
DNS Congestion Control in Adversarial Settings
Huayi Duan
ETH Zürich
Switzerland

Jihye Kim
ETH Zürich
Switzerland

Marc Wyss
ETH Zürich
Switzerland

Adrian Perrig
ETH Zürich
Switzerland

Abstract
We instigate the study of adversarial congestion in the con-
text of the Domain Name System (DNS). By strategically
choking inter-server channels, this new type of DoS attack
can disrupt a large user group’s access to target DNS servers
at a low cost. In reminiscence of classic network conges-
tion control, we propose a DNS congestion control (DCC)
framework as a fundamental yet practical mitigation mea-
sure for such attacks. With an optimized fair-queuing mes-
sage scheduler, DCC ensures benign clients fair access to inter-
server channels regardless of an attacker’s behavior; with
a set of extensible anomaly detection and signaling mecha-
nisms, it minimizes collateral damage to innocuous clients.
We architect DCC in a non-invasive style so that it can read-
ily augment existing DNS servers. Our prototype evaluation
demonstrates that DCC effectively mitigates adversarial con-
gestion while incurring minor performance overheads.

CCS Concepts: • Networks → Naming and addressing;
Denial-of-service attacks; Public Internet; • Security
and privacy → Denial-of-service attacks.

Keywords: Name Resolution, DNS, DoS Attacks, Rate Lim-
iting, Congestion Control, Fair Queuing Algorithm

ACM Reference Format:
Huayi Duan, Jihye Kim, Marc Wyss, and Adrian Perrig. 2024. DNS
Congestion Control in Adversarial Settings. In ACM SIGOPS 30th
Symposium on Operating Systems Principles (SOSP ’24), November
4–6, 2024, Austin, TX, USA. ACM, New York, NY, USA, 22 pages.
https://doi.org/10.1145/3694715.3695982

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SOSP ’24, November 4–6, 2024, Austin, TX, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1251-7/24/11.
https://doi.org/10.1145/3694715.3695982

1 Introduction
The Domain Name System (DNS) plays a crucial role in the
modern Internet. When DNS becomes unavailable, numer-
ous online systems relying on it would be impacted. Un-
surprisingly, Denial-of-service (DoS) attacks on DNS and
the defenses against them have been in an arms race for
decades. The recently discovered DNS amplification vulner-
abilities [7, 14, 22, 41, 44, 64] give a substantial edge to an
adversary, as they allow every single client request to trig-
ger disproportionately many queries to be generated and
processed by servers participating in the name resolution.

While existing DoS attacks exploit various protocol- or
implementation-level vulnerabilities, we investigate attack
surfaces on the architecture level. The DNS resolution ar-
chitecture does not follow a simple client-server model but
rather resembles a graph, where named data (i.e., resource
records) flows from sources (i.e., authoritative nameservers)
to sinks (i.e., end hosts), passing through and being cached
at one or more intermediate nodes (i.e., recursive resolvers)
which serve as both clients and servers.

With this observation, we devise a new type of attacks
where an adversary, rather than overloading DNS servers
themselves or the underlying networks, strategically induces
congestion at logical inter-server channels and thereby im-
pedes a target user group’s access to the whole or part of the
DNS namespace. Since many DNS servers implement rate
limiting to throttle excessive messages they receive from or
send to any IP address (or prefix), those inter-server chan-
nels usually come with limited capacities. Therefore, an at-
tacker can create adversarial congestion with considerably
fewer resources than conventional DoS attacks, especially
when it also leverages application-layer amplification.

We have validated different forms of adversarial conges-
tion using our own testbed and also carefully analyzed them
on popular open resolvers. The results are concerning: even
relatively low attack request rates—slightly above the tar-
get inter-server channel’s capacity, or substantially lower in
case of amplification—are sufficient to disrupt benign users’
access to our test domains through the affected resolvers.

To mitigate this new type of attacks, we develop a DNS
congestion control (DCC) framework inspired by classic net-
work congestion control. At the heart of DCC is a novel fair-
queuing scheduler, which allocates an inter-server channel

https://orcid.org/0000-0002-1162-2337
https://orcid.org/0009-0000-3062-0225
https://orcid.org/0000-0001-9267-6646
https://orcid.org/0000-0002-5280-5412
https://doi.org/10.1145/3694715.3695982
https://doi.org/10.1145/3694715.3695982

14

Recursive
Resolver

Forwarder

Stub
C

Stub
A

Recursive
Resolver

Stub
B

Forwarder

Stub
E

Authoritative
Nameserver

❶

❷

Authoritative
Nameserver

Authoritative
NameserverForwarder

Stub
D

❸

upstreamdownstream

ingress egress

Figure 1. Real-world DNS resolution architecture. Dashed
lines illustrate the directional terms used in this paper.

among the downstream resolver’s clients. This establishes
a worst-case guarantee for benign clients that they can al-
ways access the channel based on their fair shares, regard-
less of an attacker’s behavior. Designing such a scheduler
poses unique challenges, as DNS resolvers are fundamen-
tally different from L2/L3 devices. With a thorough analysis
of the scheduling problem, we develop an optimized sched-
uler called MOPI-FQ that achieves all desired fairness and
performance properties.

In addition, DCC provides an anomalymonitoring and polic-
ing mechanism to counter attackers that exploit specially
crafted query patterns to gain advantage over benign clients.
Policing a resolver’s suspicious client that keeps sending
anomalous requests will cause collateral damage if the client
itself is a resolver, and this creates another DoS attack vec-
tor. DCC is further armed with an in-band signaling mech-
anism that enables resolvers to exert fine-grained control
along a resolution path while minimizing collateral damage
to innocuous clients. The signaling mechanism also allows
congestion information to be propagated downwards a reso-
lution path for troubleshooting and performance tuning. By
orchestrating these complementary mechanisms, DCC can
offer comprehensive protection and performance benefits.

We have developed a prototype of DCC [1] and demon-
strated its effectiveness in thwarting adversarial congestion
in different scenarios. Our evaluation also confirms DCC’s
time and space efficiency through the minor performance
overhead introduced to the DNS resolver that it augments.

2 Motivation
We start this section with an overview of real-world DNS
resolution (Section 2.1), followed by a discussion of common
DoS defenses deployed for DNS (Section 2.2) and the intro-
duction of adversarial congestion (Section 2.3).

2.1 DNS Resolution Architecture
DNS is an Internet-scale distributed system comprising two
general types of servers. The authoritative nameservers host
resource records specified by domain owners. The recursive

resolvers perform name resolution on behalf of clients (aka
stub resolvers) by retrieving and serving those records.

Textbook examples of DNS often depict a recursive re-
solver that, upon receiving a client’s name lookup request,
iteratively finds the answer from authoritative nameservers.
The reality is however more involved. Many recursive re-
solvers are forwarders, which do not conduct iterative reso-
lution by themselves but simply forward DNS queries to up-
stream resolvers. Forwarders are pervasive and commonly
integrated into residential routers, enterprise network gate-
ways, and wireless access points [42, 55]; some of themmay
even remain hidden [46]. A forwarder’s upstream server can
also be another forwarder. Figure 1 depicts this complex ar-
chitecture with different types of servers.

We define a DNS resolution path as an ordered list of enti-
ties, including an end host that initiates a request, possibly
several forwarders, one egress recursive resolver, and one
authoritative nameserver that provides relevant answers. A
resolution path can terminate at any resolver that answers
a query directly from its cache.

Recursive resolvers are traditionally operated by ISPs to
serve their own customers. The modern DNS ecosystem fea-
tures a growing number of public resolvers, which offer (typ-
ically free) resolution services to any Internet user. There
are also semi-open resolvers operated by cloud providers
and configured for their users by default. The resolver sys-
tems of large operators often contain multiple internal lay-
ers of caching and load balancing [9, 51].

Remark on Terminology. Hereafter, we refer to recur-
sive resolvers and forwarders collectively as resolvers, dis-
tinguishing them from end hosts and authoritative servers.
A resolver has a client-facing side that processes requests and
returns responses, as well as a server-facing side that sends
queries and receives answers. When using the common term
QPS (queries per second), we refer to either client requests
or resolver queries depending on the context.

2.2 DoS Defenses for DNS
DNS is one of the main enablers of reflection attacks. Mean-
while, it is also among the highest-value targets of DoS at-
tacks. Since DNS servers are normally compute-bound [54],
they can be overloaded by even moderate query volumes
without their network bandwidth being saturated. In other
words, network-layer DoS defenses for volumetric attacks
are usually insufficient to handle application-layer DoS at-
tacks on DNS. This becomes more concerning with the re-
cent disclosure of various DNS amplification vulnerabilities
[7, 14, 22, 39, 41, 44]: they allow a single malicious client
request to elicit a large number of resolver queries, hence
neutralizing common availability-enhancing techniques for
DNS including over-provisioning and anycast [43, 54].

DNS operators often apply customized rules to filter sus-
picious queries. For example, Akamai DNS penalizes queries

2

that would result in NXDOMAIN (non-existing domain) an-
swers and that come from spoofed addresses [54]. Bushart et
al. recently proposed a DDoS defense system, which blocks
a client if its query rate or spikes exceed predefined limits
learned from historical data [15]. In general, filtering meth-
ods are subject to false positives and evasion by sophisti-
cated and persistent attackers.They can also cause collateral
damage if the client being policed is itself a resolver.

As a common DoS defense deployed for many Internet
services, rate limiting (RL) caps the amount of load any (ma-
licious) host can place on a server. In the case of DNS, RL
comes in two generic forms. Ingress RL limits the requests
from or responses to clients and applies to recursive and au-
thoritative servers. Egress RL limits the outgoing queries to
upstream servers and applies only to resolvers. With RL in
place, an attacker must commandeer a sufficient number of
network hosts to successfully overwhelm a target server.

2.2.1 RL for DNS. To understand how DNS servers im-
plement RL in practice, we have conducted a measurement
study on 45 popular public resolvers using our own domains
and authoritative servers. Our measurements use different
query patterns that can be exploited by real attackers: pseudo-
random query names that elicit positive (NOERROR) or neg-
ative (NXDOMAIN) answers, and predefined query names
that trigger two forms of compositional amplification [22],
which allows us to reduce probing traffic and bypass a re-
solver’s ingress limit in case it has a higher egress limit. We
restrict the quantity and TTL of resource records, as well as
probing duration, to avoid stressing the measured resolvers.
More details can be found in Appendix A. Ourmeasurement
results are plotted in Figure 2.

For ingress RL, we find that some resolvers vary their rate
limits for different IP prefixes, and we report the minimum
valuesmeasured across our three geographically distributed
probes. In addition, if we cannot decide a resolver’s ingress
rate limit up to a probing request rate of 5000 QPS, we mark
it as uncertain. Of the 45 resolvers, over one third have an
ingress rate limit below 100 QPS, while around 40 have a
limit below 1500 QPS, regardless of response type. A few
resolvers enforce lower ingress rate limits for NXDOMAIN
responses, likely as a countermeasure against the pseudo-
random subdomain or Water Torture attack [8].

For egress RL, we count a resolver as uncertain if we can-
not decide its egress rate limit even when our probing rate
reaches its ingress rate limit or 1000QPS, whichever is lower.
This is the case for around half of the measured resolvers.
In those more certain cases, we observe clearer signs that
the estimated egress QPS of the resolvers stop increasing at
some point, which suggest possible egress RL, and the limits
mostly lie between 100 and 1500 QPS.

We also observe that resolvers take different actionswhen
the rate limit on a client or server is exceeded. Many appear
to lower the limit, causing fluctuations in the measured QPS.

1—100 101—500 501—1500 1501—5000 Uncertain
Range of QPS (queries per second)

0
6

12
18
24
30

Co
un

t o
f r

es
ol

ve
rs IRL WC

IRL NX
ERL CQ
ERL FF

Figure 2. Rate limits measured on 45 open resolvers (listed
in Table 3). We consider both ingress limits on clients (IRL)
and egress limits on servers (ERL) using different query pat-
terns: pseudo-random names that trigger wildcard synthe-
sis (WC) or NXDOMAIN responses (NX), and predefined
names that trigger amplification in the form of CNAME
chain × QMIN (CQ) or NS-based fan-out × fan-out (FF) [22].

Some resolvers temporarily block our probes, while others
return SERVFAIL or REFUSED responses.

2.3 Adversarial Congestion
Existing DoS attacks against DNS focus on depleting the
target server’s resources, exploiting vulnerabilities found in
DNS protocols or implementations. We turn our attention
to attack surfaces inherent in the modern DNS architecture,
where a complex fabric of servers interact with each other
to distribute named resource records. Our key observation
is that each pair of DNS servers in this architecture forms
a logical channel, and the congestion of such a channel can
affect all clients of the downstream server. An attacker can
strategically congest inter-server channels to disrupt a tar-
get user group’s access to the affected domain name services.

To see the effect of such conceptual adversarial conges-
tion, let us use the example architecture in Figure 1. If chan-
nel 1 is congested, all its direct and indirect clients, includ-
ing Stubs A, B, C and D, may lose access to the domains
hosted by the affected authoritative nameserver in the mid-
dle. If channel 2 is congested, Stub E’s use of many Internet
servicesmay be disrupted, and so are any other clients of the
forwarder at the bottom. This happens similarly to Stub D
in case of channel 3 ’s congestion.

We find that adversarial congestion can be highly disrup-
tive from two aspects. First, inter-server channels often have
limited capacities due to the RL enforced by DNS servers, as
discussed earlier.This leads to an availability dilemma: RL is
an indispensablemeasure tomitigate DoS attacks in general,
whereas it also enables an attacker to congest a rate-limited
channel at a substantially lower cost than overloading an
entire server or the underlying network. Second, unlike net-
work packets that can be forwarded along many (dynami-
cally updating) paths, DNS messages do not have as many
resolution paths to choose from. An end host or forwarder is

3

11

Recursive
Resolver

Stub
x 3

Attacker

target.com
ANS 1

target.com
ANS 2

Recursive
Resolver

Stub
x 3

Attacker

target.com
ANS 1

target.com
ANS 2

Recursive
Resolver

Recursive
Resolver

Stub
x 3

Attacker

ANS
1

ANS
2

Recursive
Resolver

Forwarder

100

100

100

100

100

500

500

Egress
Stub
x 3

Attacker

ANS
1

ANS
2

Egress
Ingress

10
10

10

(a) Redundant auth. servers

11

Recursive
Resolver

Stub
x 3

Attacker

target.com
ANS 1

target.com
ANS 2

Recursive
Resolver

Stub
x 3

Attacker

target.com
ANS 1

target.com
ANS 2

Recursive
Resolver

Recursive
Resolver

Stub
x 3

Attacker

ANS
1

ANS
2

Recursive
Resolver

Forwarder

100

100

100

100

100

500

500

Egress
Stub
x 3

Attacker

ANS
1

ANS
2

Egress
Ingress

10
10

10

(b) Redundant resolvers

12

Recursive
Resolver

Stub
x 3

Attacker

target.com
ANS 1

target.com
ANS 2

Recursive
Resolver

Stub
x 3

Attacker

target.com
ANS 1

target.com
ANS 2

Recursive
Resolver

Stub
x 3

Attacker

ANS
1

ANS
2

Recursive
ResolverForwarder

100

100

100

100

100

100
Egress

Stub
x 3

Attacker

ANS
1

ANS
2

Egress
Ingress

100
100

100

(c) Forwarding resolver

12

Recursive
Resolver

Stub
x 3

Attacker

target.com
ANS 1

target.com
ANS 2

Recursive
Resolver

Stub
x 3

Attacker

target.com
ANS 1

target.com
ANS 2

Recursive
Resolver

Stub
x 3

Attacker

ANS
1

ANS
2

Recursive
ResolverForwarder

100

100

100

100

100

100
Egress

Stub
x 3

Attacker

ANS
1

ANS
2

Egress
Ingress

100

100

100

(d) Large resolver system

Figure 3. Different DNS resolution setups used for our em-
pirical validation of adversarial congestion.

normally configured to use a few number of fixed upstream
resolvers (e.g., 2 or 3 [4]), and most domains are delegated to
two authoritative servers [2]. Hence, there is no much room
for DNS messages to go around a congested channel.

At the onset of adversarial congestion on a resolver’s chan-
nels to upstream servers, it can still answer queries from
cache for a certain period of time. As cached records ex-
pire and the resolver must send queries to those congested
channels, the attack’s effect will intensify with an increas-
ing number of clients or domains affected.

To sustain congestion on the target channels, an attacker
must generate queries that bypass a resolver’s cache. A com-
mon technique is querying random names that elicit NXDO-
MAIN responses [8]. Such queries can be suppressed by a
resolver that implements DNSSEC-validated cache [24], but
the adoption of DNSSEC still remains low, e.g., < 5% .com
domains are signed as of September 2024 [5]. To evade any
potential filtering of NXDOMAIN queries by the resolver,
the attacker can always query existing names. This requires
a large number of records from the queried zone which is
achievable with a single wildcard record [36]. Cache bypass-
ing is especially simple if the target is an RR channel be-
tween two resolvers, because the attacker can freely set up
and query its own DNS zones. For an RA channel between a
resolver and an authoritative nameserver, an attack is easy
to set up if any zone hosted by the nameserver contains one
wildcard record, or the attacker can install such a record
on the nameserver, which is the case for the popular third-
party DNS hosting services today [30].

2.3.1 Validation Methodology. To assess the practical-
ity of adversarial congestion, we simulate attacks with dif-
ferent DNS resolution architectures using our own resolvers
and public resolvers, as depicted in Figure 3.
(a) Two authoritative servers hosting our own domains,

which are queried by one recursive resolver shared by
three benign clients and one malicious client (attacker).

(b) One more resolver used by the clients compared to (a).
(c) One additional forwarder that sits between the recur-

sive resolver and clients compared to (a).

(d) Similar to (c), but the forwarder (ingress) and recursive
resolver (egress) are part of a large resolver system.

The inter-server channels to be congested are highlighted in
red. All of them have a capacity of 100 QPS: for RA channels,
we configure ingress RL at our authoritative servers; for RR
channels, we either configure ingress RL at our own recur-
sive resolver or choose public resolvers with an ingress rate
limit close to 100 QPS. All our DNS servers using BIND 9
run on cloud VMs located in different data centers of Digi-
talOcean; so are the clients, except that we assign them to
the same data center in order to increase the possibility that
their DNS requests are delivered to the same point of pres-
ence if a public resolver deploys anycast.

In our simulations with setups (a), (b) and (d), the attacker
exploits amplification with the same FF query pattern used
for our measurements of resolvers’ egress RL (Section 2.2.1);
for setup (c) the attacker exploits the WC query pattern that
triggers wildcard synthesis. The three benign clients use the
WC pattern in all setups to simulate legitimate requests. We
give examples of our zone configuration in Appendix A.

In each simulation, the attacker generates requests at a
constant rate for 50 seconds and after it has started for 5 sec-
onds, each benign client begins generating requests at the
rate of 3 QPS for 30 seconds. We measure the their average
request success ratio under varying attacker QPS.

2.3.2 Validation Results. Figure 4 reports the results.
For setup (a), most of the benign clients’ requests already

fail when the attacker sends as low as three requests per
second to our resolver. This is explained by a message am-
plification factor (MAF) of around 50 the BIND resolver suf-
fers from the FF pattern. That is, each attacker request elic-
its around 50 resolver queries to our authoritative servers.
Among the three public resolvers that produce MAFs in the
same ballpark, the benign clients experience a similar per-
formance impact for the OpenNIC resolver and worse ad-
versarial congestion effects for the other two resolvers.

For setup (b), we observe only a slight increase in the le-
gitimate request success ratio, which generally lies between
the results for individual resolvers measured with setup (a).
That is, introducing an additional resolver does not improve
the situation too much. The underlying reason is that if the
clients’ initial requests fail due to the congestion at one re-
solver’s RA channel, theywill send roughly the same amount
of retried requests to the other resolver and hence cause con-
gestion there as well.

For setup (c) without amplification, we configure our for-
warder to use three different upstream resolvers, one of them
(Quad101) with an ingress RL of 60 QPS and the other two
with the default 100 QPS. We find that the success ratio of
legitimate request starts to drop once the attacker’s QPS ap-
proximates the RR channel’s capacity, and the success ratio
declines as the attacker becomes increasingly aggressive.

4

1 2 3 4 5 6 7 8
0.0
0.2
0.4
0.6
0.8
1.0 Ours

Quad101 (R1)
Probe Net (R2)
OpenNIC (R3)

(a) Redundant auth. servers
1 2 3 4 5 6 7 8

0.0
0.2
0.4
0.6
0.8
1.0 Ours x 2

R1 + R2
R1 + R3
R2 + R3

(b) Redundant resolvers

60 70 80 90 100 110 120 130
0.0
0.2
0.4
0.6
0.8
1.0

Ours
Quad101
CenturyLink

(c) Forwarding resolver
5 10 15 20 25 30 35 40 45 50

0.0
0.2
0.4
0.6
0.8
1.0 Quad9

Google DNS
UltraDNS
OpenDNS

(d) Large resolver system

Figure 4. Attack simulation results with the setups in Fig-
ure 3. The x-axes represent attacker’s QPS and the y-axes
represent the average request success ratio of benign clients.

For setup (d), we measure the public resolvers of four
big DNS service providers. These resolver systems distrib-
ute client requests across multiple egresses, each serving as
a recursive resolver that communicates directlywith author-
itative nameservers. We record the four resolvers’ egresses
and find that adversarial congestion’s impact is reversely
proportional to the size of a resolver system’s egress set. Ul-
traDNS dispatches queries to 4 egresses and appears to be
the least resilient against our simulated attack, followed by
Quad9 using 16 egresses and OpenDNS using 25 egresses.
Although the Google public resolver using 60 egresses per-
forms better than others, it is still significantly affected by
the attack, resulting in a notable decrease in the success ra-
tio of requests from benign clients.

2.3.3 Impact on DNS Infrastructures. Our attack sim-
ulation results demonstrate the feasibility and severity of
adversarial congestion. The threats it poses to real-world
DNS infrastructures are largely determined by the extent to
which DNS servers implement RL policies. A prior study re-
ported hundreds of thousands of authoritative nameservers
implementing (ingress) response RL with a limit below 500
QPS [19]. Our own measurements also indicate that many
open resolvers have ingress and egress RL in place. This is
unsurprising as RL has been an essential measure to mit-
igate long-lasting security threats to DNS, including reflec-
tion attacks and cache poisoning.The stream of recently dis-
closed attack vectors are further pushing DNS vendors and
operators to widen and tighten their RL policies [7, 22, 37,
64]. Hence, the threats of adversarial congestion are likely
to remain, if not become an increasing concern, unless the
DNS resolution architecture undergoes some radical change.
Measuring RL policies adopted by DNS servers on an Inter-
net scale is an important avenue for future research.

3 DNS Congestion Control
We develop a DNS congestion control framework (DCC) that
guarantees end users fair access to domain name services,
even when the servers are under severe adversarial conges-
tion caused by sophisticated attack query patterns. In what
follows, we state the problem of DNS congestion control in
Section 3.1, describe our design for individual resolvers in
Section 3.2, and explain how the control is extended to a
full resolution path in Section 3.3. We elaborate on DCC’s
core FQ algorithm in Section 4.

3.1 Problem Statement
Adversarial DNS congestion exhausts inter-server channels.
This necessitates proper traffic control at the downstream
server of each susceptible channel. Discerning and block-
ing the culprit is not always possible: an attacker can mimic
normal hosts but still inflict congestion (Section 2.3). To han-
dle such worst-case scenarios, we must enforce fair sharing
of the channel among the server’s clients regardless of their
nature. This idea is reminiscent of fair queuing (FQ) and in-
network congestion control in general, but the case of DNS
is fundamentally different from the following perspectives.

• Fairness.Upon receiving client requests, a resolver does
not forward them in the same way as L2/L3 devices but
creates its own queries to upstream servers when neces-
sary. For each request, a resolver may generate no query
at all in case of a cache hit, or potentially many queries
otherwise. In general, the amount of resources consumed
by requests varies, and therefore it is non-trivial to de-
fine and achieve fairness.

• Output multiplicity. Conventional FQ deals with one
output interface. A DNS resolver, especially a recursive
resolver, can have many logical output channels to up-
stream servers. Scheduling messages over a large num-
ber of channels with guaranteed fair use of each in a
scalable manner (e.g., without creating an expensive FQ
instance for each channel) is an open problem.

• Visibility. Network devices can apply traffic policing
to end hosts based on the source and destination infor-
mation retained in the packets they forward. However,
DNS servers do not know a query’s origin on a resolu-
tion path. If a server polices a client that itself is a re-
solver, collateral damage will be caused to the latter’s
clients and possibly their clients further downstream.

Assumptions. Our design deals with a practical adversary
as described in Section 2.3. Specifically, the adversary is off
the resolution path subject to congestion as well as the un-
derlying network paths. It has control over up to 𝑁𝐴 dis-
tributed hosts that can send requests to any on-path DNS
server.We assume that anti-spoofingmeasures are deployed
by all these DNS servers and hence the adversary cannot

5

Pre-queue Policing

Anomaly Monitoring

Query

Answer

I/O
 Shim

 MOPI-FQ
 Scheduling

I/O
 S

hi
m

Response

Request

Original
Resolver

Figure 5.Overview of a DCC-enabled resolver with our non-
invasive architecture. The left part is the resolver’s client-
facing side as a server, and the right part (shaded in gray) is
its server-facing side as a client. DCC deals mainly with the
server-facing side by controlling outgoing queries.

gain advantage by spoofing IP addresses. Such practicalmea-
sures include DNS cookie [6], network ingress filtering [23],
and source authentication [31, 52]. Our design should level
the playing field such that the adversary amid legitimate
clients can increase its overall query rate at a target inter-
server channel only by increasing 𝑁𝐴.

We do not consider volumetric DoS attacks that congest
the underlying networks or exhaust the resources of DNS
servers themselves. These attacks are defended by orthogo-
nal detection and mitigation techniques [40, 63, 69]. Target-
ing capacity-limited logical channels between servers, ad-
versarial congestion can happen at a low request rate that is
likely below the threshold triggering those defense systems.

3.2 Controlling Individual Resolvers
Retrofitting a new feature to DNS protocols or implemen-
tations, which are already highly complex, often result in
unforeseen issues with existing components [39].Therefore,
we propose a non-invasive system architecture that can aug-
ment a resolver without requiring internal code changes.
We call such an augmented resolver DCC-enabled.

As Figure 5 shows, DCC wraps around a vanilla resolver
by intercepting its I/O. The resolver’s fast path of process-
ing a client request upon a cache hit remains unchanged.
In case of a cache miss, any resolver-generated outgoing
queries will enter a control loop: (1) the queries are filtered
by policies implemented in response to their senders’ sus-
picious activities; (2) policy-compliant queries are buffered
in a FQ data structure and scheduled for output; (3) the re-
turned answers are monitored for anomalies, based on both
locally collected statistics and signals issued by upstream
servers, before they are passed to the resolver. We explain
each of these technical aspects below.

3.2.1 Query Scheduling. Each upstream server that a re-
solver communicateswith corresponds to one logical output
channel. The goal of DCC’s query scheduler is to fairly share
every output channel among the resolver’s clients. The fair-
ness is defined over the number of queries attributed to a

client, which neutralizes the amplification effects of mali-
cious requests. DCCmust track all queries derived from each
request and link them to the responsible client.This process,
which we refer to as query attribution, is already necessarily
done by a resolver internally, and we describe how it can be
realized in a portable way for DCC in Section 5.

The scheduler will try to insert an arriving query into a
queue associated with the corresponding output channel. If
the queue is already full, instead of discarding the query
silently, DCC immediately returns a synthesized SERVFAIL
answer to its accompanying resolver to avoid query timeout
and waste of resources.The scheduler will pick and dequeue
a query for output if the corresponding channel is not con-
gested. Queries that fail to be dequeued in their turn will
remain in the queue and may be dropped at some point as a
result of fair scheduling. DCC uses a token bucket to control
a channel’s capacity, which is defined as the minimum be-
tween the rate limits imposed by the channel’s two ends.1

Client Share Allocation. The scheduler ensures that the
queries attributed to each client towards any channel can
be sent out at a rate, which is determined dynamically by
the channel’s capacity and the number of active clients us-
ing it, according to its predefined share. DNS operators can
allocate shares to clients in various ways. One simple strat-
egy is to peg the share to the resolver’s ingress rate limit:
with a default per-client limit (e.g., 1500 for Google Public
DNS), all clients are initially allotted the same share; clients
admittedwith higher limits get proportionally higher shares
(e.g., Google allows large clients such as ISPs to request to
raise their rate limits [3]). The share allocation can also be
based on clients’ query histories, which are commonly used
by DNS operators to adjust system parameters [54].

3.2.2 Anomaly Monitoring. The FQ scheduling ensures
fair use of a resolver’s output channels, but attackers can
still exploit specially crafted query patterns to gain advan-
tages over benign clients: requests that trigger amplifica-
tion effects with disproportionately many queries, requests
for pseudo-random names that bypass resolver caching, re-
quests inducing exceptionally high computational costs, etc.

DCC provides a generic and extensible module to moni-
tor such anomalous requests. It keeps track of a collection
of anomaly metrics, e.g., the amount, the rate, or the per-
centage of anomalous requests, for each client over a slid-
ing window (e.g., 2 seconds). At the end of each window, an
anomaly alarm will be generated if any metric goes beyond
a predefined threshold. Upon the first alarm, DCCwill put the
client in a suspicious state for intensified monitoring. If the
1A DCC-enabled resolver can obtain the ingress rate limit of an upstream
server in different ways: sending regular probing queries, using system
parameters publicized by or negotiated between DNS operators, or lever-
aging DCC’s in-band signal mechanism.

6

Table 1. Summary of the additional state introduced by DCC
in comparison with existing resolver state.

Per-Client Per-Server Per-Request

Resolver Policing state NS info, RL state Resolution state

DCC
Monitoring metrics
Pre-queue policies

(policed clients only)

Queueing state
(e.g., depth of
subqueue)

Query statistics
Signal status

(e.g., anomaly)

number of alarms reaches a threshold (e.g., 10) within a pe-
riod of suspicion (e.g., 60 seconds), defensive actions will be
taken as described below. Otherwise, DCC will release the
client from the suspicion. For accurate anomaly detection,
resolver operators can define abnormalities and monitoring
parameters based on their operational profiles.

3.2.3 Pre-QueuePolicing. Once a suspicious client is con-
victed, DCC will activate and enforce a control policy on it.
Possible policies include but not limited to temporarily rate
limiting or blocking subsequent queries attributed to the
client. The query policing is applied before the FQ sched-
uling. This avoids complicating the queuing design, as non-
compliant queries will not be unnecessarily queued and de-
layed or dropped later, which undermines both fairness and
performance. Note that the pre-queue policing here differs
from a vanilla resolver’s ingress policing on client requests
(cf. Section 2.2). The former does not affect requests that are
answered from cache and treated as normal by DCC.

3.2.4 State Management. DNS resolvers are inherently
stateful. DCC also maintains state at different granularity lev-
els, as summarized in Table 1.The creation, update, and dele-
tion of DCC state goes in tandem with the corresponding
resolver state. Per-client state entries are created upon the
first requests from clients and per-server state entries upon
the first queries to servers. These entries are maintained un-
til the associated clients or servers become inactive for a
while. Per-request state is more transient and is maintained
only during a request’s life span at the resolver. The over-
all state of DCC is asymptotically no larger than that of a
vanilla resolver and is indeed concretely smaller as shown
in our empirical evaluation (Section 5.2).

3.3 Controlling Full Resolution Path
DCC should be applied to all resolvers, as adversarial con-
gestion can happen at any hop on a resolution path. Ev-
ery resolver is controlled independently most of the time.
In abnormal situations, however, the prompt notification of
each other’s actions becomes necessary for avoiding collat-
eral damage. If a resolver does not know that its queries are
marked anomalous at the upstream and take action in time,
it will be soon policed with all its clients affected—this cre-
ates a DoS attack vector for a malicious client.

We arm DCC with an in-band signaling mechanism. At
the upstream, it attaches control signals to outgoing DNS re-
sponses whenever needed. At the downstream, it processes
such signals and removes them before passing the incom-
ing answers to the augmented resolver. Hence, the signal-
ing mechanism is transparent to resolvers and requires no
extra control message. It can also be used to communicate
system parameters between DCC instances. We encode the
signals using EDNS [18]; they are semantically similar to
and can be specified as Extended DNS Errors [33].

DCC-Awareness. DCC-enabled resolvers will function as
intendedwithout any coordination from regular DNS clients
and servers. But these entities can enjoy performance and
security benefits if they become DCC-aware—that is, being
able to recognize and process certain DCC signals.

Below we explain how different types of signals are gen-
erated and processed along a resolution path.

3.3.1 Anomaly Signal. DCC attaches an anomaly signal
in the response to every anomalous request from a client
marked as suspicious.The signal contains the reason for sus-
picion, the current period of suspicion, the policy to be en-
forced, and a countdown to policing defined as the remain-
ing number of alarms to convict the client. This allows the
downstream resolver to react and find the real culprit.

To protect itself from the impending policing from up-
stream, a DCC-enabled resolver receiving an anomaly sig-
nal will control its client responsible for the anomaly. If the
signaled countdown goes below a predefined threshold, the
resolver starts policing the suspicious client right away. Oth-
erwise, it relays the signal in its response to the suspect,
optionally with the countdown value lowered so that the
suspect is stressed to react more rapidly. By propagating
anomaly signals downwards the resolution path, DCC en-
ables precise control at the resolver closest to the attacker
and therebyminimizes the collateral damage to benign hosts,
as illustrated in Figure 6.

A DCC-aware entity can also process any received anom-
aly signals to avoid itself being policed, using its own logic
that is not necessarily compatible with DCC. For an end host,
the signals enable it to identify local malicious or compro-
mised applications that generate anomalous DNS requests.

3.3.2 Policing Signal. If a client has been policed, DCC is-
sues policing signals for all the client’s requests that fail due
to queries being dropped by pre-queue policing. Specifying
an enforced policy’s type and expiration time among other
parameters, such signals are informative for a DCC-aware
client to adjust its behavior, e.g., reducing request rate or
switching to another resolver. A DCC-enabled resolver will
propagate received policing signals to its own clients. It can

7

H

RF1F2

HH

A
91045P5

Countdown

Threshold: 5

Countdown

Threshold: 5

Figure 6. Illustration of DCC’s signaling mechanism. The
resolver (R) generates two anomaly signals with an initial
countdown of 10. One forwarder (F1) lowers the countdown
by 5 when relays the signal whereas the other (F2) does not.
The dashed parallelograms represent the second round of
signals, which cause F2 to start policing the suspicious client
(A) and generates a policing signal (P), without causing col-
lateral damage to other hosts (H).

also temporarily increase the sensibility of anomaly mon-
itoring by lowering thresholds, as it failed to identify and
control the culprit earlier.

3.3.3 Congestion Signal. DCC’s scheduler will fail to en-
queue a query if the corresponding output channel is con-
gested, and the augmented resolver may resend the query
multiple times. If the client request eventually fails, DCC gen-
erates a congestion signal containing the count of queries
dropped and the current query rate allocated to the client,
among other information. Upon receiving a congestion sig-
nal, a DCC-aware entity can reduce its request rate for the
same domain, increase its backoff time, or try a different re-
solver as requests to the same resolver will likely fail again
due to upstream congestion. A DCC-enabled resolver will
propagate the signal to its own clients.

Despite the names, congestion signals are intended to in-
form rather than control congestion. It is DCC’s query sched-
uling that prevents an aggressive client from using an inter-
server channel more than its fair share in any event.

3.3.4 Co-Existence of Signals. One response can carry
multiple signals, one for each type, that are generated lo-
cally by the answering resolver or originated from further
upstream. When both an upstream signal and a local signal
of the same type are available to be included in a response,
DCC prefers the former because it has a bigger impact on
the resolver as a whole. When processing such a response,
a DCC-aware entity prioritizes signals based on their sever-
ity, i.e., in the order of policing, anomaly, and congestion.

4 MOPI Scheduler
The core query scheduler of DCC should satisfy three prop-
erties: (1) fair sharing of each output channel of a resolver
among its clients; (2) practical space overheads comparable
to the resolver’s own runtime state; and (3) low scheduling
delay added to the overall DNS resolution latency. Design-
ing such a scheduler turns out to be non-trivial. In this sec-
tion, we first analyze the underlying fair scheduling prob-
lem and its subtle differences from similar problems (Sec-
tion 4.1). We then develop a solution that achieves all de-
sired properties (Section 4.2).

4.1 Problem Formulation
Consider a scheduler that dispatches messages from a set of
input sources S to a set of destinations D through a set of
output channels O each with limited capacity. Let 𝑂 (𝑝) ⊂
O be the set of channels that a message 𝑝 can be sent out
of, and 𝑎𝑖 𝑗 be the message rate allocated to source 𝑖 ∈ S
for channel 𝑗 ∈ O. Our goal is to achieve a max-min fair
allocation {𝑎𝑖 𝑗 }𝑖∈S for any channel 𝑗 (more details are given
inAppendix B.2). Belowwe explain how the problem setting
varies in different fair queuing (FQ) variants.

Conventional FQ deals with a single output channel em-
bodied as a network interface (i.e., |O| = 1). It aims to achieve
a max-min fair allocation {𝑎𝑖𝑜 }𝑖∈S of the only channel 𝑜 . If a
device has several interfaces, each of them requires an inde-
pendent scheduler instance. In our context, it is infeasible
to maintain one expensive FQ scheduler for each (logical)
output channel because the number of such channels can
be very large (i.e., |O| = |D|).

Multi-server FQ [11] schedules traffic to multiple servers
(equivalent to output channels) for load-balancing. These
servers are indistinguishable in that any of them can service
any traffic flow (i.e., 𝑂 (𝑝) = O). This is in contrast to our
setting where every DNS message has one predetermined
destination and output channel (i.e., |𝑂 (𝑝) | = 1). Similarly,
multi-queue FQ [26, 57] dispatches traffic flows to the inter-
nal queues (equivalent to output channels) of an I/O device
or OS, and the queues are essentially identical. As another
essential distinction, this category of FQ variants aim for
fairness in the aggregated traffic rate of all channels (i.e.,
{∑𝑗∈O 𝑎𝑖 𝑗 }𝑖∈S), whereaswe seek fair sharing of each and ev-
ery channel.These two goals are indeed incompatible: fairly
allocating the aggregated rate can undermine the fairness of
individual channels and vice versa, especially when differ-
ent sources use different subsets of channels.

Multi-interface FQ [66] generalizes multi-server FQ by re-
stricting the interfaces usable by a flow to a subset of the net-
work interfaces available to a device. When restricting each
flow to a single interface, the solution reduces to the afore-
mentioned naive approach of applying FQ independently to
each interface or output channel.

Multi-resource FQ [25] considers a fairness notion defined
over different resources consumed by flows. Regarding each
output channel in our context as a distinct resource does not
make sense, as a message is sent to only one channel.

In summary, we are not aware of any previous formula-
tion of the fair scheduling problem that we study here, and
to the best of our knowledge, FQ algorithms proposed in the
literature do not apply to the problem.

4.2 Scheduler Design
Weexplore the design space progressively, startingwith sim-
ple intuitive ideas, explaining the challenges at each design
point, and eventually arriving at our solution.

8

3

2

1

Dropped

Blocked

Input

classified

FIFO queues

Input queues

allowing leapfrog

B

A

A

B

3’ 3

2

1’’ 1’ 1

2’’ 2’ 2

3

1’ 1
Separate

input queues

for output A

Separate

input queues

for output B

B

A

(a) Input-centric queuing. Source 3 gets re-
duced msg rate to B due to A’s congestion.

3

2

1

Dropped

Blocked

Input

classified

FIFO queues

Input queues

allowing leapfrog

B

A

A

B

32 31

21

13 12 11

23 22 21

31

12 11

Separate

input queues

for output A

Separate

input queues

for output B

B

A

(b) IO-isolated queuing w/ separate
per-source queues for each output.

Flattened  
calendar queue 211131122223

Tail pointers to
scheduling

rounds

A

TT+1T+2
1 T+1
2 T+2
3 T

Latest rounds

of input sources

11312132122213 B

TT+1T+2
1 T+2
2 T+1
3 T+1

22

New query

from source 2

(c) Output-centric queuing, with the same buffered messages as (b).
The changes after enqueuing a message 23 are highlighted in bold.

Figure 7. Illustration of MO-FQ design space. A symbol Xy in (b) and (c) indicates source X’s y-th message to a given output.

Input-CentricQueuing. First proposed by Nagle [45], the
textbook FQ algorithm creates a separate first-in-first-out
(FIFO) queue for each source and schedules messages from
the queues in a round-robinmanner. Such input-centric queu-
ing ensures max-min fairness for equal-sized packets in the
conventional setup with a single output interface.

However, the fairness property no longer holds in our
multi-output setup, as illustrated in Figure 7a. In the exam-
ple at the top, the queue for one input source (3) is blocked
by a congested output channel (A), which prevents the sched-
uler from dequeuing messages to other available channels
and hence renders those channels’ allocation unfair to the
source. This is commonly known as the problem of head-
of-line (HOL) blocking. A plausible fix is to relax the FIFO
property and allow the scheduler to leap over the blocking
message, but it does not fix the issue: as shown by the exam-
ple at the bottom of Figure 7a, messages to other channels
are still dropped when a blocked queue gets filled up as an
inevitable consequence of the channel’s congestion. Attack-
ers can exploit these forms of unfairness to block messages
from a target source especially when it is a shared resolver.

IO-IsolatedQueuing.The limitations of input-centric queu-
ing stem from the lack of isolation among output channels.
An immediate improvement is to create separate per-source
FIFO queues for each output channel (or equivalently, sep-
arate per-output queues for each source). We refer to this
paradigm as IO-isolated queuing as depicted in Figure 7b.

With the isolation, no message of a queue will be blocked
or dropped due to congestion at other queues. An obvious
drawback however arises: the substantial costs of maintain-
ing𝑂 (|S| · |O|) queues, and the concomitant vulnerability to
resource exhaustion attacks where attackers trick the sched-
uler to create a myriad of queues. Moreover, how to fairly
schedule over these queues becomes unclear, e.g., whether
to apply round robin first over sources and then destina-
tions or vice versa. Regardless of the design, now that there
are multiplicatively more queues, the queuing delay of mes-
sages can be |O| times larger than input-centric queuing.

While IO-isolated queuing solves theMO-FQproblemwith
the fairness guarantee, it is hardly practical due to these per-
formance drawbacks.

Output-CentricQueuing.The bit-by-bit round robin algo-
rithm (BBRR) [20] improves over Nagle’s FQ algorithm by
bufferingmessages in a single priority queue, where variable-
sized messages are sorted according to their virtual finish
time. Applying BBRR to each output channel leads to what
we refer to as output-centric queuing.

In our problem setting, themessage size is immaterial and
messages are always treated as atomic units for scheduling.
Since messages’ finish time depends only on their arrival
time, we can avoid BBRR’s logarithmic enqueue cost. This
is achieved by tracking the boundaries between rounds in
the queue and always inserting a message to the end of its
corresponding round, as depicted in Figure 7c. The queue
should be implemented as a linked list to allow efficient in-
sertion with the help of round-tracking pointers. With such
design, the queuing data structure coincides with a calendar
queue [13] but in a flattened form.

Output-centric queuing reduces the storage overhead of
IO-isolated queuing, but it is not yet ideal. First, the costs
of maintaining |O| queues are still undesirable, especially
when they need to be pre-allocated for efficiency reasons.
Second, the problem of queuing delay inflation remains: en-
queued messages may be reordered (with respect to their
arrival order) as a result of the fair scheduling on each out-
put queue as well as across all queues.

MOPI-FQ. We further improve the above design in two as-
pects: (1) allocating recyclable entries for all queues from a
single resource pool of fixed size, without wasting space for
the pre-allocation of individual queues; (2) preserving the
arrival order of messages for output across all queues, up
to in-queue reordering for fair scheduling and channel con-
gestion.The first aspect is relatively straightforward. For the
second, we attach to each queued message its arrival time
and always pick the queue whose channel is not congested,

9

Table 2.A summary of client settings for evaluating DCC un-
der different adversarial congestion scenarios. The 2nd and
3rd columns indicate when a client starts and stops sending
queries in the 60-seconds measurement window. The last
column indicates the client’s query patterns (Figure 2) used
in the corresponding scenarios (Figure 8).

Client Start End QPS Query Pattern

Heavy 0 60 600 WC (a,b,c) or NX (b)
Medium 0 50 350 WC (a,b,c)
Light 20 60 150 WC (a,b,c)

Attacker 10 60 1100 or 50 WC (a), NX (b) or FF (c)

and whose message at the front has the earliest arrival time
among all queues, to be sent out.

We call the resulting scheduling algorithmMOPI-FQ,which
is short for multi-output pseudo-isolated fair queuing, since
all output channels are scheduled independently in that their
fairness and output order are preserved but their queues are
allocated from a shared resource pool (hence not fully iso-
lated from each other). MOPI-FQ is both space-efficient, re-
quiring 𝑂 (|O| + 𝑞) storage where 𝑞 is the total number of
queuedmessages, and time-efficient, supporting𝑂 (𝑙𝑜𝑔(|O|))
enqueue and dequeue operations. We provide a detailed al-
gorithm specification and analysis in Appendix B.

5 Implementation and Evaluation
We have developed a prototype of DCC in C++. The non-
invasive architecture of DCC allows it to be retrofitted into
existing DNS software or implemented as a standalone pro-
gram that intercepts the original resolver’s DNS traffic. We
chose the latter approach because it allows DCC to be de-
ployed on the same host running the resolver or on a sep-
arate host as a middlebox. This requires a portable way for
DCC to track outgoing resolver queries and associate them
with the responsible clients.

We realize this query attribution function (Section 3.2.1)
by repurposing the EDNS Client Subnet option [17] to in-
clude the client’s IP address, source port, and DNS request
ID. In particular, we modify the BIND resolver to include
this EDNS option in every outgoing query generated by the
resolution of a client request, and let DCC strip off this option
when sending out queries to upstream DNS servers.

For traffic interception, we use libnetfilter_queue and
set up two separate queues for incoming and outgoing DNS
messages with the corresponding iptables rules. To avoid
an interception loop—the outgoing queries processed by DCC
are captured by libnetfilter_queue again—we use the
raw socket AF_PACKET to send out DCC queries, which comes
with the extra performance benefit of kernel bypassing.

All runtime state of DCC (see Table 1) can be efficiently
managed by hash tables and we realize them using the stan-
dard C++ std::unordered_map. For MOPI-FQ scheduling,

0 10 20 30 40 50 600
100
200
300
400
500
600
700
800
900

1000

Ef
fe

ct
iv

e
QP

S

0 10 20 30 40 50 600.0 0.2 0.4 0.6 0.8 1.0

Elapsed time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0 Attacker Heavy Medium Light

(a) Attacker exploiting the WC query pattern.

0 10 20 30 40 50 600
100
200
300
400
500
600
700
800
900

1000

Ef
fe

ct
iv

e
QP

S

0 10 20 30 40 50 600.0 0.2 0.4 0.6 0.8 1.0

Elapsed time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0 Attacker Heavy Medium Light

(b) Attacker and heavy client exploiting the NX query pattern.

0 10 20 30 40 50 600
100
200
300
400
500
600
700
800
900

1000
Ef

fe
ct

iv
e

QP
S

0 10 20 30 40 50 600.0 0.2 0.4 0.6 0.8 1.0

Elapsed time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0 Attacker Heavy Medium Light

(c) Attacker exploiting the FF amplification pattern.

Figure 8. Client dynamics in different adversarial conges-
tion scenarios summarized in Table 2. The effective QPS is
measured by the ratio of successful responses (NOERROR or
NXDOMAIN), with the exception that it is calculated from
the actual queries received by our nameserver in case the at-
tacker uses FF amplification pattern. For each scenario, the
left and right subplots show results for a vanilla BIND re-
solver and a DCC-enabled resolver, respectively.

we implement the data structures specified in Appendix B
with customized memory management.

In addition to the main thread driven by libnetfilter,
our prototype uses a separate thread for MOPI-FQ dequeue
operations and another thread for periodically purging the
state of inactive clients or servers.

Evaluation Setup. With the prototype, we evaluate a DCC-
enabled resolver’s attack resilience and performance over-
heads. All our DNS servers and clients are deployed in the
DigitalOcean cloud using VMs with dedicated virtual CPUs
(two cores at 2.6GHz) and 8GB RAM. Our resolver and au-
thoritative nameservers run BIND 9.

For MOPI-FQ configuration, we set the capacity of each
output queue as 100, the maximum number of per-queue

10

0 10 20 30 40 50 600
100
200
300
400
500
600
700
800

Ef
fe

ct
iv

e
QP

S

0 10 20 30 40 50 600.0 0.2 0.4 0.6 0.8 1.0

Elapsed time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0 Attacker Heavy Medium Light

(a) Attacker exploiting the NX query pattern.

0 10 20 30 40 50 600
100
200
300
400
500
600
700
800

Ef
fe

ct
iv

e
QP

S

0 10 20 30 40 50 600.0 0.2 0.4 0.6 0.8 1.0

Elapsed time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0 Attacker Heavy Medium Light

(b) Attacker exploiting FF amplification pattern.

Figure 9. Evaluation of DCC’s anomalymonitoring, policing,
and signaling mechanisms in two scenarios (Table 2). For
each of them, the left and right subplots show results when
the signaling mechanism is turned off and on, respectively.

scheduling round as 75 (which makes fair scheduling mean-
ingful when there are at least two clients), and the over-
all capacity of the resource pool as 100000 (=100K). We set
no limit on the number of concurrently tracked clients or
servers. The state of an entity will be removed if it has been
inactive for 10 seconds. All clients are configured with iden-
tical shares for the MOPI-FQ scheduling.

5.1 Attack Resilience
We examine DCC’s effectiveness against adversarial conges-
tion using an architecture similar to the setup (a) in our
attack validation experiments (Section 2.3.1). It consists of
four clients sending queries of different patterns and at vary-
ing rates to a resolver towards an authoritative nameserver,
as summarized in Table 2. The first three of them represent
benign clients with different degrees of aggressiveness and
the last one represents an attacker. The inter-server channel
is limited to 1000 QPS.

We configure DCC’s anomaly monitoring window as 2 sec-
onds, and the anomaly alarm threshold to convict a suspi-
cious client as 10 within a suspicion period of 60 seconds.
The policy for a client convicted with NXDOMAIN anom-
alies is rate limiting it to 100 QPS for 20 seconds. The policy
for a client convicted with amplification anomalies is block-
ing all its queries for 30 seconds.

We measure the clients’ effective QPS over time under
these settings and plot the results in Figure 8, with side-by-
side comparisons between a vanilla BIND resolver (version
9.19) and our prototype of a DCC-enabled resolver.

Scenario 1: Wildcard. This represents a worse-case sce-
nario where we cannot distinguish the attacker from benign
clients. As depicted in Figure 9a, for the vanilla resolver, the
heavy and medium clients send queries at their full speed
in the initial 10 seconds, but their QPS drastically reduces
to a range below 100 once the attacker kicks in. In com-
parison, DCC fairly and dynamically allocates the channels
among active clients in a work-conserving manner: evenly
among the three higher-rate clients during seconds 10–20,
then among them during seconds 20–50 after fulfilling the
low-rate client, and so on.

Scenario 2: NXDOMAIN. This scenario illustrates DCC’s
dynamics when handling the common query pattern used
by pseudorandom subdomain attacks. In addition to the at-
tacker, we also let the aggressive client use the NX pattern
for the first 20 seconds and switch to the benign WC pat-
tern afterwards. From Figure 9a we can see that the vanilla
resolver is subject to adversarial congestion as in the previ-
ous scenario. When DCC detects clients abusing this query
pattern (with the ratio of NXDOMAIN responses above 0.2),
it rate limits the senders and instantaneously allocates the
freed channel space to benign clients. Since the heavy client
ceases to send anomalous requests right after it is policed,
it regains its share of the channel after the policy expires at
second 50. On the other hand, the attacker who persists the
malicious query pattern is rate limited until the end.

Scenario 3: Amplification.Here the attacker exploits mes-
sage amplification and sends requests at a rate of 50 QPS,
which is multiplied at the target channel. As shown in Fig-
ure 9b, congestion still happens with significant impact on
the benign clients of the vanilla resolver. In contrast, DCC ef-
fectively controls the attacker’s aggressive queries and blocks
them after confirming the suspicion, while always allocat-
ing the channel fairly among non-policed clients.

Efficacy of Signaling. To understand DCC’s dynamics in
a full resolution path and assess the efficacy of its signal-
ing mechanism, we consider an architecture similar to the
setup (c) in Figure 3c. Both the forwarder and recursive re-
solver are DCC-enabled with our prototype, and the chan-
nel between them is limited to a capacity of 1000 QPS. The
attacker, heavy client and light client send requests to the
forwarder and the medium client send requests directly to
the recursive resolver. The heavy client always uses the WC
pattern.We reduce the attacker’s request rate to 200 QPS for
the NX pattern and 20 QPS for the FF pattern. All other set-
tings remain the same as above. We compare two scenarios
with the signaling functions enabled or disabled.

Figure 9 depicts the results. Now the resolver-nameserver
channel is shared between the medium client and the for-
warder. The former can always send traffic at its expected
rate 350 (<1000/2) QPS, with the remaining 650 QPS allo-
cated to the forwarder and indirectly its clients.

11

10K 20K 40K 60K 80K 100K
Number of active servers

0

25

50

75

100

CP
U

lo
ad

 (%
) BIND DCC

0
40
80
120
160
200

M
em

or
y

us
ag

e
(M

B)

BIND DCC

(a) Fixed 1K clients and varying numbers of servers

10K 20K 40K 60K 80K 100K
Number of active clients

0

25

50

75

100

CP
U

lo
ad

 (%
) BIND DCC

0
40
80
120
160
200

M
em

or
y

us
ag

e
(M

B)

BIND DCC

(b) Fixed 1K servers and varying numbers of clients

Figure 10. DCC’s performance overheads under different
workloads dictated by the number of entities tracked. The
bars indicate CPU load and lines indicate memory usage.

Absent the signaling mechanism, the forwarder’s two be-
nign clients are fate-sharing with the attacker: either com-
peting for the limited upstream channel in case of the NX
pattern, or being completely blocked in the case of the FF
pattern, as a result of the resolver’s policy enforced on the
forwarder. With DCC signals enabled, the forwarder blocks
(configured as the default policy for signal-triggered polic-
ing) its own suspicious client in time (with the anomaly
countdown threshold configured as 5), thus effectively sav-
ing the two innocuous clients from collateral damage.

5.2 Performance Overhead
In real deployments a resolver can maintain state for many
clients and servers concurrently. To investigate the perfor-
mance of DCC under varying workloads, we simulate large
numbers of entities by mapping random query names to
client and server ID spaces of given sizes. In the experiments
each of our four clients sends queries using the WC pattern
at 750 QPS. With an aggregate rate of 3000 QPS, we can sus-
tain the vanilla resolver’s CPU load below 100% and rule out
potential side effects due to overloading.

Figure 10 reports the CPU andmemory usage of DCC com-
pared with its accompanying BIND resolver. Each reported
data point is averaged over consecutive per-secondmeasure-
ments for 1 minute, and we start to collect data when DCC
has tracked approximately the expected number of clients
or servers. Overall, DCC consumes less resources than the
vanilla BIND resolver. DCC’s computational cost is insensi-
tive to the number of entities tracked, since most of its oper-
ations are constant-time and the MOPI-FQ operations with
logarithmic complexity are also highly efficient. A large frac-
tion of DCC’s CPU time is actually spent on busy waiting for
queries to be enqueued by MOPI-FQ.

0 1 2 3 4 5 6
Request processing time (millisecond)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F Vanilla BIND

DCC (C=1K, S=1K)
DCC (C=1K, S=100K)
DCC (C=100K, S=1K)
DCC (C=100K, S=100K)

Figure 11. The processing delay incurred by DCC under
varying numbers of active clients (C) and servers (S).

DCC’s memory usage is more sensitive to the number of
servers than clients, due to the larger per-server state in-
cluding round pointers and counters of active clients MOPI-
FQ maintains for each output queue. Nonetheless, our re-
sults show that DCC always has a smaller memory footprint
than the vanilla resolver. In fact, we observed that BIND
consumes substantially more memory if our measurements
use amplification query patterns, which force the vanilla re-
solver to maintain more state for recursive queries.

We also measured the extra processing delay incurred by
DCC. In particular, we consider the time a vanilla or DCC-
enabled resolver takes to process a client request without
cached answer using the WC query pattern. Figure 11 de-
picts the distribution of processing time for 1 million client
requests. The results indicate that DCC introduces marginal
delay under varying workloads. The processing time is in-
deed dominated by network delay as the RTT between our
resolver and ANS is around 1 millisecond.

6 Discussion

Incremental Deployment. The deployment of DCC is fa-
cilitated by its noninvasive design, which requires no mod-
ification to today’s DNS infrastructure and only minimum
change to existing resolver software. It is also incrementally
deployable, meaning that not all DNS servers must adopt
it simultaneously for it to be effective or for the servers
to maintain interoperability. Every individual resolver aug-
mented by DCC obtains the availability benefits without the
need to coordinate with others. Deploying DCC at a resolver
incentivizes its adoption at the downstream resolvers, as
this prevents them from being framed by malicious clients
and policed by the upstream resolver. Even without deploy-
ing DCC, resolvers can opt to process DCC signals as Extended
DNS Errors to improve their resilience and performance.

Encrypted DNS. Secure transport protocols for DNS, such
as DoT [47], DoH [27] and DoQ [28], are widely deployed
nowadays. DCC is compatiblewith thembecause it dealswith
application-layer DNS messages without touching the un-
derlying connection methods. DoT/DoH/DoQ servers can
adopt DCC to protect their queries from adversarial conges-
tion at upstream channels.

12

Oblivious DNS. Solutions with even stronger privacy prop-
erties are also gaining traction. Oblivious DNS protocols in-
troduce additional proxies to obfuscate the linkage between
queries and their originators [32, 53]. In our framework, such
a proxy is essentially a forwarder that communicates with
an upstream oblivious resolver (operated by a different en-
tity), and they are independently augmented by DCC. The
proxy can perform query attributionwithout the need to see
queries in plaintext, and it is treated as a regular client by
the resolver for congestion control. For certain design that
encrypts the entire DNS message rather than only the do-
main and address information, DCC’s signaling mechanism
may be hindered as the EDNS options may not be acces-
sible to a DCC-enabled resolver. In this case, the signals as
non-sensitive data can be taken out fromDNSmessages and
stored as separate payload of lower-layer protocols.

7 Related Work
A prevalent strategy for mitigating DDoS attacks is traffic
filtering, which aims to identify and discard or deprioritize
malicious traffic. As in-network filtering solutions, Xatu re-
lies on attack preparation signals and history [65], ACC-
Turbo uses online clustering for attack identification at line
rate [10], and SENSS allows victims to request attack moni-
toring and filtering from ISPs in exchange for payments [50].
Filtering techniques are also employed for application-level
DoS protection. SkyShield [62] utilizes sketches to detect
and counter application-layer DDoS attacks, FineLame [21]
builds a model of resource utilization to identify and han-
dle offending requests in real-time, and Leader [61] learns
legitimate per-application usage patterns to detect irregu-
larities. In general, filtering-based solutions face the diffi-
culty in reliably distinguishing between malicious and be-
nign traffic [29, 34, 38, 59]. Moreover, as explained in Sec-
tion 2.3, they can be abused by attackers to inflict collateral
damage on innocuous clients in the case of DNS.

Routing-based solutions likeNyx [56] or CoDef [35] reroute
traffic around congestion points. DNS’s architectural redun-
dancies also allow entities to send requests along different
resolution paths. But this can mitigate adversarial conges-
tion only to a limited degree, because of the relatively small
sets of candidate resolution paths and the fact that upon fail-
ure retried requests are indeed duplicated multiple times.

DCC’s signaling mechanism draws inspiration from con-
ventional end-to-end congestion control algorithms (CCAs).
Unlike explicit congestion notification (ECN) [49] and solu-
tions alike, which designate endpoints as entities respond-
ing to congestion, DCC signaling takes on a recursive down-
streamprocess.The different communication patterns—linear
network paths from source to destination versus a recursive
resolution tree structure formed by query branching to mul-
tiple upstream servers—pose challenges for seamlessly inte-
grating existing CCAs into the DNS architecture.

Another mechanism closely aligned with DCC is traffic
isolation. PSP [16], for instance, seeks to mitigate the col-
lateral damage of DDoS attacks on benign traffic by imple-
menting bandwidth isolation between traffic flows originat-
ing from different network origin-destination pairs. But the
required network visibility is lacking in the DNS architec-
ture. A prominent avenue explored in this direction is fair
queuing (FQ), and we have discussed why existing FQ vari-
ants cannot be adapted to solving our problem in Section 4.1.
Cebinae [67], by redistributing a fraction of flows’ band-
width, adjusts link allocations towards achieving max-min
fairness. In the context of home networks, CRAB [60] esti-
mates downlink capacity and flow demands, using this in-
formation to compute and throttle flows towards max-min
weighted fair share rates. Core-stateless fair queuing [58],
along with its hierarchical variant [68], accomplishes fair
bandwidth allocation and ensures isolation without main-
taining per-flow state in the network. However, their appli-
cability to DNS is limited as they assume the operator’s com-
plete control over the network.

8 Conclusion
The importance of DNS to the Internet cannot be overstated.
In this paper, we identify and experimentally validate a new
class of DoS attacks that enable an adversary to disrupt DNS
services without large volumes of attack traffic. Adapting
principles from classic network congestion control, we de-
sign, implement, and evaluate a framework DCC that can ef-
fectively mitigate such attacks while minimizing collateral
damage to benign users. DCC can enhance the availability
and fairness of today’s DNS infrastructure with every ad-
ditional resolver that adopts it, without requiring a global
setup. We hope DCC can contribute to making DNS and the
Internet as a whole more resilient to DoS attacks.

Ethics statement.Ourmeasurements use our own domains
and nameservers and we send small volumes of requests
to the measured public resolvers with negligible impact on
their normal operation. Since adversarial congestion is not
pertinent to any particular protocol or implementation vul-
nerabilities, we are discussing it with entities within the
DNS community to identify effective ways to broadly dis-
close it and implement practical fixes including DCC.

Acknowledgments
We thank the anonymous reviewers and our shepherd Nick-
olai Zeldovich for their valuable feedback. We also thank
Zechao Cai for helping with instrumenting the BIND 9 code
and Simon Scherrer for providing early feedback on this
work.We gratefully acknowledge support from ETHZürich,
ZISC, from SNSF for project 200021_215318, and fromHasler
Stiftung via the ETH Zurich Foundation.

13

References
[1] DCC Artefact. https://gitlab.ethz.ch/netsec/dcc-artefact.
[2] DNS Nameserver Counts for Top Million Websites (2020-08). https:

//dnsinstitute.com/research/2020/top-million-202008.html.
[3] Google Public DNS for ISPs. https://developers.google.com/speed/

public-dns/docs/isp, 2024.
[4] resolv.conf(5) — linux manual page. https://man7.org/linux/man-

pages/man5/resolv.conf.5.html, Janurary 2024.
[5] TLD Zone File Statistics. https://www.statdns.com, Janurary 2024.
[6] D. Eastlake 3rd and M. Andrews. Domain Name System (DNS) Cook-

ies. RFC 7873, IETF, May 2016.
[7] Yehuda Afek, Anat Bremler-Barr, and Lior Shafir. Nxnsattack: Re-

cursive DNS inefficiencies and vulnerabilities. In Proceedings of the
USENIX Security Symposium, 2020.

[8] Akamai. Whitepaper: DNS Reflection, Amplification, & DNS Water-
torture. Technical report, 2019.

[9] Rami Al-Dalky and Kyle Schomp. Characterization of Collaborative
Resolution in Recursive DNS Resolvers. In Proceedings of the Interna-
tional Conference on Passive and Active Measurement (PAM), 2018.

[10] Albert Gran Alcoz, Martin Strohmeier, Vincent Lenders, and Laurent
Vanbever. Aggregate-based congestion control for pulse-wave ddos
defense. In Proceedings of the ACM SIGCOMM Conference, 2022.

[11] Josep M Blanquer and Banu Özden. Fair Queuing for Aggregated
Multiple Links. ACM SIGCOMM Computer Communication Review,
31(4):189–197, 2001.

[12] S. Bortzmeyer, R. Dolmans, and P. Hoffman. DNS Query Name Min-
imisation to Improve Privacy. RFC 9156, IETF, November 2021.

[13] Randy Brown. Calendar queues: a fast 0 (1) priority queue implemen-
tation for the simulation event set problem. Communications of the
ACM, 31(10):1220–1227, 1988.

[14] Jonas Bushart and Christian Rossow. DNS unchained: Amplified
application-layer dos attacks against DNS authoritatives. In Proceed-
ings of the International Symposium on Research in Attacks, Intrusions,
and Defenses (RAID), 2018.

[15] Jonas Bushart and Christian Rossow. Anomaly-based filtering of
application-layer ddos against dns authoritatives. In 2023 IEEE 8th
European Symposium on Security and Privacy, 2023.

[16] Jerry Chou, Bill Lin, Subhabrata Sen, andOliver Spatscheck. Proactive
surge protection: a defense mechanism for bandwidth-based attacks.
In Proceedings of the 17th Conference on Security Symposium, SS’08,
USA, 2008. USENIX Association.

[17] Carlo Contavalli, Wilmer van der Gaast, David C Lawrence, and War-
ren ”Ace” Kumari. Client Subnet in DNS Queries. RFC 7871, May
2016.

[18] Joao da Silva Damas, Michael Graff, and Paul A. Vixie. Extension
Mechanisms for DNS (EDNS(0)). RFC 6891, April 2013.

[19] Casey Deccio, Derek Argueta, and Jonathan Demke. A Quantitative
Study of the Deployment of DNS Rate Limiting. In 2019 International
Conference on Computing, Networking and Communications (ICNC),
2019.

[20] Alan Demers, Srinivasan Keshav, and Scott Shenker. Analysis and
simulation of a fair queueing algorithm. ACM SIGCOMM Computer
Communication Review, 19(4):1–12, 1989.

[21] Henri Maxime Demoulin, Isaac Pedisich, Nikos Vasilakis, Vincent Liu,
Boon Thau Loo, and Linh Thi Xuan Phan. Detecting asymmetric
application-layer Denial-of-Service attacks In-Flight with FineLame.
In Proceedings of the USENIX Annual Technical Conference (ATC), 2019.

[22] Huayi Duan, Marco Bearzi, Jodok Vieli, David Basin, Adrian Perrig,
Si Liu, and Bernhard Tellenbach. CAMP: Compositional Amplifica-
tion Attacks against DNS. In Proceedings of the USENIX Security Sym-
posium, 2024.

[23] P. Ferguson and D. Senie. Network Ingress Filtering: Defeating Denial
of Service Attacks which employ IP Source Address Spoofing. RFC
2827, IETF, May 2000.

[24] K. Fujiwara, A. Kato, and W. Kumari. Aggressive Use of DNSSEC-
Validated Cache. RFC 8198, IETF, July 2017.

[25] Ali Ghodsi, Vyas Sekar, Matei Zaharia, and Ion Stoica. Multi-Resource
Fair Queueing for Packet Processing. In Proceedings of the ACM SIG-
COMM Conference, 2012.

[26] Mohammad Hedayati, Kai Shen, Michael L Scott, and Mike Marty.
Multi-Queue FairQueuing. In Proceedings of the USENIX Annual Tech-
nical Conference (ATC), 2019.

[27] P. Hoffman and P. McManus. DNS Queries over HTTPS (DoH). RFC
8484, IETF, October 2018.

[28] C. Huitema, S. Dickinson, and A. Mankin. DNS over Dedicated QUIC
Connections. RFC 9250, IETF, May 2022.

[29] Min Suk Kang, Soo Bum Lee, and Virgil D. Gligor. The crossfire attack.
In IEEE Symposium on Security and Privacy, 2013.

[30] Aqsa Kashaf, Vyas Sekar, and Yuvraj Agarwal. Analyzing Third Party
Service Dependencies in Modern Web Services: Have We Learned
from the Mirai-Dyn Incident? In Proceedings of the ACM Internet Mea-
surement Conference (IMC), 2020.

[31] S. Kent. IP Authentication Header. RFC 4302, IETF, December 2005.
[32] E. Kinnear, P. McManus, T. Pauly, T. Verma, and C.A.Wood. Oblivious

DNS over HTTPS. RFC 9230, IETF, June 2022.
[33] W. Kumari, E. Hunt, R. Arends, W. Hardaker, and D. Lawrence. Ex-

tended DNS Errors. RFC 8914, IETF, October 2020.
[34] Yi-Hsuan Kung, Taeho Lee, Po-Ning Tseng, Hsu-Chun Hsiao, Tiffany

Hyun-Jin Kim, Soo BumLee, Yue-Hsun Lin, andAdrian Perrig. A prac-
tical system for guaranteed access in the presence of ddos attacks and
flash crowds. In 2015 IEEE 23rd International Conference on Network
Protocols (ICNP), 2015.

[35] Soo BumLee,Min Suk Kang, and Virgil D. Gligor. Codef: collaborative
defense against large-scale link-flooding attacks. In Proceedings of the
Ninth ACMConference on Emerging Networking Experiments and Tech-
nologies, CoNEXT ’13. Association for Computing Machinery, 2013.

[36] E. Lewis. The Role of Wildcards in the Domain Name System. RFC
4592, IETF, July 2006.

[37] Xiang Li, Dashuai Wu, Haixin Duan, and Qi Li. DNSBomb: A New
Practical-and-Powerful Pulsing DoS Attack Exploiting DNS Queries-
and-Responses. In Proceedings of the IEEE Symposium on Security and
Privacy (S&P), 2024.

[38] Yuanjie Li, Hewu Li, Zhizheng Lv, Xingkun Yao, Qianru Li, and Jian-
ping Wu. Deterrence of intelligent ddos via multi-hop traffic diver-
gence. In Proceedings of the ACM Conference on Computer and Com-
munications Security (CCS), 2021.

[39] Si Liu, Huayi Duan, Lukas Heimes, Marco Bearzi, Jodok Vieli, David
Basin, and Adrian Perrig. A Formal Framework for End-to-End DNS
Resolution. In Proceedings of the ACM SIGCOMM Conference.

[40] Zaoxing Liu, Hun Namkung, Georgios Nikolaidis, Jeongkeun Lee,
Changhoon Kim, Xin Jin, Vladimir Braverman, Minlan Yu, and Vyas
Sekar. Jaqen: A High-Performance Switch-Native Approach for De-
tecting and Mitigating Volumetric DDoS Attacks with Programmable
Switches. In Proceedings of the USENIX Security Symposium, 2021.

[41] Florian Maury. The “indefinitely” delegating name servers
(idns) attack. https://indico.dns-oarc.net/event/21/contributions/301/
attachments/272/492/slides.pdf, 2015. Accessed 2022-04-30.

[42] AndrewMcGregor, Phillipa Gill, and NicholasWeaver. CacheMeOut-
side: A New Look at DNS Cache Probing. In Proceedings of the Inter-
national Conference on Passive and Active Measurement (PAM), 2021.

[43] G. Moura,W. Hardaker, J. Heidemann, andM. Davids. Considerations
for Large Authoritative DNS Server Operators. RFC 9199, IETF,March
2022.

[44] Giovane C. M. Moura, Sebastian Castro, John S. Heidemann, and Wes
Hardaker. Tsuname: exploiting misconfiguration and vulnerability to
ddos DNS. In Proceedings of the ACM Internet Measurement Conference
(IMC), 2021.

14

https://gitlab.ethz.ch/netsec/dcc-artefact
https://dnsinstitute.com/research/2020/top-million-202008.html
https://dnsinstitute.com/research/2020/top-million-202008.html
https://developers.google.com/speed/public-dns/docs/isp
https://developers.google.com/speed/public-dns/docs/isp
https://man7.org/linux/man-pages/man5/resolv.conf.5.html
https://man7.org/linux/man-pages/man5/resolv.conf.5.html
https://www.statdns.com
https://indico.dns-oarc.net/event/21/contributions/301/attachments/272/492/slides.pdf
https://indico.dns-oarc.net/event/21/contributions/301/attachments/272/492/slides.pdf

[45] J. Nagle. On Packet Switches With Infinite Storage. RFC 970, IETF,
December 1985.

[46] Marcin Nawrocki, Maynard Koch, Thomas C Schmidt, and Matthias
Wählisch. Transparent Forwarders: An Unnoticed Component ofThe
Open DNS Infrastructure. In Proceedings of the International Confer-
ence on Emerging Networking Experiments and Technologies (CoNEXT),
2021.

[47] S. Proust. AdditionalWebRTCAudio Codecs for Interoperability. RFC
7875, IETF, May 2016.

[48] Bozidar Radunovic and Jean-Yves Le Boudec. A Unified Framework
for Max-Min and Min-Max Fairness With Applications. IEEE/ACM
Transactions on Networking, 15(5):1073–1083, 2007.

[49] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit
Congestion Notification (ECN) to IP. RFC 3168, IETF, September 2001.

[50] Sivaramakrishnan Ramanathan, JelenaMirkovic, Minlan Yu, and Ying
Zhang. Senss against volumetric ddos attacks. In Proceedings of the
34th Annual Computer Security Applications Conference, ACSAC ’18,
2018.

[51] Audrey Randall, Enze Liu, Gautam Akiwate, Ramakrishna Padmanab-
han, Geoffrey M Voelker, Stefan Savage, and Aaron Schulman. Truf-
flehunter: Cache Snooping Rare Domains at Large Public DNS Re-
solvers. In Proceedings of the ACM Internet Measurement Conference
(IMC), 2020.

[52] Benjamin Rothenberger, Dominik Roos, Markus Legner, and Adrian
Perrig. PISKES: Pragmatic Internet-scale key-establishment system.
In Proceedings of the ACM Asia Conference on Computer and Commu-
nications Security (ASIACCS), 2020.

[53] Paul Schmitt, Anne Edmundson, Allison Mankin, and Nick Feamster.
Oblivious DNS: practical privacy for DNS queries. In Proceedings on
Privacy Enhancing Technologies, 2019.

[54] Kyle Schomp, Onkar Bhardwaj, Eymen Kurdoglu, Mashooq
Muhaimen, and Ramesh K Sitaraman. Akamai DNS: Providing
Authoritative Answers to the World’s Queries. In Proceedings of the
ACM SIGCOMM Conference, 2020.

[55] Kyle Schomp, Tom Callahan, Michael Rabinovich, and Mark Allman.
On Measuring The Client-Side DNS Infrastructure. In Proceedings of
the ACM Internet Measurement Conference (IMC), 2013.

[56] Jared M Smith and Max Schuchard. Routing around congestion: De-
feating ddos attacks and adverse network conditions via reactive bgp
routing. In 2018 IEEE Symposium on Security and Privacy (SP), 2018.

[57] Brent Stephens, Arjun Singhvi, Aditya Akella, and Michael Swift. Ti-
tan: Fair Packet Scheduling for Commodity Multiqueue NICs. In Pro-
ceedings of the USENIX Annual Technical Conference (ATC), 2017.

[58] Ion Stoica, Scott Shenker, and Hui Zhang. Core-stateless fair queue-
ing: Achieving approximately fair bandwidth allocations in high
speed networks. In Proceedings of the ACM SIGCOMM Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communication, 1998.

[59] Ahren Studer and Adrian Perrig. The coremelt attack. In Computer
Security – ESORICS, 2009.

[60] Ammar Tahir and Radhika Mittal. Enabling users to control their in-
ternet. In Proceedings of the USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2023.

[61] Rajat Tandon, HaodaWang, NicolaasWeideman, Shushan Arakelyan,
Genevieve Bartlett, Christophe Hauser, and Jelena Mirkovic. Leader:
Defense against exploit-based denial-of-service attacks on web appli-
cations. 2023.

[62] ChenxuWang, Tony T. N.Miu, Xiapu Luo, and JinheWang. Skyshield:
A sketch-based defense system against application layer ddos attacks.
IEEE Transactions on Information Forensics and Security, 2018.

[63] Jiarong Xing, Wenqing Wu, and Ang Chen. Ripple: A Programmable,
Decentralized Link-Flooding Defense Against Adaptive Adversaries.
In Proceedings of the USENIX Security Symposium, 2021.

[64] Wei Xu, Xiang Li, Chaoyi Lu, Baojun Liu, Haixin Duan, Jia Zhang,
Jianjun Chen, and Tao Wan. TsuKing: Coordinating DNS Resolvers
and Queries into Potent DoS Amplifiers. In Proceedings of the ACM
Conference on Computer and Communications Security (CCS), 2023.

[65] Zhiying Xu, Sivaramakrishnan Ramanathan, Alexander Rush, Jelena
Mirkovic, and Minlan Yu. Xatu: boosting existing ddos detection
systems using auxiliary signals. In Proceedings of the 18th Interna-
tional Conference on Emerging Networking EXperiments and Technolo-
gies, CoNEXT ’22, 2022.

[66] Kok-Kiong Yap, Te-Yuan Huang, Yiannis Yiakoumis, Sandeep Chin-
chali, Nick McKeown, and Sachin Katti. Scheduling packets over mul-
tiple interfaces while respecting user preferences. In Proceedings of
the International Conference on Emerging Networking Experiments and
Technologies (CoNEXT), 2013.

[67] Liangcheng Yu, John Sonchack, and Vincent Liu. Cebinae: Scalable in-
network fairness augmentation. In Proceedings of the ACM SIGCOMM
Conference, 2022.

[68] Z. Yu, J. Wu, V. Braverman, I. Stoica, and X. Jin. Twenty years after:
Hierarchical core-stateless fair queueing. In USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2021.

[69] Menghao Zhang, Guanyu Li, Shicheng Wang, Chang Liu, Ang Chen,
Hongxin Hu, Guofei Gu, Qianqian Li, Mingwei Xu, and Jianping Wu.
Poseidon: Mitigating volumetric ddos attacks with programmable
switches. In Proceedings of the Symposium on Network and Distributed
Systems Security (NDSS), 2020.

15

Materials presented in the appendix have
not been peer-reviewed
A Measurement Details
To understand whether and how real-world DNS servers
implement rate limiting (RL), we conduct a measurement
study on a list of 45 popular public resolvers as summarized
in Table 3. They cover DNS operators of varying scale and
geo-locations. Some of the resolvers implement IP-based ac-
cess control and are non-responsive to some of our probing
clients (probes), but all of them stay responsive to at least
one probe throughout our measurements.

We configure two authoritative BIND 9 servers to host
our own domains with carefully designed resource records,
and use three probes to generate requests for these records.
All our servers and probes run on cloud VMs from DigitalO-
cean. The two servers and one probe locate at a data center
in Europe and the other two probes in North America and
Asia. Our measurements do not violate the cloud provider’s
user policy nor raise any security alarm from the cloud plat-
form. We took different precautions described below to en-
sure that the measurements cause no harm to those public
resolvers. Our study consists of the following two parts.

A.1 Ingress RL
ManyDNS server implementations provide native functions
for rate limiting responses to clients based on IP address/pre-
fix. This is regardless of whether a DNS server works in
the authoritative or recursive mode, and whether client re-
quests hit cache or not. Ingress RL can be applied at the gran-
ularity of response type. For instance, BIND allows the con-
figuration of individual limits for responses with RCODE as
NOERROR, NXDOMAIN, error, etc. We consider two query
patterns that generate two typical types of response:

• P1 (WC): pseudo-randomnames that triggerwildcard-
synthesized NOERROR responses;

• P2 (NX): pseudo-random names that trigger NXDO-
MAIN responses.

We use a standard DNS performance testing tool dnsperf
on our probes to measure possible ingress rate limits imple-
mented by the resolvers in our dataset. It estimates a DNS
server’s query processing throughput in a self-pacing man-
ner, up to a maximum QPS specified via the -Q option. One
issue with dnsperf is that it sends requests in bursts, which
causes the estimated QPS to fluctuate drastically and fail to
converge for some DNS servers implementing RL. Rather
than setting a fixed large value for -Q and relying solely on
dnsperf to find out the actual QPS, we dynamically adjust
the value until we observe that the measured QPS remains
stable. The QPS estimation counts only NOERROR or NX-
DOMAIN responses and excludes SERVFAIL or REFUSED
responses. Each measurement lasts for 30 seconds by de-
fault, which we find sufficient to produce stable results in

Table 3. The 45 public resolvers used in our measurements.
The list is compiled from multiple sources∗.

Resolver IP Resolver IP
AdGuard (AG) DNS 94.140.14.14 InfoServer GmbH 212.89.130.180
AliDNS 223.5.5.5 Level 3 DNS 209.244.0.3
AMAZON-02 54.93.169.181 Liteserver 5.2.75.75
Baidu Public DNS 180.76.76.76 NTT America 129.250.35.250
CIRA Canadian 149.112.121.10 Neustar 64.6.64.6
CNNIC-SDNS 1.2.4.8 NextDNS 45.90.30.193
CenturyLink 205.171.3.65 Nextgi LLC 134.195.4.2
CleanBrowsing 185.228.168.9 Norton-ConnectSafe 199.85.126.10
Cloudflare 1.1.1.1 OVH SAS 217.182.198.203
Cogent Comm. 66.28.0.61 OneDNS 117.50.10.10
Comodo Secure DNS 8.26.56.26 OpenDNS Home 208.67.222.222
Control D 76.76.2.0 OpenNIC 51.77.149.139
Cyberlink AG 89.249.44.73 Probe Networks 82.96.65.2
DNS for Family 94.130.180.225 Quad101 101.101.101.101
DNS.WATCH 84.200.69.80 Quad9 9.9.9.9
DNSForge 176.9.93.198 ScanPlus GmbH 212.211.132.4
DNSpai 101.226.4.6 Swisscom 195.186.4.110
Deutsche Telekom 194.25.0.68 TEFINCOM S.A. 103.86.96.100
Dyn 216.146.35.35 TREX 195.140.195.21
Fortinet 208.91.112.53 Vodafone 195.27.1.1
Freenom World 80.80.80.80 xTom 77.88.8.8
GCore Free 95.85.95.85 114DNS 114.114.114.114
Google DNS 8.8.8.8
∗ https://stats.labs.apnic.net/rvrs, https://www.dnsperf.com,
https://publicdnsserver.com/fastest/, https://www.publicdns.xyz

most cases, and we prolong it to 60 seconds if the measured
QPS does not converge within 30 seconds. We start with an
initial probing rate of 100 QPS and proceed with a binary
search for a possible rate limit up to 5000 QPS, which is an
upper bound we set to avoid stressing the resolvers.

We set the TTL of our resource records (including wild-
card records for positive answers and SOA records for neg-
ative answers) as 600 seconds so that they will not stay in
the resolvers’ cache for an unnecessarily long time. While
the two query patterns can be exploited to bypass caching
with almost infinitely many names (only bounded by the
maximum length of a DNS name), we restrict the number
of unique query names used in our measurements to match
the probing QPS and let dnsperf loop over the names; as
a result, most requests are answered from resolvers’ cache.
This avoids wasting resources of themeasured resolvers and
allows us to isolate the impact of resolvers’ egress RL and
other potential limiting factors on cache-missed pending re-
quests that create outgoing queries.

A.2 Egress RL
Measuring egress RL is more challenging because large pub-
lic resolvers normally distribute client requests across multi-
ple egresses and sometimes do so even for outgoing queries
triggered by a single request. We also observe that some
resolvers replicate queries to multiple egresses, and some
of them change their egress set even for different requests
from the same client. In general, large resolvers can imple-
ment customized and complex load balancing strategies that

16

https://stats.labs.apnic.net/rvrs
https://www.dnsperf.com
https://publicdnsserver.com/fastest/
https://www.publicdns.xyz

>zone target -domain @ 127.0.0.1

// Amplification instance 1

15.14.13.12.11.10.9.8.7.6.5.4.3.2.1.r1 -1 CNAME 15.14.13.12.11.10.9.8.7.6.5.4.3.2.1.r2 -1

15.14.13.12.11.10.9.8.7.6.5.4.3.2.1.r2 -1 CNAME 15.14.13.12.11.10.9.8.7.6.5.4.3.2.1.r3 -1

...

15.14.13.12.11.10.9.8.7.6.5.4.3.2.1. r15 -1 CNAME 15.14.13.12.11.10.9.8.7.6.5.4.3.2.1. r16 -1

15.14.13.12.11.10.9.8.7.6.5.4.3.2.1. r16 -1 A 127.0.0.1

// Amplification instance 2

15.14.13.12.11.10.9.8.7.6.5.4.3.2.1.r1 -2 CNAME 15.14.13.12.11.10.9.8.7.6.5.4.3.2.1.r2 -2

15.14.13.12.11.10.9.8.7.6.5.4.3.2.1.r2 -2 CNAME 15.14.13.12.11.10.9.8.7.6.5.4.3.2.1.r3 -2

...

(a) CNAME chain × QNAME minimization.
>zone attacker -com @ 127.0.0.2

// Amplification instance 1 | // Amplification instance 2

q-1 NS ns-a1 -1 | q-2 NS ns-a1 -2

q-1 NS ns-a2 -1 | q-2 NS ns-a2 -2

q-1 NS ns-a3 -1 | q-2 NS ns-a3 -2

... | ...

ns -a1 -1 NS ns-t11 -1.target -domain | ns-a1 -2 NS ns-t11 -2.target -domain

ns -a1 -1 NS ns-t12 -1.target -domain | ns-a1 -2 NS ns-t12 -2.target -domain

ns -a1 -1 NS ns-t13 -1.target -domain | ns-a1 -2 NS ns-t13 -2.target -domain

... | ...

ns -a2 -1 NS ns-t21 -1.target -domain | ns-a2 -2 NS ns-t21 -2.target -domain

ns -a2 -1 NS ns-t22 -1.target -domain | ns-a2 -2 NS ns-t22 -2.target -domain

ns -a2 -1 NS ns-t23 -1.target -domain | ns-a2 -2 NS ns-t23 -2.target -domain

... | ...

(b) Fan-out × fan-out with large NS RRSets

Figure 12. Examples of the zone files for query patterns P3 and P4 with compositional amplification effects.

require dedicated measurement methods to analyze. Apply-
ing the previous two query patterns P1 and P2 to egress RL
measurements may require high request rates that put un-
due load on the measured resolvers, and this approach does
not work if a resolver’s egress rate limit is higher than its
ingress rate limit, which we find to be the case for many
resolvers in our dataset.

To this end, we adopt two additional query patterns that
leverage amplification to trigger more resolver queries than
the requests sent by our probes [22].

• P3 (CQ): a predefined name that initiates a chain of
CNAME records formed by names with many labels.

• P4 (FF): a predefined name that owns a large set of
NS records, each of which owns yet another large set
of NS records.

P3 causes a resolver to chase a CNAME chain while per-
forming query nameminimization [12].P4 causes a resolver
to recursively look up excessive nameserver names. Figure 12
provides examples of the zone files for both patterns.

There are several additional changes in our measurement
methods. Since measuring egress RL requires a resolver to
generate queries, we should evade caching as much as pos-
sible. For each amplification query pattern we set up 5000

distinct instances that can be queried in parallel. We also set
the resource records’ TTL as 1 so that they can be quickly
evicted from resolvers’ cache and re-queried during ourmea-
surements. To reduce the load put on public resolvers, we
shorten the duration of each measurement to 15 seconds.

We cannot rely on dnsperf to estimate a resolver’s egress
QPS, as it has no visibility into the queries generated by
resolvers. Moreover, the theoretical message amplification
factor of a query pattern is not always achievable by a re-
solver, and there is no consistent relationship between how
many requests the resolver receives and how many queries
it sends. We instead calculate egress QPS from the query log
at our authoritative nameservers. For each public resolver,
we single out its egress that sends the most queries to our
authoritative servers, calculate the QPS within a 1-second
slidingwindow over ameasurement window, and report the
most stable value that lasts over consecutive windows. We
conduct the measurements sequentially, one at a time, and
wait 60 seconds between them, in order to obtain clean data
for each measurement without the complexity to isolate re-
solvers based on their egresses from the query log.

The probing process for egress rate limits is similar to that
for ingress rate limits. We start with a probing request rate

17

of 10 QPS and proceed in a binary-search style. A possible
egress rate limit is reached if the measured egress QPS stops
to increase with the probing request rate. We observe that
once this happens, some resolvers starts allocatingmore egresses
to process our requests.

It should be noted that themeasurement results for egress
RL are best-effort and not as reliable as ingress RL. This is
due to the existence of other potential limiting factors im-
plemented by resolvers: the limited number of pending re-
quests per client, the overall number of outstanding queries,
the depriorization of authoritative servers that return SERV-
FAIL or REFUSED responses, etc. We leave the design of
more accurate measurement methods for future work.

B MOPI-FQ Scheduling
Figure 13 describes the pseudo code implementing ourMOPI-
FQ scheduler. The syntax is in the C/C++ style: for example,
we use struct to define data structures, the * symbol to
represent pointer types, and container<elem> to repre-
sent abstract containers where elem is the type of the un-
derlying elements. Constants are represented in the upper
case, e.g., MOPI_CAPACITY .

Our specification assumes equal shares for all input sources,
andwewill showhow this can be easily extended to unequal
shares (Appendix B.1.3). We also omit non-essential details
such as initialization functions, configurable parameters, er-
ror handling, and various performance optimizations.

In this section, we first elaborate on MOPI-FQ’s design
with a complexity analysis (Appendix B.1) and then prove
its fairness property (Appendix B.2).

B.1 Functionality and Complexity
The backbone of MOPI-FQ is a pool (out_pool) of link-
able entries (q_entry) that can be allocated to per-output
queues (poq). The available entries themselves form a list
whose head is stored in avail_slots , which is updated
every time an entry is allocated or recycled. The scheduler
also maintains a collection of queuing state (poq_state)
for each active output channel2, which is identified by a des-
tination address, using a standard unordered associative ar-
ray or hash table (poq_tracker). Each queue is logically di-
vided into multiple scheduling rounds each containing mes-
sages from unique input sources (cf. Figure 7c). We track
the boundaries between rounds with pointers stored in a
ring buffer (round_tails). To decide which round to in-
sert messages from an input source, it is also necessary to
track individual sources’ latest rounds (source_latest).
Other important state needed for correct implementation in-
cludes the queue’s head and depth, its current round to out-
put, and the latest round scheduled (i.e., the highest among
2A channel is active if at least one message to the output destination is in
the corresponding queue.

all sources). In addition, the scheduler associates rate lim-
iters implemented as token buckets with all active outputs
(rate_lim). It alsomaintains a sequence of active channels
scheduled for output (out_seq), which are ordered by the
arrival time of the front messages in their queues and the
time when congested channels become available.

MOPI-FQ exposes two major operations for scheduling,
enqueue and dequeue , which rely on a collection of aux-
iliary functions. For efficiency, these two operations should
be executed by different threads in synchrony. Here we fo-
cus on the essential algorithmic aspects without diving into
optimized synchronization design. Unlike FIFO queues or
queuing structures used for classic FQ scheduling [13, 20,
45], MOPI-FQ does not always push messages to one end
of a queue nor pop messages from the other end. Messages
can be inserted or removed anywhere in the corresponding
queue depending on the scheduler’s state. This will become
clear below as we explain the functions in greater details.

Inwhat follows, let𝑛 be the number of active input sources
and𝑚 be the number of active output channels.

B.1.1 SpaceComplexity. Themain entry pool out_pool
has a fixed capacity (e.g., one million), which should be sub-
stantially larger than the capacity (MAX_POQ_DEPETH) of in-
dividual queues in order to accommodate sufficient queues.
Each of the three containers poq_tracker , rate_lim , and
out_seq has exactly 𝑚 elements. The latter two contain-
ers have fixed-size elements. As for the other, all data fields
in its element poq_state , including the small ring buffer
round_tails (e.g., with a size MAX_ROUND equal to 5),
have fixed sizes except source_latest , whose size equals
to the number of active input sources corresponding to the
output: an entry is created as soon as the first message with
the source and destination addresses is enqueued, and the
entry is removed as soon as the last such message is de-
queued. Hence, the aggregated size of all source_latest s
is 𝑠 ≤ 𝑞 := total_depth (i.e., the number of queued mes-
sages), and MOPI-FQ has a space complexity of 𝑂 (𝑚 + 𝑞).

For DCC as a whole with MOPI-FQ, per-client anomaly
monitoring and pre-queue policing, its overall space com-
plexity is𝑂 (𝑛+𝑚+𝑝) where 𝑝 ≥ 𝑞 is the number of pending
resolver queries waiting for answers. This is asymptotically
the same as the state maintained by a vanilla DNS resolver
(see Table 1).

B.1.2 Time Complexity. We first analyze the enqueue
function, which inserts a message at the right position in
the queue such that the message source’s fair share of the
output link is maintained. In particular, the message should
be placed at the next round of the source’s latest round cur-
rently scheduled in the corresponding queue. This involves
updating different internal data structures and dealing with

18

struct message { | message dequeue () {

addr get_source (); | dst = peek_next_available_output ();

addr get_destination (); |

/* the data is store somewhere else */ | if (dst == NULL)

bytes* raw_data; | return FAIL_NO_DATA_OR_ALL_CONGESTED;

} | else

| entry = remove_head_poq(dst);

struct mopi_fq { |

struct q_entry { | return entry.msg;

q_entry* next; | }

q_entry* prev; |

message msg; | int enqueue(msg) {

/* when the message is enqueued */ | src = msg.get_source ();

time arr_time; | dst = msg.get_destination ();

}; |

| crt_r = get_poq_current_round(dst);

struct poq_state { | lat_r = get_poq_latest_round(dst);

int queue_depth; | src_nxt = get_src_next_round (dst , src);

q_entry* queue_head; |

ring_buffer <q_entry*> round_tails; | if (src_nxt == crt_r + MAX_ROUND)

int current_round; | return FAIL_CLIENT_OVERSPEED;

/* latest round for the entire poq */ |

int latest_round; | if (get_poq_depth(dst) == MAX_POQ_DEPTH

/* latest rounds for individual sources */ | && src_nxt >= lat_r)

unorder_map <addr ,int > source_latest; | return FAIL_CHANNEL_CONGESTED;

}; |

| if (total_depth == MAX_CAPACITY

/* pre -allocated queue storage */ | && src_nxt >= lat_r)

array <q_entry > out_pool; | return FAIL_QUEUE_OVERFLOW;

/* list of available entries at any time */ |

q_entry* avail_slots; | activate_output_if_new(dst);

int total_depth; | append_poq_round(dst , src_nxt , msg);

unorder_map <addr , poq_state > poq_tracker; |

unorder_map <addr , token_bucket > rate_lim; | return SUCCESS;

/* where logarithmic costs come from */ | }

ordered_map <time , addr > out_seq; |}

Figure 13. The pseudo code for MOPI-FQ scheduling described in a C-style syntax. The auxiliary functions used by the
enqueue and dequeue functions are self-explaining and further analyzed in Appendix B.1.

several corner cases.We analyze the involved auxiliary func-
tions in the order of their appearance.

The first 5 getter functions, from get_source() through
get_poq_depth() to get_src_next_round() , are sim-
ple and self-evident. Only get_src_next_round() requires
accessing a hash table source_latest which takes con-
stant time. If the message’s output destination is currently
not active, activate_output_if_not_exists() will cre-
ate and insert new items to poq_tracker and rate_lim
in constant time. It also inserts the destination address to
out_seq according to the message’s arrival time, which
has a𝑂 (𝑙𝑜𝑔(𝑚)) cost as explained below. If the current queue

is not full and the current round of the message’s source
does not exceed the maximum round for the destination,
the scheduler will insert the message at the end of the ex-
pected next round with the append_poq_round function,
which entails accessing poq_tracker , source_latest ,
and round_tails and updating at most three q_entry s,
all in constant time. In summary, the time complexity of
enqueue is 𝑂 (𝑙𝑜𝑔(𝑚)).
The dequeue function takes messages out from active

queues. The central question here is which queue to choose
for each dequeue operation. Simple round robin over the

19

queues will break the arrival order of messages across differ-
ent queues and so increase queuing delay. The same holds
for random selection or any scheduling policy that sticks
to a queue until it becomes empty or the channel becomes
congested. To this end, we introduce an ordered map data
structure out_seq to track the scheduling order for queues
based on the arrival time of their head messages. The sched-
uler always chooses the queue indicated by the front ele-
ment of out_seq subject to the availability of the corre-
sponding output channel. Since the arrival order of mes-
sages across different queues can be arbitrary, the elements
of out_seq should be relocated whenever necessary with
𝑂 (𝑙𝑜𝑔(𝑚)) costs. Another technicality arises from channel
congestion, in which case the scheduler must skip the con-
gested queue and retry it later. We handle the situation by
relocating the congested channel’s corresponding element
in out_seq according to a predicated future time when
the channel becomes available again. Putting everything to-
gether, the time complexity of dequeue is also 𝑂 (𝑙𝑜𝑔(𝑚)).

Figure 15 illustrates the state of MOPI-FQ, the queues and
out_seq in particular, with a series of dequeue operations.

B.1.3 Unequal Shares. In the algorithm described so far,
the scheduler enqueues exactly one message in each round
for every source sending to the same destination. If sources
have unequal shares, we can adjust the numbers of mes-
sages that they are allowed for each round accordingly. To
implement this, we track per-source round quota, which is
initialized to a normalized source share, in each poq_state .
This additional state can be merged with source_latest
to save space and lookup time. The quota of a source will
be decremented by 1 every time a message from the source
is enqueued to its latest round. The quota will be reset to
its maximum when it reaches zero and hence the source’s
latest round will advance by 1. The update of a source’s
round quota for an output channel is independently of other
sources for the same channel. Except this minor modifica-
tion, all other operations of MOPI-FQ remain unchanged.

B.2 Fairness
We refer to the problem formulated in Section 4.1 as multi-
output fair queuing (MO-FQ). It aims to simultaneously al-
locate all output channels among sources according to their
predefined shares. In particular, we require the allocation to
be max-min fair (MMF) as formalized below.

Definition B.1 (Output Allocation). For an output chan-
nel 𝑗 and its set of active sources S𝑗 (with loss of generality,
let S𝑗 := [1, 𝑘] where 𝑘 ≤ 𝑛), an allocation is defined as
a vector A := ⟨𝑎1𝑗 , 𝑎2𝑗 , . . .⟩ ⊂ R |S𝑗 | subject to 0 ≤ 𝑎𝑖 𝑗 ≤
𝑟𝑖 𝑗 ,∀𝑖 ∈ [1, 𝑘] and

∑𝑘
𝑖=1 𝑎𝑖 𝑗 ≤ 𝐶 𝑗 , where 𝑟𝑖 𝑗 is source 𝑖’s

message sending rate towards destination 𝑗 for which the
corresponding output channel has capacity 𝐶 𝑗 .

Clearly, an allocation is subject to the demands of individ-
ual sources as well as the output channel’s capacity. If the
aggregate demand is below the channel capacity, all sources
can send at their desired rates and there is no congestion.
We are interested in how fair sharing is achieved in the case
of congestion. This will be the focus of the rest of this sec-
tion. For ease of presentation, we use A𝑖 to denote the 𝑖-th
element of A.

DefinitionB.2 (MMFAllocation). An allocationA ismax-
min fair if and only if for any other allocation B, if there
exists B𝑥 > A𝑥 then there must also exist B𝑦 < A𝑦 ≤ A𝑥 .

Intuitively, we cannot increase an MMF allocation’s ele-
ment 𝐴𝑖 to obtain a new allocation, without decreasing an-
other element 𝐴 𝑗 already smaller than or equal to 𝐴𝑖 . Max-
min fairness is among the most adopted notions of fair re-
source sharing in computer systems and networks.

The definition above assumes equal shares for all sources.
Extending it to a weighted version is straightforward [48].
Recall that 𝜋𝑖 is the share of source 𝑖 . An MMF allocation A
w.r.t. the shares (or weights) {𝜋𝑖 }1≤𝑖≤𝑘 is an allocation such
that for any allocation B if there exists B𝑥 > A𝑥 then there
must also exist B𝑦/𝜋𝑦 < A𝑦/𝜋𝑦 ≤ A𝑥/𝜋𝑥 .

An interesting question is whether an MMF allocation ex-
ists for any MO-FQ instance. In general, the existence of
MMF vector over a set depends on whether the set is con-
vex and compact [48]. For MO-FQ this is indeed the case: its
linear constraints (see Definition B.1) always define such a
feasible set. Moreover, there is always a unique MMF allo-
cation for any MO-FQ instance. This conclusion extends to
the weighted version by Theorem 1 of the seminal work of
Radunovic and Boudec [48].

The theorem below states MOPI-FQ’s fairness property.

TheoremB.1 (MOPI-FQ Fairness). MOPI-FQ achieves a uni-
queMMF allocation𝑈 𝑗 for each active output channel 𝑗 among
its active input sources S𝑗 .

From a high level, MOPI-FQ maintains a separate flat-
tened calendar queue for each active output channel. The
actual scheduling for fairness takes place at the enqueue op-
erations: messages are inserted in a way that for each sched-
uling round no source can have more messages allocated
than its (normalized) share. The messages in a queue are
simply dequeued in the order determined by the enqueue
operations. Every queue is fairly scheduled independently
in this way. One technicality here is that the queues com-
pete for the shared resource pool with their real capacities
(no greater than the nominal capacity MAX_POQ_DEPTH) dy-
namically adjusted. If a queue’s capacity is too small, fair-
ness can be affected (e.g., slow senders may be blocked by
fast senders) depending on theworkload, traffic pattern, and
the number of active entities. Since this issue is common
to any FQ designs, we do not discuss further the subtleties
therein. We instead assume that once created each queue is

20

guaranteed a minimum capacity that can accommodate all
its active senders given the channel capacity without affect-
ing fair scheduling. With this consideration, we can then
analyze each output channel independently and we prove
the above theorem as follows.

Proof. We aim to derive an allocation A of an output chan-
nel’s capacity𝐶 by MOPI-FQ and show that it is MMF. Con-
sider a period of time 𝑇 during which a fixed number of
sources [1, 𝑘] send messages to a destination at their respec-
tive constant rates 𝑟𝑖 . The period 𝑇 should be large enough
to allow every source to send full messages, i.e., their mes-
sage counts are integers rather than fractions.

Let us consider the sources’ output traffic volumes during
𝑇 . Because of the differences in sending rates, it is likely that
not all sources’ messages appear in the queue at any point
in time. Whenever a message from a not-in-queue source
arrives, the scheduler will insert the message to the output
channel’s current round, evicting out a message of some
other source from the latest round if the queue is full. Hence,
despite the rate differences and queue fullness, a source can
always have its messages scheduled for output at its allo-
cated rate. The number of messages from source 𝑖 that ever
arrive at the scheduler but not necessarily sent out is simply
𝑟𝑖𝑇 . The overall number of messages MOPI-FQ sends out is
𝐶𝑇 . The way it sends messages round by round corresponds
exactly to the Water Filling (WF) procedure [48]. Figure 14
gives an illustration.

Following WF, we can calculate the number of messages
output for every source during 𝑇 and hence their allocated
rate 𝑎. Assuming identical shares, this can be analytically
derived as 𝑎𝑖 := 𝑓 (𝐶, 𝑟𝑖 ,R := {𝑟𝑖 }1≤𝑖≤𝑘), where 𝑓 (·) is a
recursive function defined as follows:

𝑓 (𝐶, 𝑟,R) =

𝑟, if 𝑟 ≤ 𝐶

| R | ; (1)
𝐶
| R | , if 𝑟∗ > 𝐶

| R | , s.t. 𝑟∗ := min(R); (2)
𝑟∗ + otherwise, s.t. 𝐶′ := 𝐶 − |R| · 𝑟∗,
𝑓 (𝐶′, 𝑟 − 𝑟∗,R′), R′ := {𝑟𝑖 − 𝑟∗ |𝑟𝑖 ∈ R \ {𝑟∗}}. (3)

In case (1), a source’s sending rate is no greater than the av-
erage rate that can be allocated in theory, and therefore its
demand can be safely satisfied (e.g., source 2 in Figure 14).
In case (2), even the least demanding source requires more
than the average rate and therefore everyone is assigned the
average rate. In case (3), every source is allocated the lower-
than-average rate of the least demanding source, and the
remaining bandwidth is allocated again in the WF manner
among the unsatisfied sources. It is easy to see that 𝑓 (·) is
a monotonically increasing function on 𝑟 for a given con-
figuration 𝐶 and R. Moreover, whenever the recursions in
case (3) terminate at case (1), we have 𝑓 (𝑟) = 𝑟 up to a
point 𝑆 > 𝐶/|R|. We call 𝑆 a satisfaction threshold, which
is uniquely determined for a given configuration. Beyond
the satisfaction threshold, the recursions will terminate at
case (2) and 𝑓 (𝑟) = 𝑀 for some constant𝑀 ∈ (𝑆,𝐶]. We can

CT

1

2

3

⋯

4r2T(4r2 + 3(r1 − r2))T

Dropped

Figure 14. Illustration of the water filling (WF) procedure
for max-min fair allocation in the context of MOPI-FQ. The
horizontal bars represent messages arriving at the scheduler
from different sources within a time period 𝑇 . The vertical
lines indicate the aggregate numbers (marked on the top) of
messages from all sources represented by the partial bars to
the right. All extra messages beyond the output channel’s
capacity 𝐶 are dropped.

then rewrite the function as

𝑓𝐶,R (𝑟) =
{
𝑟, 𝑟 ≤ 𝑆 ;

𝑀, 𝑟 > 𝑆.

Now we examine A := ⟨𝑓𝐶,R (𝑟1), 𝑓𝐶,R (𝑟2), . . . , 𝑓𝐶,R (𝑟𝑘)⟩.
Let S and U be the set of sources that are satisfied and un-
satisfied under A, respectively. That is, S := {𝑖 | 𝑟𝑖 ≤ 𝑆, 1 ≤
𝑖 ≤ 𝑘} andU := {𝑖 | 𝑟𝑖 > 𝑆, 1 ≤ 𝑖 ≤ 𝑘}. Let B be any alterna-
tive allocation. Note that it is impossible to have B𝑖 > A𝑖 for
any 𝑖 ∈ S because of the individual allocation constraints
(Definition B.1). Let B𝑖 > A𝑖 for some 𝑖 ∈ U. Because of the
aggregate allocation constraint

∑𝑘
𝑖=1 𝑎𝑖 = 𝐶 , we know there

must be B𝑗 < A𝑗 for some 𝑗 . If 𝑗 ∈ U, we haveA𝑗 = 𝑀 = A𝑖 ,
otherwise 𝑗 ∈ S and we have A𝑗 < 𝑀 = A𝑖 . Hence, by
Definition B.2 A is an MMF allocation. The case of unequal
shares can be proved in the same way.

□

21

HHH… F…

HHH… F…

HHH… FX…

HH H… FX…

HHH… FX…

HHH… FXX…

HHH… FXX…

HHH… FXX…

HH… FX…

H H… F…

H… F…

Figure 15. Illustration of MOPI-FQ with consecutive dequeue operations. On the left are per-output queues allocated over a
flat array of linkable entries with the queue heads marked as ‘H’. The colored entries contain messages for different outputs
and the white entries linked by dashed arrows are recycled for future allocation. On the right is the output sequence with the
front element marked as ‘F’ and congested outputs marked as ‘X’. We assume that the currently queued messages arrive in
the order from right to left and that no new message is enqueued. The scheduler dequeues messages according to their arrival
order while skipping and re-scheduling messages for congested output channels.

22

	Abstract
	1 Introduction
	2 Motivation
	2.1 DNS Resolution Architecture
	2.2 DoS Defenses for DNS
	2.3 Adversarial Congestion

	3 DNS Congestion Control
	3.1 Problem Statement
	3.2 Controlling Individual Resolvers
	3.3 Controlling Full Resolution Path

	4 MOPI Scheduler
	4.1 Problem Formulation
	4.2 Scheduler Design

	5 Implementation and Evaluation
	5.1 Attack Resilience
	5.2 Performance Overhead

	6 Discussion
	7 Related Work
	8 Conclusion
	References
	A Measurement Details
	A.1 Ingress RL
	A.2 Egress RL

	B MOPI-FQ Scheduling
	B.1 Functionality and Complexity
	B.2 Fairness

