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Abstract
While DNS is often exploited by reflective DoS at-

tacks, it can also be weaponized as a powerful amplifier
to overload itself, as evidenced by a stream of recently
discovered application-layer amplification attacks. Given
the importance of DNS, the question arises of what the
fundamental traits are for such attacks. To answer this
question, we perform a systematic investigation by estab-
lishing a taxonomy of amplification primitives intrinsic
to DNS and a framework to analyze their composability.
This approach leads to the discovery of a large family
of compositional amplification (Camp) vulnerabilities,
which can produce multiplicative effects with message
amplification factors of hundreds to thousands. Our mea-
surements with popular DNS implementations and open
resolvers indicate the ubiquity and severity of Camp
vulnerabilities and the serious threats they pose to the
Internet’s crucial naming infrastructure.

1 Introduction

As a public UDP service with an amplification effect,
DNS has been frequently abused to launch reflective DoS
attacks. Yet, as a foundational component of the Internet,
DNS itself is also an inviting target for DoS attacks: a
DNS outage can disrupt numerous online services. For
instance, the infamous Mirai Dyn attack in 2016 rendered
over one hundred thousand popular domains unavailable
to tens of millions of users [22].

DNS-based reflection attacks leverage simple forms
of transport-layer amplification: response messages are
larger than request messages [38, 37], and an oversized
response will trigger TCP fallback and hence a few extra
messages [15]. Such generic amplification is also present
in many other UDP-based protocols [34].

In contrast, emerging DoS attacks against DNS servers
reveal more sophisticated forms of application-layer am-
plification: a single client request triggers a large number
of resolver queries, as a result of allowable DNS features

such as cascading referrals or query rewrites [5, 26, 29, 11].
Such attacks require the setup of DNS zones with spe-
cially crafted records on the target or auxiliary name-
servers, which is easily achievable with today’s popular
and accessible DNS hosting services. Previous amplifi-
cation vulnerabilities have been discovered mostly by
the ad-hoc analysis on some particular aspect of DNS
dynamics (see the discussion in Section 3). The sheer
complexity of DNS protocols suggest the existence of
many more such vulnerabilities yet to be unveiled.

The above motivates a systematic investigation of
application-layer amplification vulnerabilities inherent
to DNS. We start by establishing a taxonomy of amplifi-
cation primitives, which prolong name resolution with
excessive queries of distinct forms such as concurrent
and chaining ns queries. This approach allows us to both
characterize all existing vulnerabilities of this kind and
uncover subtle new attack vectors.

Next, we thoroughly examine the composability of
amplification primitives. This leads to the discovery of
a large family of compositional amplification (Camp)
vulnerabilities, where each derivative name of a prim-
itive generates another primitive and so on. They can
produce much higher multiplicative amplification effects
than individual primitives. We exhaustively establish
16 valid two-dimensional (2D) compositions based on
our taxonomy; they are regular in that all primitives
in the second dimension are of the same type and size.
The results from our composability analysis also enable
the construction of exponentially many irregular and
multi-dimensional compositions.

We demonstrate the perils of Camp with exten-
sive measurement of three major DNS implementations
(BIND, Unbound, and PowerDNS) and over 50 open re-
solvers. All of them are vulnerable to multiple Camp
variants: 2D compositions can already achieve a mes-
sage amplification factors (MAF) of several hundreds
for many resolvers; the MAF of 3D compositions can
ramp up to several thousands. We further illustrate the



high efficiency of distributed Camp attacks by simulating
them against our own authoritative nameservers. These
results are highly concerning given the variety of Camp,
the prevalence of accessible DNS hosting services, and
the existence of millions of exploitable open resolvers.

Mitigation. Mitigating Camp attacks is non-trivial.
Most compositions do not violate the standard DNS
protocols specified in RFCs; in fact, some of them re-
sult from the protocol specifications’ ambiguities, e.g.,
when query name minimization should be applied. Only
one particular feature—assigning aliases to ns names—
exploited by a few compositions is prohibited by the
RFCs yet is still allowed by many practical implementa-
tions. Hence, to eliminate Camp at the protocol level,
a general consensus must be reached within the broad
DNS community.

An essential mitigation mechanism is to restrict the
resolver queries generated for the resolution of each client
request. Such limits (e.g., max-recursion-depth) have
been implemented by resolver software in response to
previous amplification vulnerabilities. However, Camp
vulnerabilities stand out in that they can bypass individ-
ual limits and achieve an MAF equal to the multiplication
of these limits. This necessitates the design of holistic
query limiting algorithms that account for the subtle
interactions between DNS features.

We propose and discuss a list of mitigation options
in Section 6, ranging from protocol-level patches and
configuration options that cap the MAFs of Camp vul-
nerabilities, to system-wide rate limiting and anomaly
detection that can counter distributed Camp attacks.

Disclosure. We have reported our findings to the soft-
ware vendors of the three DNS implementations used
in our measurements. They have confirmed our results
and are now working with us to implement and assess
the mitigation options (more details in Section 6). A
dedicated backchannel within the DNS-OARC Matter-
most forum was established to facilitate the discussion.
In particular, BIND and Unbound have fixed their query
limiting mechanisms and will release the patches around
mid August. We are planning to invite more DNS-OARC
members into the discussion.

Moreover, we are working with a national cyber secu-
rity authority to coordinate the responsible disclosure
to broader communities. This includes (1) informing the
network operators of critical infrastructure and DNS
service providers within our country of residency, (2) is-
suing security advisories to the authority’s international
partners, and (3) disclosing the vulnerabilities to the
general public. In the meantime, the authority will assist
in the assignment of CVE and/or CWE numbers.

Nameserver 1 @ 1.2.3.4

a.com.      SOA   admin-1 

www.a.com.   A    9.9.9.9 
bar.a.com.   A    8.8.8.8 

sub1.a.com.  NS   ns1.a.com. 
ns1.a.com.   A    5.6.7.8 

sub2.a.com.  NS   ns2.b.net. 
ns2.b.net.   A    6.7.8.9 

sub3.a.com.  NS   ns3.b.net. 
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Nameserver 2 @ 5.6.7.8

sub1.a.com.     SOA   admin-2 
www.sub1.a.com.  A    7.7.7.7 

⑨
⑩

Nameserver 3 @ 9.8.7.6

b.net.      SOA    admin-3 
ns2.b.net.   A     9.8.7.6 
ns3.b.net.   A     5.4.3.2 

foo.b.net.  CNAME  bar.a.com. 
sub1.b.net. DNAME  sub1.a.com.

⑪
⑫
⑬

⑭
⑮

Figure 1: A DNS configuration for three zones containing
the main types of RRs. Each zone is hosted by a separate
nameserver. Below are examples for different response
types. The notation ⟨Q,t⟩ → IP : ⟨c, n⃝⟩ means that a
query for name Q of type t to nameserver at address IP
elicits a response with code c and an RR indexed by n⃝.
•⟨www.a.com.,a⟩ → 1.2.3.4 : ⟨noerror, 2⃝⟩
•⟨qqq.a.com.,a⟩ → 1.2.3.4 : ⟨nxdomain, 1⃝⟩
•⟨www.sub1.a.com.,a⟩ → 1.2.3.4 : ⟨noerror, 4⃝ 5⃝⟩
•⟨www.sub2.a.com.,a⟩ → 5.6.7.8 : ⟨refused,−⟩
•⟨foo.b.net.,a⟩ → 9.8.7.6 : ⟨noerror, 14⃝⟩
•⟨www.sub1.b.net.,a⟩ → 9.8.7.6 : ⟨noerror, 15⃝⟩

2 DNS Preliminaries

DNS is a distributed database over a tree-structured
namespace, where a name like www.example.com. con-
sists of dot-delimited labels. The namespace is parti-
tioned into administrative units (subtrees) called zones.
Each zone can independently manage names within its
authority and delegate parts of its authority to create
subzones. By convention, the zones right below the root
are called top-level domains (TLDs) such as com and
net, which typically serve delegation-only data to create
second-level domains (SLDs) like example.com.

A zone’s data is organized as Resource Records (RRs)
that are stored in a zone file. RRs map names to data
of different types: network addresses (type a/aaaa for
IPv4/IPv6), servers for zone delegation (type ns), other
(canonical) names (type cname/dname), etc. Records
of the same name and type but with different data are
grouped as an RRset. Each zone has one Start of Author-
ity (soa) record that defines the zone’s meta information.

An authoritative nameserver (hereafter, just name-
server) hosts zone files and responds to name lookup
queries with matching RRsets. In practice, DNS clients
do not directly send requests to nameservers but instead
rely on a recursive resolver (hereafter, just resolver) that
interacts with nameservers to find authoritative answers
for clients. Caching RRs at resolvers significantly reduces
the amount of queries sent to nameservers, especially
those associated with the root and TLDs, and thus makes
DNS scalable to serve the entire Internet.

The interaction between resolvers and nameservers is



Table 1: Summary of amplification primitives in each distinct form and variants of their construction.

Atomic
Form

Amplification
Primitive

Zone Setup Reported
first inRecords #Zone #Server

Fan-out Concurrent referral Glueless/Out-of-bailiwick ns RRset 1 1 [26, 5]
Failover referral Same as above, but the ns names own RRs 1 1 this work

Chaining
Referral chain Chaining glueless/out-of-bailiwick ns RRs 1 1 [26]

≥2 ≥2 [29]

Rewrite chain Chaining cname/dname RRs 2 2 [11]
≥1 1 [25]

Self-probing qname minimization One RR owned by a deep name 1 1 [8, 14]
Dense delegation One ns RR per label of a deep name ≥2 ≥2 this work

the most intricate part of the name resolution process.
Upon receiving a client request, if a resolver fails to find
an answer directly from its cache, it will ask the most
relevant nameserver it knows, and possibly many others,
until it decides on a final response to the client. This
process is often idealized in textbooks as an iterative
resolution, where the resolver contacts nameservers on
the delegation path of the query name (qname) in a
top-down manner. However, the process is substantially
more complex in reality due to the recursive nature of
DNS: the resolution of one name can lead to and depend
on the resolution of other names.

For each query a resolver sends to a nameserver, the
response falls within one of the four possibilities below.

• Definite answer. This concludes the query either
positively with a matching RRset, or negatively with
an nxdomain (non-existing domain) status code
indicating that the qname (and any node below it
in the namespace [9]) does not exist.

• Referral. This contains an ns RRset referring the
resolver to other nameservers responsible for the
qname. If the response contains no IP addresses for
these servers or such data is deemed untrustworthy
(explained in Section 3.1), the resolver must resolve
their names as well.

• Rewrite. This means that the qname is an alias
mapping to no meaningful data other than the
canonical name in the returned cname/dname RR.
The resolver should continue to resolve the name.

• Failure. An error code such as servfail or re-
fused indicates that the responding nameserver
cannot process the query for some reason (technical
issues, security policies, etc.). Error handling at the
resolver varies across implementations, e.g., retrying
another available nameserver.

A definite answer terminates the resolution of a query,
whereas a referral, rewrite, or failure response can prolong
the process by triggering new queries. Figure 1 give
examples for all these cases.

3 Taxonomy of DNS Amplification

The hierarchical structure and recursive nature of DNS
makes name resolution an inherently complicated process.
We focus on analyzing application-layer DNS amplifica-
tion vulnerabilities, where the resolution of a single name
generates excessive queries. Since these queries can inter-
leave with each other and also recursively trigger further
queries, enumerating all possible ways of amplification
presents an obvious challenge.

We tackle this by identifying distinct forms of amplifi-
cation based on the relations between a qname (which
we term base name) and the subsequent names (which we
term derivatives) queried for its resolution. Depending
on whether a base name and its derivatives belong to
the same path in the namespace, and whether the deriva-
tives can be independently queried, we can define three
distinct forms that cover all possibilities: self-probing,
fan-out, and chaining. We then enumerate DNS features
that instantiate each form, establishing a taxonomy of
amplification primitives, as summarized in Table 1 and
elaborated in this section. The taxonomy serves as the
basis for us to analyze how these primitives interact with
each other (Section 4).

This paper does not consider transport-layer ampli-
fication (e.g., TCP fallback) and implementation bugs
(e.g., [6, 2]) as well as temporal DoS attacks [4, 10]. They
are orthogonal to, and can be potentially combined with,
application-layer amplification vulnerabilities.

3.1 Fan-out
A fan-out effect occurs when a name’s resolution triggers
parallelizable queries for other names. That is, the trig-
gered queries can be issued independently, and possibly
at different times. This requires that the base name and
the derivatives are not suffixes of each other.

Among all RR types, ns, cname, and dname are the
only types that map a name to another name while influ-
encing the DNS resolution process. By definition, each



name should have just one cname or dname RR, the ex-
istence of which prohibits any other RR of the same name.
This restriction does not apply to ns: DNS requires each
zone to be hosted by at least two nameservers for avail-
ability, and there are 13 logical root nameservers (each
backed by an anycast constellation of servers). Therefore,
fan-out is only possible with ns RRs.

Note that a referral response does not always lead to
fan-out. An ns RR in a response can be accompanied by a
glue record—an a/aaaa RR that maps the nameserver’s
name (ns name for short) to its address. If an ns name
is under the same zone delegated by the corresponding
ns RR (e.g., 4⃝ in Figure 1), a glue record should be
provided to avoid circular dependency; in this case, the ns
name is regarded in-bailiwick (viz., within the answering
zone’s authority) and the associated glue is considered
trustworthy [36]. For security reasons, a resolver should
discard the glue record of an otherwise out-of-bailiwick
ns name (e.g., 6⃝ in Figure 1) and initiate separate
resolution to obtain the nameserver’s IP address. It is
also possible that an ns RR comes as glueless without
any glue record at all (e.g., 8⃝ in Figure 1); a resolver
should then separately resolve these ns name as well.

3.1.1 Concurrent Referral

Fan-out caused by a large glueless or out-of-bailiwick ns
RRset was initially reported by Maury [26]. Later, Afek
et al. [5] conducted a detailed analysis of this vulnera-
bility, showing that for performance reasons resolvers
attempt to proactively resolve all ns names in a referral
response at once. They proposed a mitigation approach,
MaxFetch(k), that limits the number of such concurrent
ns queries to k for each client request. MaxFetch(k) has
since been adopted by major resolver implementations.

3.1.2 Failover Referral

In addition to the above-mentioned concurrent version,
fan-out can also happen sequentially. If a resolver fails
to obtain the IP address of a seemingly resolvable name-
server (e.g., when the ns name owns a cname RR) or
any useful answer from a resolved nameserver (e.g., a
servfail response or a lame delegation [7]), it will try
another nameserver. This natural failover mechanism
(stated in the initial RFC1034 [27]) is overlooked in
previous studies [26, 5]. It is activated after the initial
concurrent queries for ns names and thus can bypass
the limits enforced by MaxFetch(k). It turns out that
resolver implementations are more generous to sequential
failover queries than performance-oriented concurrent
queries, making the former a more powerful amplifier.

3.2 Chaining

Chaining occurs when a name’s resolution results in
recursive queries for different names that are not suffixes
of each other. These queries are generated in order. While
fan-out expands a resolver’s queries in breadth, chaining
goes in depth. A chaining primitive should be constructed
by RRs of a single type. A chain with more than one
RR type is not considered as a primitive but rather a
composite form of amplification.

3.2.1 Referral Chain

A referral chain consists of a sequence of glueless or
out-of-bailiwick ns RRs. A resolver receives them one at
a time and resolves the ns names sequentially. This is
first exploited by the indefinite DNS (iDNS) attack [26],
where a referral chain is constructed at a single zone. The
chaining ns RRs can also reside in multiple zones hosted
by different servers. A loop is formed if two names on
a chain depend on each other. This is exploited by the
TsuNAME attack [29], where a resolver keeps querying
a set of nameservers hosting zones with cyclical delega-
tions. However, most resolver implementations can detect
such circular dependencies and terminate the resolution
process [29]. Hereafter, we consider all chains (including
referral and rewrite) to be loop-free.

3.2.2 Rewrite Chain

A rewrite chain consists of consecutive cname or dname
RRs. These two RR types differ in that the former
rewrites a name in its entirety, whereas the latter re-
places a name’s suffix (i.e., rewriting an entire zone).
Since they are equivalent in terms of the construction of
rewrite chains, hereafter we focus on cname only.

The Unchained attack [11] exploits a cname chain
where names alternate between two zones hosted by
separate nameservers. When matching a cname RR for a
query, a nameserver will try to look up the rewritten name
again in the zones it hosts and pack all related cname
RRs into the response [27]. This allows a resolver to
rewrite the names locally without sending extra queries.
Splitting a rewrite chain across two servers necessitates
the individual resolution of all names on the chain.

However, we observe that many resolver implementa-
tions actually discard all but the first RR on a rewrite
chain carried in a response to prevent cache poisoning
attacks. Therefore, it is possible to exploit a rewrite chain
for amplification by employing just one nameserver that
hosts all the cname RRs either in a single zone or mul-
tiple zones. This doubles the amplification effect that
Unchained induces on a target nameserver.



3.3 Self-Probing
In contrast to fan-out and chaining, where different names
are resolved, self-probing occurs when a resolver keeps
sending queries for the same name or its suffixes. This is
indeed a normal behavior during iterative resolution: for
example, a resolver sends the same query for www.a.com.
iteratively to the root, TLD, and SLD nameservers, and
receives in-bailiwick referrals for com. and a.com., and
the final authoritative answer for www.a.com., respec-
tively. There are two ways to yield an amplification effect
in the self-probing form.

3.3.1 Query Name Minimization

Conventionally, a resolver always sends the full qname of
a client request when querying nameservers. This enables
nameservers, especially those at the top of the DNS
hierarchy, to collect massive amount of DNS traffic and
track user activities. Query Name Minimization (QMIN)
addresses this privacy concern by having a resolver ask
nameservers with the minimal labels of a qname. For
example, a QMIN-enabled resolver will send only com to
the root server and a.com. to the TLD server, preventing
them from learning more information than necessary.

However, QMIN introduces a new DoS risk: for a deep
qname with many labels, a resolver may repeatedly ask
the same nameserver with an increasing number of labels
until the final RR is found, as illustrated in Figure 10a.
While this vulnerability is generally recognized [8, 14, 39],
and placing limits on the maximum number of QMIN
iterations is mandated [8], we find that QMIN is a more
subtle amplifier than previously assumed, as it can in-
teract with the query rewrite and referral mechanisms.

3.3.2 Dense Delegation

A deep name can stimulate amplification even in the
absence of QMIN. The idea is to set up zone delegation
at each level of the name and trigger a prolonged iterative
resolution process, as illustrated in Figure 10b. These
zones should be hosted by different nameservers, because
a server hosting multiple zones always uses the zone
matching the longest suffix of a qname to find an answer,
precluding the extra queries we expect. We refer to this
primitive as dense delegation (DDLG) for the artificial
and unusual delegation behavior.

It might appear that DDLG can be exploited to target
a resolver only, since the query load is distributed to
nameservers. Yet, we demonstrate that it can be com-
bined with other primitives to concentrate queries to-
wards a single nameserver as well (Section 4.2). Unlike a
long referral chain that is sometimes regarded as abnor-
mal, DDLG follows the legitimate iterative resolution
mechanism without incurring recursion, and resolvers

Table 2: Summary of regular multiplicative composabil-
ity of 5 amplification primitives. F.O. is short for fan-out,
R.C. for referral chain, W.C. for rewrite chain, Q.M. for
query minimization, and D.D. for dense delegation. The
primary primitive has x derivatives and each instance of
the secondary primitive has y derivatives. The last three
columns display the minimum number of nameservers
required for setup and a single client request’s amplifica-
tion effect on a resolver and a nameserver. The rows are
compressed to save space.

Prim. Secd. #Name
Servers

#Queries
from resolver

#Queries
to focal

F.O. D.D. 1 + y 1 + x + xy 1 + x
Others 1 1 + x + xy 1 + x + xy

R.C.
Q.M. 1 xy xy
D.D. 1 + y 1 + x + xy 1 + x

Others N/A

W.C.

F.O. 2 2x + xy x + xy
R.C. 2 x + 2xy x + xy
W.C. N/A
Q.M. 1 xy xy
D.D. 1 + y 1 + x + xy 1 + x

Q.M. Any N/A

D.D.
R.C. 1 + x 2xy 1 + xy
D.D. 1 + max(x,y) 2x + xy 1 + x

Others 1 + x 1 + x + xy 1 + xy

generally place no direct limits on it. This vulnerability
is therefore more difficult to fix than others.

4 CAMP Attacks

Existing application-layer amplification attacks [5, 26,
29, 11] exploit individual amplification primitives covered
by our taxonomy. However, the amplification potential
of DNS goes far beyond what can be achieved by these
primitives in isolation. In this section, we analyze the
composability of amplification primitives and introduce
a family of Compositional Amplification (Camp)
vulnerabilities, which combine multiple primitives to
produce multiplicative amplification effects. We first ex-
amine all possible regular compositions of two primitives
with concrete examples (Section 4.2), and then explain
the extension to arbitrary compositions (Section 4.3).
Finally, we discuss how an attacker can leverage these
building blocks to launch real (D)DoS attacks on DNS
servers (Section 4.4).

4.1 Adversary Model
We consider an attacker that attempts to exhaust a DNS
server’s communication or computational resources at
disproportionate attack cost. The target can be a resolver
or a nameserver, or both simultaneously, depending on
the attack setting. While a resolver is necessarily an



>zone a. com@1 .2.3.4
q.a NS n1.a
q.a NS n2.a
q.a NS n3.a

n1.a NS n11.b
n1.a NS n12.b
n1.a NS n13.b
n2.a NS n21.b
...
>zone b. com@1 .2.3.4
...

(a) Fan-out as secondary

>zone a.com@1 .2.3.4 |>zone b.com@1 .2.3.4
q.a NS n1.a |-v1
q.a NS n2.a |n11.b NS n12.b
q.a NS n3.a |n12.b NS n13.b
-v1: secd. referral |n21.b NS n22.b
n1.a NS n11.b |n22.b NS n23.b
n2.a NS n21.b |...
n3.a NS n31.b |-v2
-v2: secd. rewrite |r11.b CNAME r12.b
n1.a CNAME r11.b |r12.b CNAME r13.b
n2.a CNAME r21.b |r21.b CNAME r22.b
n3.a CNAME r31.b |...

(b) Chaining as secondary (two versions)

>zone a.com@1 .2.3.4
-v1: secondary as QMIN
q.a NS l3.l2.l1.n1.b
q.a NS l3.l2.l1.n2.b
q.a NS l3.l2.l1.n3.b

>zone b.com@1 .2.3.4
-v1: secondary as QMIN
-Any RR type can work
l3.l2.l1.n1.b A 5.6.7.8
l3.l2.l1.n2.b A 5.6.7.8
l3.l2.l1.n3.b A 5.6.7.8

(c) Self-probing as secondary

Figure 2: Example DNS zone configurations for compositions with the primary primitive being fan-out.

initiator and a potential victim for amplification, the ex-
cessive queries it generates can also be directed towards
a victim nameserver. In line with prior studies [5, 11], we
assume that the attacker can install zone files crafted for
amplification on a focal nameserver, which is supposed
to receive most queries and, if necessary, also on other
auxiliary servers. The focal nameserver is not necessarily
the target of an attack, and it can be provided by a DNS
hosting service. The attacker should register the mali-
cious zones’ ns and glue records in the corresponding
parent zones, e.g., through a domain registrar. The at-
tacker is not required to access the involved nameservers
in any other way.

4.2 Composability Analysis
The number of possible ways to arbitrarily compose am-
plification primitives may appear daunting at first sight.
To start with, we narrow down the scope of our analysis
to those regular compositions that produce a multiplica-
tive effect. In a regular multiplicative composition of
two primitives (denoted as primary × secondary),
each derivative of the primary serves as the base of a
separate instance of the secondary. Some compositions
are easy to construct and comprehend (e.g., when the
primary is fan-out), whereas others are less so and some
are altogether impossible to construct. The resulting
amplification effect also varies.

Table 2 summarizes the results of our composability
analysis. We do not distinguish the two variants of fan-
out because they have identical construction (glueless or
out-of-bailiwick ns) and they can co-occur with an initial
batch of concurrent queries followed by sequential queries
for ns names. This leaves us 5 amplification primitives
to analyze, and we identify 16 (out of 25) combinations
that lead to meaningful and valid zone setups. All of
them produce multiplicative amplification on a resolver
and 12 of them on a nameserver.

Q

N1

N2

N3

N11

N12

N31

N32

Q

N1

N2

N3

N11 N12

R21 R22

R31 R32

(a) Fan-out  Fan-out× (b) Fan-out  Chaining× (c) Fan-out  Self-probing×

N1

Q
N21

N22
N2

N3

Figure 3: Illustration of compositions with the primary
primitive being fan-out. Each arrow indicates an RR that
maps one name to another. For (b), we mix the cases
where the secondary chain is either referral or rewrite.

Our analysis proceeds in the following unified setting,
which helps to illuminate the commonalities and nuances
of different compositions. For space reasons, we provide
examples for some of the compositions in this section
and leave the others to Appendix A.
Analysis Setup. We analyze the amplification effect on
a resolver and a focal nameserver triggered by a single
client request. When a composition’s construction needs
auxiliary nameservers, the number of them should be kept
to a minimum for cost efficiency and ease of management.
The focal nameserver’s IP is assumed to be 1.2.3.4 and
the auxiliary nameservers be 5.6.7.8 or x.x.x.x.

We always configure the primary primitive under the
SLD a.com and the secondary under b.com, except in
some cases involving QMIN. For simplicity, all names
in our example zone files are written in a shortened
form relative to the TLD, e.g., a fully qualified name
x.a.com. is displayed as x.a without the trailing dot.
An ns name starts with ‘n’ and an alias (i.e., the owner of
cname) with ‘r’. A set of names is denoted, for example,
by n[x] or n[xy], where x,y ∈ {1,2, ...}. Unless other-
wise specified, the client qname is always w.q.a.com.

We assume that the resolver already caches (glued)



>zone a. com@1 .2.3.4 |>zone b.com@1 .2.3.4
q.a NS n01.b |n01.b A 5.6.7.8
q.a NS n02.b |n02.b A 5.6.7.8
q.a NS n03.b |n03.b A 5.6.7.8

|n11.b A 5.6.7.8
r1.a NS n11.b |n12.b A 5.6.7.8
r1.a NS n12.b |n13.b A 5.6.7.8
r1.a NS n12.b |...

|>zone q.a.com@5 .6.7.8
r2.a NS n21.b |w.q.a CNAME w.r1.a
r2.a NS n22.b |>zone r1.a.com@5 .6.7.8
r2.a NS n23.b |w.r1.a CNAME w.r2.a

(a) Fan-out as secondary

>zo a.com@1 .2.3.4 |>zo q.a.com@5 .6.7.8
q.a NS n01.b |w.q.a CNAME w.r1.a
r1.a NS n11.b |>zo r1.a@5 .6.7.8
r2.a NS n21.b |w.r1.a CNAME w.r2.a
>zo b.com@1 .2.3.4 |>zo r2.a@5 .6.7.8
n01.b NS n02.b |w.r2.a CNAME w.r3.a
n02.b NS n03.b |...
n03.b A 5.6.7.8 |
n11.b NS n12.b |>zo n[x]1.b.com@5 .6.7.8
n12.b NS n13.b |n[x]1.b A 5.6.7.8
n13.b A 5.6.7.8 |>zo n[x]2.b.com@5 .6.7.8
... |n[x]2.b A 5.6.7.8

(b) Chaining (referral) as secondary

Figure 4: Example DNS zone configurations for compositions with the primary primitive being chaining (rewrite).
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Figure 5: Illustration of compositions with the primary
primitive being chaining. A dashed arrow always starts
from an ns name, indicating that the corresponding
nameserver provides records for the name pointed by the
arrow. We have four possible versions for (c): {rewrite
chain, referral chain} × {QMIN, DDLG}.

referrals for a.com and b.com so that it can directly
reach their nameservers, but no record for other names
under these zones is cached prior to the client request.

4.2.1 Fan-out as Primary

When used as the primary primitive, fan-out can be
composed with any other primitive, as illustrated in
Figure 3. Each derivative of the primary fan-out can
elicit another fan-out or a chain, or be a deep name
triggering self-probing. Figure 2 show example zone con-
figurations for all these compositions except the sec-
ondary being DDLG. All of them require just one name-
server. To answer a client request, a resolver first is-
sues one query for w.q.a.com, followed by queries for
n[x].a.com and n/r[xy].b.com, or by QMIN queries
for l3.l2.l1.n[x].b.com. All these queries are directed
to the focal nameserver.

For fan-out × fan-out, the content of zone b.com is
unimportant, but its delegation in zone com should be set
properly to ensure that queries for the secondary primi-
tive’s derivatives n[xy].b arrive at the focal nameserver.
Another subtlety is that some DNS implementations may

signal in-bailiwick yet glueless ns RRs as misconfigura-
tion [21] and reject the zone files. To avoid this issue, we
can change n[x].a to n[x].b and n[xy].b to n[xy].c,
without affecting the amplification effect.

The two versions of fan-out × chaining are simi-
lar, as shown side-by-side in Figure 2b. For the referral
chain version, the aforementioned issue of missing glue
may arise as well, but this can be resolved again by dis-
tributing the chaining ns names to different SLDs all
hosted by the focal nameserver. For the rewrite chain
version, we apply the construction based on a single zone
(Section 3.2.2). In case a resolver does not implement
strict response sanity checking, one can resort to an
Unchained-style setup with an auxiliary nameserver [11].

Figure 2c gives an example zone configuration for fan-
out × self-probing with QMIN being the secondary
primitive. This composition is simpler to configure than
the others, because a single record with a deep name
suffices to induce multiple probing queries, and the type
of such records does not matter as long as they exist.

The other version fan-out × DDLG requires extra
servers to set up. It causes multiplicative amplification
only on a resolver but not on a single nameserver because
the queries are spread out.

4.2.2 Chaining as Primary

A referral chain is quite different from a rewrite chain
when treated as the primary primitive in a composition.

Referral Version. Composing a referral chain with a
secondary fan-out or chaining primitive is impossible,
because this breaks the primary primitive’s semantics
and prevents the composition’s regularity and multiplica-
tive amplification. For example, imagine that the first
derivative of the primary spawns multiple ns names,
then all of them should be regarded as the derivatives
of a fan-out instance, thus stopping the primary chain



-The client query is l3.l2.l1.q.a.com
>zo a.com@1 .2.3.4 |>zo b.com@1 .2.3.4
q.a NS n01.b |n01.b A 0.0.0.0
q.a NS n02.b |n02.b A 0.0.0.0
q.a NS n03.b |n03.b A 0.0.0.0
>zo q.a.com@0 .0.0.0 |
l1.q.a NS n11.b |n11.b A 1.1.1.1
l1.q.a NS n12.b |n12.b A 1.1.1.1
l1.q.a NS n13.b |n13.b A 1.1.1.1
>zo l1.q.a.com@1 .1.1.1 |
l2.l1.q.a NS n21.b |n21.b A 2.2.2.2
l2.l1.q.a NS n22.b |n21.b A 2.2.2.2
l2.l1.q.a NS n23.b |n21.b A 2.2.2.2

Figure 6: Example for self-probing (DDLG) × fan-out.

from growing further1. When the secondary is also a
referral chain, the two primitives would merge into a
single chain2. When the secondary is a rewrite chain, the
exclusiveness of cname RR will immediately terminate
the primary referral chain at its first derivative.

Nevertheless, composing a primary referral chain with
a self-probing primitive is permitted. The case of QMIN
is straightforward and produces the expected multiplica-
tive amplification on both resolver and nameserver. Sim-
ilarly to fan-out × DDLG, referral-chain × DDLG
distributes queries to multiple nameservers and so is
applicable to targeting resolver only.
Rewrite Version. A rewrite chain as the primary prim-
itive can be composed with each of the other four primi-
tives, as illustrated in Figure 5. The central idea is to
force a resolver to take a “detour” for each name while
chasing the rewrite chain. But how would this be possible
if the existence of a cname RR excludes any other RRs
for the name?

We work around this restriction by employing a suffix
(r[x].a) of each name on the primary rewrite chain,
rather than the names themselves, to spawn ns names
for a secondary primitive, as shown in Figure 4. Here
we provide examples for fan-out and referral chain; the
case for DDLG is similar, and the case for QMIN is
trivial. Note that the base of a chaining primitive can
already spawn a secondary primitive (indicated by index
0). The sequence of queries triggered by a client request
will be: w.q.a.com → n0[y].b.com → w.q.a.com →
w.r1.a.com → n1[y].b.com → w.r1.a.com → ...

There are a few important technicalities. First, we
1One may argue that one of the fan-out ns names can be used as
the primary chain’s derivative to create another instance of fan-
out, and so on. However, this will hinder a consistent definition
of regular multiplicative composition.

2One may similarly argue that each derivative of the primary can
spawn two ns names, one to create a secondary referral chain
and the other to grow the primary chain. This will suffer from
the same definitional dilemma as in the previous note.

should host the primary rewrite chain on a different
server (i.e., 5.6.7.8) than the focal server, as otherwise
the resolver will directly follow the chain without re-
solving the secondary ns names. This is required no
matter how the construction varies (e.g., using multiple
SLDs). Second, the nameserver(s) indicated by these ns
names must be resolvable and provide the cname RRs
to construct the rewrite chain. For the case of fan-out,
providing the corresponding a records (all mapping to
the same IP) is straightforward, and the resolver is al-
ways directed to the same server hosting cname RRs.
The case of referral chain is trickier: the ns names are
queried forward along the chain and they must be re-
solved in the reverse direction with extra queries. This
requires the proper setup of all but the last ns names
(i.e., n[x][y-1].b.com) in separate subzones.

4.2.3 Self-probing as Primary

QMIN cannot be used as the primary primitive of a
composition because, unlike other primitives, it is not
driven by a set of RRs crafted to guide the interactions
between a resolver and nameservers, but rather by a
single RR as a mere resolver-side mechanism. In contrast,
DDLG can be composed with any primitives.

The derivatives of DDLG are a sequence of its base
name’s suffixes with increasing length. Conceptually, its
compositions resemble those of a chaining primitive, as
depicted in Figure 11. We give an example zone configura-
tion for DDLG × fan-out in Figure 6, leaving examples
for other cases and the discussion of subtleties to Ap-
pendix A. The client query now becomes a deep name,
and the sequence of queries will be (assuming QMIN is
enabled): q.a.com → n0[y].b.com → l1.q.a.com →
n1[y].b.com → l2.l1.q.a.com ...

4.3 Arbitrary Composition
Our composability analysis enumerates all permissible
and distinct ways to combine two amplification prim-
itives in a regular form. The results extend naturally
to the composition of arbitrary numbers of primitives.
For example, in fan-out × chaining, making all names
of the secondary primitive deep gives rise to a three-
dimensional (3D) composition fan-out × chaining ×
QMIN; creating a chain from each derivative of the
secondary in chaining × fan-out leads to chaining ×
fan-out × chaining.

Compositions can also be irregular, where a primitive’s
derivatives create different types of primitives: for exam-
ple, a fan-out instance’s first derivative initiates another
fan-out instance, whereas the second initiates a rewrite
chain and the third initiates a referral chain. This is
illustrated in Figure 3 (b) and Figure 11 (b). Moreover,



primitives in one dimension need not have a uniform size
in terms of the number of derivatives. Their sizes can be
adjusted according to the limits implemented by DNS
servers. Allowing these irregularities substantially adds
to the variety and flexibility of Camp attacks.

Since regular compositions already achieve large ampli-
fication beyond the reach of any individual attack vector,
we focus on them in the rest of this paper, leaving a full
accounting of arbitrary composition for future work.

4.4 Launching Real Attacks

Camp attacks build on the composition of amplification
primitives. We define an instance of a composition as a
group of RRs implementing it; each instance is activated
by one triggering query. An attacker can start with a
reconnaissance of the involved DNS servers for their vul-
nerabilities, then deploys the most effective composition
instances, and finally sends coordinated queries to trigger
the attack. Three types of targets are possible.

Focal Nameserver. At the center of amplification, a fo-
cal nameserver is a natural target of attacks. An attacker
can employ an array of resolvers and coordinate them
to process duplicate queries for composition instances
installed at the focal nameserver. The resolvers can be
those open ones on the order of millions [23], or the closed
ones accessible to the attacker, e.g., through a botnet or
Internet measurement probes [1]. An important factor
for prolonged attacks is the bypassing of resolver caching.
This can be achieved by deploying a large number of com-
position instances (which would increase the attacker’s
costs) for queries in rotation and/or setting small TTL
values for attack-related RRs.

Arbitrary Nameserver. Camp attacks can target an
arbitrary nameserver, including the root and TLD servers,
even if the attacker cannot install zone files on it. This is
enabled by compositions where the primitives along the
last dimension are fan-out. Specifically, we can change
the derivatives of these fan-out instances to ns names in
any zone hosted by the target nameserver. For example,
changing n[x][y].b.com to n[x][y].tld if the target
is a TLD server, or to ns.n[x][y] if the target is a root
server. In some cases, such as chaining × fan-out or
self-probing × fan-out, one of the ns names should
remain under the attacker’s control and resolve to a
server that provides the necessary RR for the resolver
to traverse along the primary primitive.

Resolver. When the target is a resolver, the attacker
will need to deploy composition instances on multiple
focal nameservers according to the servers’ capacities,
the expected attack intensity and duration, as well as
the algorithm used to coordinate triggering queries.

Table 3: Default query limits implemented by popular
open-source DNS resolvers to mitigate DoS risks.

Resolver Limits BIND
9.18.4

Unbound
1.16.0

PowerDNS
4.7.3

Concurrent ns queries 5 3 1
Failover ns queries -1 3 9

Total ns queries - 6 102

Referral chain length 7 4 15
Rewrite chain length 17 12 12

QMIN iterations 5 10 10
DDLG iterations >20 >20 >20

Max queries per cli. req. 100 32 603

1: No explicit limit according to our measurement.
2: Controlled by PowerDNS’s max-ns-address-qperq parameter.

The default value 10 decreases for every additional ns RR in
a response to a minimum of 5.

3: Controlled by PowerDNS’s max-qperq parameter and raised
to 100 when QMIN is enabled.

5 Evaluation

We have validated Camp vulnerabilities in both popu-
lar DNS software and public DNS services. The central
metric in our measurement is the message amplification
factor (MAF), which we define as the number of DNS
queries received3 by the focal nameserver during the res-
olution of one triggering client request. Other common
metrics include the packet amplification factor (PAF)
and the bandwidth amplification factor (BAF). Clearly,
the MAF establishes a lower bound on amplification
power4. Using MAF also aligns with our focus on ana-
lyzing application-layer vulnerabilities while abstracting
away lower-layer details.

Ethical considerations. For measuring open resolvers
(Section 5.2) and attack simulation (Section 5.3), we use
our own domains and authoritative nameservers without
affecting the public DNS infrastructure, except occasion-
ally sending a few queries to root and TLD servers. Our
servers run on cloud VMs. We have confirmed with the
cloud provider that our experiments do not violate their
user policy nor raise any security alert. The experiments
generate small volumes of intermittent queries: even in
the most intensive simulated attack, no more than 200
queries per second (QPS) on average are sent by each
resolver within half an minute. The query load is negli-
gible compared with their usual workloads (QPS in the
millions or higher), and all attack-related RRs have a
low TTL of 5 seconds. Therefore, our experiments have
no impact on the public resolvers’ normal operation.

3Some studies count both traffic sent and received by a server [5].
4For DNS amplification attacks, the PAF can be 5× larger than
the MAF if TCP fallback is factored in [5], and the BAF can be
even higher if, for example, DNSSEC is enabled.



Table 4: The MAF of Camp compositions measured with resolver software. The composition instances are configured
according to the default limits of the resolvers (Table 3), with several exceptions explained in the notes below. A
shaded cell indicates that the composition fails to produce a multiplicative amplification effect.

Primary F.O. W.C. R.C. D.D. F.O. W.C. D.D.
Secondary F.O. R.C. W.C. Q.M. F.O. R.C. Q.M. Q.M. F.O. R.C. W.C. Q.M. W.C. F.O. W.C.
Tertiary - - - - - - - - - - - - Q.M. R.C. Q.M.

Compo. Index a b c d e f g h i j k l m n o

BIND 31 36 21 21 119 136 82 8 80 50 2 21 26 731 2
Unbound 12 17 73 61 28 60 112 43 30 67 241 201 726 23 2400

PowerDNS 57 57 56 91 24 31 99 98 21 30 53 90 97 11 97

• For BIND, we set the size of fan-out instances to 5 in attacks a and b, because it does not send failover queries for non-existing ns
names; we increase the size to 20 in the other attacks e, i and m where failover ns queries are triggered.

• The deep names of QMIN instances contain 16 labels after the TLD, e.g., 15.14...1.a.com. This ensures that all three resolvers, which
implement different QMIN algorithms, reach their iteration limits. We disable their QMIN feature for compositions not involving it.

• None of the resolvers explicitly restricts the number of DDLG iterations, which seems to be restricted only by the global query limit.
We choose a value of 20 for a balance between setup complexity and comparability with other primitives.

• We disable aaaa queries (IPv6 addresses) for ns names in all three resolvers to obtain a better picture of the multiplicative amplification
effects. More queries will be generated if this feature is enabled.

5.1 Vulnerabilities in DNS Software
DNS resolvers play a central role in Camp vulnerabilities
because they drive the name resolution process, whereas
nameservers answer queries passively. We examine three
industry-standard resolver implementations: BIND in
the recursive mode, Unbound, and PowerDNS recursor.
For each of them, we choose a recent stable version that
has been patched in response to the NXNS attack [5].
Methodology. We develop a Docker-based testbed to
facilitate our evaluation and for the reproducibility of
our results. It allows the flexible simulation of a real-
istic DNS infrastructure. All DNS servers and clients
run in separate containers. Our architecture comprises:
two nameservers for a customized root zone and TLD,
plus the necessary number of nameservers for attacker-
controlled zones, all running BIND in the authoritative
mode; one resolver using one of the three implementa-
tions; and one client to generate triggering queries.

We focus on evaluating all 12 of the 16 regular 2D
compositions that produce multiplicative amplification
on the focal nameserver (i.e., those not employing DDLG
as the secondary primitive), and 3 representative regular
3D compositions, each using different primitives.
Measurement Results. Our results are summarized in
Table 4, where each composition is assigned an index for
brevity. Overall, every composition results in multiplica-
tive amplification for at least one resolver, with the mea-
sured MAF matching the expected value.5 The strength
of compositions varies across resolvers. While there is no
clear winner, compositions involving the rewrite chain
and QMIN tend to be the most powerful. Below we high-
5Note that to calculate the expected MAF of a composition subject
to a resolver query quota, we must account for queries sent to
other nameservers in addition to the focal nameserver.

light our main observations from the evaluation, leaving
further explanation to Appendix B.

O1: Camp can bypass individual query limits. DNS re-
solvers have implemented various query limits (Table 3)
to bound resource consumption and hence reduce the
risk of DoS attacks. While effective for known attacks
that exploit individual amplification primitives, these
limits fail to address Camp: a composition’s MAF can
far exceed individual limits. A global quote on resolver
queries per client request would serve as a safety net to
curb the overall effect caused by any application-layer
amplification compositions. Yet a correct implementation
is non-trivial: among the three resolvers, only PowerDNS
gets this right (which is why it never reaches an MAF
over 60, or 100 when QMIN is enabled), whereas both
BIND and Unbound reset the corresponding counters
after each query rewrite or referral.

O2: Camp can grow exponentially. The results for 3D
compositions demonstrate that the amplification power
of Camp can grow exponentially in the number of dimen-
sions. In the case of Unbound, the tertiary primitives
contribute a perfect multiplicative factor to the MAFs
of compositions m and o. For a given resolver, it is pos-
sible to find the multi-dimensional, possibly irregular,
composition that produce the highest MAF. This is espe-
cially alarming in the absence of a correctly implemented
global query limiting mechanism.

O3: RFC compliance is critical but complicated. While
it remains controversial among DNS implementations
whether an ns name can own a cname/dname RR, it
is explicitly stated in RFC 2181 [16, §10.3] that “The
domain name used as the value of an NS record, or
part of the value of an MX record must not be an alias”.
BIND complies with this rule, protecting itself from
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Figure 7: Camp vulnerabilities measured on 60 public resolvers. Outliers with high MAFs are marked as red dots
above the violin plots. The MAFs of most resolvers remain consistent across our measurements over a 10-month
period, but some resolvers exhibit high variance from time to time (discussed in Section 5.2) and some seem to have
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Figure 8: Distributions of the highest MAFs achieved
by 2D compositions on 56 public resolvers. The solid
red line represents our original measurement data. Other
lines hypothesize the cases where all resolvers implement
the mitigation options M1 and/or M2 (Table 5) and
thereby become resistant to certain compositions.

compositions c and k. In contrast, the more permis-
sive implementation by Unbound and PowerDNS makes
them more vulnerable. Nonetheless, RFCs are not always
clear, which leaves room for interpretations that cause
problems. One particularly relevant example is whether
QMIN should be applied to resolver queries generated
during the resolution of a client request [8]. All three
resolver implementations perform QMIN for rewritten
names (and two of them also for ns names) and therefore
increase their attack surfaces. It is important to resolve
such ambiguities in RFCs with a joint effort from Internet
standardization bodies and DNS developer communities.

5.2 Vulnerabilities of Public Resolvers
Millions of public resolvers exist on the Internet [19].
Many of them can be abused or targeted by Camp
attacks. We extend our measurements from our local
testbed to the real world, analyzing the susceptibility of
60 popular public resolvers (details in Appendix B).
Methodology. Unlike in our local setup, here we deploy
attack-related RRs under our registered SLDs to our own

public-facing nameservers running on cloud VMs. This
allows public resolvers to communicate with the name-
servers when receiving our triggering client requests. It is
difficult to obtain the precise amplification-related query
limits set by public resolvers. For ease of management,
we use a set of default parameters for all compositions:
30 for fan-out, 26 for chaining, 16 for QMIN and 20 for
DDLG. Some resolvers terminate resolution prematurely
due to long referral or rewrite chains; in these cases, we
reduce the chain length to a maximum value that allows
the resolvers to continue. Nonetheless, our choice of pa-
rameters still produces underestimated MAF because
premature termination may happen for other reasons
and some resolvers indeed have higher query limits.

Our measurements are further complicated by several
factors. Large public DNS resolver systems have complex
internal architectures, e.g., multi-layer caching and load
balancing [32]. They normally accept client requests at
an ingress IP and employ multiple independent or collab-
orating egress resolvers to perform iterative resolution
with authoritative nameservers. We have also observed
shared egress resolvers used by different ingress resolvers
and sporadic unsolicited queries to our nameservers. To
reduce the noise in and the interference between measure-
ments, we measure each pair of resolver and composition
sequentially with a long cooldown period and estimate
the MAF by counting at our nameservers the queries
from all egress resolvers mapped to the ingress resolver.
Measurement Results. Figure 7 depicts the distribu-
tion of MAFs produced by each composition. Overall,
all compositions are effective on multiple resolvers to
varying extents, and 3D compositions can achieve higher
MAFs than 2D compositions.
O4: Some resolvers are exceptionally vulnerable. We
have observed multiple abnormal cases with exception-
ally high MAFs, e.g., over 1000 for 2D compositions.
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(b) Attacks using varying numbers of open
resolvers. The number of expected and
actual queries received by the target server
during an attack is shown in bars and the
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Figure 9: Camp attack simulation results under different settings. The three upper subplots are for attacks targeting
the focal nameserver. The three lower subplots are for attacks targeting an arbitrary nameserver. All attacks use
composition e except that those reported in the upper subplot of (b) use c. Each upper subplot shares the x-axis with
the corresponding lower subplot. All the four subplots in (a) share the same dual y-axes shown on the two sides.

There are several reasons behind this: (1) extra queries
of type aaaa (and in some cases the obsolete type
a6 [20]) for IPv6 addresses when resolving ns names;
(2) TCP fallback—even after the DNS Flag Day 2020
where the maximum UDP response size for DNS is
suggested to be 1232 bytes, many resolvers still stick
to the original 512 bytes and switch to TCP when
receiving large responses generated by some composition
instances; (3) query retries due to timeout and serfail
responses, especially when the resolvers do not limit the
number of failover queries for ns names. These findings
further highlight the complexities involved in thoroughly
analyzing DNS amplification vulnerabilities.

O5: Diversity means high risks. A resolver’s risk to
Camp is determined by the composition with the highest
MAF that it is vulnerable to. This cannot be seen from
Figure 7, where the majority of compositions seem to
produce an MAF below 100. We show a clearer picture
in Figure 8, which depicts the resolvers’ risk distribution
with respect to the regular 2D compositions. Focusing
on the solid red line, we can see that over 80% of the
resolvers experience an MAF of over 100 and 60% over
200; the MAF will be higher if 3D and arbitrary compo-
sitions are factored in. These high risks result from the
the variety of Camp vulnerabilities. Moreover, the large
variance in our measurement data reflects the diverse
implementations and configurations of public resolvers.
This diversity poses a practical challenge for countering
the threat of Camp at Internet scale.

5.3 Attack Simulation

In addition to individual compositions, we also evaluate
the efficiency of real Camp attacks by simulating them
against our own public nameservers.

Methodology. We use small cloud VMs, each of which
runs Ubuntu 22.04 with 2 dedicated Intel Xeon 8168
CPUs and 4GB of RAM, for the servers so that the
dynamic change of their resource usage can be easily
detected even under light workloads. The VMs have a
network throughput limit of 2Gbps, and our DNS traffic
is not shaped or filtered out by the cloud platform. We
also tune the servers’ networking buffers to ensure that
no packet is dropped by the network interface or kernel
throughout our experiments.

We consider two attack settings: the first employs 10
closed BIND resolvers (hosted by us on the same cloud
platform as the nameservers) to understand the attack
behavior in a controlled environment; the second em-
ploys up to 50 open resolvers to illustrate the real-world
threat of Camp. For the former case, we add an artifi-
cial delay of 30 ms to the nameservers’ egress packets,
simulating a typical network condition of authoritative
DNS services [3]. For the latter, we use a fixed number
of 50 composition instances for each attack.

We analyze two types of targets to demonstrate the ver-
satility of Camp: a focal nameserver (using composition
c and e), and an arbitrary nameserver (using composi-
tion e; see Section 4.4). For the latter case, we assign
2/3 of the secondary fan-out primitives’ ns names as



Table 5: Summary of mitigation mechanisms for Camp attacks. In the 4th column, “Res” is short for resolver and
“NS” for nameserver. In the last column, “B” is short for BIND, “U” for Unbound, and “P” for PowerDNS (and its
associated load balancer dnsdist); a single letter without any symbol means the software has already implemented the
mechanism before our disclosure to the vendor, a “!” symbol means the software’s prior implementation is flawed in
that it can be bypassed by Camp, and a “*” symbol means the mechanism has been experimentally implemented or
is under consideration by the vendor after our disclosure.

Category Mitigation mechanism Effective for Camp Change to Adopted by

Protocol-wide
patches

M1: Prohibit the rewrite of ns names c, k Res/NS B, U*, P*
M2: Restrict QMIN to original client queries d, g, h, l Res B*, U*, P*
M3: Enable QMIN only for the root and TLD d, g, h, l Res B*, U*, P*

Holistic
query limits

M4: Global quota on resolver queries per client request All Res B!, U!, P*
M5: Correlated limits on referral depth and width a, b, i, j Res P!
M6: Correlated limits on interacting referral and rewrite c, e, f , k Res -

System-wide
rate limiting

M7: Max outbound pending queries per nameserver/zone All Res B, U, P*
M8: Max inbound pending queries per source IP/AS All Res/NS B, U, P

Anomaly
detection

M9: Actively scan and remove suspicious zone files All NS -
M10: Actively monitor suspicious query pattern All Res/NS P

non-existing to the zone hosted by the target server,
while keeping 1/3 of the ns names resolvable and the
corresponding nameserver reachable to ensure that the
resolvers can chase the primary rewrite chains.

For each attack simulation, we use a single client to
send a batch of concurrent triggering requests, one for
each Camp instance, to the involved resolvers, while
monitoring the victim nameserver’s performance metrics.

Simulation Results. DNS servers are compute-
intensive, and we observe low memory consumption
(< 5%) and network I/O (< 28K packets per second)
in all the simulated attacks. Therefore, we choose the
victim’s CPU usage as the main indicator of attack ef-
ficiency, among other metrics like attack duration and
query volume. The results are reported in Figure 9.

O6: Camp attacks can scale up and out. As shown by
the two subplots of Figure 9a on the left, with a growing
number of composition instances, the attacks’ intensity
increases linearly until the victim reaches its compu-
tational capacity, and afterwards the victim maintains
high CPU usage for an increasingly longer period of time.
Comparing different targets, we can see that the attacks
consume more resources on the focal nameserver than
the arbitrary nameserver, which receives roughly 1/3
fewer queries according to our setup, as expected.

For the evaluation on open resolvers shown in Fig-
ure 9b, we can see similar attack scaling behaviors as the
number of resolvers grows. We also find that the queries
received by the victim during an attack are fewer than
the expected amount estimated from the MAF of indi-
vidual composition instances. This can be attributed to
resolver-side mechanisms, e.g., the termination of client
requests on timeout or rate limiting, since we do not
observe any packet drops at our servers or in the cloud

network.

Together, the simulation results demonstrate the ver-
tical and horizontal scalability of Camp attacks. We
can estimate the client-side cost to overwhelm a large
nameserver with 8 CPUs and 16 GB of RAM [13]. For
example, assuming the victim is the arbitrary name-
server, the attacker’s client only needs to sends around
20K queries every 25 seconds6. This is well within the
capability of a personal computer.

O7: Rate limiting helps to mitigate (parallel) attacks.
Resolvers often implement per-entity rate limiting
mechanisms to mitigate DoS attacks in general. The
entity can be a source IP, a server, a zone, etc. We
evaluate how BIND’s fetches-per-server feature
(disabled by default) affects the attacks in the closed
setting. It limits the number of in-transit queries a
BIND resolver sends to each nameserver. The results
are shown in the two subplots of Figure 9a on the right.
As the limit drops, we observe a gradually reduced load
on the victim server. This indicates the effectiveness
of fetches-per-server. It can also alleviate parallel
attacks that target or exploit overlapping nameservers,
which is similar to our simulated attacks concurrently
querying multiple composition instances installed on
a single nameserver. One caveat, though, is that an
attacker can still scale out an attack by employing more
resolvers and/or nameservers.

620K = 50 (instances) ∗ 100 (resolvers; 50∗2 as per Figure 9b) ∗
4 (hardware scaling factor based on our test server). The attack
duration of 25 seconds (not shown in the plot) is long enough for
most resolvers to clear cached attack RRs with low TTL values.



6 Mitigation

Mitigating Camp attacks requires a synergy of mecha-
nisms at different levels, covering the protocol design,
implementation, and configuration of DNS, as well as the
active monitoring of its runtime behavior. Any mecha-
nism’s implications on the system’s functionality, perfor-
mance, and security should be carefully assessed. Table 5
summarizes the mitigation options we have proposed
to the relevant entities as part of our disclosure. Some
of them have adopted several mechanisms and we are
working together to evaluate their patched systems.
Protocol-level patches. Some Camp vulnerabilities
stem from the ambiguities of DNS RFCs. They can be
patched if the protocol specifications are revised with
precision and implemented correctly.

• M1: Prohibit the rewrite of ns names, as per RFC
2181 [16, §10.3]. This can be enforced by both name-
servers and resolvers, e.g., BIND already signals
cname’s existence for ns names as illegal.

• M2: Restrict QMIN to original client queries re-
ceived by resolvers and disable it for any resolver-
generated queries, which does not defy the intent of
protecting client query privacy.

• M3: Enable QMIN only for the root and TLD, which
would retain the most privacy benefits while mini-
mizing attack surfaces [18]

Holistic Query Limits. We have demonstrated that
Camp can bypass coarsely implemented query limits in
unanticipated ways. This necessitates more prudent im-
plementations of holistic and fine-grained query limiting
algorithms that cover all corner cases.

• M4: Enforce a global quota for resolver queries per
client request and never reset it for a given request.

• M5: Implement correlated limits on referral depth
and width, e.g., reducing concurrent referral queries
allowed for cascading fan-out. Limiting referral
depth should consider both the recursive case (refer-
ral chain) and the iterative case (dense delegation).

• M6: Implement correlated limits on interacting
queries for referral and rewrite, e.g., lowering the
referral depth/width limit when chasing a rewrite
chain, or setting varying rewrite depth limits when
resolving concurrent ns names.

System-wide Rate Limiting. In addition to the above
query limits that cap the MAF of composition instances,
DNS servers should also implement rate limiting mecha-
nisms to thrwart distributed Camp attacks that exploit
multiple clients and servers, as discussed in Section 5.3.

• M7: Limit outbound queries to each zone and/or
each downstream server. BIND has implemented this

with fetches-per-server and fetches-per-zone.
Unbound has a similar option ratelimit. Pow-
erDNS is considering adopting this feature.

• M8: Limit inbound queries from each source IP
address or AS. This is a common countermeasure to
DDoS attacks, also effective for distributed Camp
attacks especially when the victim is a nameserver.

Anomaly Detection. Camp attacks exhibit abnormal
zone setup and query patterns, rendering themselves
detectable by DNS operators.

• M9: Actively scan suspicious zone files with RRs
that can lead to large amplification. Nameservers
should reject to load such zone files. This may re-
quire collaboration among different operators if an
attacker disperses attack-related RRs across multi-
ple zones and nameservers.

• M10: Actively monitor suspicious query patterns
such as repetitive queries for chaining names, or
excessive QMIN queries for deep names. This could
be done within resolvers/nameservers or by separate
monitoring systems such as middleboxes.

Effectiveness of Mitigation. We re-evaluate the risk
of our 60 measured public resolvers as if they have im-
plemented two simple option M1 and M2. The results
are depicted in Figure 8. M1 alone reduces the risk for
around 15% of the resolvers with MAFs over 200. M2
is more effective, achieving substantial MAF reduction
for about 40% of the resolvers. The two mechanisms
together reduce the risk of half of the resolvers to an
MAF lower than 100.

7 Related Work

Reflective DoS attacks that leverage public network ser-
vices for amplification have posed long-standing threats
to the Internet. Rossow analyzed and measured the reflec-
tive amplification vulnerabilities of popular UDP-based
network protocols including DNS, which can generate
large replies with EDNS0 extensions of a size up to 4096
bytes [34]. Researchers also studied such transport-layer
DNS amplification risks enabled by DNSSEC [17, 38]
and queries of type any [37].

Our work focuses on more sophisticated application-
layer attacks targeting the DNS infrastructure itself.
Prior studies explored individual attack vectors for this
purpose [26, 5, 29, 11, 14], as discussed earlier in this
paper. We generalize some of them in our taxonomy,
and more importantly, systematically examine the com-
posibility of amplification primitives. Researchers also
start to inspect implementation-level DoS vulnerabilities
in DNS software. The NRDelegation attack [6] drives



up a resolver’s CPU load using non-responsive name-
servers. The TsuKing attacks make use of non-compliant
handling of RD (recursion desired) flag in DNS headers
to trigger recursive query loops among resolvers [40]. A
promising area of future work is to extend our analytical
framework for Camp to capture implementation aspects,
such as computational resources and compliance checks,
for more comprehensive analyses.

On the defensive side, Moura et al. [30] investigated
how different DNS mechanisms, caching in particular,
affect a server’s resilience to DDoS attacks. One can
draw inspirations from their findings when designing
Camp-resilient resolution protocols. To defend reflective
DNS amplification attacks, Herzberg and Shulman [17]
designed an authentication system that can filter re-
quests with spoofed IP addresses and identify standard-
compliant resolvers based on a challenge-response pro-
tocol. Rizvi et al. [33] developed a generic approach to
mitigate DDoS attacks through traffic engineering and
anycast routing, which is a common technique deployed
in the DNS infrastructure especially by the root servers.
Bushart and Rossow [12] propose an anomaly detection
defense that can filter out the queries generated by an
application-layer DNS amplification attack; this is in line
with our observation that Camp attacks can be spotted
from abnormal query patterns.

Large-scale measurements of DDoS attacks that target
and abuse DNS are crucial to understand the Internet’s
threat landscape. This is still a largely ongoing endeavor.
For example, Sommese et al. [35] find from two longi-
tudinal datasets that the authoritative nameservers for
millions of domains were once under attack. Nawrocki
et al. [31] report evidence of prevalent reflective DNS
amplification attacks by peeking into Internet exchange
points; they also observe that those attacks frequently ro-
tate exploitable resolvers. Yazdani et al. [41] characterize
the amplification potential of over 2.6M open resolvers,
conjecturing that 20% of them contribute to 80% global
DNS amplification power; yet their estimation does not
consider subtle application-layer vulnerabilities. Moon
et al. [28] propose a monitoring service that can contin-
uously quantify the amplification risks of public servers
according to malicious query patterns. Our preliminary
measurement is the first step towards a comprehensive
understanding of the scope and extent of Camp threats
faced by today’s Internet.

8 Conclusion

We have developed a novel taxonomical approach to dis-
sect the intricate name resolution process for studying
amplification vulnerabilities. Our systematic analysis un-
covers a family of fundamental vulnerabilities in DNS
that can produce unprecedented amplification effects.

We have confirmed their ubiquity and severity in main-
stream DNS implementations and popular open resolvers.
We also shed light on the effective mitigation of Camp
and the improvements to DNS standards. This work will
hopefully set a milestone for improving the crucial Inter-
net naming infrastructure’s resilience to DoS attacks.
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A Example Zone Configurations

In this section, we give examples of more compositions of
amplification primitives and explain subtleties therein.
Fan-out × DDLG: Each derivative of the primary fan-
out is a deep name triggering a DDLG instance. The
lowest-level zone for each DDLG instance can provide
the IP address for the deep ns name (as shown in the
example) or not; in either case, a resolver will treat
the deep names as resolvable and therefore bypass the
MaxFetch(k) limit with extra failover ns queries.
> zone a.com @ 1.2.3.4
q.a NS l3.l2.l1.n1.b
q.a NS l3.l2.l1.n2.b
q.a NS l3.l2.l1.n3.b
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Resolver

a.com Nameserver

n…2.1.a.com  A  9.9.9.9

Root Nameserver
com? - NS

a.com? - NS 
1.a.com? - SOA2.1.a.com? - SOAn…2.1.a.com? - A

n…2.1.a.com?

TLD Nameserver

(a) QMIN. The resolver exposes only necessary labels of the
client qname to the root and TLD nameservers for referrals
(simplified for illustration). For the probing queries with more
labels, the a.com nameserver returns noerror responses
with soa records, indicating the existence of empty non-
terminals [24] and at least one RR for the deep qname.

Resolver

n…2.1.a.com? n…2.1.a.com? - NS

n…2.1.a.com? - NS

n…2.1.a.com? - A

Nameserver 0

1.a.com  NS  ns1.a.com

Nameserver 1

2.1.a.com  NS  ns2.a.com

Nameserver n-1

n…2.1.a.com  A  9.9.9.9

(b) DDLG with a QMIN-disabled resolver. The root and TLD
nameservers are omitted. The resolver’s queries are responded
with normal referrals, each by a separate nameserver hosting
one zone on the long delegation chain, until the final answer.

Figure 10: Illustration of amplification by a deep name.

> zone b.com @ 1.2.3.4
n1.b NS n1 -l0.b
n1 -l0.b A 0.0.0.0
n2.b NS n2 -l0.b
n2 -l0.b A 0.0.0.0
n3.b NS n3 -l0.b
n3 -l0.b A 0.0.0.0
> zone n[x].b.com @ 0.0.0.0
l1.n[x].b NS n[x]-l1.b
n[x]-l1.b A 1.1.1.1
> zone l1.n[x].b.com @ 1.1.1.1
l2.l1.n[x].b NS n[x]-l2.b
n[x]-l2.b A 2.2.2.2
> zone l2.l1.n[x].b.com @ 2.2.2.2
l3.l2.l1.n[x].b A 5.6.7.8

Chaining × DDLG: This composition has two versions
which are similar. Here the lowest-level zone of each
DDLG instance is required to provide a proper ns or
cname RR for the primary chain to advance.
> zone a.com @ 1.2.3.4
-v1: primary as referral chain
q.a NS l3.l2.l1.n1.a
n1.a NS n1 -l0.a
n2.a NS n2 -l0.a
n3.a NS n3 -l0.a
-v2: primary as rewrite chain

N12

N11

N13

N11

N12

N13

(a) Self-probing  Fan-out× (b) Self-probing  Chaining× (c) Self-probing  Self-probing×

N22

N21

N23

R22

R21

R23

Q Q
Q

N1 N2 N3

Figure 11: Illustration of compositions with the primary
primitive being self-probing. For (b), we mix the cases
where the secondary chain is either referral or rewrite.

q.a CNAME l3.l2.l1.r1.a
r1.a NS n1 -l0.a
r2.a NS n2 -l0.a
r3.a NS n3 -l0.a
-common to both versions
n1 -l0.a A 0.0.0.0
n2 -l0.a A 0.0.0.0
n3 -l0.a A 0.0.0.0
> zone n/r[x].a.com @ 0.0.0.0
l1.n/r[x].a NS n[x]-l1.a
n[x]-l1.a A 1.1.1.1
> zone l1.n/r[x].a.com @ 1.1.1.1
l2.l1.n/r[x].a NS n[x]-l2.a
n[x]-l2.a A 2.2.2.2
> zone l2.l1.n/r[x].a.com @ 2.2.2.2
l3.l2.l1.n[x].a NS l3.l2.l1.n[x+1].a
l3.l2.l1.r[x].a CNAME l3.l2.l1.r[x+1].a

DDLG × Chaining: If the secondary primitive is the
referral chain, all ns names on each of its instance must
be resolved to allow a resolver to reach the corresponding
nameservers and traverse along the primary primitive.
This composition requires, in addition to the focal name-
server, x servers where x is the DDLG’s size. In the ex-
ample below, the zones n[x]2.b.com and n[x]3.b.com
can be hosted by any of the nameservers for the DDLG
zones, i.e., those at IP addresses x.x.x.x, instead of
the extra nameserver at 5.6.7.8. For the correct con-
struction of DDLG × rewrite-chain, we should use
the ns names pointed to by the primary’s derivatives,
rather than the derivatives themselves, as the bases for
instances of the secondary primitive. Note that while
RRs of the primary DDLG’s derivatives (i.e., suffixes of
its base) are hosted by separate servers, they will not
trigger extra QMIN probing queries because there is no
gap on the deep qname’s delegation chain.

-client query: l3.l2.l1.q.a.com
-common to both versions
> zone a.com @ 1.2.3.4
q.a NS n01.b
> zone q.a.com @ 0.0.0.0
l1.q.a NS n11.b
> zone l1.q.a.com @ 1.1.1.1
l2.l1.q.a NS n21.b



> zone l2.l1.q.a.com @ 2.2.2.2
l3.l2.l1.q.a A 9.9.9.9
-v1: secondary as referral chain
> zone b.com @ 1.2.3.4
n01.b NS n02.b
n02.b NS n03.b
n03.b A 5.6.7.8
n11.b NS n12.b
n12.b NS n13.b
n13.b A 5.6.7.8
...
> zone n[x]1.b.com @ 5.6.7.8
n[x]1.b A x.x.x.x
> zone n[x]2.b.com @ 5.6.7.8
n[x]2.b A 5.6.7.8
-v2: secondary as rewrite chain
> zone b.com @ 1.2.3.4
n01.b CNAME r02.b
r02.b CNAME r03.b
r03.b A 0.0.0.0
n11.b CNAME r12.b
r12.b CNAME r13.b
r13.b A 1.1.1.1
...

B More Details on Evaluation

B.1 Measurements on DNS Software
We explain some of our measurement results on popular
resolver implementations summarize in Table 4.
Fan-out × Fan-out: The MAF for BIND matches ex-
actly what is expected: 1 (query for the original qname)
+ 5 (queries for the primary ns names) + 5∗5 (queries for
the secondary ns names). PowerDNS is also vulnerable,
but the MAF is capped by its global query limit of 60,
and the value 57 is obtained by excluding queries sent to
higher-level zones. Unbound aborts the resolution after
processing the first batch of 3 concurrent queries for the
primary ns names, and for each of them, it sends 1–2
queries for the secondary ns names.
Rewrite Chain × Fan-out: BIND and Unbound are
subject to multiplicative amplification but with non-
deterministic behavior. After the initial concurrent ver-
sion of fan-out, BIND sends varying numbers of queries
for each subsequent derivative of the primary rewrite
chain. This is also the case for Unbound. PowerDNS is
somewhat resistant to this attack, resolving only 1 ns per
derivative of the primary primitive, but it still produces
an MAF of 2 ∗ 12 = 24. Note that BIND has a global
limit per client request of 100, but it gets reset after a
query rewrite operation.
Rewrite Chain × Referral Chain: All three imple-
mentations are vulnerable. For PowerDNS the measured
MAF is lower than predicted because of its global limit
and that many queries are sent to the server at 5.6.7.8.

Table 6: List of open resolvers used in our measurements
Resolver IP Resolver IP

AdGuard (AG) DNS 94.140.14.14 IP Ex. GmbH 62.146.202.2
AG DNS-Adblock 176.103.130.130 InfoServer GmbH 212.89.130.180
AG DNS-Family 176.103.130.132 Lennart Seitz 94.247.43.254
AG DNS-Unblock 94.140.14.140 Level 3 DNS 209.244.0.3
AliDNS 223.5.5.5 Liteserver 5.2.75.75
Alternate DNS 76.76.19.19 MCI Verizon 195.129.12.122
AMAZON-02 54.93.169.181 Meerfarbig GmbH 95.10.195.195
Baidu Public DNS 180.76.76.76 NTT America 129.250.35.250
Bisping GmbH 62.91.19.67 Neustar 64.6.64.6
Bluewin 83.173.209.124 NextDNS 45.90.30.193
CIRA Canadian 149.112.121.10 Nextgi LLC 134.195.4.2
CNNIC-SDNS 1.2.4.8 Norton-ConnectSafe 199.85.126.10
CenturyLink 205.171.3.65 OVH SAS 217.182.198.203
Cheyenne Tech LLC 80.78.134.11 OnCloud SAS 213.215.11.190
CleanBrowsing 185.228.168.9 OneDNS 117.50.10.10
Cloudflare 1.1.1.1 OpenDNS Home 208.67.222.222
Cogent Comm. 66.28.0.61 OpenNIC 51.77.149.139
Comodo Secure DNS 8.26.56.26 Probe Networks 82.96.65.2
Control D 76.76.2.0 Quad101 101.101.101.101
Cyberlink AG 89.249.44.73 Quad9 9.9.9.9
DNS for Family 94.130.180.225 R-KOM Telekom 81.27.162.100
DNS.WATCH 84.200.69.80 SafeDNS 195.46.39.39
DNSForge 176.9.93.198 ScanPlus GmbH 212.211.132.4
DNSpai 101.226.4.6 Swisscom 195.186.4.110
Deutsche Telekom 194.25.0.68 TEFINCOM S.A. 103.86.96.100
Dyn 216.146.35.35 TREX 195.140.195.21
Fortinet 208.91.112.53 Vodafone 195.27.1.1
Freenom World 80.80.80.80 Yandex DNS 185.184.222.222
GCore Free 95.85.95.85 xTom 77.88.8.8
Google DNS 8.8.8.8 114DNS 114.114.114.114

DDLG × Rewrite Chain: BIND terminates the en-
tire resolution after receiving the first cname RR for
the base name (n01.b.com.) of the first rewrite chain
instance. This composition is especially detrimental to
Unbound, producing the highest MAF (241) among all
2D compositions. PowerDNS is also vulnerable.

DDLG × QMIN: BIND disables QMIN for ns names
and so is not vulnerable. This composition is highly
effective on Unbound (201) and PowerDNS (90), which
raises it global limit to 90.

Rewrite Chain × Fan-out × Referral Chain: In-
terestingly, this composition is effective on BIND with a
high MAF over 700, as it is vulnerable to both rewrite
chain × fan-out and fan-out × referral chain. Pow-
erDNS’s is not vulnerable, which can be explained by its
resistance to rewrite chain × fan-out. Unbound here
deviates from its behaviors in the related 2D composi-
tions; it produces MAF values between 17 and 29 in a
non-deterministic way. Since the result does not improve
upon its performance in rewrite chain × fan-out, we
consider this 3D composition ineffective for Unbound.

DDLG × Rewrite Chain × QMIN: BIND is immune
to this attack as it prohibits the aliasing of ns names.
PowerDNS is vulnerable up to its global query quota.
Unbound is exceptionally vulnerable with a remarkable
MAF of 2400 (20∗12∗10).



B.2 Measurements on Public Resolvers
The set of open resolvers used in our measurement study
are selected from the union of several sources78910. We
narrow our set down to 60 resolvers that are geographi-
cally diverse and remain responsive throughout our mea-
surements, as summarized in Table 6.

7https://stats.labs.apnic.net/rvrs
8https://www.dnsperf.com
9https://publicdnsserver.com/fastest/
10https://www.publicdns.xyz

https://stats.labs.apnic.net/rvrs
https://www.dnsperf.com
https://publicdnsserver.com/fastest/
https://www.publicdns.xyz
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