝑑 × 𝑠𝑖𝑧𝑒 𝑜 𝑓 𝑡ℎ𝑒 𝑐𝑜𝑢𝑛𝑡𝑒𝑟] bits to store a single flow.

Although sketches work on the principle of memory sharing, accuracy decreases as the number
of elements exceeds𝑤 , as demonstrated in Section 5.1. Taking a real-world example for CM Sketch:
for a switch having a total bandwidth of 1 Tbps and can handle 10 million flows, limiting the
overestimation within 50% of the average-flow size would require approximately 250 million
counters for the CM Sketch [30]. Furthermore, the amount of memory required would be much
higher than mapping a flow to a single counter, which exemplifies the limitations of sketches
on high-capacity routers. On hardware, large memory requirements affect not only the resource
constraints but also the operating speed. Larger memory units mean more routing delays and lower
operating speeds. Moreover, if the on-chip memory does not suffice, additional external memory,
with a much larger access time, needs to be used.

Recently, numerous approaches based on sketches have been proposed to alleviate the complexi-
ties in network flowmeasurement applications, specifically in heavy-hitter detection [25, 34, 40–44].
While these approaches have shown improvements in accuracy, the use of additional data struc-
tures [25, 40, 43] or shared counters [40, 42, 44] increase the overall storage requirements. The
increase in memory requirements is significant, considering the limited on-chip memory and
the effect on operating speed and bandwidth requirements. One specific approach, Augmented
sketch [25], employs an associated filter with a CM Sketch, and the filter stores the elephant flows

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article . Publication date: July 2024.

SPArch: A hardware-oriented sketch-based architecture for high-speed network flow measurements 7

along with the key, and the corresponding flow is sent to the sketch if the filter is full. If any flow
count in the sketch exceeds the smallest value in the filter, it is exchanged. Although augmented
sketch provides accurate measurements for elephant flows, it does so at the expense of higher
memory requirements and more memory accesses.
Elastic Sketch [41] is a well-known architecture for heavy-hitter detection, heavy change de-

tection, and cardinality estimation. Section 3 provides a brief description of Elastic Sketch. Elastic
Sketch has a heavy part for recording elephant flows and a light part for recording mouse flows.
The light part is a simple CM Sketch. Elastic Sketch requires different hash functions for each
stage of heavy part and the CM Sketch, which increases the computational complexity. Such a
structure would keep the accuracy high, which is the primary goal of Elastic Sketch, but at the
cost of increased latency and computational overhead. The hardware version of Elastic Sketch
has multiple heavy parts operated sequentially, leading to increased latency. Moreover, the update
and query operations require memory accesses equal to the sum of heavy and light parts in the
worst-case scenario. The operational frequency of Elastic Sketch on hardware is also low [41],
limiting the throughput. Elastic Sketch can be advantageous when the packet sizes are taken as
’1’ (flow size counting). However, it becomes less suitable for flow byte counting as the packet sizes
can be up to 64KB if we consider jumbo frames, making the 8-bit counter size in the light part of
Elastic Sketch inadequate.
SF sketch [42] also uses distinct sub-sketches for mouse and elephant flows, necessitating

additional memory to enhance accuracy, which is undesirable. Diamond Sketch [40] and One
Memory Access sketch [44] use multiple levels of smaller sketches. As the lower level counters
overflow for an incoming flow, that flow is moved to the next higher level. Diamond Sketch
incorporates additional data structures like deletion and carry parts, and both Diamond Sketch and
One Memory Access Sketch involve the storage of the flow fingerprints for improved accuracy.
Consequently, the memory demand is high for both of these approaches. Furthermore, the worst-
case number of memory accesses is proportional to the number of levels, adversely affecting the
speed and making pipelining difficult on hardware. Bloom Sketch [43] and SA Sketch [45] introduce
a combination of Bloom filter and sketch-based approach, and both employ multiple layers of
sketches. Such multi-layer architectures would adversely affect the worst-case memory access time,
operating speed, and memory utilization.
In addition to sketches, there exist data structures that are based on sketch architectures and

achieve higher accuracy than sketches. One such example is HeavyKeeper, which is briefly described
in Section 3. HeavyKeeper algorithm is used for measuring top-k elephant flows and incorporates
fingerprint along with the count in each bucket to improve the accuracy. HeavyKeeper assumes
minimal fingerprint collisions, and to minimize fingerprint collisions, the sizes of the fingerprints
should not be too small. Storing a large fingerprint along with the count causes a significant increase
in memory usage. Despite HeavyKeeper not storing all flows like the CM Sketch, the inclusion of a
fingerprint makes the memory usage more or less comparable. Moreover, if the fingerprints do
not match, HeavyKeeper applies exponential decay, introducing the possibility that an incoming
large flow may collide with an existing large flow. Another drawback with sketch/sketch-based
algorithms, such as HeavyKeeper and Elastic Sketch, is that they are not designed for flow byte
counting but for flow size counting.
Recently introduced algorithms such as LOFT [30] and ALBUS [29] take memory reduction as

their primary design criteria while achieving a high detection accuracy against specific attacks
like large flow and pulsating attacks. Both these algorithms employ probabilistic measurement ap-
proaches while accepting hash collisions. These techniques reduce the overall memory requirement.
However, the additional logic employed to compensate for the hash collisions is not completely
hardware-friendly, even though the performance is excellent on software. The introduction of

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article . Publication date: July 2024.

8 Sateesan et al.

Table 1. Comparison of counting architectures

Type of Measurement Memory Latency on One-to-one Deletion Computational Hardware
data structure error overhead hardware (in 𝑛𝑠) mapping support complexity friendliness
Exact counting No error Very high Low to Very high Yes Possible Moderate to High Low
Sampling-based Very high Moderate to high Moderate to Very high Possible Possible High to Very high Very low
Sketch-based Low to moderate Low Very low to moderate Not possible Not possible Low to Moderate Moderate to High

SPArch Very Low Low Very low Possible possible Low to Moderate Very high

these algorithms also puts forward the interesting scenario of combining multiple algorithms that
target distinct attacks to detect various types of attacks. In a scenario where multiple individual
algorithms are combined to tackle a range of attack patterns, it would be wise to share resources,
such as flow measurement and storage architectures, to minimize resource utilization on hardware.
This leads to the requirement of a standard measurement module that can handle both associative
array-based (or eviction-based) and probabilistic flow measurements.

2.4 Synopsis of the related work
An overview of different approaches along with our proposed approach, SPArch, is presented
in Table 1. Based on the analysis of the related work, it can be inferred that sketches face the
challenge of striking a poor trade-off between memory usage and accuracy, which is concerning,
although they are better than the other probabilistic counting techniques. Moreover, they lack
the versatility of individual flow mapping provided by architectures like associative array-based
counters. Associative array-based counters facilitate one-to-one mapping, allowing us to predict the
counter address to which incoming flows will be mapped. This gives the flexibility to organize the
counters into multiple buckets (of different counter sizes if required). In real networks, the majority
of the flows are mouse flows, and elephant flows are rare [1]. Hence, keeping equally-sized counters
for both elephant and mouse flows is not wise. An efficient way to handle this is by allocating
separate counter arrays to store them. Some recent works exploit this technique [41, 42], but such
data structures demand more memory overhead, partially negating the benefit of having separate
buckets.
Knowing that only a small percentage of flows would require a large counter, a one-to-one

mapping architecture could be space-saving as it is easier to map the flows into appropriately sized
buckets. This also gives the freedom to choose different scaling factors for different counters/buckets
if we need to apply approximation, and this could bring in a massive reduction in memory overhead.
Moreover, the challenges in hardware implementations are manifold. Even though sketches achieve
higher operating speeds than associative array-based counters, they still require considerable
memory to ensure higher accuracy. This also leads to lower operating frequencies as the routing
delays increase with an increasing number of memory blocks.

3 PRELIMINARIES
Counting the total size of packets in a network flow is termed network flow measurement. All
network packets that possess the same flow identifier (ID) form a network flow. the flow ID is
extracted from the packet header and is usually defined by the 5-tuple 〈source IP address, source
port, destination IP address, destination port, protocol ID〉. The flow ID can also be represented
based on the different levels of granularity/detail, such as the source IP address, a combination of
source IP address and source port, any combination of the 5-tuple, or the 5-tuple itself. The finer the
granularity, the more bits are required to represent the flow ID. This work uses a combination of
source and destination addresses and ports to form the flow ID. The protocol field from the 5-tuple
is omitted to obtain a flow ID of size 96 bits.

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article . Publication date: July 2024.

SPArch: A hardware-oriented sketch-based architecture for high-speed network flow measurements 9

The size of the network flow can be measured either in terms of the number of packets in a flow
or the byte volume. This paper defines ‘flow size’ as the number of packets and ‘flow bytes’ as the
byte volume. A flow is categorized as an elephant flow if the total volume over a measurement
period surpasses a given high-bandwidth threshold. When the total volume over a measurement
period falls below the low-bandwidth threshold, we refer to the flow as a mouse flow. An incoming
flow is mapped as a pair of flow ID 𝑥 and size 𝑠 , as (𝑥, 𝑠).
To analyze the efficiency of SPArch, it is essential to compare the performance of SPArch

with state-of-the-art architectures. While choosing the algorithms for comparison, the Count-Min
sketch (CM Sketch) serves as the baseline. SPArch also follows the basic data structure of CM Sketch.
Currently, Elastic Sketch is one of the most efficient algorithms for applications like heavy-hitter
detection, outperforming nearly all state-of-the-art detection algorithms, including UnivMon [19],
FlowRadar [17], Hashpipe [33], and Reversible Sketch [31]. Elastic Sketch is compared against all
these algorithms and proved to be better. Another highly efficient algorithm that uses fingerprints
similar to SPArch is HeavyKeeper [11]. HeavyKeeper proves to be more efficient than other
algorithms, such as Space-saving [22] and Lossy counting [21]. Therefore, a comparison with
Elastic Sketch and HeavyKeeper seemed to be sufficient to demonstrate the effectiveness of SPArch.
We implemented both these algorithms and compared them against SPArch.

A brief overview of Count Min Sketch, HeavyKeeper, and Elastic Sketch is provided here. The
two primary operations of these architectures are the update operation and the query operation.
The former updates the architecture with an (𝑥, 𝑠) pair, while the latter performs a lookup of 𝑠 ,
given a flow ID 𝑥 .
Count Min sketch: The data structure of Count Min (CM) sketch is shown in Fig. 2. A CM Sketch
is a 2-dimensional array, having width𝑤 and depth 𝑑 , of counters. A CM Sketch is well-suited for
hardware because of the ease of parallel implementation and low memory utilization.
Update An incoming flow ID 𝑥𝑖 is mapped to multiple counters in the array using 𝑑 pairwise

independent hash functions ℎ 𝑗 , where 𝑗=1, .., 𝑑 . Each counter indexed by one of the 𝑑 hash functions
is updated as: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 [𝑗, ℎ 𝑗] ← 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 [𝑗, ℎ 𝑗] + 𝑖𝑛𝑐𝑖 , where ℎ 𝑗 represents the hash value of 𝑥𝑖
by the 𝑗𝑡ℎ hash function. The value with which these counters are incremented represents the
incremental size of flow 𝑥𝑖 , where 𝑖𝑛𝑐𝑖 = 𝑠 , with 𝑠 either the flow size or flow bytes.

QueryWhile querying, the incoming flow ID 𝑥𝑖 is hashed 𝑑 times, choosing 𝑑 counters. The mini-
mum counter value amongst all the hash-indexed counters is taken: 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =𝑚𝑖𝑛(𝑐𝑜𝑢𝑛𝑡𝑒𝑟 [𝑗, ℎ 𝑗],∀𝑗 ∈
1..𝑑).

Fig. 2. Data structure of CM Sketch

HeavyKeeper: The data structure of HeavyKeeper is shown in Fig. 3. It is a 2-dimensional array
comprising of𝑑 rows, where each row consists of𝑤 buckets. Each bucket has two fields: a fingerprint
and a counter. Each incoming flow 𝑥𝑖 is mapped to 𝑑 buckets using 𝑑 independent hash functions
ℎ 𝑗 , where 𝑗=1,...,d. Another hash function ℎ𝑓 is used to generate the fingerprint from the flow ID.

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article . Publication date: July 2024.

10 Sateesan et al.

Each bucket is represented as 𝐴 𝑗 [ℎ 𝑗 (𝑥𝑖)] , and the fingerprint (FP) and counter fields in the bucket
are represented with .𝐹𝑃 and .𝐶 suffixes, respectively.
Update The update operation is based on three different strategies. If 𝐴 𝑗 [ℎ 𝑗 (𝑥𝑖)] .𝐶 = 0, the

fingerprint field is set as 𝐴 𝑗 [ℎ 𝑗 (𝑥𝑖)] .𝐹𝑃 = 𝑓𝑖 and the counter field is set as 𝐴 𝑗 [ℎ 𝑗 (𝑥𝑖)] .𝐶 = 1,
where 𝑓𝑖 is the fingerprint of flow 𝑥𝑖 . If 𝐴 𝑗 [ℎ 𝑗 (𝑥𝑖)] .𝐶 > 0 and 𝐴 𝑗 [ℎ 𝑗 (𝑥𝑖)] .𝐹𝑃 = 𝑓𝑖 , the counter
field is updated as 𝐴 𝑗 [ℎ 𝑗 (𝑥𝑖)] .𝐶 = 𝐴 𝑗 [ℎ 𝑗 (𝑥𝑖)] .𝐶 + 𝑖𝑛𝑐𝑖 , where 𝑖𝑛𝑐𝑖 is the incremental size of flow
𝑥𝑖 , where 𝑖𝑛𝑐𝑖 = 𝑠 . When 𝐴 𝑗 [ℎ 𝑗 (𝑥𝑖)] .𝐶 > 0 and 𝐴 𝑗 [ℎ 𝑗 (𝑥𝑖)] .𝐹𝑃 ≠ 𝑓𝑖 , the proposed count-with
exponential-decay strategy is applied to this bucket and 𝐴 𝑗 [ℎ 𝑗 (𝑥𝑖)] .𝐶 is decayed with a probability.
Query While querying, the incoming flow ID 𝑥𝑖 is hashed 𝑑 times, choosing 𝑑 buckets. The

maximum counter value of all hash-indexed buckets that have a matching fingerprint is taken:
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =𝑚𝑎𝑥 (𝐴 𝑗 [ℎ 𝑗 (𝑥𝑖)] .𝐶,∀𝑗 ∈ 1..𝑑 ⇐⇒ 𝐴 𝑗 [ℎ 𝑗 (𝑥𝑖)] .𝐹𝑃 = 𝑓𝑖).

Fig. 3. Data structure of HeavyKeeper

Elastic Sketch: The data structure of the basic version of Elastic Sketch is shown in Fig. 4. Elastic
Sketch consists of a heavy part for storing elephant flows and a light part for storing mouse flows.
The heavy part is a simple hash table, where each bucket in the hash table stores the 𝑘𝑒𝑦 (flow ID),
positive votes (𝑣+), negative votes (𝑣−), and a 𝑓 𝑙𝑎𝑔. The number of packets belonging to the flow
present in the bucket is indicated by 𝑣+, while 𝑣− stores the number of packets belonging to any
other flow mapped to the same bucket. The incoming flows are mapped to the heavy part using the
address generated by a hash function ℎ. The light part is a CM Sketch. An incoming flow is first
mapped to the heavy part. Based on the update scenarios, the flow is then evicted to the light part
or vice versa if required.
Update During the update, the incoming flow 𝑥𝑖 is mapped to the heavy part first using the

hash value ℎ(𝑥𝑖). If the mapped bucket is empty, (𝑥𝑖 , 1, 0, 𝐹) is inserted into that bucket. 𝑓 𝑙𝑎𝑔 = 𝐹

indicates that no eviction has happened in the bucket. If the mapped bucket is not empty and
𝑥𝑖 = 𝑘𝑒𝑦, the value of 𝑣+ is incremented by 1. If the mapped bucket is not empty and 𝑥𝑖 ≠ 𝑘𝑒𝑦, the
value of 𝑣− is incremented by 1. If 𝑣−

𝑣+ ≥ 𝜆, then the stored flow is evicted and (𝑘𝑒𝑦, 𝑣+) is inserted
into the light part, and the heavy part is stored with (𝑥𝑖 , 1, 1,𝑇). Here, 𝜆 is a predefined threshold,
and 𝑓 𝑙𝑎𝑔 = 𝑇 indicates the eviction in the bucket. If 𝑥𝑖 ≠ 𝑘𝑒𝑦 and 𝑣−

𝑣+ < 𝜆, (𝑥𝑖 , 1) it is inserted into
the CM Sketch.
Query During the query operation, the size is queried from the CM Sketch if the flow is not

present in the heavy part. If the flow is present in the heavy part and 𝑓 𝑙𝑎𝑔 = 𝐹 , the size is the value
of 𝑣+. If the flow is present in the heavy part and 𝑓 𝑙𝑎𝑔 = 𝑇 , then the values are retrieved from both
heavy and light parts, and their sum gives the actual size.

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article . Publication date: July 2024.

SPArch: A hardware-oriented sketch-based architecture for high-speed network flow measurements 11

Heavy part Light part

Fig. 4. Data structure of Elastic Sketch

4 SKETCH-BASED PSEUDO-ASSOCIATIVE ARRAY ARCHITECTURE (SPARCH)
The data structure we propose in this paper, SPArch, is a 2-dimensional array of size (𝑑,𝑤) with
an associated 1-dimensional counter memory array of size (𝑁𝑐), as shown in Fig. 5. The depth of
the sketch is 𝑑 , also representing the number of hash functions required to map each flow to the
sketch. The width of the sketch is𝑤 , representing the number of cells/buckets in each row. Each
cell in the sketch, termed fingerprint-address cell or FAC, comprises two fields: a fingerprint field 𝑓

and an address field 𝐴. An address generator, a simple 𝑙𝑜𝑔2𝑁𝑐 -bit up-counter, is used to generate
the address 𝐴 of the counters, and the generated address is stored in an address register (Address
Reg as shown in the figure). The update and query operations of SPArch are discussed in detail in
the following sections.

Address Reg

Address
Generator
(Counter)

Counters

Present

0

1

S0

Mux

Fingerprint Address

FAC

Fig. 5. Data structure of SPArch

4.1 Update operation
An incoming flow 𝑥𝑖 is mapped to the FAC using 𝑑 independent hash functions ℎ 𝑗 , where 𝑗=1,...,d.
Each FAC is represented as 𝐹𝐴𝐶 𝑗 [ℎ 𝑗 (𝑥𝑖)] and consists of the fingerprint-address pair (𝑓 , 𝐴). A
unique fingerprint is generated by hashing the flow ID using a hash function ℎ𝑓 . The size of the
fingerprint is determined to achieve optimal accuracy while keeping it to a minimum possible
value. The size of the fingerprint (𝑓) in bits is denoted by 𝑞. The fingerprint must be non-zero, and
if a generated fingerprint happens to be zero, it is assigned the maximum possible value of 2𝑞 − 1.
If any of the FACs have a fingerprint value of zero, it indicates that the corresponding element is
not present. Conversely, if all fingerprint values are greater than zero, the presence of the element
depends on whether there is a matching fingerprint. Instead of using separate hash functions to

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article . Publication date: July 2024.

12 Sateesan et al.

Table 2. Notational conventions of SPArch

𝑥 Incoming flow
𝑖𝑛𝑐𝑖 Incremental flow size
𝑑 Depth of the sketch/number of hash functions
𝑤 Width of the sketch
𝑁𝑐 Number of counters
𝑛 Number of distinct flows
𝐴 Address of the counter
𝐹𝐴𝐶 Fingerprint-Address Cell (A Bucket)
𝐹𝐴𝐶 𝑗 [ℎ 𝑗 (𝑥)] FAC in the 𝑗𝑡ℎ row having the address ℎ 𝑗 (𝑥)
𝑓 Fingerprint
ℎ 𝑗 Hash function to index the 𝑗𝑡ℎ row of the sketch
ℎ𝑓 Hash function to generate fingerprint
𝑞 Size of the fingerprint in bits
𝑐 Size of the counter in bits
𝑎 Address size of counters in bits (𝑙𝑜𝑔2𝑁𝑐)

generate the sketch indices and fingerprint, a single hash function is employed. This hash function
generates the required hash bits, which are then divided into 𝑑 hash indices and the fingerprint.
The total number of hash bits required is 𝑑 × 𝑙𝑜𝑔2𝑤 + 𝑞. Xoodoo-NC [26] is the hash function used
to generate the required hash values, which proved to be fast and exhibits excellent avalanche
properties.

The counter address𝐴 in the FAC points to the counter memory to be updated with the incremen-
tal flow size 𝑖𝑛𝑐𝑖 . When a new incoming flow is updated, the address of the counter 𝐴 is retrieved
from the address register (Address Reg as shown in Fig. 5) and written to the FAC along with the
fingerprint, if the FAC is not yet occupied. Once the update is complete, a new address is generated
by an address generator. This newly generated address is then stored in the address register for
the next incoming flow update. The counter memory array has 𝑁𝑐 counters, each with a size of 𝑐
bits. SPArch can handle 𝑛 flows simultaneously, where 𝑛=𝑁𝑐 , and 𝑛 can even be greater than 𝑤 ,
whereas the other sketches, such as CM Sketch, can only handle𝑤 flows simultaneously. Choosing
a value of𝑤 much lower than 𝑛 still yields high accuracy for SPArch, and Section 5.1 provides a
detailed analysis. The size of the address part 𝐴 is 𝑎 bits, where 𝑎 = 𝑙𝑜𝑔2 (𝑁𝑐). For a comprehensive
list of the notational conventions used in the SPArch architecture, please refer to Table 2.
There can be multiple scenarios in the update operation, and the subsequent sections discuss

all of these scenarios. Algorithm 1 describes the complete algorithm of the update operation.
Implementing multiple scenarios for update and query operations helps to enhance the hardware-
oriented design of SPArch. Irrespective of the depth of the sketch and the number of counters,
there is a memory access latency of only three clock cycles for the update operation (sketch read,
counter read, and sketch and counter write) and two clock cycles for query operation (sketch read,
counter read). Each row in the sketch can be accessed in parallel as each row is a separate memory
block. Additionally, the sketch and the counter write operations can be executed together within a
single clock cycle. All the update and query computations can be performed in parallel once the
memory read operation is complete. Consequently, the multiple update/query scenarios do not
introduce any extra latency, resulting in a time complexity of 𝑂 (1).

4.1.1 If the element 𝑥𝑖 is not present.
Case 1: Some (or all) of the locations indexed by the hashes are empty This scenario is
visualized by the sub-figures (a) and (b) in Fig. 6. In this scenario, a new address 𝐴𝑥 is obtained

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article . Publication date: July 2024.

SPArch: A hardware-oriented sketch-based architecture for high-speed network flow measurements 13

from the address generator. The empty FACs in the hash-indexed locations of the sketch will be
updated with the fingerprint 𝑓𝑥 and the address 𝐴𝑥 : 𝐹𝐴𝐶 𝑗 [ℎ 𝑗 (𝑥)] ← (𝑓𝑥 , 𝐴𝑥).

After sampling, the value of the address generator is incremented. The non-empty locations will
not be overwritten. Finally, the counter memory location is updated with the newly added address
𝐴𝑥 and with the corresponding incremental size 𝑖𝑛𝑐 (lines 10-14, Algorithm 1).

Algorithm 1: Update operation
1 Parameters: Width of sketch - 𝑤, Depth of sketch - 𝑑 , Number of counters - 𝑁𝑐 , Size of the counter (bits) - 𝑐 ,

Incoming flow at time 𝑡 - 𝑥𝑡 , Fingerprint of 𝑥𝑡 - 𝑓𝑥𝑡 , Flow size of 𝑥𝑡 - 𝑠𝑡
2 Initialize():
3 Create a 𝑑 × 𝑤 sketch array and a 𝑁𝑐 × 1 counter array. All initialized to 0.
4 Address generator value initialized to 0 (𝐴𝑑𝐺𝑒𝑛[𝑣𝑎𝑙𝑢𝑒] = 0).
5 𝑖𝑛𝑐 = 𝑠

6 Update(𝑥, 𝑖𝑛𝑐):
7 𝑓𝑥 = ℎ𝑓 [𝑥], 𝐴𝑥 = 𝐴𝑑𝐺𝑒𝑛[𝑣𝑎𝑙𝑢𝑒]
8 for 𝑗 ← 1 to 𝑑 do
9 (𝑓𝑗 , 𝐴 𝑗) ← 𝐹𝐴𝐶 𝑗 [ℎ 𝑗 [𝑥]]

10 if 𝑓𝑗 = 0, ∃ 𝑗 then
11 𝐹𝐴𝐶 𝑗 [ℎ 𝑗 [𝑥]] 𝑓𝑗=0 ← (𝑓𝑥 , 𝐴𝑥)
12 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 [𝐴𝑥] = 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 [𝐴𝑥] + 𝑖𝑛𝑐
13 𝐴𝑑𝐺𝑒𝑛[𝑣𝑎𝑙𝑢𝑒] = 𝐴𝑑𝐺𝑒𝑛[𝑣𝑎𝑙𝑢𝑒] + 1
14 end
15 else if 𝑓𝑗 ≠ 0, ∀ 𝑗 then
16 if 𝑓𝑗 ≠ 𝑓𝑥 , ∀ 𝑗 then
17 ∀ 𝐹𝐴𝐶𝑖 [ℎ 𝑗 [𝑥]]𝑚𝑖𝑛 (𝐴𝑗) ← (𝑓𝑥 , 𝐴𝑥)
18 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 [𝐴𝑥] = 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 [𝐴𝑥] + 𝑖𝑛𝑐
19 𝐴𝑑𝐺𝑒𝑛[𝑣𝑎𝑙𝑢𝑒] = 𝐴𝑑𝐺𝑒𝑛[𝑣𝑎𝑙𝑢𝑒] + 1
20 end
21 else if (𝑓𝑗 ≠ 𝑓𝑥 𝑎𝑛𝑑 𝐹𝐴𝐶 𝑗 [ℎ 𝑗 [𝑥]]𝑖𝑠 𝑠𝑎𝑚𝑒, ∀ 𝑗) then
22 𝐹𝐴𝐶 𝑗 [ℎ 𝑗 [𝑥]] 𝑗=1) ← (𝑓𝑥 , 𝐴𝑥)
23 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 [𝐴𝑥] = 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 [𝐴𝑥] + 𝑖𝑛𝑐
24 𝐴𝑑𝐺𝑒𝑛[𝑣𝑎𝑙𝑢𝑒] = 𝐴𝑑𝐺𝑒𝑛[𝑣𝑎𝑙𝑢𝑒] + 1
25 end
26 else if 𝑓𝑗 = 𝑓𝑥 ∃ 𝑗 𝑎𝑛𝑑 𝐴𝑗 𝑖𝑠 𝑠𝑎𝑚𝑒 ∀ 𝑓𝑗 = 𝑓𝑥 then
27 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 [𝐴𝑗] = 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 [𝐴𝑗] + 𝑖𝑛𝑐
28 end
29 else if 𝑓𝑗 = 𝑓𝑥 ∃ 𝑗 𝑎𝑛𝑑 𝐴𝑗 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑎𝑚𝑒 ∃ 𝑓𝑗 = 𝑓𝑥 then
30 if Any 𝐴𝑗 has majority then
31 𝐴𝑗 =𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 (𝐴𝑗) |𝑓𝑗=𝑓𝑥
32 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 [𝐴𝑗] = 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 [𝐴𝑗] + 𝑖𝑛𝑐
33 end
34 else
35 𝐴𝑗 =𝑚𝑎𝑥 (𝐴𝑗) |𝑓𝑗=𝑓𝑥
36 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 [𝐴𝑗] = 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 [𝐴𝑗] + 𝑖𝑛𝑐
37 end
38 end
39 end
40 end

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article . Publication date: July 2024.

14 Sateesan et al.

Case 2: None of the hash-indexed locations are empty, none of the fingerprints match,
and fingerprint-address pairs in all locations are different This case is represented by the sub-
figure (c) in Fig. 6. In this scenario, the fingerprint-address pairs having the lowest address (which
represents the oldest flow inserted) in the FAC is replaced with the incoming fingerprint and the
address pair: 𝐹𝐴𝐶 𝑗 [ℎ 𝑗 (𝑥)]𝑚𝑖𝑛 (𝐴) ← (𝑓𝑥 , 𝐴𝑥).

After sampling, the value of the address generator is incremented. Finally, the counter memory
location at 𝐴𝑥 is initialized with the incremental size 𝑖𝑛𝑐 (lines 16-20, Algorithm 1). The address of
the evicted flow is not reused until the next reset period.

To ensure that the highest address values are indeed the newest, SPArch denies any new updates
until the new measurement period in case of an overflow, where none of the 𝑁𝑐 counters are empty,
and the address generator has reached its maximum counter value. There may theoretically arise a
security vulnerability as an adversary can send arbitrary amounts of traffic without being recorded
once the address generator reaches its maximum value and SPArch denies updates. However, this
vulnerability cannot practically happen if we ensure that the number of counters 𝑁𝑐 , which is the
maximum value generated by the counter, chosen must be enough to accommodate all possible
flows for the measurement period. Moreover, double insurance can be guaranteed by adding an
extra bit to the address generator counter, which doubles the number of addresses generated,
ensuring that the address generator does not reach its maximum value before the measurement
period.
Case 3: None of the hash-indexed locations is empty, none of the fingerprints matches, and
ALL/SOME locations have an identical fingerprint-address pair This scenario is represented
by the sub-figure (d) in Fig. 6. In this scenario, the identical fingerprint-address pair in the first row
is replaced with the incoming fingerprint-address pair: 𝐹𝐴𝐶 𝑗 [ℎ 𝑗 (𝑥)] 𝑗=1 ← (𝑓𝑥 , 𝐴𝑥). The value of
the address generator is incremented. The counter memory location at the newly added address is
updated with incremental size 𝑖𝑛𝑐 (lines 21-24, Algorithm 1).

0
0

0

0

(a)

(d)

(c)

(b)

Before update After update
0
0

c
Counters

0
0

c
Counters

0

0

Counters

Counters

0
0

c

0
0

c
Counters

Counters
0

Counters

Counters

Fig. 6. Update scenarios if the flow is not present

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article . Publication date: July 2024.

SPArch: A hardware-oriented sketch-based architecture for high-speed network flow measurements 15

4.1.2 If the element 𝑥𝑖 is present.
Case 4: One or more of the hash-indexed locations have a unique matching fingerprint,
and all these matching fingerprints are paired with the same addresses This scenario is
represented by sub-figures (a) and (b) in Fig. 7. In this case, the counter memory is updated with
the address from the matching fingerprint-address pair with incremental size 𝑖𝑛𝑐 (lines 26-28,
Algorithm 1).
Case 5: Two or more of the hash-indexed locations have a matching fingerprint, these
matching fingerprints are paired with multiple different addresses This scenario is rep-
resented by sub-figures (c) and (d) in Fig. 7. In this case, the address which occurs the most is
used to update the counter memory. If no address has a majority, the address of the most recent
fingerprint-address pair is used (Lines 29-38, Algorithm 1).

4.1.3 Collision resistance.
SPArch exhibits excellent collision resistance and is able to detect hash collisions during update

operations. The collisions can be hash-index collisions, fingerprint collisions, or both. Cases 2 and
3 of the update operation represent the occurrence of hash-index collisions where the incoming
flow is mapped to already existing locations. Cases 4 and 5 of the update operation represent the
occurrence of fingerprint collisions as well as the occurrence of both fingerprint and hash-index
collisions. In the case of a hash-index collision, the fingerprint is used to identify the collision
and distinguish the element. In case of a fingerprint collision or both hash-index and fingerprint
collision, the stored address acts as a unique identifier to distinguish the elements and detect the
collision.
Nevertheless, there may have very rare scenarios where collisions cannot be detected. For

example, a flow 𝑥 with fingerprint 𝑓 is mapped to four FACs, (𝑓 , 𝐴), (𝑓 , 𝐴), (𝑓 , 𝐴), and (𝑛𝑜𝑛𝑒, 𝑛𝑜𝑛𝑒).
As per Case 1, the last FAC will be updated as (𝑓 , 𝐵). A recurrence of 𝑥 would result in updating
the counter 𝐴 as per Case 5 based on the majority, as there is a fingerprint collision. However,
such scenarios are extremely rare that occur due to hash collisions. The hash function Xoodoo-NC
ensures that the hash output is completely random for each flow ID. Xoodoo-NC maps a 96-bit input
to a 96-bit output space and has near-perfect avalanche scores, ensuring sufficient randomness
to limit the simultaneous occurrence of fingerprint and hash-index collisions for the scenario
described above to happen. Considering the birthday attack, an average collision occurs only after
encountering around 1.17 ∗ 2𝑥 flows, where 𝑥 =𝑚𝑖𝑛(𝑑 ∗ 𝑙𝑔(𝑤) + 𝑘, 96)/2.

(a)

(b)

(c)

(d) Counters

Counters

Counters

Counters

Fig. 7. Update scenarios if the flow is present

4.2 Query operation
The query operation also has to consider multiple scenarios. Algorithm 2 provides the complete
algorithm of the update operation.
Case 1: Some (or all) of the locations indexed by the hashes are empty
Case 2: None of the locations indexed by the hashes have a matching fingerprint Sub-figure

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article . Publication date: July 2024.

16 Sateesan et al.

0
(a)

(b)

(c)

(d)

Counters Counters

0

Counters Counters

OutputOutput

Fig. 8. Query scenarios

(a) in Fig. 8 represents these two scenarios. In both cases 1 and 2, the counter value is zero (lines
5-7, Algorithm 2).
Case 3: None of the locations indexed by the hashes are empty; one or more fingerprints
match; and all the corresponding addresses in the fingerprint-address pair are identical
This scenario is represented by the sub-figure (b) in Fig. 8. The counter value can be obtained
through the unique address from a matching fingerprint-address pair (lines 8-10, Algorithm 2).
Case 4: None of the locations indexed by the hashes are empty; one or more fingerprints
match; but the corresponding addresses are different This scenario is represented by sub-
figures (c) and (d) in Fig. 8. The counter value at the most frequently occurring address is retrieved.
If no address has a majority, the fingerprint-address pair having the most recent address is selected
and used to retrieve the count (lines 11-20, Algorithm 2).

Algorithm 2: Query operation
1 Estimate(𝑥):
2 𝑓𝑥 = ℎ𝑓 [𝑥]
3 for 𝑗 ← 1 to 𝑑 do
4 (𝑓𝑗 , 𝐴 𝑗) ← 𝐹𝐴𝐶 𝑗 [ℎ 𝑗 [𝑥]]
5 if (𝑓𝑗 = 0, ∃ 𝑗) 𝑂𝑅 (𝑓𝑗 ≠ 0 𝑎𝑛𝑑 𝑓𝑗 ≠ 𝑓𝑥 , ∀ 𝑗) then
6 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 0
7 end
8 else if (𝑓𝑗 ≠ 0 ∀ 𝑗) 𝑎𝑛𝑑 (𝑓𝑗 = 𝑓𝑥 ∃ 𝑗 𝑎𝑛𝑑 𝐴𝑗 𝑖𝑠 𝑠𝑎𝑚𝑒 ∀ 𝑓𝑗 = 𝑓𝑥) then
9 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 [𝐴𝑗]

10 end
11 else if (𝑓𝑗 ≠ 0 ∀ 𝑗) 𝑎𝑛𝑑 (𝑓𝑗 = 𝑓𝑥 ∃ 𝑗 𝑎𝑛𝑑 𝐴𝑗 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑎𝑚𝑒 ∃ 𝑓𝑗 = 𝑓𝑥) then
12 if Any 𝐴𝑗 has majority then
13 𝐴𝑗 =𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 (𝐴𝑗) |𝑓𝑗=𝑓𝑥
14 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 [𝐴𝑗]
15 end
16 else
17 𝐴𝑗 =𝑚𝑎𝑥 (𝐴𝑗) |𝑓𝑗=𝑓𝑥
18 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 [𝐴𝑗]
19 end
20 end
21 end

4.3 Deletion operation
The deletion operation follows the same process as the update operation. If the element to be
deleted is not present in the sketch, the deletion operation is halted. If the element is present, the

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article . Publication date: July 2024.

SPArch: A hardware-oriented sketch-based architecture for high-speed network flow measurements 17

FAC(s) that contain(s) the matching fingerprint-address pair is/are emptied, and the corresponding
counter is reset.

4.4 Preliminary theoretical analysis
In this section, we provide a preliminary theoretical analysis of SPArch, considering all update
scenarios. We examine the probability that the (𝑛 + 1)𝑡ℎ flow is correctly recorded and the expected
number of FACs that record the (𝑛 + 1)𝑡ℎ flow.

4.4.1 Probability of Correct Recording. After 𝑛 flows, the probability that the (𝑛 + 1)-th flow is
correctly recorded is analyzed by considering two cases:
(1) All FACs collide, but no fingerprint collisions occur.
(2) Some FACs are empty.
Thus, the probability that the (𝑛 + 1)𝑡ℎ flow is correctly recorded is given by:

Pr
[
(𝑛 + 1)𝑡ℎ flow is correctly recorded

]
≥ Pr[Case 1 + Case 2] ≈ 𝑝𝑑𝑒−𝑝𝑑 + (1 − 𝑝𝑑)

Here, let:
𝑝 = Pr

[
(𝑛 + 1)𝑡ℎ flow has FAC collision(s) in a row

]
𝑝 = Pr[FP also collides, given FAC collision]

The probability 𝑝 can be expressed as:

𝑝 = 1 − Pr
[
(𝑛 + 1)𝑡ℎ flow does not collide with the previous 𝑛 flows in any FAC in a row

]
= 1 −

(
1 − 1

𝑤

)𝑛
≈ 1 − 𝑒− 𝑛

𝑤

(Note: the approximation 1 + 𝑥 ≈ 𝑒𝑥 assumes 𝑥 is small, based on the expansion of Taylor series.)
The probability 𝑝 is given by:

𝑝 =
1
2𝑞

Case 1: All FACs Collide, but No Fingerprint Collisions.

Pr[All FACs collide] =
∏
𝑖

Pr[collision in row 𝑖] = 𝑝𝑑

Pr[No FP collisions] = (1 − 𝑝)𝑑 ≈ 𝑒−𝑝𝑑

(Note: as above, the approximation assumes 𝑝 is small.)
Therefore:

Pr[All FACs collide, but no FP collisions] ≈ 𝑝𝑑𝑒−𝑝𝑑

Case 2: Some FACs are Empty.

Pr[At least one FAC is empty] = 1 − Pr[All FACs collide] ≈ 1 − 𝑝𝑑

4.4.2 Expected Number of FACs Updated. After 𝑛 flows, the expected number of FACs that record
the (𝑛 + 1)𝑡ℎ flow is given by:

𝐸 [Number of FACs updated] = 𝑑 ·𝐸 [FAC empty in row 𝑖]+1·Pr[All FACs collide, but no FP collisions]

≈ 𝑑 · (1 − 𝑝) + 𝑝𝑑𝑒−𝑝𝑑

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article . Publication date: July 2024.

18 Sateesan et al.

5 EMPIRICAL ANALYSIS OF SPARCH
This section provides an in-depth empirical analysis of SPArch as a standalonemonitoring algorithm.
It should also be noted that the analysis holds true for the functionality of SPArch as a supporting
associative array architecture, working in tandem with the other algorithms. The simulation-based
analysis is performed with varying parameter sizes. A comparison is drawn between SPArch and
other related algorithms, namely CM Sketch, HeavyKeeper, and Elastic Sketch. These algorithms
are also implemented with the corresponding parameter sizes to ensure a fair comparison. The
analysis focuses on two key aspects: flow measurement and large flow detection. A threshold is
set for the latter, and the detection results are analyzed. Since SPArch is designed as a counter
array for network flow measurement tasks, it lacks the inherent ability to perform tasks such as
heavy-change detection, entropy estimation, and cardinality estimation on its own. To perform
these tasks, SPArch needs to be integrated into dedicated algorithms. Therefore, the analysis focuses
solely on flow measurement and the detection of large flows. The dataset used for the analysis is a
subset of the CAIDA traffic trace from 2018, measured on a 10 Gbps link, modified for detecting
large flows [2]. The CIC-DDoS2019 [10] dataset from the Canadian Institute of Cybersecurity (CIC)
is also used for verification of network flow measurement. The results of the CAIDA dataset are
marked as solid lines and of CIC dataset are marked as dotted lines in the charts. As the results
from the CIC dataset closely mirror those from CAIDA dataset, the following sections will only
provide explanations based on the CAIDA dataset.

The analysis is carried out for the following metrics:
Accuracy: Accuracy defines the rate of correct estimation of the flow size compared to the actual
size. Accuracy = �̂�

𝑛
, where �̂� is the number of correctly estimated flows and 𝑛 is the total number of

flows inserted.
Average Absolute Error (AAE): AAE defines the mean absolute error rate of the estimated flow
size with respect to the actual flow size. AAE = 1

|𝑋 | Σ𝑥𝑖 ∈𝑋 |𝑛𝑖 − 𝑛𝑖 |, where 𝑋 is the set of all flows 𝑥𝑖 ,
and 𝑛𝑖 and 𝑛𝑖 are the estimated and real flow sizes of flow 𝑥𝑖 respectively.
Average Relative Error (ARE): ARE defines the mean relative error rate of the estimated flow size
with respect to the actual flow size. ARE = 1

|𝑋 | Σ𝑥𝑖 ∈𝑋
|𝑛𝑖−𝑛𝑖 |

𝑛𝑖
, where 𝑋 is the set of all flows 𝑥𝑖 , and

𝑛𝑖 and 𝑛𝑖 are the estimated and real flow sizes of flow 𝑥𝑖 respectively.
Precision: Precision refers to the fraction of correctly identified large flows present in the set of all
large flows detected by the sketch. Precision = True Positives (TP) / (True Positives (TP) + False
Positives (FP)).
Recall: Recall refers to the fraction of flows correctly detected as large flows by the sketch out of
all the large flows that exist in the link. Recall = True Positives (TP) / (True Positives (TP) + False
Negatives (FN)).
It is to be noted that the number of counters, 𝑁𝑐 , in SPArch is always equal to the number of

distinct flows to be handled, 𝑛. Hence, 𝑛 also represents the total number of counters 𝑁𝑐 in SPArch.

40

50

60

70

80

90

100

110

0.25w 0.5w 0.75w w 1.25w 1.5w 1.75w 2w

A
cc

u
ra

cy
 (

%
)

Number of flows inserted (multiples of w)

Accuracy vs Number of flows

CM Sketch Heavykeeper SPArch

CM Sketch Heavykeeper SPArchCIC
Caida

Dataset

Fig. 9. Accuracy vs number of flows

55

70

85

100

12 18 24 30 36 42 48 54

A
cc

u
ra

cy
 (

%
)

Memory size (KB)

Accuracy vs memory

CM Sketch Heavykeeper SPArch Elastic Sketch
CM Sketch Heavykeeper SPArch Elastic SketchCIC

Caida

Dataset

Fig. 10. Accuracy vs memory size

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article . Publication date: July 2024.

SPArch: A hardware-oriented sketch-based architecture for high-speed network flow measurements 19

-3

-2

-1

0

1

2

0.25w 0.5w 0.75w w 1.25w 1.5w 1.75w 2w

lo
g(

A
A

E
%

)

Number of flows inserted (multiples of w)

AAE vs Number of elements

CM Sketch SPArch Heavykeeper

CM Sketch SPArch HeavykeeperCIC
Caida

Dataset

Fig. 11. AAE vs number of flows

-3

-2

-1

0

1

2

12 18 24 30 36 42 48 54

lo
g(

A
A

E
%

)

Memory size (KB)

AAE vs memory

CM Sketch Heavykeeper SPArch Elastic Sketch

CM Sketch Heavykeeper SPArch Elastic SketchCIC
Caida

Dataset

Fig. 12. AAE vs memory size

-3

-2

-1

0

1

2

0.25w 0.5w 0.75w w 1.25w 1.5w 1.75w 2w

lo
g(

A
R

E
%

)

Number of flows inserted (multiples of w)

ARE vs number of flows

CM Sketch SPArch Heavykeeper
CM Sketch SPArch HeavykeeperCIC

Caida

Dataset

Fig. 13. ARE vs number of flows

-3

-2

-1

0

1

2

12 18 24 30 36 42 48 54

lo
g(

A
R

E
%

)

Memory size (KB)

ARE vs memory

CM Sketch heavykeeper SPArch Elastic Sketch

CM Sketch heavykeeper SPArch Elastic SketchCIC

Caida

Dataset

Fig. 14. ARE vs memory size

5.1 Evaluation of Accuracy
The accuracy is evaluated against the number of flows inserted and memory size. To evaluate
against the number of flows 𝑛 inserted, all algorithms maintain a constant width 𝑤 of 1024 and
depth 𝑑 of 4. The purpose of evaluating against the number of flows inserted is to demonstrate
SPArch’s ability to handle a high influx of incoming flows. For evaluating against the memory size,
the values of 𝑤 and 𝑛 are taken as 2048 and the value is 𝑑 is taken as 4 for each algorithm. The
fingerprint (FP) size of HeavyKeeper is kept as 12 bits. The authors of HeavyKeeper [11] set the
fingerprint size as 16 bits for 𝑑 = 2. As per our analysis, a fingerprint size of 12 bits is sufficient
enough to provide the same accuracy as having a fingerprint size of 16 bits when 𝑑 = 4, making
HeavyKeeper more memory-efficient. The fingerprint size of SPArch is set to 8 bits for evaluation
against the number of flows inserted. Conversely, for evaluating against the memory size, the
fingerprint size and depth 𝑑 are varied accordingly to achieve the desired memory size. Since the
data structure of Elastic Sketch has substantial differences from other algorithms, the analysis is
solely performed based on the memory size. The number of buckets in the heavy part is taken as
10% of the total number of elements 𝑛 to be stored, and the light part has a width𝑤 equal to 90%
of 𝑛. For Elastic Sketch, the counter size of 𝑘𝑒𝑦 equals the flow ID size, and the sizes of 𝑣+ and
𝑣− are 24 bits. The counter sizes in the light part are 12 bits, assuming that no jumbo frames are
considered.
Accuracy versus the number of flows 𝑛: Fig. 9 depicts the accuracy with respect to the number
of flows inserted as a multiple of𝑤 . The decrease in accuracy as the number of elements increases
is minimal for SPArch, and its accuracy remains close to 100%. Even with 𝑛=2×𝑤 , SPArch achieves
an accuracy of 98.3%, whereas it is 75.3% and 44.0%, respectively, for HeavyKeeper and CM Sketch.
For a counter size of 24 bits, CM Sketch and SPArch, SPArch with a fingerprint size of 8 bits, utilize
a memory size of 12KB. In contrast, HeavyKeeper requires 18KB to accommodate the same number
of flows.
Accuracy versus memory size: Fig. 10 shows the plot of accuracy against the memory size. It is
evident from the plot that SPArch achieves notably higher accuracy compared to other algorithms
with identical memory constraints. SPArch achieves ∼99% accuracy with only 18KB of memory for

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article . Publication date: July 2024.

20 Sateesan et al.

𝑛=𝑤 , whereas CM Sketch and HeavyKeeper require >300% more memory to achieve a similar level
of accuracy. At a memory size of 12KB, Elastic Sketch and SPArch exhibit similar accuracy, but
Elastic Sketch requires 200% more memory than SPArch to achieve 99% accuracy. The heavy part
of Elastic Sketch is a hash table, and the hash table experiences an average collision rate of 𝑛.(𝑛+1)

2𝑤 .
Hence, for 𝑛 = 𝑤 , the average number of collisions in the heavy part is ∼𝑛

2 . The scenario where the
size of the hash table𝑤=0.1𝑛 results in a large number of collisions, which in turn gives rise to most
of the incoming flows being mapped to the light part, even if the heavy part is not even 20% filled.
Apparently, this causes the accuracy of the Elastic Sketch to be equal to the accuracy of CM Sketch.
Notably, SPArch uses full-size counters, while 90% of the counters in Elastic Sketch are half-sized,
making the memory reduction achieved by SPArch highly significant. With a larger counter size,
SPArch would achieve even greater memory savings compared to the other algorithms.

5.2 Evaluation of measurement error: average absolute error (AAE) and average
relative error (ARE)

The AAE is evaluated against the number of flows inserted and the memory size. For evaluating
against the number of flows inserted, the width𝑤 is set to 1024 for all algorithms, and the depth of
the sketch 𝑑 is kept as 4. For evaluating against memory size, the values of𝑤 and 𝑛 are taken as 2048,
and the value is 𝑑 is taken as 4 for each algorithm to ensure a fair comparison. The counter size is
24 bits. The fingerprint (FP) size of HeavyKeeper is 12 bits to provide the best memory-accuracy
trade-off. The fingerprint size of SPArch is kept as 8 bits for evaluation against the number of flows
inserted. The fingerprint size and depth 𝑑 of SPArch are varied accordingly for the required memory
size while evaluating against memory size. For Elastic Sketch, the analysis is performed only based
on memory size. The parameters for Elastic Sketch are chosen as described in Section 5.1.

5.2.1 Average Absolute Error (AAE).
AAE versus the number of flows inserted: Fig. 11 shows the plot of 𝑙𝑜𝑔10 (𝐴𝐴𝐸) against the
number of flows inserted. The plot shows significant differences between SPArch and the other
algorithms. When 𝑛 = 𝑤 , the values of AAE are ∼50× and ∼159× higher for HeavyKeeper and
CM Sketch, respectively, compared to SPArch. As 𝑛 approaches 2 ×𝑤 , the error becomes ∼78% for
CM Sketch and ∼26% for HeavyKeeper, whereas the AAE is only 0.52% for SPArch, showcasing its
exceptional inherent accuracy.
AAE versus memory size: Fig. 12 illustrates the plot of 𝑙𝑜𝑔10 (𝐴𝐴𝐸) against memory size. For a
memory size as small as 12KB, the AAE difference of SPArch was only 2.2× and 1.5×, respectively,
compared to CM Sketch and HeavyKeeper. As the memory size increases from 12KB to 18KB,
the difference becomes a significant 21× and 15×, respectively, compared to CM Sketch and
HeavyKeeper. As the memory size becomes as high as 54KB, the AAE for SPArch reduces by
∼4070× to reach 0.006%. At this point, the difference with CM Sketch and HeavyKeeper becomes
∼271× and∼298×, respectively. It is very much evident from the analysis that SPArch possesses high
accuracy, and the absolute error is considerably reduced even with a relatively smaller increment
in memory.

5.2.2 Average Relative Error (ARE).
ARE versus the number of flows inserted: Figure 13 illustrates the relationship between the
number of inserted flows and the plot of ARE. Both HeavyKeeper and CM Sketch exhibit a gradual
increase in ARE as the number of flows increases. However, HeavyKeeper achieves an ARE ∼3-4×
lower than CM Sketch, for instance, 4.8% for 𝑛 = 𝑤 and 21.8% for 𝑛 = 2𝑤 compared to 15.6%
and 69.1% of CM Sketch. SPArch maintains a remarkably low error rate of only 0.4% even when
𝑛 = 2𝑤 , making it 173 times lower than CM Sketch and 39 times lower than HeavyKeeper. The

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article . Publication date: July 2024.

SPArch: A hardware-oriented sketch-based architecture for high-speed network flow measurements 21

characteristics of Elastic Sketch fall between SPArch and the other two algorithms. Elastic Sketch
offers better AAE than CM Sketch and HeavyKeeper, and reaches nearly zero when the memory
size is 54KB or more. However, Elastic Sketch has a significantly higher error rate than SPArch.
Furthermore, it is worth noting that 90% of the counters in Elastic Sketch use only 50% of the
counter sizes than the other algorithms, and with 100% counter sizes, the error rate of Elastic Sketch
will closely follow the AAE of CM Sketch.
ARE versus memory size: The plot of ARE against the number of flows inserted is shown in
Fig. 14. As seen from the figure, the curves of CM Sketch and HeavyKeeper closely align with each
other, in contrast to SPArch, as observed in the plot of AAE. HeavyKeeper and CM Sketch exhibit
nearly identical error rates with an equivalent memory allocation, indicating that HeavyKeeper
demands a larger memory capacity in order to achieve higher accuracy. While the error rate is
high for SPArch when the memory is 12KB, it drops below 1% as the memory size surpasses 18KB,
eventually approaching zero. For a memory size of 54KB, the ARE of SPArch is ∼300× better than
both of the other algorithms. The ARE of Elastic Sketch demonstrates similar characteristics as
observed in the AAE plot and falls between SPArch and the other two algorithms. The ARE of
SPArch rapidly diminishes to zero, whereas the Elastic Sketch achieves an ARE of zero when the
memory size reaches 54KB or more.

92

97

0.5w .75w w 1.25w 1.5w 1.75w 2wD
et

ec
ti

o
n

 p
re

ci
si

o
n

 (
%

)

Number of flow inserted (multiples of w)

Precision vs Number of flows

CM Sketch Heavykeeper SPArchCaida

Dataset

Fig. 15. Flow detection: precision vs number
of flows

90

92

94

96

98

100

36 48 60 72 84 96 108

D
et

ec
ti

o
n

 P
re

ci
si

o
n

 (
%

)

Memory size (KB)

Precision vs Memory
CM Sketch

Heavykeeper

SPArch (Fixed
FP Size)

SPArch

Elastic Sketch

CaidaDataset:

Fig. 16. Flow detection: precision vs mem-
ory size

85

90

95

100

0.5w .75w w 1.25w 1.5w 1.75w 2w

D
et

ec
ti

o
n

 r
ec

al
l (

%
)

Number of flow inserted (multiples of w)

Recall vs Number of flows

CM Sketch Heavykeeper SPArchCaida

Dataset

Fig. 17. Flow detection: recall vs number of
flows

90

92

94

96

98

100

36 48 60 72 84 96 108

D
et

ec
ti

o
n

 P
re

ci
si

o
n

 (
%

)

Memory size (KB)

Recall vs Memory
CM Sketch

Heavykeeper

SPArch (Fixed
FP Size)

SPArch

Elastic Sketch

CaidaDataset:

Fig. 18. Flow detection: recall vs memory
size

5.3 Evaluation of large flow detection: precision and recall
To analyze the detection of large flows where flow sizes exceed a predefined threshold, the values of
𝑤 and 𝑑 are set as 16384 and 4, respectively, for all the algorithms. The duration of the measurement
cycle is set as 100ms. The fingerprint sizes of SPArch and HeavyKeeper are 8 bits and 12 bits,
respectively. Similarly, the analysis of Elastic Sketch is performed solely on the basis of memory
size. A threshold is set, and the flows whose aggregated sizes exceed the threshold are classified as
large flows. The precision and recall are then evaluated against the number of flows inserted and
the memory size.

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article . Publication date: July 2024.

22 Sateesan et al.

Precision and recall versus the number of flows inserted: Fig. 15 and Fig. 17 display the plots
of precision and recall, respectively, against the number of flows. As depicted in Fig. 15, CM Sketch
maintains a precision of 100% for any value of 𝑛, indicating that CM Sketch identifies all large flows
without any misses. However, upon examining the plot of recall, the values gradually decrease as 𝑛
increases. When 𝑛 = 𝑤 , the recall of CM Sketch is 98.5% and declines to 89% when 𝑛 = 2×𝑤 . This is
alarming as CM Sketch can falsely classify a benign flow as malicious, leading to false positives. The
characteristics of HeavyKeeper are somewhat opposing to CMSketch. The precision of HeavyKeeper
experiences a significant decrease with the increase in𝑤 . For HeavyKeeper, the precision is 98.7%
when 𝑛 = 𝑤 , which falls to 92% when 𝑛 becomes 2 ×𝑤 . It indicates that HeavyKeeper does not
always filter the large flows out. Nevertheless, HeavyKeeper exhibits satisfactory results for recall,
consistently achieving a recall rate greater than 99% even when 𝑛 = 𝑤 .

SPArch performs equally well on both precision and recall characteristics. SPArch holds a 100%
precision and recall when 𝑛 = 𝑤 . The deterioration of precision is negligible as 𝑛 increases. For
instance, SPArch maintains the precision to 99.4% when 𝑛 = 1.75 ×𝑤 and 98.4% when 𝑛 = 3 ×𝑤 .
The decline of recall is also negligible and is always greater than 99%. Compared to CM Sketch,
which achieves 100% precision due to overestimation, SPArch is on par when 𝑛 = 𝑤 , and there
is only a slight decrease in precision as 𝑛 increases. The precision of HeavyKeeper is the lowest
as it underestimates the flows. On the other hand, the overestimation of CM Sketch causes the
misclassification of benign flows as malicious, resulting in blocking the legitimate flows. SPArch
maintains a high recall percentage, indicating minimal false classifications. It is very much evident
from the analysis that SPArch offers greater accuracy than the other algorithms. Although the
precision of SPArch slightly diminishes for higher values of 𝑛 when 𝑛 > 𝑤 , it does not imply
underestimation like HeavyKeeper. The decrease in precision is mainly due to the replacement
of the older flows with newer flows, as hash collisions become significant (Section 4.1, case-2 and
case-3), which happens only when the value of 𝑛 significantly exceeds𝑤 .
Precision and recall versus memory size: Precision and recall versus the memory size are plotted
in figures 16 and 18, respectively, providing insights into the performance of the algorithms under
different memory conditions. For evaluation against memory, 𝑛 = 4096 is kept constant for each
algorithm. In the case of HeavyKeeper, the fingerprint size is fixed at 12 bits, while the value of𝑤
is adjusted accordingly to meet the memory requirements. The size of the heavy part of Elastic
Sketch is taken as 0.1𝑛, and the size of the light part is varied accordingly to fulfill the memory
requirements. For SPArch, two cases are considered to meet the memory requirements. The first
case involves a fixed FP size (set as 12-bits) while varying size of 𝑑 (referred to as "SPArch (Fixed FP
size)" in the figures). The second case involves varying both FP size (4 ≤ FP size ≤ 9) and 𝑑 (referred
to as "SPArch" in the figures). The latter case has a value of 𝑑 one row higher than SPArch with a
fixed FP size.

CM Sketch consistently maintains a precision of 100%, whereas recall becomes the lowest when
the memory size is small due to significant overestimation. With increased memory size, the
accuracy and recall of CM Sketch improve. HeavyKeeper exhibits a recall of 100% and reaches a
precision of 100% when the memory size surpasses 60KB. Elastic Sketch is tailored for detecting
elephant flows, exhibiting a 100% precision and near-hundred percent recall for a memory size of
36KB or more. As the overestimation property of Elastic Sketch closely aligns with CM Sketch, its
precision remains consistently high. SPArch, on the other hand, offers the flexibility to tailor the
results based on specific requirements. SPArch with varying FP size attains a precision of 100%,
while SPArch with fixed FP size achieves a recall of 100%. Although the precision of SPArch with
fixed FP size is low for a memory size of 36KB, it reaches 100% for memory sizes above 48 KB.
Similarly, the recall for SPArch with varying FP size is close to 99% when the memory size is greater

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article . Publication date: July 2024.

SPArch: A hardware-oriented sketch-based architecture for high-speed network flow measurements 23

than 48KB and reaches 100% at a memory size of 72KB. Hence, compared to other algorithms,
SPArch is more flexible in applying manipulations based on the memory requirements to achieve a
100% precision or recall.

60

70

80

90

100

A
cc

u
ra

cy
 (

%
)

Number of flows inserted (multiples of w)

Accuracy vs Number of flows

fp=4 fp=6 fp=8 fp=10

fp=4 fp=6 fp=8 fp=10CIC
Caida

Dataset

Fig. 19. Accuracy vs number of flows
(SPArch)

75

80

85

90

95

100

1 2 3 4 5 6 7 8 9 10

A
cc

u
ra

cy
 (

%
)

Fingerprint size (bits)

Accuracy vs Fingerprint size

d=2 d=3 d=4 d=5

d=2 d=3 d=4 d=5CIC
Caida

Dataset

Fig. 20. Accuracy vs Fingerprint size
(SPArch)

-2

-1

0

1

2

1 2 3 4 5 6 7 8 9 10

lo
g(

A
R

E
%

)

Fingerprint size (bits)

ARE vs Fingerprint size

d=2 d=3 d=4 d=5

d=2 d=3 d=4 d=5CIC
Caida

Dataset

Fig. 21. ARE vs Fingerprint size (SPArch)

92

94

96

98

100

102

2 3 4 5 6 7 8 9 10D
et

ec
ti

o
n

 P
re

ci
si

o
n

 (
%

)

Fingerprint size (bits)

Precision vs Fingerprint size

d=2 d=3 d=4 d=5Caida
Dataset

Fig. 22. Flow detection: precision vs FP size
(SPArch)

80

85

90

95

100

105

2 3 4 5 6 7 8 9 10

D
et

ec
ti

o
n

 R
ec

al
l (

%
)

Fingerprint size (bits)

Recall vs Fingerprint size

d=2 d=3 d=4 d=5Caida
Dataset

Fig. 23. Flow detection: recall vs FP size
(SPArch)

5.4 Evaluating the performance of SPArch
To support the accuracy statements of SPArch, the analysis of accuracy, measurement error, pre-
cision, and recall of SPArch against varying fingerprint size 𝑞 and depth 𝑑 are presented here.
This analysis provides insights into the high accuracy achieved by SPArch, even when employing
smaller fingerprint sizes and lower depths.

5.4.1 Accuracy analysis of SPArch with varying fingerprint size and depth 𝑑 .
Fig. 19 plots the accuracy of SPArch against the number of flows inserted, for various fingerprint

sizes and a fixed depth of 𝑑 = 4. To assess the stability of SPArch’s accuracy, the number of flows
inserted is increased to 4 ×𝑤 . With a fingerprint size equal to 4, SPArch achieves an accuracy of

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article . Publication date: July 2024.

24 Sateesan et al.

98.3% for 𝑛 = 𝑤 =1024 and 91.0% for 𝑛 = 2×𝑤 , surpassing both CM Sketch and HeavyKeeper while
requiring less memory. With a fingerprint size greater than or equal to 6, SPArch can maintain
near-hundred percent accuracy for 𝑛 = 2×𝑤 , and keep the accuracy higher than 75% for 𝑛 = 4×𝑤 .

Fig. 20 illustrates the relationship between the accuracy of SPArch and the fingerprint sizes for
𝑤 = 𝑛 = 1024 and different values of 𝑑 . Even with a fingerprint size of 2 bits and 𝑑 = 4 (total memory
requirement of 9KB), SPArch can achieve an accuracy exceeding 95%. This accuracy surpasses that
of HeavyKeeper while utilizing only 50% of the memory required by HeavyKeeper. Additionally,
when 𝑑 = 2 and a FP size of 2 bits, SPArch attains an accuracy of 83.4% (total memory requirement
of 6KB). This accuracy outperforms CM Sketch while utilizing only 50% of the memory compared
to CM Sketch. Consequently, SPArch can achieve near-hundred percent accuracy with the lowest
memory requirement.

5.4.2 Measurement error of SPArch with varying fingerprint size and depth 𝑑 .
The analysis of ARE on SPArch is performed with varying depth and fingerprint sizes, and the

results are plotted in Fig. 21. Remarkably, even with 𝑑 = 2 and a fingerprint size of 5 (corresponding
to a memory size of 6.75KB and 𝑛 = 𝑤 =1024), SPArch surpasses the best attainable ARE values of
CM Sketch and HeavyKeeper, where both CM Sketch and HeavyKeeper are allocated a memory
size of 54KB, as indicated in Figure 14. The error rates decrease gradually with increasing depth
or fingerprint size, as illustrated in the figure. This characteristic is particularly advantageous in
hardware implementations, allowing us to limit the usage of block RAMs by carefully choosing the
number of rows of the sketch 𝑑 or the fingerprint size to achieve a desired level of accuracy.

5.4.3 Precision and recall of SPArch versus fingerprint size and depth 𝑑 .
Figures 22 and 23 present the plot of precision and recall, respectively, for varying fingerprint

sizes of SPArch. When the FP size is at its lowest, the precision for 𝑑 = 2 is slightly higher due to a
significant overestimation error. However, it stabilizes at 93% when the FP size exceeds 3. When
𝑑 ≥ 3, the precision is ∼100% even when the FP size is as small as 2. As for the recall, it is lower
for smaller FP sizes and gradually increases with increasing FP size. When the FP size exceeds 5,
the recall attains ∼100% as the accuracy becomes maximum. This analysis underlines the earlier
statement that SPArch offers greater flexibility, allowing users to select the memory size based on
their preference for higher precision, higher recall, or both, considering the constraints of available
memory.

6 OPTIMIZING SPARCH: ORGANIZING COUNTERS IN MULTIPLE BUCKETS
Only a small proportion of the incoming flows would be classified as heavy-hitters, necessitating the
use of large counters. Sketches, in general, allocate the same counter sizes for all the flows, resulting
in underutilization of the allocated memory. Allocating different counter sizes for elephant and
mouse flows is impossible for sketches as sketches do not follow one-to-onemapping like hash tables
or associative arrays. However, SPArch offers the benefit of a flexible counter organization due to its
one-to-one mapping. One way to leverage this property is by organizing flows into distinct buckets
with different counter sizes, allocating smaller counter sizes to mouse flows and larger counter
sizes to elephant flows. Keeping separate buckets for elephant flows eliminates the possibility of
removal of an elephant flow during collisions where the oldest address is removed. As the addresses
allocated to elephant flows will be the largest, they cannot be removed during collisions when
a mouse flow is already present in the counters. Another advantage is that approximation can
be applied to different buckets with different scaling factors. Since such an implementation is
advantageous on hardware, a hardware-oriented design is described here. The counter buckets can
be organized in two ways: each bucket as an independent memory block or multiple buckets within
the same memory block. The implementation details are discussed in the subsequent sections.

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article . Publication date: July 2024.

SPArch: A hardware-oriented sketch-based architecture for high-speed network flow measurements 25

6.1 Counter buckets: as separate memory blocks
Fig. 24 illustrates one approach to organizing counters into separate buckets. The counters are
arranged in two buckets, 𝑏𝑚 and 𝑏𝑒 , with 𝑏𝑚 dedicated to storing mouse flows and 𝑏𝑒 designated
for elephant flows. The total number of counters is 𝑁𝑐 , with 80% of them allocated to 𝑏𝑚 and the
remaining 20% allocated to 𝑏𝑒 . The number of bits allocated to each counter in 𝑏𝑚 and 𝑏𝑒 is 𝑐𝑚 and
𝑐𝑒 , respectively. Unlike SPArch, where a counter serves as the address generator, a FIFO, initialized
with the addresses, is used as the address generator for bucket 𝑏𝑚 , while 𝑏𝑒 employs a counter as
its address generator. It is possible to have a total of 𝑁 buckets where the size of each subsequent
bucket is larger than the preceding buckets. For all the buckets except the last one, FIFOs are
employed as the address generators, whereas a counter is used as the address generator for the
final bucket.

Fig. 24. Organization of buckets: separate memory blocks

Update and Query operations: During the update process, the sketch sends the address (𝐴1) of the
counter to be updated to bucket 𝑏𝑚 . The address is read from the FIFO if the incoming flow is new.
The counter corresponding to𝐴1 is updated, and if the counter overflows, it is moved to the address
𝐴2 in the bucket 𝑏𝑒 . The address of the counter 𝐴2 is generated using the counter. The address 𝐴1
of the overflown counter is written back to the FIFO, which will only be re-used once the limit
of the address range has been reached. The new address 𝐴2 is written to the FAC, replacing the
existing address. Since we split the total number of counters into two buckets, one for mouse and
one for elephant flows, an issue may arise. What if there are no elephant flows, and the counters
for mouse flows are entirely occupied, while there are new incoming flows to be processed? In
this case, if all the mouse counters are occupied, and the FIFO becomes empty, the next incoming
flow is automatically stored in the elephant counters. Hence, as long as the number of flows to be
stored is less than or equal to the total number of counters 𝑁𝑐 , no flows will be missed. The query
operation remains the same as discussed in Section 4.
Since each bucket is a separate memory block, the addresses of these blocks must be unique.

Hence, a memory-select logic is employed to differentiate and map the addresses to the buckets.
To keep the memory-select logic simple, an additional bit is introduced at the most significant
bit (MSB) of the addresses. This creates a simple multiplexer serving as the memory-select logic.
The value of the extra bit is ’0’ for the first bucket, and the value is ’1’ for the second bucket. While
writing the address to the sketch, the corresponding bit at the MSB is appended. Typically, the
existing MSB is used as the appending bit unless an overflow occurs. In case of an overflow, the

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article . Publication date: July 2024.

26 Sateesan et al.

MSB is incremented and appended with the new address. This keeps the computation requirements
to a bare minimum. For the number of buckets (𝑁) larger than 2, the number of extra bits to be
added is 𝑙𝑜𝑔2𝑁 .
Latency: In contrast to alternative methods that employ multiple memory blocks to segregate
flows, our approach maintains consistent latency. Transitions between buckets occur only when
there is an overflow. During an overflow, the second bucket is not read but only written. By writing
both the sketch and counter memory simultaneously, it ensures that latency remains unaffected,
regardless of whether there is an overflow.
Approximate counting: Applying approximation to counters can reduce memory usage when
precise measurement values are not required. For finding heavy-hitters that exceed a certain
threshold, accurate measurements are not necessary. However, considering that mouse flows are
relatively small, it would be unwise to apply the same scaling factors to buckets containing both
mouse and elephant flows, as this could result in significant accuracy discrepancies for mouse flows.
Therefore, having dedicated buckets for elephant flows simplifies the process of approximating
the counts. In the recent study titled "A-CM Sketch" by Sateesan et al. [28], a hardware-oriented
approach called HSAC is introduced, which requires only 16 bits to represent a 41-bit counter.

6.2 Counter buckets: in the same memory block

Fig. 25. Organization of buckets: single memory block

Another way of organizing counters involves keeping multiple buckets in the same memory
block, which helps in eliminating the memory-select logic and additional MSB bit to differentiate
the counter buckets. Figure 25 illustrates the organization of these buckets. The memory block has
a depth of 𝑁𝑐 , which is divided into two (or more) imaginary sections. The first 0.9𝑁𝑐 counters are
designated for storing mouse flows, while the remaining 0.1𝑁𝑐 counters are used to store elephant
flows. In contrast to the counter buckets using separate memory blocks, FIFOs are used as the
address generators for all buckets. When employing a single memory block for all the buckets,
the size of all the counters must be the same, adhering to the width of the memory block. Hence,
approximation or scaling is necessary to increase a bucket’s storage capacity. Using HSAC [28]
approximation, only 16 bits are required to count up to 241. As a result, both 𝑏𝑚 and 𝑏𝑒 can be
set to 16 bits, with approximation or scaling enabled in 𝑏𝑒 . If more than two buckets are present,

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article . Publication date: July 2024.

SPArch: A hardware-oriented sketch-based architecture for high-speed network flow measurements 27

the scaling factor can be adjusted for each bucket, allowing for varying levels of approximation
according to the flow sizes.
Update and Query operations: When the counter having an address 𝐴1 placed in bucket 𝑏𝑚
overflows during the update operation of a preexisting flow, it is moved to bucket 𝑏𝑒 , simultaneously
reading the new address 𝐴2 from FIFO2. The new address of the counter is written to the FAC,
replacing the existing address. The original counter address 𝐴1 is written back to FIFO1. Whenever
a new flow arrives, it is typically written to 𝑏𝑚 using the address obtained from FIFO1 unless all
counters in 𝑏𝑚 are already occupied. If all the counters in 𝑏𝑚 are occupied, the next incoming flow
is mapped to 𝑏𝑒 . The query operation remains unchanged, as discussed in Section 4, except that the
estimated value is computed based on the approximate count for the values stored in 𝑏𝑒 .
Approximating the count while moving from 𝑏𝑚 to 𝑏𝑒 : Approximating or scaling the measure-
ments while moving the values from 𝑏𝑚 to 𝑏𝑒 is accomplished using HSAC. Initially, the count is
rescaled to fit the format of HSAC. Also, a minor modification is applied to HSAC, such that we
divided the counter into only two sections consisting of the exponent part (𝑒𝑥𝑝) and the counter
part (𝑐𝑜𝑢𝑛𝑡). The counter size of 𝑐-bits of bucket 𝑏𝑒 is divided into an 𝑙-bit exponent part and
a 𝑘-bit counter part. The algorithm 3 presents the pseudo-code of the approximation process.
The function 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 (𝑉1) is applied explicitly during the transition from 𝑏𝑚 to 𝑏𝑒 , while the
𝑢𝑝𝑑𝑎𝑡𝑒 (𝑐𝑜𝑢𝑛𝑡, 𝑒𝑥𝑝, 𝑖𝑛𝑐) function is executed for all counter update operations in 𝑏𝑒 .

Latency: The latency is similar to the counter buckets with separate memory blocks. The counter
memory is read only once and written only once, making no increment in latency.

Algorithm 3: Approximation operation
1 Parameters:𝑉1=Actual count,𝑉2=Approximated count, 𝑒𝑥𝑝=𝑙-bits, 𝑐𝑜𝑢𝑛𝑡=𝑘-bits
2 approximate(𝑉1):
3 Initialize:
4 𝑐𝑜𝑢𝑛𝑡= 2𝑘

2
5 𝑒𝑥𝑝= 𝑐 − 𝑘 − 1
6 𝑖𝑛𝑐=𝑉1 − 2𝑘

7 end
8 update(𝑐𝑜𝑢𝑛𝑡, 𝑒𝑥𝑝, 𝑖𝑛𝑐)
9 end

10 update(𝑐𝑜𝑢𝑛𝑡, 𝑒𝑥𝑝, 𝑖𝑛𝑐):
11 𝑐𝑜𝑢𝑛𝑡 = 𝑐𝑜𝑢𝑛𝑡 + ⌊ 𝑖𝑛𝑐

2𝑒𝑥𝑝 ⌋
12 With probability { 𝑖𝑛𝑐

2𝑒𝑥𝑝 }: 𝑐𝑜𝑢𝑛𝑡 = 𝑐𝑜𝑢𝑛𝑡 + 1
13 if 𝑐𝑜𝑢𝑛𝑡 > 2𝑘 then
14 𝑒𝑥𝑝 = 𝑒𝑥𝑝 + 1
15 𝑡1 = 𝑐𝑜𝑢𝑛𝑡

16 𝑐𝑜𝑢𝑛𝑡 = 𝑐𝑜𝑢𝑛𝑡
2

17 With probability { 𝑡12 }: 𝑐𝑜𝑢𝑛𝑡 = 𝑐𝑜𝑢𝑛𝑡 + 1
18 end
19 end
20 Return{𝑉2 = [𝑒𝑥𝑝, 𝑐𝑜𝑢𝑛𝑡]}

6.3 Memory reduction
In addition to the benefit of having separate buckets to classify flows, there is a further reduction
in memory requirements for the counters. Assuming 90% of the counters (0.9𝑁𝑐) are allocated
to the mouse flows, and the counter size is reduced by half for mouse flows, the total counter

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article . Publication date: July 2024.

28 Sateesan et al.

memory requirement is reduced by 45% without approximation. While applying approximation to
elephant flows with the size of the counters reduced by half, the total counter memory requirement
is reduced by 50%. However, there is no reduction to the sketch memory size as the fingerprint
and address sizes remain unaltered. Assuming a fixed fingerprint size of 8 bits and 𝑛 = 𝑁𝑐 =𝑤 , the
overall reduction in memory for𝑤 = 65536, 𝑑 = 4 is 11.25% without approximation and 12.5% with
approximation.

6.4 Effects of multi-bucket optimization and the reduction in complexity of
multi-bucket counters

Multi-bucket counters significantly reduce the memory overhead in SPArch and employing FIFOs
instead of counters as the address generators reduces some computational requirements. However,
incorporating FIFOs can add some complexity to the datapath and requires initialization time during
startup. Furthermore, the overflown counter address written back to the FIFOs can cause a reduction
in accuracy as the old addresses will be reused at the end. Nevertheless, the accuracy variation
will be insignificant because only the last 0.1𝑁𝑐 elements will be using the reused addresses. Also,
the removal of the re-used overflown addresses in the worst case of a collision (Case 2 of update
operation) will not cause the eviction of any elephant flows as the elephant flows are in a separate
bucket. These issues can be resolved by allocating a total of 1.1𝑁𝑐 counters: 𝑁𝑐 counters for mouse
flow bucket 𝑏𝑚 and an additional 0.1𝑁𝑐 counters for the elephant flow bucket 𝑏𝑒 . With this approach,
reusing the addresses of 𝑏𝑚 is no longer necessary, and a simple counter that serves as an address
generator can replace the FIFO. The empty signal of the FIFO can be replaced by the full signal
of 𝑏𝑚 when the count value of the address generator reaches 𝑁𝑐 . Similarly, the FIFO for 𝑏𝑒 can
be replaced by another counter having an initial value of 𝑁𝑐 . This way, the complexity can be
kept to a minimum by increasing the overall memory requirement of the multi-bucket counters by
only 0.1𝑁𝑐×𝑐𝑚 , where 𝑐𝑚 represents the counter size of mouse counters. The problem of re-used
addresses can also be avoided by denying entries once the memory is full. As the size of the memory
is determined based on the measurement period, it is highly unlikely that the memory will be
exhausted. In addition, while using approximate counters can impact accuracy, the loss of accuracy
is negligible when counter sizes are greater than 10 bits [28], as they do in this context.

7 HARDWARE ARCHITECTURE
Fig. 5 shows a high-level view of the SPArch data structure, which comprises the sketch and the
counter array. The sketch component is represented by a two-dimensional array with dimensions
of𝑤 × 𝑑 , and the counter array consists of 𝑁𝑐 counters. Fig. 26 depicts the hardware architecture
diagram of the SPArch data structure.

The implementation of the sketch and counter array utilizes true-dual-port Block RAMs (BRAM).
The control unit is the brain of the architecture, which controls the sequence of operations to be
performed. From the network packet header, a 96-bit flow ID is extracted and the hash values are
computed. The hash-computation module is a crucial component of the hardware architecture
and significantly impacts the latency of probabilistic data structures. A non-cryptographic hash
function Xoodoo-NC [26] is employed to hash the flow ID. Xoodoo-NC is fast, has low logical
depth, and exhibits excellent avalanche properties. The output of Xoodoo-NC can be any multiple
of 96 bits. The resulting hash output is split into 𝑑 hash values of size 𝑙𝑜𝑔2𝑤 bits and a fingerprint
of size 𝑞-bits. The hash values map the flow ID to the FACs, while the fingerprint helps determine
the presence or absence of the incoming flow.

SPArch stands out from other sketch architectures primarily due to its unique counter array of 𝑁𝑐

counters, and notably,𝑁𝑐 can be greater than the width of the sketch𝑤 . Unlike other sketches, where
exceeding the number of counters by more than𝑤 can result in decreased accuracy (Section 5.4),

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article . Publication date: July 2024.

SPArch: A hardware-oriented sketch-based architecture for high-speed network flow measurements 29

Fig. 26. Hardware architecture of SPArch

SPArch offers greater flexibility in terms of counter quantity. For assigning flows to counters, an
address generator generates addresses that are used to map each flow to a specific counter. The
address-select logic determines the address of the counter to be updated/queried if an incoming
flow is present in the sketch. The shift register acts as a delay element to compensate for the lookup
time of the sketch before the flow size computations can be performed.
The latency of the hash function, Xoodoo-NC, is a single clock cycle. The hash-indexed sketch

memory is read in the subsequent clock cycle. The sketch is implemented with separate memory
blocks for each row, allowing parallel execution of memory read and write operations within
a single clock cycle. The update logic, in conjunction with the address-select logic, determines
the address of the counter to be updated, and the counter memory is updated accordingly. The
read/write operations of the counter memory also require only one clock cycle. The sketch and
counter memory write operations are performed simultaneously in a single cycle, keeping the
number of extra cycles required for SPArch compared to CM Sketch to only one. Even in the worst-
case scenario, where a new packet needs to be processed in every clock cycle, SPArch can process it
efficiently through pipelining. The parallel read/write capabilities of all the memory blocks facilitate
pipelining easier. The true-dual-port BRAM ensures seamless execution of simultaneous read and
write operations within a single cycle on a memory block when needed. Moreover, even during
pipelining, there is no need to perform two simultaneous read or write operations within a single
cycle for the sketch or counter memory blocks, even in the worst-case scenario.

8 HARDWARE EVALUATION
8.1 Experimental setup
The algorithm is evaluated on an FPGA using the Vivado 2020.2 design tool, specifically targeting
the Alveo U250 Data Center Accelerator Card (xcu250-figd2104-2L-e). The parameters are chosen
to allow for a fair comparison with other algorithms. The memory organization of CM Sketch,
HeavyKeeper, and SPArch is kept similar for a fair comparison. The original hardware version of
Elastic Sketch consists of several sub-tables of the heavy part connected sequentially, leading to a
significant increase in memory accesses and latency. Hence, the simplified and hardware-friendly
version of Elastic Sketch with a single heavy part is implemented, where the number of buckets
in the heavy part of Elastic Sketch is 12.5% of the total number of counters. In order to minimize
the hardware complexity and improve the throughput of Elastic Sketch, the division operations
are converted to right-shift operations by approximating the denominators to the power of two.

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article . Publication date: July 2024.

30 Sateesan et al.

This approximation is applied only in the hardware implementation to achieve a better hardware
performance, and the accuracy is computed as given in the analysis provided in Section 5. Only the
sketch part of HeavyKeeper is implemented, and the fingerprint size is fixed to 12 bits, as mentioned
in the original literature. The pseudo-random number generation for HeavyKeeper is implemented
using a linear feedback shift register (LFSR). As the number of counters of SPArch is equal to the
number of distinct flows, the parameter 𝑛 is used to represent both.

8.2 Accuracy versus resource utilization
To ensure a fair comparison, the performance of CM Sketch, HeavyKeeper, Elastic Sketch, and
SPArch was assessed primarily based on accuracy. Since the accuracy with respect to memory usage
varies significantly for these algorithms, evaluating these algorithms based on any other parameter
would not be equitable. Additionally, comparing them solely on the basis of the depth of the sketch
𝑑 would also be unfair, as the relative increase in the memory requirement of SPArch with an
increase in the value of 𝑑 is much lower than other algorithms. It is also evident from Section 5 that
the error, precision, and recall of flow measurements are proportional to the accuracy. Although
SPArch has a significant advantage in terms of relative memory consumption as 𝑑 increases (𝑑 is
also the depth of the light part for Elastic Sketch), the evaluation results are presented only for a
constant value of 𝑑=4. The comparison provided in Table 3 is performed based on accuracy as the
main parameter. Although the optimized version of Elastic Sketch employs 𝑑=1, it deteriorates the
accuracy compared to using 𝑑=4 with the same memory allocation. Hence we chose 𝑑=4 to achieve
the best memory-accuracy trade-off. The original Elastic Sketch paper also indicates that 𝑑=3 or 4
would be required to achieve high accuracy. Our empirical evaluation of Elastic Sketch supports
this, showing that with a 54KB memory allocation, 𝑑=4 achieves an accuracy of 99.8%, whereas
𝑑=1 only reaches 94.2%. To achieve accuracy comparable to 𝑑=4, more memory would be needed if
𝑑=1. Moreover, the entire memory allocated translates to a single large block of memory for 𝑑=1,
compared to four smaller blocks of memory for (𝑑=4). A large memory block might also increase
the routing delays in hardware implementation. Another possible advantage of keeping 𝑑=1 is that
the number of independent hash functions can be changed from four to one. However, we already
use a single hash function, Xoodoo-NC, to generate all hash values. So, there are no additional hash
computation requirements irrespective of the value of 𝑑 . The evaluation is performed for 𝑛=16384.
The fingerprint size of SPArch is kept at 8 bits. The counters, including the heavy part of Elastic
Sketch, are sized as 32 bits. The counter size of the light part of Elastic Sketch is taken as 16 bits, as
the incoming flow size can be up to 16 bits.

Table 3 provides the details regarding the size of the data structures, the total theoretical memory
requirement, and the hardware evaluation results for various configurations (𝑛=16384 for all
configurations) of all the implemented algorithms, aimed at achieving a specific level of accuracy.
As previously mentioned in Section 5, the memory requirement to achieve ∼100% accuracy is
the lowest for SPArch. To achieve an accuracy of at least 99.8%, SPArch requires only 54 BRAMs,
whereas CM Sketch, HeavyKeeper, and Elastic Sketch require 4.3×, 5.9×, and 2.4× more BRAMs,
respectively. These results prove that reducing the underutilization of memory drastically reduces
the memory requirements. The memory usage of SPArch can be further reduced by reducing the
fingerprint size without any drastic changes in accuracy, as demonstrated in Section 5.1, and by
organizing counters in multiple buckets and applying approximation, as discussed in Section 6.
Although HeavyKeeper demonstrates superior software efficiency compared to CM Sketch, its

architecture is not optimized for hardware, resulting in poor performance in terms of latency and
memory utilization. Additionally, the relative increase in memory (BRAM) utilization with respect
to accuracy is higher for HeavyKeeper than for the other algorithms. Elastic Sketch, while also
experiencing a relatively high increase in memory utilization concerning accuracy, still performs

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article . Publication date: July 2024.

SPArch: A hardware-oriented sketch-based architecture for high-speed network flow measurements 31

Table 3. Comparison of hardware resources and latency of SPArch against CM Sketch and HeavyKeeper

Accuracy Sketch size Memory LUT BRAM Operating Update Throughput
requirement Frequency Latency

84.04 𝑤=16384,𝑑=4 2048 Kbit 690 58 270 MHz 14.8 ns 138 Gbps
CM Sketch 99.02 𝑤=43008,𝑑=4 5376 Kbit 1059 154 240 MHz 16.6 ns 123 Gbps

99.77 𝑤=65536,𝑑=4 8192 Kbit 1041 232 216 MHz 18.5 ns 111 Gbps
84.12 𝑤=11392,𝑑=4, FP size=12bit 1958 Kbit 1090 58 247 MHz 16.2 ns 126 Gbps

HeavyKeeper 99.02 𝑤=32768,𝑑=4, FP size=12bit 5632 Kbit 1132 160 220 MHz 18.2 ns 112 Gbps
99.90 𝑤=65536,𝑑=4, FP size=12bit 11264 Kbit 1375 320 188 MHz 21.2 ns 97 Gbps
84.07 LP:𝑤=14464,𝑑=4; HP:𝑤=2048 1226 Kbit 1471 39 196 MHz 35.7 ns 100 Gbps

Elastic Sketch 99.01 LP:𝑤=38400,𝑑=4; HP:𝑤=2048 2722 Kbit 1651 83 186 MHz 37.7 ns 95 Gbps
99.84 LP:𝑤=65536,𝑑=4; HP:𝑤=2048 4418 Kbit 1654 129 185 MHz 37.7 ns 95 Gbps
84.03 𝑤=4096,𝑑=4, FP size=8bit 864 Kbit 1424 24 294 MHz 17.0 ns 151 Gbps

SPArch 99.00 𝑤=16384,𝑑=4, FP size=5bit 1728 Kbit 1504 48 260 MHz 19.25 ns 133 Gbps
99.93 𝑤=16384,𝑑=4, FP size=8bit 1920 Kbit 1522 54 258 MHz 19.4 ns 132 Gbps

FP-fingerprint, HP-heavy part, LP-light part

better than HeavyKeeper in this regard. However, the number of LUTs required for Elastic Sketch
is higher than that of other algorithms because of the hardware unfriendliness causing additional
hardware logic requirements. It should be noted that the hardware resource requirement of Elastic
Sketch would be considerably higher if the approximated division optimization had not been
performed in the hardware implementation. SPArch, on the other hand, proves to be more efficient
on hardware, and the relative increase in memory usage with respect to accuracy is the lowest
among the others. As the accuracy varies from ∼99.0% to at least 99.8%, the increase in memory
usage of HeavyKeeper is ∼100%, while CM Sketch and Elastic Sketch experience a range of 50% to
60% increases. In contrast, SPArch only sees a modest increase of around 12%. From this analysis, it
is evident that SPArch exhibits a remarkable combination of high accuracy and significantly low
memory requirements, rendering it an optimal architectural choice.

8.3 Latency and throughput
Both HeavyKeeper and CM Sketch have the same latency since the operations involved are similar,
such as hashing, memory read/write, and counter update. For SPArch, one additional counter
memory read/write operation is required. Nevertheless, only one extra cycle, which is counter
memory read, is required for SPArch because the sketch memory write operation can be performed
simultaneously with the counter memory read/write operation. This leads to a latency that is only
one clock cycle more than CM Sketch and HeavyKeeper. Despite the extra cycle latency, SPArch
has a higher operating frequency than Elastic Sketch and HeavyKeeper for the same memory
overhead. Additionally, SPArch operates at a higher frequency compared to the other algorithms
while achieving similar levels of accuracy. SPArch employs separate memory blocks for each row
of the sketch and the counter array. By using multiple smaller BRAMs instead of a single large
block of memory, SPArch achieves better placement and routing, reducing the routing delay [28].
Since all memory blocks can be accessed in parallel, pipelining becomes more effortless, enabling
SPArch to process a packet in every clock cycle. The basic version of Elastic Sketch with a single
heavy and light part, however, has a worst-case latency of seven clock cycles.

Assuming a minimum packet size of 64 bytes and a worst-case scenario where a packet is received
in every cycle, SPArch can process 258 Million packets per second (Mpps) with ∼100% accuracy for
𝑛=16384. In other words, SPArch can achieve a throughput of 132 Gbps with ∼100% accuracy for
𝑛=16384. Elastic Sketch has the lowest throughput among all the algorithms, while HeavyKeeper
consumes the most memory. SPArch consumes less than half the memory of Elastic Sketch and ∼ 6×
less memory than HeavyKeeper. The pipelining becomes laborious for Elastic Sketch as the latency
in terms of the number of clock cycles varies with update scenarios, and pipelining may further
increase the update latency. Fig. 27 depicts the throughput density in Mpps for ∼ 100% accuracy

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article . Publication date: July 2024.

32 Sateesan et al.

Fig. 27. Throughput versus memory and area

plotted against the area and memory utilization. SPArch achieves significantly higher throughput
per BRAM, 3.34× than Elastic Sketch, thanks to its low memory requirement for achieving 100%
accuracy. SPArch also has a higher throughput per area, 1.2× that of HeavyKeeper and 1.5× that of
Elastic Sketch. However, CM Sketch exhibits a better throughput per area despite having a low
throughput by virtue of its lowest area requirement.

9 PRACTICAL VALUE OF SPARCH
It is evident from the evaluation that SPArch outperforms other state-of-the-art architectures
for the intended applications. However, it should be noted that SPArch is not a replacement for
data structures such as Elastic Sketch or HeavyKeeper. SPArch is designed as a hardware-efficient
network flow measurement/counter array architecture that can either perform specific standalone
tasks such as flow measurement/heavy-hitter detection or can be integrated into other algorithms
to efficiently perform versatile measurement tasks for other applications. While data structures like
Elastic Sketch are designed for performing multiple detection tasks such as heavy-hitter detection,
heavy change detection, and Cardinality Estimation, they are less hardware-efficient, not capable
of leveraging the parallel computing capabilities of platforms like FPGAs, and can only perform
sketch-based measurements.
Another practical value of SPArch is in unified DDoS detection tasks. With the increasing

number of new and sophisticated attack patterns, it is required to integrate dedicated algorithms
for accurate detection of a diverse range of attack vectors as a single algorithm cannot perform
multiple attack detection tasks. Combining dedicated detection algorithms into a unified detection
unit incurs substantial detection overhead and poses coordination challenges. Also, accurate and
fast detection necessitates complex algorithms and more accurate flow measurements. For real-
time implementation of such a unified detection unit, it is imperative that the algorithms share
resource-intensive modules such as network flow measurement. The ability of SPArch to perform
both sketch-based and eviction-based measurements, which other architectures cannot, along with
its low memory requirement makes SPArch the best-suited architecture for implementing such
shared measurement units.
While this paper primarily focuses on discussing and demonstrating the capabilities of SPArch

as a counter array, its architectural design lends itself well to a wide range of other applications,
paving the way for future research. One notable application is membership queries, a crucial
aspect of network security applications. The drawbacks associated with associative arrays/CAM
remain applicable to membership queries. By removing the counter array and retaining only
the sketch part, SPArch can serve as an efficient alternative to a CAM, including the support
for deletion. This architecture, during a query, can return the presence and the address of the
element where it is located. Unlike CAM, SPArch does not store the elements themselves but offers

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article . Publication date: July 2024.

SPArch: A hardware-oriented sketch-based architecture for high-speed network flow measurements 33

a virtual representation of storage. Furthermore, SPArch can seamlessly handle key-value store
functionalities without introducing additional computational overhead or latency. SPArch also
provides deletion support, similar to a CAM. A recent study [26] validates that a CAM with a depth
of only 1024, designed to store a 96-bit element, consumes 6731 LUTs and 320 BRAMs, which is
immense. In contrast, a SPArch key-value store that can store 1024 elements with near-hundred
percent accuracy requires only 810 LUTs and 2 BRAMs. The above-mentioned results validate the
advantage of SPArch as a replacement for CAM.

10 CONCLUSION
Probabilistic data structures are the most efficient components when it comes to memory consump-
tion and speed, rendering them ideal for high-speed network flow measurements. The drawbacks
of existing probabilistic flow measurement architectures made us rethink the way we design
such probabilistic architectures in hardware implementations. In this work, we propose SPArch, a
hardware-oriented sketch-based counter architecture for per-flow measurements. SPArch exploits
the parallelism of FPGA and delivers high accuracy while consuming a minimal amount of memory.
We evaluate SPArch in all aspects and compare it against the best available sketch-based measure-
ment architectures, and the analysis validates the superior performance of SPArch compared to
other architectures.

ACKNOWLEDGEMENTS
This work is supported by the ESCALATE project, funded by FWO under grant No. G0E0719N and
SNSF under grant No. 200021L_182005, and by Cybersecurity Research Flanders under grant No.
VR20192203.

REFERENCES
[1] Theophilus Benson, Aditya Akella, and David A. Maltz. 2010. Network Traffic Characteristics of Data Centers in the

Wild. In Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement (Melbourne, Australia) (IMC ’10).
Association for Computing Machinery, New York, NY, USA, 267–280.

[2] The Center for Applied Internet Data Analysis CAIDA. 2018. Passive OC48 and OC192 Traces. https://www.caida.org/
data/passive/trace_stats/nyc-B/2018/?monitor=20181018-130000.UTC. Accessed: 2023.

[3] Moses Charikar, Kevin Chen, and Martin Farach-Colton. 2002. Finding Frequent Items in Data Streams. In Automata,
Languages and Programming. Springer Berlin Heidelberg, Berlin, Heidelberg, 693–703.

[4] Min Chen, Shigang Chen, and Zhiping Cai. 2017. Counter Tree: A Scalable Counter Architecture for Per-Flow Traffic
Measurement. IEEE/ACM Transactions on Networking 25, 2 (2017), 1249–1262.

[5] Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Adrian Caulfield, Todd Massengill, Ming Liu,
Daniel Lo, Shlomi Alkalay, Michael Haselman, et al. 2018. Serving DNNs in Real Time at Datacenter Scale with Project
Brainwave. IEEE Micro 38, 2 (2018), 8–20.

[6] CISCO. 2015. CISCO IOS NetFlow Version 9. http://www.cisco.com/c/en/us/products/ios-nx-os-software/netflow-
version-9/index.html. Accessed: 2023.

[7] G. Cormode and S. Muthukrishnan. 2005. An improved data stream summary: the count-min sketch and its applications.
J. Algorithms 55, 1 (2005), 58–75.

[8] Gil Einziger, Benny Fellman, and Yaron Kassner. 2015. Independent counter estimation buckets. In 2015 IEEE Conference
on Computer Communications (INFOCOM). 2560–2568.

[9] Cristian Estan and George Varghese. 2003. New directions in traffic measurement and accounting: Focusing on the
elephants, ignoring the mice. ACM Trans. Comput. Syst. 21, 3 (aug 2003), 270–313.

[10] The Canadian Institute for Cybersecurity (CIC). 2019. DDoS evaluation dataset (CIC-DDoS2019). https://www.unb.ca/
cic/datasets/ddos-2019.html. Accessed: 2024.

[11] Junzhi Gong, Tong Yang, Haowei Zhang, Hao Li, Steve Uhlig, Shigang Chen, Lorna Uden, and Xiaoming Li. 2018.
HeavyKeeper: An Accurate Algorithm for Finding Top-k Elephant Flows. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18). USENIX Association, Boston, MA, 909–921.

[12] Mohamed Hassan. 2018. On the Off-Chip Memory Latency of Real-Time Systems: Is DDR DRAM Really the Best
Option?. In 2018 IEEE Real-Time Systems Symposium (RTSS). 495–505.

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article . Publication date: July 2024.

https://www.caida.org/data/passive/trace_stats/nyc-B/2018/?monitor=20181018-130000.UTC
https://www.caida.org/data/passive/trace_stats/nyc-B/2018/?monitor=20181018-130000.UTC
http://www.cisco.com/c/en/us/products/ios-nx-os-software/netflow-version-9/index.html
http://www.cisco.com/c/en/us/products/ios-nx-os-software/netflow-version-9/index.html
https://www.unb.ca/cic/datasets/ddos-2019.html
https://www.unb.ca/cic/datasets/ddos-2019.html

34 Sateesan et al.

[13] Chengchen Hu, Bin Liu, Hongbo Zhao, Kai Chen, Yan Chen, Chunming Wu, and Yu Cheng. 2010. DISCO: Memory
Efficient and Accurate Flow Statistics for Network Measurement. In 2010 IEEE 30th International Conference on
Distributed Computing Systems. 665–674.

[14] C. Hu, S. Wang, J. Tian, B. Liu, Y. Cheng, and Y. Chen. 2008. Accurate and Efficient Traffic Monitoring Using Adaptive
Non-Linear Sampling Method. In IEEE INFOCOM 2008 - The 27th Conference on Computer Communications. 26–30.

[15] Nan Hua, Bill Lin, Jun (Jim) Xu, and Haiquan (Chuck) Zhao. 2008. BRICK: a novel exact active statistics counter
architecture. In Proceedings of the 4th ACM/IEEE Symposium on Architectures for Networking and Communications
Systems (San Jose, California) (ANCS ’08). Association for Computing Machinery, New York, NY, USA, 89–98.

[16] SunYoung Kim, Changhun Jung, RhongHo Jang, David Mohaisen, and DaeHun Nyang. 2021. Count-Less: A Counting
Sketch for the Data Plane of High Speed Switches. arXiv preprint arXiv:2111.02759 (2021).

[17] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. 2016. FlowRadar: A Better NetFlow for Data Centers. In 13th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 16). USENIX Association, Santa Clara, CA,
311–324.

[18] Yang Li, Hao Wu, Tian Pan, Huichen Dai, Jianyuan Lu, and Bin Liu. 2016. CASE: Cache-assisted stretchable estimator
for high speed per-flow measurement. In IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on
Computer Communications (San Francisco, CA, USA). IEEE Press, 1–9.

[19] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir Braverman. 2016. One Sketch to Rule
Them All: Rethinking Network Flow Monitoring with UnivMon. In Proceedings of the 2016 ACM SIGCOMM Conference
(Florianopolis, Brazil) (SIGCOMM ’16). Association for Computing Machinery, New York, NY, USA, 101–114.

[20] Y. Lu and B. Prabhakar. 2009. Robust Counting Via Counter Braids: An Error-Resilient Network Measurement
Architecture. In IEEE INFOCOM 2009. 522–530.

[21] Gurmeet Singh Manku and Rajeev Motwani. 2002. Approximate frequency counts over data streams. In Proceedings
of the 28th International Conference on Very Large Data Bases (Hong Kong, China) (VLDB ’02). VLDB Endowment,
346–357.

[22] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2005. Efficient computation of frequent and top-k elements
in data streams. In Proceedings of the 10th International Conference on Database Theory (Edinburgh, UK) (ICDT’05).
Springer-Verlag, Berlin, Heidelberg, 398–412.

[23] Robert Morris. 1978. Counting large numbers of events in small registers. Commun. ACM 21, 10 (oct 1978), 840–842.
[24] Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek Chiou, Kypros Constantinides, John Demme, Hadi Es-

maeilzadeh, Jeremy Fowers, Gopi Prashanth Gopal, Jan Gray, et al. 2015. A Reconfigurable Fabric for Accelerating
Large-Scale Datacenter Services. IEEE Micro 35, 3 (2015), 10–22.

[25] Pratanu Roy, Arijit Khan, and Gustavo Alonso. 2016. Augmented Sketch: Faster and More Accurate Stream Processing.
In Proceedings of the 2016 International Conference on Management of Data (San Francisco, California, USA) (SIGMOD
’16). Association for Computing Machinery, New York, NY, USA, 1449–1463.

[26] Arish Sateesan, Jo Vliegen, Joan Daemen, and Nele Mentens. 2020. Novel Bloom filter algorithms and architectures for
ultra-high-speed network security applications. In 2020 23rd Euromicro Conference on Digital System Design (DSD).
262–269.

[27] Arish Sateesan, Jo Vliegen, and Nele Mentens. 2022. An Analysis of the Hardware-Friendliness of AMQ Data Structures
for Network Security. In Security, Privacy, and Applied Cryptography Engineering: 12th International Conference, SPACE
2022, Jaipur, India, December 9–12, 2022, Proceedings (Madras, India). Springer-Verlag, Berlin, Heidelberg, 287–313.

[28] Arish Sateesan, Jo Vliegen, Simon Scherrer, Hsu-Chun Hsiao, Adrian Perrig, and Nele Mentens. 2021. Speed Records
in Network Flow Measurement on FPGA. In 2021 31st International Conference on Field-Programmable Logic and
Applications (FPL). 219–224.

[29] Simon Scherrer, Jo Vliegen, Arish Sateesan, Hsu-Chun Hsiao, Nele Mentens, and Adrian Perrig. 2023. ALBUS: a
Probabilistic Monitoring Algorithm to Counter Burst-Flood Attacks. In 2023 42nd International Symposium on Reliable
Distributed Systems (SRDS). 162–172.

[30] Simon Scherrer, Che-Yu Wu, Yu-Hsi Chiang, Benjamin Rothenberger, Daniele E. Asoni, Arish Sateesan, Jo Vliegen,
Nele Mentens, Hsu-Chun Hsiao, and Adrian Perrig. 2021. Low-Rate Overuse Flow Tracer (LOFT): An Efficient and
Scalable Algorithm for Detecting Overuse Flows. In 2021 40th International Symposium on Reliable Distributed Systems
(SRDS). 265–276.

[31] Robert Schweller, Zhichun Li, Yan Chen, Yan Gao, Ashish Gupta, Yin Zhang, Peter A. Dinda, Ming-Yang Kao, and
Gokhan Memik. 2007. Reversible sketches: enabling monitoring and analysis over high-speed data streams. IEEE/ACM
Trans. Netw. 15, 5 (oct 2007), 1059–1072.

[32] sFlow. 2003. Traffic Monitoring using sFlow. http://www.sflow.org/sFlowOverview.pdf. Accessed: 2023.
[33] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S. Muthukrishnan, and Jennifer Rexford. 2017. Heavy-

Hitter Detection Entirely in the Data Plane. In Proceedings of the Symposium on SDN Research (Santa Clara, CA, USA)
(SOSR ’17). Association for Computing Machinery, New York, NY, USA, 164–176.

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article . Publication date: July 2024.

http://www.sflow.org/sFlowOverview.pdf

SPArch: A hardware-oriented sketch-based architecture for high-speed network flow measurements 35

[34] Lu Tang, Qun Huang, and Patrick P. C. Lee. 2020. A Fast and Compact Invertible Sketch for Network-Wide Heavy
Flow Detection. IEEE/ACM Trans. Netw. 28, 5 (oct 2020), 2350–2363.

[35] Erez Tsidon, Iddo Hanniel, and Isaac Keslassy. 2012. Estimators also need shared values to grow together. In 2012
Proceedings IEEE INFOCOM. 1889–1897.

[36] Jagath Weerasinghe, Francois Abel, Christoph Hagleitner, and Andreas Herkersdorf. 2015. Enabling FPGAs in
Hyperscale Data Centers. In 2015 IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl
Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Communications
and Its Associated Workshops (UIC-ATC-ScalCom). 1078–1086.

[37] Jagath Weerasinghe, Raphael Polig, Francois Abel, and Christoph Hagleitner. 2016. Network-attached FPGAs for data
center applications. In 2016 International Conference on Field-Programmable Technology (FPT). 36–43.

[38] Hao Wu, Hsu-Chun Hsiao, and Yih-Chun Hu. 2014. Efficient Large Flow Detection over Arbitrary Windows: An
Algorithm Exact Outside an Ambiguity Region. In Proceedings of the 2014 Conference on Internet Measurement Conference
(Vancouver, BC, Canada) (IMC ’14). Association for Computing Machinery, New York, NY, USA, 209–222.

[39] AMD Xilinx. 2023. Content Addressable Memory (CAM). https://www.xilinx.com/products/intellectual-property/ef-
di-cam.html. Accessed: 2023.

[40] Tong Yang, Siang Gao, Zhouyi Sun, Yufei Wang, Yulong Shen, and Xiaoming Li. 2019. Diamond Sketch: Accurate
Per-flow Measurement for Big Streaming Data. IEEE Transactions on Parallel and Distributed Systems 30, 12 (2019),
2650–2662.

[41] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao, Xiaoming Li, and Steve Uhlig. 2018.
Elastic sketch: adaptive and fast network-wide measurements. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication (Budapest, Hungary) (SIGCOMM ’18). Association for Computing Machinery,
New York, NY, USA, 561–575.

[42] Tong Yang, Lingtong Liu, Yibo Yan, Muhammad Shahzad, Yulong Shen, Xiaoming Li, Bin Cui, and Gaogang Xie. 2017.
SF-sketch: A Fast, Accurate, and Memory Efficient Data Structure to Store Frequencies of Data Items. In 2017 IEEE 33rd
International Conference on Data Engineering (ICDE). 103–106.

[43] Yang Zhou, Hao Jin, Peng Liu, Haowei Zhang, Tong Yang, and Xiaoming Li. 2018. Accurate per-flow measurement
with bloom sketch. In IEEE INFOCOM 2018 - IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS). 1–2.

[44] Yang Zhou, Peng Liu, Hao Jin, Tong Yang, Shoujiang Dang, and Xiaoming Li. 2017. One Memory Access Sketch: A
More Accurate and Faster Sketch for Per-Flow Measurement. In GLOBECOM 2017 - 2017 IEEE Global Communications
Conference (Singapore). IEEE Press, 1–6.

[45] Haiting Zhu, Yuan Zhang, Lu Zhang, Gaofeng He, Linfeng Liu, and Ning Liu. 2020. SA Sketch: A self-adaption sketch
framework for high-speed network. Concurrency and Computation: Practice and Experience 32, 23 (2020), e5891.

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article . Publication date: July 2024.

https://www.xilinx.com/products/intellectual-property/ef-di-cam.html
https://www.xilinx.com/products/intellectual-property/ef-di-cam.html

	Abstract
	1 Introduction
	2 Problem definition and related work
	2.1 Problems in network flow measurement
	2.2 Existing algorithmic approaches and challenges
	2.3 A deep dive into sketch-based approaches
	2.4 Synopsis of the related work

	3 Preliminaries
	4 Sketch-based Pseudo-associative array Architecture (SPArch)
	4.1 Update operation
	4.2 Query operation
	4.3 Deletion operation
	4.4 Preliminary theoretical analysis

	5 Empirical analysis of SPArch
	5.1 Evaluation of Accuracy
	5.2 Evaluation of measurement error: average absolute error (AAE) and average relative error (ARE)
	5.3 Evaluation of large flow detection: precision and recall
	5.4 Evaluating the performance of SPArch

	6 Optimizing SPArch: Organizing counters in multiple buckets
	6.1 Counter buckets: as separate memory blocks
	6.2 Counter buckets: in the same memory block
	6.3 Memory reduction
	6.4 Effects of multi-bucket optimization and the reduction in complexity of multi-bucket counters

	7 Hardware architecture
	8 Hardware evaluation
	8.1 Experimental setup
	8.2 Accuracy versus resource utilization
	8.3 Latency and throughput

	9 Practical value of SPArch
	10 Conclusion
	References

