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ABSTRACT

Despite the central importance of DNS, numerous attacks and vul-
nerabilities are regularly discovered. The root of the problem is the
ambiguity and tremendous complexity of DNS protocol specifica-
tions, amid a rapidly evolving Internet infrastructure. To counteract
the vicious break-and-fix cycle for improving DNS infrastructure,
we instigate a foundational approach: we construct the first formal
semantics of end-to-end name resolution, a collection of compo-
nents for the formal analyses of both qualitative and quantitative
properties, and an automated tool for discovering DoS attacks. Our
formal framework represents an important step towards a substan-
tially more secure and reliable DNS infrastructure.

CCS CONCEPTS

• Networks → Application layer protocols; Denial-of-service
attacks; Formal specifications; • Software and its engineering

→ Formal methods.

KEYWORDS

DNS, Formal Semantics, Maude, Statistical Model Checking, DoS
ACM Reference Format:

Si Liu, Huayi Duan, Lukas Heimes, Marco Bearzi, Jodok Vieli, David Basin,
and Adrian Perrig. 2023. A Formal Framework for End-to-End DNS Reso-
lution. In ACM SIGCOMM 2023 Conference (ACM SIGCOMM ’23), Septem-
ber 10–14, 2023, New York, NY, USA. ACM, New York, NY, USA, 18 pages.
https://doi.org/10.1145/3603269.3604870

1 INTRODUCTION

The Domain Name System (DNS) plays a central role in the In-
ternet’s functionality, availability, and security. After decades of
incremental extensions to DNS, its complexity has reached epic
dimensions. In fact, since the two initial RFCs defining the basics
of DNS [36, 37], there have been over 300 RFCs published (even
beyond the DNS Camel list [17]) to refine its design, implementa-
tion and operation (e.g., [6, 40]), to introduce new features such
as security and privacy enhancements [7, 11], and above all, to
elucidate many of its intricacies, which surface in real deployments
(e.g., [12, 21, 25, 29]).
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The complexity of DNS makes it notoriously difficult to man-
age and operate. Name resolution failures, resulting from miscon-
figuration, attacks, or operation errors, have caused large-scale
outages [46, 52]. In particular, denial of service (DoS) attack vec-
tors [1, 13, 33] have been regularly discovered in the last decade,
e.g., iDNS [33], DNS Unchained [13], NXNS [1], and TsuNAME [38].

As a principled way to mitigate this situation, a formal treatment
of DNS is promising and highly desirable. As a representative of
emerging formal efforts, Kakarla et al. [26] provide the first and
only protocol-level formalization of DNS, upon which they build
a static verifier called GRoot. Their verifier can identify common
configuration errors in a set of zone files prior to their deploy-
ment. However, this seminal work has several limitations. First,
their model abstracts away crucial aspects of DNS resolution, espe-
cially the resolver-side logic including caching, recursive queries for
nameserver names, data sanitization, etc. Second, their formaliza-
tion is not accompanied by an executable model, which is essential
for a sanity check of the semantics and automated formal analysis.
Third, their framework only supports the analysis of a certain class
of correctness properties for DNS configuration, but not quanti-
tative properties such as amplification factors, query latency, and
query success ratios. These together limit the scope of problems
GRoot can identify in the intricate name resolution process.
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Figure 1: Overview of our formal framework.

In this paper we present a comprehensive formal framework
for rigorously analyzing DNS protocols, depicted in Figure 1. Our
framework is based on Maude [16], a formal specification language
and analysis tool that has been successfully applied to a wide range
of distributed and networked systems [9, 32, 50, 51]. At our frame-
work’s core is the most complete DNS semantic model to date.
It captures all essential aspects of end-to-end name resolution in-
cluding the resolver cache, recursive subqueries, data credibility
ranking, query name minimization, etc. Modeling these features is
important as they can be abused for DoS attacks [1, 13, 33, 38].

During the course of formalizing the DNS RFCs, we have identi-
fied and resolved a number of ambiguities and under-specification.
We show that some of them, when interpreted in common ways by
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DNS implementors, can lead to serious DoS attacks. In this regard,
our executable and mathematically precise semantics can serve as
a reference implementation.

To separate concerns between semantics (the formalization of
DNS resolution) and analysis, we develop our framework in a mod-
ular and extensible fashion. In addition to the semantic model, it
comprises three components: (1) a monitoring mechanism that sup-
ports the flexible definition of properties over the semantics; (2)
a library of both qualitative properties (subsuming those consid-
ered by GRoot [26]), and quantitative properties (e.g., amplification
factors and query success ratios); and (3) an initial-state generator
that triggers automated analysis.

With a DNS semantic model and three components, our frame-
work also integrates a toolkit for different, relevant formal analy-
sis tasks: (1) simulation (by Maude’s built-in simulator) for sanity
checking the semantics, quick system testing, etc.; (2) temporal
model checking using Maude’s built-in LTL model checker, which
can exhaustively explore the state space with respect to a correct-
ness property such as the absence of rewrite blackholing; and (3)
statistical verification using the PVeStA statistical model checker [5].
This allows estimating system performance, e.g., query duration/la-
tency, and analyzing mixed properties, e.g., “What is the probability
for a client query to be answered under DoS attacks?”, with a given
statistical confidence.

Our framework can be used to reason about many kinds of
relevant aspects of DNS including functional and security proper-
ties. In this paper our focus is on the automated analysis of DoS
vulnerabilities in DNS. We apply our framework to rediscover ex-
isting attacks [1, 13, 38] and identify multiple new attacks that can
achieve large amplification effects. We have confirmed these attacks
on popular DNS implementations including BIND, Unbound, and
PowerDNS. The measurement results for these implementations
are consistent with our model-based predictions, which attests to
the accuracy and predictive power of our framework.

2 PRELIMINARIES

2.1 The Domain Name System

The Domain Name System (DNS) is a scalable, decentralized data-
base mapping names to IP addresses and other information. Almost
all accesses to Internet resources start with a DNS request. For ex-
ample, when a user visits a website www.example.com, the browser
first issues a DNS request to obtain the address of the hosting server.

DNS Namespace. The DNS namespace is organized in a hierar-
chical tree structure, where each node has a label. A fully qualified
domain name uniquely identifies a node in the tree and consists of
the labels on the path from the node to the root. The namespace is
divided into different administrative units called zones (subtrees).
A child zone is created when the authority of a subtree is delegated.

Resource Records. DNS data is stored in so-called resource records
(RRs). An RR consists of an owner name (the fully qualified domain
name of the tree node where this RR resides), a type, a time-to-live
field (TTL), and a value, whose structure depends on the record’s
type. In general, multiple records with the same owner name and
type can exist, provided they have different data. Such records form
an RRset. There are various record types, such as txt, soa, ns, and
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Figure 2: Resolution of the type a query for www.example.com,
starting from an empty cache at the resolver.

a, each serving a different purpose. For example, an a record can
store the IPv4 address of a web server or the name of a nameserver.
DNS Resolution. When a client makes a DNS request, it typically
sends the query to a recursive resolver, which performs the resolu-
tion on the client’s behalf. Recursive resolvers are usually operated
by ISPs (Internet service providers) or other entities such as Google.
The recursive resolver may already have the answer in its cache
from a previous query, in which case it can immediately respond
to the client. Otherwise, it contacts a hierarchy of authoritative
nameservers to obtain the answer.

Example 2.1 (DNS Resolution). Figure 2 illustrate a DNS resolution
process. A client starts by sending a type a query for the name
www.example.com to its recursive resolver ( 1○). Assuming that the
recursive resolver has an empty cache, it now sends this query to
one of the root nameservers ( 2○).1

Since the root nameserver is only authoritative for the root zone,
it cannot answer the query for www.example.com. Instead, it pro-
vides a delegation (or referral) to nameservers that are “closer” to
the authoritative data. In this case, it refers the resolver to the au-
thoritative nameservers of the com zone, i.e., it sends the ns records
for that zone along with the addresses of the com nameservers ( 3○).

The resolver then sends the query to one of the com nameservers.
Again, these are not authoritative for the full domain, but instead
refer the resolver to the authoritative nameservers for example.com
( 4○ and 5○). The resolver sends the query to these nameservers,
and finally obtains an authoritative answer ( 6○ and 7○) that it sends
back to the client ( 8○).

Note that if the same query is resolved again at a later point, the
resolver does not need to contact the nameservers, but can instead
answer the query directly from its cache, assuming that the TTL
of the records has not expired. Similarly, if the resolver receives
a query for a different name under a known zone, it can query
directly the best known nameservers instead of starting at the root.

A response may also indicate that the requested data does not
exist and here we distinguish two cases: A nxdomain response
indicates that the name does not exist, which means that there is no
resource record (of any type) at this name or at any name below. In
contrast, a nodata response means that the name exists but there
is no data of the requested type.

1A resolver must always know the address of at least one root nameserver, otherwise
it cannot bootstrap resolution. These root server addresses are configured statically by
the resolver operator.
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Glue Records and Resolver Subqueries. Unlike the root server
addresses, the addresses of all lower-level nameservers must be
learned during DNS resolution. Typically, this is achieved by in-
cluding the address records of nameservers in the referral response.
These address records are called glue.

In the example above, we assumed that all referrals have glue. In
fact, inmany cases, glue records are necessary for resolution to work.
To illustrate this, assume that the nameserver for example.com
is located at ns1.example.com. If the com server sent a referral
to ns1.example.com without any addresses, the resolver would
have to look up the address of ns1.example.com itself. However, it
would need to ask the com nameserver again, which would simply
send another glueless referral. To prevent the resolver from getting
stuck in such a situation, a delegation to a nameserver in or below
the delegated zone must include glue records.

If the nameserver is located in a different part of the namespace,
glue is not required. For example, assume that the authoritative
nameserver for the example.com zone is ns.example.net. Since
this name is not located below example.com, the com nameserver
can send a referral without glue,2 and the resolver could still make
progress by first sending a separate query to look up the address
records for this name to a net nameserver. We call these separate
queries resolver subqueries because they are created by the resolver
as part of the resolution of a client query.

We defer to Appendix A more advanced features of DNS, such
as cnames, dnames, wildcard records, and qname minimization.

2.2 Maude and Actors

Maude [16] is an executable formal specification language based
on rewriting logic. It also supports machine-checked, automated
formal analysis, including simulation, linear temporal logic (LTL)
model checking [15], and statistical model checking (SMC) [2, 42].
Maude has been successfully applied to analyze high-level designs
of a wide range of distributed and networked systems.

Many prevalent formal analysis tools, such as Uppaal [47] and
Prism [28], are based on finite automata models. We are not aware
of any work on formalizing and analyzing large-scale distributed
systems like DNS using such tools. This might be because these
object-based distributed systems have intrinsic features that are
quite hard or impossible to represent using finite automata. For
example, object attributes may contain unbounded data structures;
asynchronous message passing and dynamic object creation may
increase the number of messages and objects in an unbounded
manner. In contrast, Maude provides expressiveness and modeling
convenience for our formalization of DNS.
Maude Syntax. In Maude, specifications are structured into mod-
ules. A Maude module specifies a rewrite theory [35] consisting of
an equational theory [23], which specifies the system’s data types
and the operations on them, and a collection of rewrite rules, which
model the system’s dynamics. We summarize Maude’s syntax used
in this paper and refer readers to the Maude book [16] for details.
Operators (or functions) can have user-definable syntax, with ‘_’
denoting the argument positions, as in _+_. Conditional rewrite
rules are introduced with the keyword crl. Comments start with

2In fact, if the nameserver did include glue records, they would be rejected by the
resolver due to bailiwick rules, a mitigation for certain cache poisoning attacks [44].

Table 1: The RFCs covered by our DNS formalization. The

last column indicates which actor(s) are mainly affected by

the algorithmic changes introduced by an RFC.

RFC Description Main algorithmic change

1034 [36] Core specification Resolver & Nameserver
1035 [37] Core specification Resolver & Nameserver
2181 [21] Clarifications Resolver (data ranking)
2308 [6] Negative caching Resolver
4592 [29] Wildcards Nameserver
6604 [25] rcode clarifications Resolver & Nameserver
6672 [40] dname redirection Resolver & Nameserver
8020 [12] nxdomain clarification Resolver
9156 [11] qname minimization Resolver

‘***’. In addition to commonly used data types such as numbers,
lists, sets, and maps, Maude supports parameterized, customized
data types. We will use these data types to model advanced DNS
features such as caches.
Actors in Maude. We adopt the actors paradigm [3] in our formal-
ization of DNS. Actors are a popular model for distributed systems
where distributed objects communicate through asynchronous mes-
sage passing. When an actor receives a message, it can change its
state, send messages, and create new actors. These actions are de-
termined by the received message and the actor’s internal state.

In a nutshell, a system state, modeled as a Maude term called
a configuration, is a multiset of actors and messages built with an
empty syntax multiset union operator __. An actor is represented as
a term <addr : ActorType | att1 : val1, . . . , att𝑛 : val𝑛 >, where addr
is the unique address (or identifier) of the actor of type ActorType,
and val1 to val𝑛 are the current values of the attributes att1 to
att𝑛 . A message (to receiver from sender : content) is also a term,
consisting of the sender, receiver, and message content.

The following shows an example conditional rewrite rule that
defines a system transition:

1 crl [l] : ∗ ∗ ∗ l i s a r u l e l a b e l
2 (to svr from clt : w)
3 < svr : Server | a1: x, a2: y >
4 => ∗ ∗ ∗ t r a n s i t i o n from above t o be l ow
5 < svr : Server | a1: x + w, a2: y >
6 (to clt from svr : y - w) if y - w > 0 .

Amessage sent by the client actor clt (line 2) is consumed, provided
the if condition holds (line 6), by the server actor svr (line 3).
Its attribute a1 is updated to x + w (line 5) with the incoming
message’s content w, and a new message is sent back to the client
(line 6). Such a transition (resp. rule) is called a local transition (resp.
rule) as it only mentions relevant, parts of the system state, e.g., the
client actor is omitted in the rule. We adopt this modeling style in
formalizing DNS as it results in concise, readable rewrite rules.

3 DNS FORMAL SEMANTICS

In this section, we present our formalization of end-to-end DNS
resolution in Maude. The entire executable specification consists
of 28 rewrite rules for the non-deterministic model and 30 rules for
the probabilistic model.3

3https://gitlab.ethz.ch/netsec/dns-formalization-maude

https://gitlab.ethz.ch/netsec/dns-formalization-maude
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3.1 Scope and Assumptions

Our model focuses on the processing and exchange of protocol-
level DNS messages by different actors during resolution. Hence,
management tasks, such as configuration, zone transfers [30], and
dynamic updates [49], are beyond its scope. Table 1 summarizes
the RFCs covered by our formalization.

For data representation, we choose an abstraction level that is
reasonably close to actual implementations. For example, we model
the different sections in a DNS response, but not the status flags.

Regarding different types of DNS servers, we maintain a strict
separation between (caching) recursive resolvers and authoritative
nameservers. Although it is not prohibited for a single server to run
in both recursive and authoritative mode [36], this is discouraged
today even by the implementations that support it [45].

Regarding protocol dynamics, we refrain from any abstractions
that alter the number of protocol-level messages exchanged be-
tween the actors. For example, a resolver must look up the name-
server’s address before sending it a message, a crucial aspect ig-
nored in the GRoot semantics [26]. We abstract away aspects of
lower-layer protocols such as the maximum UDP packet size.

3.2 Formalizing DNS

We develop two models of DNS: (1) an untimed, non-deterministic
model that we use for qualitative analysis such as LTL model check-
ing, and (2) a timed, probabilistic model that we use for quantitative
analysis such as statistical verification. We use (1) to illustrate our
formalization of DNS and describe how we can transform (1) into
(2) in Section 3.3.

3.2.1 Modeling Considerations. Advanced DNS features, such as
caching and referrals, and the complex system dynamics resulting
from the subtle interactions of these features render a faithful mod-
eling of DNS challenging. We summarize our main design choices:

(i) Based on our insight into the RFCs, we model the authori-
tative nameserver algorithm as a stateless function, which
can thus be formalized by recursive equations in Maude. In
contrast, we model the resolver algorithm as being stateful
(e.g., a resolver must maintain global and per-query state
due to referrals or query rewriting), and therefore we specify
it using rewrite rules.

(ii) To faithfully model the communication of protocol-level
messages, we adopt the actors paradigm (see Section 2.2) so
that clients, resolvers, and nameservers can communicate in
our model using asynchronous message passing.

(iii) We construct an abstract, yet sufficiently refined model to
capture advanced DNS features, such as resolver subqueries,
caching, and qname minimization, by utilizing Maude’s pa-
rameterized data types. Our refined model allows us to dis-
cover sophisticated DoS attacks that leverage these features.

3.2.2 Actors, Messages, and Configurations. Following the actors
paradigm, we naturally model DNS in an object-oriented style. The
DNS state, represented by a configuration in Maude, is formalized
as a multiset of objects, including clients, resolvers, nameservers,
and messages (e.g., queries) traveling between these objects.

Actors. A client is modeled with two attributes: a list of queries
that it intends to send and the address of the resolver it connects
to. We model the tree representation for zones (assumed by the
nameserver algorithm) using a list that a nameserver stores.4

Unlike clients or nameservers, the local state of a recursive re-
solver is much more complex. We model its attributes by including
both static (e.g., safety belt) and dynamic (e.g., caches, per-query
state, pending queries, and work budget) states. Note that, in con-
trast to static states, dynamic states are expected to change as the
system state evolves. The following shows two examples which
also utilize Maude’s parameterized, customized data types.

Example 3.1 (Safety Belt). The static state consists of a list of root
nameservers, namely “safety belt” (or SBELT), with their addresses.
This attribute serves as a static fallback when the resolver does not
have information to guide the nameserver selection. We customize
SBELT using a compound data structure for storing the mapping
of nameservers of a zone to their addresses. The following shows
an SBELT instance modeled in Maude:

1 < root , (a . root -server . net . root |-> addrRoot) >

If the resolver processes a query with a cold cache with no related
entries, it will fall back to ask one of the root nameservers. We set
the preferred nameserver of root to be a.root-server.net.root.
This root nameserver corresponds to the nameserver with the asso-
ciated address addrRoot.

Example 3.2 (Caches). One important part of the dynamic state
is the resolver’s cache. There are different types of caches: a nor-
mal (positive) cache, storing resource records that the resolver
received in noerror responses, and a negative cache, storing nx-
domain and nodata responses. They are defined analogously. For
example, using a parameterized list, we define a positive cache as
List{cacheEntry} in Maude with an associative concatenation
operator ::. A cache entry cacheEntry is a pair that consists of a
record and an associated credibility score indicating varying levels
of trustworthiness (see Section 4.1).

Figure 3 shows a positive cache instance specified in Maude. The
first cache entry (line 1) displays a cname record received by a
resolver, whose owner name is a.target-ans.com.root and the
target name is b.target-ans.com.root. The resolver then tries
to resolve the target name and receives an A record corresponding
to the cache’s second entry (line 2). This A value is the address of
the com nameserver. In both cached entries, the TTL is set to inf,
meaning that the cached record never expires. This is the case for
our non-deterministic, untimed model; we can assign real values
to the TTL in our probabilistic model (see Section 3.3).

Messages. DNS messages, including (sub)queries and responses,
are modeled in the same format (to receiver from sender : content)
and only differ in the message content.

Configurations. A system state, whether an initial state, an inter-
mediate state, or a final state, is represented inMaude as a configura-
tion. Putting together the above two examples, we show an instance
(intermediate) configuration in Figure 4 with one client (line 2), one
resolver (line 3), three nameservers (lines 4–6), and one active query
4This leads to no loss of information as the tree representation can always be recon-
structed from the list.
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1 cacheEntry(< a . target -ans . com . root , cname , inf , b . target -ans . com . root >, 5) :: ∗ ∗ ∗ f i r s t c a ch e e n t r y
2 cacheEntry(< b . target -ans . com . root , a, inf , addrNScom >, 5) ∗ ∗ ∗ s e c o nd ca ch e e n t r y

Figure 3: A positive cache instance specified in Maude.

1 (to rAddr from cAddr : query(1, a . target -ans . com . root , a)) ∗ ∗ ∗ que ry wa i t i n g t o be consumed
2 < cAddr : Client | queries: query(2, c . target -ans . com . root , a), resolver: rAddr , ... > ∗ ∗ ∗ c l i e n t
3 < rAddr : Resolver | cache: the cache instance in Figure 3, sbelt : the SBELT instance in Example 3.1, ... > ∗ ∗ ∗ r e s o l v e r
4 < addrRoot : Nameserver | db: < com . root , ns, 3600, ns . com . root >
5 < ns . com . root , a, 3600, addrNScom >, ... > ∗ ∗ ∗ r o o t name s e r v e r
6 < addrNScom : Nameserver | ... > < addrNStargetANS : Nameserver | ... > ∗ ∗ ∗ t h e o t h e r two name s e r v e r s

Figure 4: An example (intermediate) system state, consisting of one client (line 2), one resolver (line 3), three nameservers

(lines 4–6), and two messages sent from the client to the resolver (one message is pending, buffered in queries). We omit other

attributes of an actor, marked by “...”.

(line 1). The client actor has type Client, address cAddr, and the
address rAddr of the resolver to be queried. The client has already
sent the query with identifier 1 (line 1), which is waiting for the
resolver to consume. Another client query, with its identifier 2 and
the record type a, is currently buffered in queries (line 2). A list
of records, modeling the tree representation for zones, is stored in
the nameserver’s database (lines 4–5). Cached entries (like those
in Figure 3), resulting from query resolution, are contained in the
cache of the resolver rAddr (line 3).

3.2.3 DNS Dynamics. We utilize rewrite rules to specify DNS dy-
namics which take a (partial) configuration, representing the cur-
rent system state, and transform it into a configuration, represent-
ing the next system state. To exemplify our formalization with
refined resolvers and caching, Figure 5 depicts a rewrite rule that
corresponds to Step 4, Case A of the resolver algorithm from RFC
6672 [40]:

If the response answers the question or contains a name error, cache
the data as well as return it back to the client.

This rule [resolver-recv-answer-for-client] has 74 LOC
with nontrivial auxiliary functions and rule conditions. For the
simplicity of our presentation, we only show the most important
snippet with respect to positive caching.5 The rule applies for a
response that authoritatively answers a client query. More specifi-
cally, a temporary cache is created from the data contained in the
response (line 8), which is then used for the lookup (line 10). Note
that we cannot perform the lookup directly on the actual cache as
case A of the resolver algorithm should only consider the data in the
response, not in the cache. Also note that we look only at the data
in the answer section (ANS, line 2) for the temporary positive cache
as the entire rule is concerned with authoritative answers. Finally,
we insert the data from the response into the actual cache and use
this updated cache on the right-hand side of the rule (line 5).

3.3 Probabilistic Model

Themodel defined thus far is untimed and non-deterministic, which
is well-suited for detecting timing-independent bugs in DNS, e.g.,
rewrite blackholing. However, it is ill-suited for (1) capturing the

5We do not include variable declarations, but follow the Maude convention that vari-
ables are written in (all) capital letters. We also omit other attributes of an actor,
arguments of functions, and conjunctions in the condition.

1 crl [resolver -recv -answer -for -client] :
2 (to RSV from NS : response(ANS , ...))
3 < RSV : Resolver | cache: CACHE , ... >
4 =>
5 < RSV : Resolver | cache: updt(CACHE '), ... >
6 (to ADDR from RSV : RESP)
7 if ∗ ∗ ∗ C r e a t e t empora ry ca ch e from r e s p o n s e
8 CACHE_TMP := updateCacheAuthAns(ANS , ...) /\
9 ∗ ∗ ∗ Cache h i t i n t empora ry ca ch e
10 RESP := responseFromCache(CACHE_TMP , ...) /\
11 ∗ ∗ ∗ Cache t h e da ta from th e r e s p o n s e
12 CACHE ' := updateCacheCred(ANS , ...) /\
13 ... ∗ ∗ ∗ o t h e r a s s i g nmen t s o r c o n d i t i o n s

Figure 5: Snippet of the rewrite rule corresponding to Step 4,

Case A of the resolver algorithm from RFC 6672.

full TTL semantics and timeouts in DNS, and (2) quantitative analy-
sis, e.g., using statistical model checking. Hence, we transform this
model into a timed, probabilistic model by following the systematic
methodology proposed by Agha et al. [4]. The idea is to assign to
each message a delay sampled from a continuous probability distri-
bution,6 which determines when the rule that receives the message
fires. To schedule the delayed messages (as multiple delayed mes-
sages may appear in one single system state), we implement in
Maude a scheduler actor with a global clock. The elapse of message
delays, as well as advancing the global clock, is maintained by the
scheduler. More specifically, an incoming message of the form {gt,
msg} is delivered at the global time gt; an outgoing message of the
form [gt + 𝑑, msg] will be delivered in 𝑑 time units after gt. The
scheduler is specified to advance the global time from gt to gt + 𝑑
and transform the delayed outgoing message into {gt + 𝑑, msg},
which is, by then, ready to be consumed.

This transformation results in a model that is free from unquan-
tified non-determinism [31, 42] in that all transitions are associated
with probabilities. The resulting model is therefore suitable for SMC.
Section 5.2 shows an example of the transformed rules. Moreover,
unlike the untimed model where a cached record never expires
(TTL set to inf), we can now explore the TTL space by configuring
different values (e.g., 3600 time units by default in our experiments).

6In our experiments we use the lognormal distribution that characterizes the network
latency in realistic deployments [8, 22].
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4 RESOLVING AMBIGUITIES

Formalizing the DNS semantics forces us to iron out any impreci-
sion in the relevant RFCs. Ambiguities in specifications are often at
the root of implementation bugs, configuration errors, and security
vulnerabilities. To illustrate this, we present three representative
ambiguous cases relevant to the new attacks we discovered (Sec-
tion 6). We show other semantic ambiguities in Appendix B.

4.1 Ambiguities in Resolver Algorithm

4.1.1 Resolver Subqueries. One of the most perplexing aspects
of DNS resolution is the subqueries generated by a resolver to
resolve the names of nameservers themselves. Such subqueries are
internal to a recursive resolver and hidden from clients. Yet, from
an authoritative nameserver’s perspective, resolver subqueries are
no different from other types of queries it may receive. Hence, an
important decision for us to make is whether resolver subqueries
are treated as special cases during resolution.

One particular question arises regarding whether cnames should
be followed in subqueries, which is a situation that occurs when an
ns record points to an alias. As defined in RFC 1035 [37], the target of
an ns record must be a domain name but not an IP address, without
any other explicit restriction. Later, it is clarified that nameserver
aliases are forbidden [21, §10.3]:

The domain name used as the value of an NS record, or part of the
value of an MX record must not be an alias.

However, the specification also advocates a robustness principle [36,
§3.6.2] to reduce the risk of failure:

... domain software should not fail when presented with CNAME
chains or loops; CNAME chains should be followed and CNAME
loops signalled as an error.

Major implementations diverge in their treatments of this: BIND
immediately aborts a query if the name of a nameserver is found
to be an alias, whereas both Unbound and PowerDNS follow the
cnames as usual. We choose to follow the robustness principle in
our model. This enables us to analyze practical systems that are
more forgiving and unveil more problematic resolution behaviors
that otherwise would remain hidden.

4.1.2 Data Credibility. A DNS answer can contain varying records
with different levels of relevance and credibility. There must be
proper policies in place for resolvers to decide which records to
accept and cache, as well as how to use them. A data ranking policy
is specified for this purpose [21, §5.4.1]. Below are two rules from
the policy (a larger number indicates a higher level of credibility):

5. The authoritative data included in the answer section of an
authoritative reply.

2. Data from the answer section of a non-authoritative answer, and
non-authoritative data from the answer section of authoritative an-
swers.

When multiple relevant records are present in an answer, the one
with the highest rank takes precedence. If a received record coin-
cides with a cached one, the one of a higher rank should be retained
in the cache. Given that resolvers can receive all sorts of answers
from nameservers also with varying levels of trustworthiness, it
is difficult to interpret and implement these rules precisely and
comprehensively. To complicate matters further, in many situations
a resolver must use data of the lowest credibility level, such as glue
records, to function correctly.

In our formalization, we resolve any equivocal cases by map-
ping them to exactly one possible path of the resolver’s execution,
strictly following the data ranking policy. This, in turn, has helped
us address imprecision in the resolution algorithm. Furthermore, to
enable fine-grained resolution policies and the analysis of diverse
interpretations of data credibility rules, we introduce two configu-
ration options, rsvMinCredClient and rsvMinCredResolver (see
Table 2); they control the minimum credibility of data that a resolver
will accept for client requests or the resolver’s subqueries.

From the same RFC [21, §5.4.1], there is one further remark of
particular interest on data credibility:

Note that the answer section of an authoritative answer normally
contains only authoritative data. However when the name sought is
an alias only the record describing that alias is necessarily authorita-
tive [...] Where authoritative answers are required, the client should
query again, using the canonical name associated with the alias.

This suggests that, when receiving a cname record of the queried
name, a resolver (in the role of client) should always query again the
rewritten name because only that record is necessarily authoritative.
As a corollary, a resolver should always query each name on a
cname chain. However, a dilemma arises when all names on the
chain are in the same authoritative zone and are packed into a single
answer. In this case, the resolver’s behavior is left unspecified: either
to discard all but the first cname records and repeatedly query
until the last one, or accept all these records as authoritative and
process the rewrite chain locally, without sending extra queries.
In fact, all the DNS implementations we tested follow the first
approach; we also adopt the strict definition in our semantic model
that only the record describing an alias is authoritative. Nonetheless,
with the default value (i.e., 2) for rsvMinCacheCredClient and
rsvMinCacheCredResolver, our model becomes more forgiving
and can capture the other case as well. This is an example of our
framework’s configurability and flexibility.

4.1.3 QMIN Limits. qname minimization (QMIN) [11] is an en-
hancement to improve privacy for DNS authoritative queries. While
conceptually simple, QMIN substantially complicates the resolution
process. In order to find proper zone cuts, a recursive resolver may
send multiple probing queries to the same nameserver, with one
more label added in each iteration. This is explicitly documented
[11, §2.3]:

When using QNAME minimisation, the number of labels in the re-
ceived QNAME can influence the number of queries sent from the
resolver. This opens an attack vector and can decrease performance.
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Table 2: A partial list of the configuration options supported by our semantic model

Option Definition Default

rsvMinCredClient The minimum credibility requirement [21] for data served to a client 2
rsvMinCredResolver The equivalent credibility requirement for resolver subqueries 2
maxMinimiseCount The MAX_MINIMIZE_COUNT parameter to limit extra work for QMIN [11] 10
minimiseOneLab The MINIMIZE_ONE_LAB parameter from the same mechanism above 4
rsvTimeout Whether and how long a resolver applies a timeout for each query it sends false, 20.0
rsvOverallTimeout Whether and how long a resolver applies an overall timeout for a client request false, 100.0
workBudget The max number of any queries that a resolver sends out for a client request 75
maxFetch Whether and how much to enable MaxFetch(𝑘) [1] to limit concurrent subqueries false, 1

Resolvers supporting QNAME minimisation MUST implement a
mechanism to limit the number of outgoing queries per user request.

Nonetheless, among other ambiguities (see Appendix B), it remains
under-specified how to deal with those limits when resolver sub-
queries are triggered for a client request, andwhen cname or dname
records are received by the resolver. Since QMIN’s primary purpose
is to improve privacy, our model opts to enforce the limit for each
query regardless of a query’s nature. This is also the approach taken
by all the resolver software that is considered in our measurements.

4.2 Discussion

DNS semantics is complex. Completely capturing all of the corner
cases is highly non-trivial, especially because hundreds of RFCs,
documented informally, contain ambiguities as well as unspecified,
even conflicting statements. Moreover, there is a lack of canon-
ical reference semantics. All together, this leads to a significant
divergence between actual implementations in practice.

To handle these difficulties, our formalization closely follows
the RFCs’ documentation and, whenever possible, uses principles
for disambiguation (e.g., the robustness principle in Section 4.1.1).
Moreover, our semantics is executable, so we can test it incremen-
tally. This allows us to eliminate ambiguities and to enhance our
understanding of the semantics’ corner cases. In case of ambiguities,
our executable model also enables us to quickly explore different
interpretations, analyzing the consequences of each of them (e.g.,
data credibility in Section 4.1.2). Finally, when using our model to
analyze possible real-world attacks, we are more interested in the
interpretations made by real-world implementations. Therefore,
whenever possible, we follow their common interpretations; see,
e.g., Section 4.1.3 for enforcing the QMIN limits.
Validating Our Semantics. The RFCs provide very few test cases
for wildcard [29, §2.2.1] and QMIN [11, §2.3]. We have checked that
our semantic model passes all these tests.

In the absence of a reference semantics and rich benchmarks,
we decide to validate our formalization of our semantic model by
heavily testing it. The test cases are designed to check that we
have formalized all the main and corner cases correctly and that
they have satisfied expected properties. In the model, the rewrite
rules use around 150 auxiliary functions to specify resolver opera-
tions (cache lookup and manipulation, the creation of subqueries,
etc.); recursive equations are used to define nameserver operations
(DNAME substitution, wildcard processing, etc.). To ensure their

correctness, we have defined over 470 unit tests covering both nor-
mal and edge-case inputs. The number of test cases for a function
varies depending on its complexity, e.g., 45 test cases for the core
function of the authoritative nameserver algorithm alone.

Moreover, during our automated attack analysis (Section 6), we
have generated millions of randomized configurations. Our tool
always checks if an execution ends in a well-formed state, e.g., a
resolver has no pending/blocked queries. In addition, as we will see,
the model-side estimations are consistent with the implementation-
side evaluation results. All together, this leads to a high assurance
of our semantics’ correctness.

5 FORMAL ANALYSIS

This section describes how to utilize our framework to perform
formal analysis using simulation, model checking, and statistical
verification. The analysis tools take as input our semantic model
augmented by a monitoring mechanism (Section 5.2), an initial state
(Section 5.1), and a property of interest (Section 5.3). Depending
on the type of analysis, the tool’s output can be a final system
state with useful information for subsequent analysis, a validated
qualitative property or counterexample, or a quantitative result
with statistical confidence.

5.1 Initial-state Generation

We implement a configurable initial-state generator to facilitate au-
tomated analysis. Our generator takes as input a range of parameter
values and outputs a Maude module that can be used to invoke one
of our analysis tools. We consider two classes of parameters: (1)
those for configuring the behaviors of actors, especially the resolver,
and (2) those for controlling the generation of zone files and how
they are assigned to nameservers. Table 2 provides a partial list of
the parameters in class (1) pertinent to our discussion in Section 6.
The parameters in class (2) include, for example, the number of
zones, the record types, and the depth of names. Our random zone
generation algorithm is given in Appendix C.

5.2 Monitoring

We define properties over a globalmonitor object, which is attached
to the rewrite rules and records statistics on system executions. The
monitor is specified just like the nameservers and resolvers with two
main attributes: one for keeping track of the queries sent by clients
(clQueryLog) and the other for recording the responses received
by them (clRespLog). Note that we use custom data structures
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1 rl [client -recv -resp -send -next] :
2 < M : Monitor | clQueryLog: L, clRespLog: L', ... >
3 {T, to CL from RSV : RESP} ∗ ∗ ∗ a r r i v i n g a t t ime T
4 < CL : Client | queries: Q QS, ... >
5 =>
6 < M : Monitor | clQueryLog: < CL, Q > L,
7 clRespLog: < CL, RESP > L', ... >
8 < CL : Client | queries: QS, ... >
9 [T + delay , to RSV from CL : Q] . ∗ ∗ ∗ d e l a y e d msg

Figure 6: Example rule for the monitoring mechanism

to store the information, in this case lists of <address,query> or
<address,response> pairs.

Figure 6 illustrates the monitoring mechanism with an example
rewrite rule where the client receives a response from its resolver
and there are more queries to be issued. Along with the client’s
reaction, the monitor also updates its local state: the response that
the client receives is added to clRespLog (line 7), and the new query
sent to the resolver is added to clQueryLog (line 6).

Note that this example also illustrates the idea of transforming
an untimed, non-deterministic rule into a timed, probabilistic rule
(Section 3.3). The resolver response arrives at the global time T
while the client’s next query is issued with a delay.

Our monitoring mechanism supports a strict separation of con-
cerns between the semantics (i.e., the formalization of DNS res-
olution, which is the actual client reaction in this case) and the
analysis performed with it. Furthermore, it suffices for the monitor
to record an abstraction of the system state, which consists of only
the information relevant for the properties, while omitting many
details from the full state (e.g., the client’s local state marked by
“...”). Finally, we can easily extend the analysis part without touching
the semantics; in particular, we only need to define new attributes
and update them in the monitor of relevant rules. See Figure 8,
Section 5.3 for an example where the monitor uses other attributes
to record the number of answered/failed client queries.

5.3 Property Library and Formal Analysis

Our framework supports the analysis of two types of properties:
(1) qualitative properties like those considered by GRoot [26]

and beyond, such as repeated queries, domain overflow at
nameservers, and inconsistent RRsets. These are used to
check the correctness of our DNS model via Maude’s LTL
model checker [16].

(2) quantitative properties such as the amplification factor that
a query induces at the resolver, the probability that a client
request is successfully answered, and average query latency.
These are used for performance estimations via the PVeStA
statistical verifier [5].

We specify (1) using LTL formulas [15] and (2) in QuaTEx [4], a
quantitative temporal logic that extends probabilistic computation
tree logic [24] with real-valued expressions. In the following, we
briefly discuss an example for each type of properties. A complete
list of our predefined properties, along with their descriptions, can
be found in Appendix D.
Rewrite Blackholing. When a qname is rewritten (by cnames or
dnames) to a non-existent name, rewrite blackholing occurs and
signals a configuration error. A correctness property is thus defined

as whether a given configuration, potentially with multiple zones,
contains a rewrite blackhole. We specify this property over the
response log maintained by the monitor, checking whether there is
a response with a non-empty answer section and nxdomain code.

As shown in Figure 7, the state predicate hasRewriteBlackhole
is defined as a simple wrapper that extracts the value of the mon-
itor’s clRespLog attribute from the entire system state (lines 2–
3), and passes it to the predicate rewriteBlackhole which then
checks all entries for a non-empty answer section and a nxdomain
rcode (lines 6–8). The atomic proposition in LTL is then specified
in Maude syntax (line 11), where |= defines the satisfaction relation
with respect to the state predicate hasRewriteBlackhole. Finally,
we define the LTL formula: [] ˜ propRewriteBlackhole,7 mean-
ing that the rewrite blackhole property is never satisfied. Our model
checker can take this property and verify whether it is violated for
given zones and queries specified in an initial state (line 13). See
Appendix E for an example.
Query Success Ratio. An important performance metric in DNS is
the fraction of successful queries, which are those not answeredwith
a servfail response. Measuring such ratios can help us analyze,
e.g., the effects of DoS attacks. A nameserver overwhelmed by a
DoS attack will typically generate many servfail responses.

Figure 8 shows how we specify this property, alongside the
QuaTEx formula8 for statistical model checking with PVeStA. The
specification is straightforward with the numbers of answered and
failed queries stored in themonitor (lines 3–4).We define a temporal
operator succRatio() and PVeStA returns the ratio (computed by
the Maude function to which rval(1) refers; see line 7) if all client
queries are finished (checked by the predicate sat(0) omitted in
Figure 8) in the current state s (line 10). Otherwise, it evaluates
succRatio() on the next state denoted by # (line 11). Finally, the
expected ratio is returned (line 12).

In one of our case studies, we statistically measure the query
success ratio under the NXNS attack [1]. With 0.05 error margin
and 95% statistical confidence,9 PVeStA returns 0.71, i.e., roughly
71% of legitimate client queries are still answered successfully. With
a stronger attacker setting that doubles the rate of malicious client
queries, the success ratio decreases to 0.52. We further implement
the MaxFetch(k) mitigation [1], which limits the number of re-
solver subqueries per client query to 𝑘 , and analyze the stronger
attacker settings. For 𝑘 = 5, we obtain a success ratio of 0.86, while
for 𝑘 = 1, a ratio of 0.97, i.e., almost all client queries are answered
successfully. This suggests that the MaxFetch(k) mitigation is
indeed effective against the NXNS attack.

6 AUTOMATED ATTACK ANALYSIS

In this section, we demonstrate the predictive power of our frame-
work with an important application: automated attack analysis.
In particular, we are interested in DoS vulnerabilities inherent in
DNS at the design level. Our results include the (re)discovery of

7[] and ˜ are Maude syntax for the “always” operator □ and the “not” operator ¬ in
the traditional LTL notation [15].
8A QuaTEx formula is a query of the expected value of a path expression interpreted
over an execution path with state expressions interpreted over states [4].
9An SMC analysis returns the expected value 𝑣 of a QuaTEx query with respect to
two parameters 𝛼 and 𝛿 : 𝑣 is obtained such that, with (1 − 𝛼 ) statistical confidence,
it lies in the interval [𝑣 − 𝛿

2 , 𝑣 +
𝛿
2 ].



A Formal Framework for End-to-End DNS Resolution ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

1 ∗ ∗ ∗ e x t r a c t p a r t i a l i n f o rma t i o n , i . e . , c l R e s pLog , from th e moni to r , t h u s from th e e n t i r e sy s t em s t a t e
2 op hasRewriteBlackhole : Configuration -> Bool .
3 eq hasRewriteBlackhole(< M : Monitor | clRespLog: LOG , ... > ...) = rewriteBlackhole(LOG) .
4
5 ∗ ∗ ∗ d e f i n e r e w r i t e b l a c k h o l i n g
6 op rewriteBlackhole : addrRespList -> Bool . eq rewriteBlackhole(nilLog) = false . ∗ ∗ ∗ a l l e n t r i e s c h e c k e d
7 eq rewriteBlackhole(< ADDR , response(ID, NAME , ANS , AUTH , ADD , RCODE) > LOG)
8 = if ANS =/= nil and RCODE == 3 then true else rewriteBlackhole(LOG) fi . ∗ ∗ ∗ 3 r e f e r s t o NXDOMAIN
9
10 ∗ ∗ ∗ a t omi c p r o p o s i t i o n i n LTL
11 op propRewriteBlackhole : -> Prop . eq CONFIG |= propRewriteBlackhole = hasRewriteBlackhole(CONFIG) .
12
13 red modelCheck(initState , [] ~ propRewriteBlackhole) . ∗ ∗ ∗ i n v o k e LTL model c h e c k e r

Figure 7: LTL model checking of the rewrite blackholing property.

1 ∗ ∗ ∗ d e f i n e que ry s u c c e s s r a t i o
2 op qrySuccRatio : Configuration -> Float .
3 eq qrySuccRatio(< M : Monitor | qryAnswered: N,
4 qryFailed: N', ... > ...) = (N - N') / N .
5
6 ∗ ∗ ∗ QuaTEx i n t e r a c t i o n wi th Maude
7 eq val(1,CONFIG) = qrySuccRatio(CONFIG) .
8
9 ∗ ∗ ∗ QuaTEx fo rmu la f o r SMC
10 succRatio () = if { s.sat(0) } ∗ ∗ ∗ a l l q u e r i e s done
11 then { s.rval (1) } else # succRatio () fi ;
12 eval E[succRatio ()] ; ∗ ∗ ∗ e x p e c t e d r a t i o

Figure 8: QuaTEX formula for query success ratio. This for-

mula is used for statistical model checking with PVeStA.

both recent attacks and new vulnerabilities that can lead to large
amplification effects. We have validated and confirmed all our new
attacks on real DNS software.

6.1 Methodology

The problem of identifying DoS vulnerabilities in DNS consists
of finding a combination of nameserver configurations and client
queries that leads to potential attacks. The nameserver configura-
tions are given by the zone files and their allocation to nameservers.
An attack occurs when the resolution of the given client query (or
queries) produces an undesirable effect like a large amplification
of query load at the resolver or a long duration during which the
query occupies resources at the resolver.

Challenge. The ultimate goal of any automated attack discovery
approach is to exhaustively explore the search space to find all
possible attacks. In our case, this would entail exploring all pos-
sible nameserver configurations and queries. Unfortunately, this
is intractable due to the huge configuration space: the number
of possible zone files is bounded only by the maximum length of
DNS names (254 characters), the allowed character set (alphanu-
merical plus hyphen), and possible record types (several dozens);
meanwhile, zones can be arbitrarily assigned to nameservers.

However, even if we fix the nameserver configurations, the num-
ber of possible client queries is still huge as the qname can be a
non-existent name. Yet, it may be possible to treat some queries as
equivalent when they are resolved in the same way and produce
the same result. GRoot defines such a notion of query equivalence
classes (ECs) [26]. While this approach is manually proved sound
and complete with respect to its simplified DNS semantics, it is

unsound with respect to our more realistic model (explained in
Appendix F).

Our Approach.We develop a highly effective attack analysis ap-
proach, along with an automated tool, based on the following in-
sights. First, attacks depend mostly on the contents of a few mali-
cious zones, whereas the configuration of the benign part of the
DNS namespace is irrelevant. Second, many interesting interac-
tions can be uncovered by relatively small zone files, consisting of
only a few names. Third, while the GRoot’s ECs are unsound with
respect to our model, they still provide an effective heuristic for the
exploration of the query space. Lastly, whether an initial state leads
to an attack rarely depends on the particular non-deterministic
choices made during the system execution, such as the interleaving
between messages. More often, it suffices to analyze one possible
execution to determine if the configuration leads to an attack.

In our automated approach, a user provides the benign part of
an initial state, consisting of a resolver and multiple nameservers.
Based on that, our tool utilizes the random zone generator to create
a number ofmalicious zone files and adds them to the benign initial
state by introducing additional nameservers serving these zones.
For this augmented configuration, our tool then computes GRoot’s
ECs and creates a separate initial state for each EC, with a client
sending a representative query from the EC. Subsequently, our tool
invokes Maude’s simulator to execute our model with each initial
state, computing the metric of interest. The resulting value is then
compared to a user-provided threshold: if it exceeds the threshold,
the execution is considered to be a successful attack and the initial
state is stored for a later inspection.

6.2 Rediscovering Known Attacks

With a simple setup, our tool can already identify known DoS
vulnerabilities in DNS. For the benign part of the initial state, we
use a benign.com zone consisting of several basic soa, ns, and a
records. We also provide a root, com and net zones, as well as a
root-servers.net zone (which contains the information for the
single root server a.root-servers.net), which are all hosted by
separate nameservers. This simulates a minimal realistic setup of
the DNS namespace. We configure our tool to record a suspicious
run whenever the number of queries sent by the resolver for one
client request exceeds 15, a moderate threshold to discern ampli-
fication attacks [41]. For our semantic model, we use the default
configuration (Table 2), except that we disable QMIN to avoid noise
(which is considered in Section 6.3).
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We discuss three attacks below, explaining the usage and con-
figuration of our tool along the way. This discussion serves as the
basis to analyze more complicated attacks.

NXNS Attack.While considering a single malicious zone, our tool
already reports a potential attack after a few runs with respect to
the following zone.

< atk1.com., SOA , 3600 >
< r.atk1.com., NS, nxdomain0 -1. benign.com. >
< r.atk1.com., NS, nxdomain1 -1.net. >
< r.atk1.com., NS, nxdomain2 -1.ns.com. >
...
< ss.c.atk1.com., DNAME , *. benign.com. >
< qq.c.atk1.com., DNAME , net. >

This zone contains an unusual number of ns records for r.atk1.com
pointing to non-existent nameservers. The amplification is caused
by the subqueries that the resolver generated for each of the name-
servers, as confirmed by the monitor’s query/response logs. This is
precisely the mechanism underlying the NXNS attack [1], although,
ideally, the non-existent nameservers are all located below a vic-
tim’s domain. As there is no explicit victim in our setup, different
names from the benign zones are used to construct the nameserver
names.

TsuNAME Attack. The following is reported as a potential attack
configuration, when initial states are generated with two random
malicious zones.

--- zone atk1.com
< rr.j.atk1.com., NS, nxdomain0 -1.o.atk2.net. >
--- zone atk2.net
...
< o.atk2.net., NS , nxdomain7 -1. benign.com. >
< o.atk2.net., NS , nxdomain8 -1.ns.net. >
< o.atk2.net., NS , nxdomain9 -1.rr.j.atk1.com. >

At first sight, the second zone looks similar to the one shown
above for the NXNS attack. However, the reported amplification
is significantly higher for vv.o.atk2.net. This is due to a cir-
cular dependency: one of the nameservers for vv.o.atk2.net is
nxdomain9-1.rr.j.atk1.com, which is hosted by a nameserver
under the zone atk2.net itself. We can observe TsuNAME-like
behaviors [38] with repeated queries sent to the atk1.com zone
until the resolver’s workBudget (Table 2) is eventually exceeded.

Unchained Attack. It is possible to similarly rediscover the Un-
chained attack [13], which forces a resolver to follow a cname chain
split between two zones hosted by different nameservers. However,
because of the many possibilities for RRsets, one must generate
a large number of zones before a long cname chain is generated.
Our tool allows us to flexibly set a different focus for each attack
exploration run. If we perform such a run with a focus on cname
records in the random zone generation and additionally restrict the
values of records to contain only names in other malicious zones,
our tool can report suspicious Unchained behaviors.

6.3 Discovery of New Attacks

We now show that minor tweaking of our tool’s parameters leads to
the discovery of more complex interactions of DNS features, which
produce larger amplification than the previous vulnerabilities. As
demonstrated by the new attacks reported below, our tool can
analyze amplification in terms of both query load and query delay.

Table 3: Default limits enforced by resolver implementations

BIND 9.18.4 PowerDNS 4.7 Unbound 1.16

Max subqueries 5 5 6
Max cname chain 17 12 12
QMIN iterations 5 10 10

To validate the attacks, we create a testbed using popular DNS
implementations which mirrors the configuration of our model.
Table 3 summaries the default parameters of these implementations
relevant to our discussion.
Subqueries + Unchained. Our analysis of Unchained focuses on
cnames in the random zone generation. By additionally allowing ns
RRsets for leaf zones, our tool reports attack cases with a high ampli-
fication factor: the large delegation leads to the creation of multiple
resolver subqueries, and each of them triggers an Unchained-style
cname chain. The amplification is therefore multiplied.

Figure 9a reports our measurement results for this attack with
varying size of the malicious ns RRset. For each resolver implemen-
tation, we tune the maxFetch parameter in our model to match its
subquery limit so that we obtain comparable behavior. Additionally,
we use cname chains of the appropriate length to match the limits
enforced by the corresponding implementations.

The data measured is the number of queries received by the
victim nameserver (one of the two nameservers involved in an
Unchained attack). As can be seen, BIND and PowerDNS match our
model’s predictions almost exactly. BIND is not vulnerable to this
attack as it does not follow cname chains starting from nameserver
names. PowerDNS limits the maximum cname chain length that
it follows to 12 and the maximum number of subqueries it sends
to 5; it reaches its overall limit as expected, since only half of the
queries for the cname chains go to the victim. Unbound generates
even more queries than predicted by our model. Our inspection
of the query logs shows that Unbound has a fallback mechanism
that attempts resolution of the nameserver names twice. With a
subquery limit of 6, it already reaches the maximum amplification
at three delegations.
Subqueries + CNAME Scrubbing. As mentioned earlier (Sec-
tion 4.1), with a strict interpretation of data credibility rules, a
resolver does not trust an entire cname chain received in a single re-
sponse and continues to query the canonical name of the first record.
This is unofficially referred to as CNAME scrubbing [39] in the DNS
development community. We can enable this behavior in our model
by increasing rsvMinCredClient and rsvMinCredResolver to 5.
With these minor changes, our tool can report potential malicious
zones as for the previous attack, except that the cname chains
pointed to by the ns records can now be contained within a single
zone, rather than split across two or more zones as in Unchained.

In theory, this attack is expected to achieve twice as high an
amplification factor as the previous attack. This is confirmed by our
measurement results depicted in Figure 9b. Again, both PowerDNS
and Unbound are vulnerable to the attackwhile BIND is not. Despite
being more powerful than Unchained, to the best of our knowledge,
the exploitation of CNAME scrubbing for amplification has not
been reported before.
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Figure 9: Measurement results of our new attacks that produce large amplification by combining vulnerabilities.
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Figure 10: Measurement results of our new slow DoS attacks

that prolong query processing time at a resolver.

CNAME Scrubbing + QMIN. In our analysis of all the previous
attacks, the QMIN feature is disabled. We now enable it by set-
ting a non-zero value for maxMinimiseCount. Other settings for
the random zone generation include keeping CNAME scrubbing
enabled, prohibiting ns RRsets for leaf zones, and increasing the
depth of names (i.e., more labels). We also increase the resolver’s
workBudget in our model. With this configuration, our tool reports
the most powerful attack so far: every name on a cname chain trig-
gers multiple QMIN probing queries sent to the victim nameserver.

All three resolvers are highly susceptible to this attack, as shown
in Figure 9c. Depending on the implementation of the QMIN algo-
rithm, the attack can incur up to 10 queries per element on a long
chain. BIND and PowerDNS hit a maximum number of queries of
85 and 100, respectively, as they impose overall resource budgets
for each client request. Interestingly, Unbound keeps generating
queries in some of our test cases even when it exceeds its limit
on cname chains. After investigation, we additionally discover a
serious bug in Unbound where it does not enforce the maximum
length of cname chains for record types other than a. These find-
ings again demonstrate the value of our framework in efficiently
identifying subtle problems overlooked in DNS implementations.
Amplified Slow DoS. Our tool can also support more advanced
analysis with the time dimension factored in. A resolver maintains
complex state for each ongoing query. A slow DoS attack keeps
a query “alive” in a resolver for as long as possible, occupying
resources that can otherwise be used for legitimate queries.

We now describe how we produce such slow queries to pro-
long the resolution of a malicious client query. Specifically, we
introduce an artificial delay in the responses of attacker-controlled
nameservers and then generate zone files where the client queries
remain unanswered for a long time. The artificial delay must be
smaller than the resolver timeout for each query (rsvTimeout); oth-
erwise, the nameserver is deemed unreachable. We also adjust our
model’s rscOverallTimeout parameter so that it is higher than
the threshold set for an attack alarm. Moreover, since the resolver’s
query duration depends on probabilistic message delays, we use
SMC, instead of a single simulation, to estimate the duration.

With this setup, our tool automatically reports slow DoS attacks
for malicious zone files. These attacks force the resolver to, in the
resolution of one single client query, send multiple queries sequen-
tially, e.g., when long cname chains or deep names (with QMIN
turned on) are encountered. We again validate these findings on
different resolver implementations. Note that we need to establish a
relationship between the abstract time units used in our model and
the real time observed in our experiments. While this is non-trivial
in general, it is straightforward in our case as the artificial delays
are orders of magnitude larger than the normal message delays. We
can thus base the relation solely on the artificial delay, and equate
one time unit with one millisecond of real time.

Figure 10 depicts our measurement results with varying artificial
delay for the attacks enabled (a) by cname scrubbing and (b) addi-
tionally by QMIN, respectively. The maximum artificial delay we
show is 1.4 seconds, which is the largest value for which we obtain
meaningful results for all implementations. For larger values, some
implementations do not make any progress in resolution due to,
e.g., a query timeout of 1.5 seconds. If an implementation has a
maximum query duration (i.e., 12 seconds for PowerDNS), we also
set our model’s rscOverallTimeout accordingly.

As shown by the plots, the behavior of real resolvers closely
follows our model. The small gaps observed are due to the small
variance in our testbed’s network conditions. In general, the total
query duration at all resolvers increases as more delay is added
by the malicious nameserver. The difference in slope is due to the
different limits enforced by the implementations. Comparing the
two plots, we see that QMIN significantly intensifies the slow DoS
attack: a single malicious client query can last for over 100 seconds
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in two resolver implementations. Unbound suffers frommuch larger
amplification than BIND when QMIN is enabled. This is because
Unbound has a higher limit for QMIN iterations, which outweighs
its slightly lower limit for cname.

These amplification vulnerabilities can be exploited by attackers
to launch highly effective DoS attacks at low costs. We anticipate
that DNS developers and operators can leverage our framework to
proactively discover and fix such security vulnerabilities.

6.4 Discussion

Improving Automation.While our approach produces zones and
queries that exhibit undesirable system behavior, some manual
work is still necessary to triage and classify the results. We have
seen that discovering certain attacks requires changing the focus
of the zone generation to, e.g., specific record types.

Moreover, the generated zones mainly expose problematic in-
teractions of DNS features, whereas constructing realistic attack
scenarios would be even more helpful. For example, our tool easily
discovers that large delegations to non-existent nameservers intro-
duce a large amplification, which is, however, not yet directed at
a specific victim. We would like to improve our tool to automate
the simulation of real-world attacks, e.g., automatically placing
the non-existent nameservers under a victim zone to maximize
amplification as in a full-fledged NXNS attack.
Reducing the Attack Search Space.While we have demonstrated
that random zone generation with a heuristic coverage of the query
space is quite effective in discovering problematic interactions of
DNS features, an exhaustive (albeit still bounded) exploration of
the search space would be preferable. GRoot’s ECs provide a good
starting point, but they are unsound with respect to our more
realistic semantic model, i.e., two queries in the same EC can cause
a resolver to behave differently.

As future work, we plan to refine the definition of ECs for the
specific analysis of amplification attacks. GRoot does not place
multiple queries for different existing names in the same equiv-
alence class; only non-existent names may be collapsed into one
EC. However, different existing names in a zone are often resolved
in exactly the same way, e.g., the resolution of a type a query for
ns1.example.com and ns2.example.com are likely identical, apart
from the contents of the final response. Similarly, query rewriting
at the nameserver is irrelevant for amplification (assuming the re-
solver does not validate the cname chain). A promising direction
would therefore be to define a “resolver-centric” notion of query
equivalence, where two queries are considered equivalent if they
lead to the same actions at the resolver.

7 RELATEDWORK

Formalizing DNS Semantics. GRoot [26] provides the first for-
malization of a subset of DNS semantics. We have already discussed
its limitations in Section 1. Relying on parts of the GRoot seman-
tics, the authors also develop SCALE [27], a test case generator to
find RFC compliance errors in nameserver implementations. While
SCALE identifies implementation bugs, it focuses solely on the
local processing logic at authoritative nameservers and does not
consider the complete name resolution process with a recursive
resolver. RHINE is a DNS-based naming system co-designed with a

formal model [20], which, unlike our formal semantics, focuses on
an end-to-end authentication architecture that is agnostic to the
detailed resolution process.
Verification of DNS Implementations. Son et al. [44] formal-
ize the cache implementations of popular open-source resolvers,
modeling aspects such as data credibility requirements and baili-
wick rules. In comparison, our model is more comprehensive as it
specifies the complete resolver algorithm at the design level.

Ironsides [14] is an authoritative nameserver implementation
that is formally verified to be free of dataflow errors, runtime excep-
tions, and similar problems. While being provably secure against
single-packet DoS attacks, it may still be vulnerable to application-
layer attacks at the DNS protocol level, which are the focus of our
automated attack analysis. In addition, the use of formal methods
in Ironsides is unrelated to the DNS semantics, which means that it
cannot serve as a formalization of the specification.
Formal Analysis of DoS Attacks. Formal analysis of a system’s
availability aspects is generally less mature in comparison to confi-
dentiality or integrity properties. This is mainly due to the inherent
quantitative nature of DoS attacks and the fact that the common
Dolev-Yao intruder model [19], often used for cryptographic proto-
col analysis, is too strong for this purpose. Meadows [34] introducs
a cost-based framework for the analysis of DoS attacks where an
attacker’s power can be metered and limited. Urquiza et al. [48]
refine this intruder model by explicitly considering timing aspects,
which can capture more sophisticated attacks such as slow DoS
and attacks targeting computational resources or memory. Our
framework offers the same capabilities.

Amplification attacks have been analyzed by Shankesi et al. [43],
where they leverage model checking to automate the search for DoS
attacks on the VoIP session initiation protocol. Our framework also
provides a built-in model checker. For DNS in particular, Deshpande
et al. [18] model the classic bandwidth amplification attack as a
continuous-time Markov chain to analyze different countermea-
sures. However, their model is abstract and cannot capture more
sophisticated DoS attacks.

8 CONCLUSION AND FUTUREWORK

A formal framework is a necessary approach to achieve the desirable
goal of a DNS infrastructure with strong security properties, espe-
cially given the intrinsic complexity of today’s DNS specifications
and configurations. Establishing a mathematically rigorous seman-
tics can help identify and resolve ambiguities as well as provide a
basis for tools to automatically discover known and new attacks.
In addition to pursuing the research directions highlighted in Sec-
tion 6.4, we also plan to extend our framework to cover DNSSEC
and DoH/DoT, and support multiple zones at a single nameserver.
Ethics. We have followed common practices for responsible dis-
closure of the discovered DoS vulnerabilities. The affected entities
have acknowledged the validity of our reported vulnerabilities, and
are investigating their potential impact and mitigation.
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Appendices are supporting material that has not been peer-
reviewed.

A ADVANCED FEATURES OF DNS

CNAME and DNAME Records. A cname record declares its
owner name to be an alias of the name in the value (the so-called
canonical name). An example use of this feature is to make a website
accessible with or without the www label. When a resolver encoun-
ters a cname record, it restarts the query for the canonical name.
Note that cnames can form chains or even loops when the canonical
name of one cname record is the owner of another cname record.

A similar feature are dname records [40]. However, a cname
record rewrites a single name to its canonical name, a dname record
causes the entire subtree below the owner name to be rewritten. For
example, a dname record at example.com with value other.com
would cause a query for www.example.com to be restarted for
www.other.com instead. The concept of restarting a query for a
different name due to cname or dname records is called query
rewriting.
Wildcard Records. A wildcard is not a special type, but rather a
special label (*) that can match other labels. For example, assume
that there is an a record for *.example.com, and a client queries for
a records at nx.example.com. If there are no records (of any type)
at the name nx.example.com, a wildcard match occurs and the
query is answered with a synthesized record with the owner name
nx.example.com, but the value taken from the wildcard record.
QNAME Minimization. One recent DNS feature is qname min-
imization (QMIN) [11], an enhancement to improve privacy for
DNS authoritative queries. In normal DNS resolution, the recursive
resolver sends the full qname to each nameserver, which reveals
more information than necessary. For example, for the root server
to provide a delegation to the com nameservers, it would suffice to
query for com rather than the full www.example.com. Similarly, the
com nameserver only needs to learn that we are interested in some
name at or below example.com, but not which one. Note that the
delegations are independent of the qtype, and thus the resolver
can use a different type to obfuscate the original one.

Example A.1. Figure 11 shows the resolution of the same query
as in Example 2.1, which uses QMIN this time, i.e., sending only
the minimal number of labels to each nameserver and using the
mx type to obfuscate the original qtype. The notable differences
in resolution are emphasized using bold font. In particular, the
resolver sends a query for qname com and type mx to the root
servers in 2○, and similarly abbreviates the qname sent to the
com nameservers in 4○. Also note that two queries are sent to the
example.com nameservers for the original qname: The first one
( 6○) is for type mx, so another query is necessary for the original
qtype once the authoritative nameservers for the full qname have
been discovered ( 8○).

QMIN is complicated as not every label in a name marks a zone
cut. For example, the name a.b.c.d.example.com may still be
in the example.com zone. With QMIN, the resolver first needs
to discover that there is no delegation between example.com and
a.b.c.d.example.com, by querying the example.com nameserver
repeatedly with one more label each time. Note that adding more
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Figure 11: Resolving the type a query for www.example.com
using QMIN with type mx to obfuscate the original type.

than one label at a time risks revealing unnecessary labels to a non-
authoritative nameserver as there could be a zone cut between any
two labels. Only once the resolver has determined the authoritative
nameserver for the full qname, it switches to the original qtype,
making one final additional query unless the original qtype and
the qtype used for QMIN happen to agree.10

B RESOLVING OTHER AMBIGUITIES

B.1 Clarifying the Resolver Algorithm

In the absence of QMIN, the resolver algorithm given in RFC 6672
[40, §3.4.1] is the most refined one, as shown in listing 1. At a high
level, it works as follows: when the recursive resolver receives a
client query, it first tries to answer the query from its cache. If this
is not possible, it creates internal state for the query, which includes
identifying the best known nameservers. The resolver then sends
the query to one of these nameservers and awaits a response. Once
a response arrives, a number of cases are possible: in the best case,
the response allows the resolver to immediately answer the client
query. Otherwise, the response may refer the resolver to a different
nameserver, or indicate that the query must be rewritten due to
a cname or dname. In the latter two cases, the resolver updates
the query state according to the new information and sends the
(updated) query to a new nameserver.

Additionally, there are a number of error cases that must be
handled: the nameserver may not respond at all (e.g., as the mes-
sage was dropped), refuse to answer the query (e.g., as it is not
authoritative for the query and cannot provide a delegation), or
the resolver may reach a configurable work limit, at which point it
should abort the query. The resolver works on many client queries
concurrently, and thus needs to maintain state for each of them.

An important notion is that of resolver subqueries, which are
queries that the resolver creates itself. These subqueries are nec-
essary when the resolver knows the names of nameservers for a
query, but not their addresses.

In particular, this indicates that “return[ing the data] to the
client” in case A of step 4 of the resolver algorithm can mean two
different things. In case of a client query, the resolver sends a DNS

10To maximize the likelihood of this happening, implementations often select a com-
mon type such as a to obfuscate the original qtype. In our example, we used the mx
type to illustrate a case where an extra query is necessary.
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1. See if the answer is in local information or can be synthesized from a cached DNAME; if so, return it to the client.
2. Find the best servers to ask.
3. Send queries until one returns a response.
4. Analyze the response , either:

A. If the response answers the question or contains a name error , cache the data as well as return it back to the client.
B. If the response contains a better delegation to other servers , cache the delegation information , and go to step 2.
C. If the response shows a CNAME and that is not the answer itself , cache the CNAME , change the SNAME to the canonical name in the

CNAME RR, and go to step 1.
D. If the response shows a DNAME and that is not the answer itself , cache the DNAME (upon successful DNSSEC validation if the client

is a validating resolver). If substitution of the DNAME 's target name for its owner name in the SNAME would overflow the legal
size for a domain name , return an implementation -dependent error to the application; otherwise , perform the substitution and
go to step 1.

E. If the response shows a server failure or other bizarre contents , delete the server from the SLIST and go back to step 3.

Listing 1: The most refined resolver algorithm from RFC 6672.

response over the network to the client. For resolver subqueries
(where “client” refers to the resolver itself), this is not necessary.
Instead, the resolver can directly use the data to update the states
of the pending queries.

Unfortunately, the resolver algorithm contains a number of am-
biguities that must be resolved:

(1) The phrasing of Step 4 (“analyze the response, either: . . . ”,
cf. Listing 1) suggests that a response matches exactly one
of the given cases. However, some types of responses match
the description of multiple cases: For example, a response
may contain both a cname/dname record in the answer sec-
tion and a referral (for the canonical name) in the authority
section, i.e., both cases C/D and B apply.

(2) Similarly, a response may contain a cname/dname record
and data for the canonical name that allows the resolver to
“answer the question”, i.e., both cases C/D and A apply.

(3) Case A should apply “if the response answers the question”,
which could be interpreted to cover only authoritative an-
swers or any response containing data that is sufficient to
answer the question.

(4) Finally, while the resolver algorithm is unambiguous in when
the cache should be checked, it largely ignores that the cache
may be updated by concurrent queries. An explicit cache
lookup is only mentioned when this could provide a ben-
efit even for a sequential resolver. For example, the cache
is checked again after query rewriting due to a cname or
dname response, but not after a referral.

We resolve these ambiguities by interpreting the different cases
in such a way that any response can only match one case. To this
end, we impose that case A applies only for authoritative responses
that directly answer the query (i.e., without query rewriting, and
looking only at the answer section). Note that a referral response
never matches case A, even if the data contained in the authority
and additional sections suffice to “answer the question” (taking into
account the data credibility rules).

Moreover, we disambiguate cases B and C/D by restricting case
B to pure referral responses that apply directly to the qname in the
query, without any query rewriting. A response to a query with a
qtype that does not match cname or dname, but with cnames or
dnames in the answer section, alwaysmatches one of the cases C or
D. In other words, a cname/dname response with a referral for the
rewritten name does not match case B. Similarly, a cname/dname
response with data for the rewritten name never matches case A as

this data is not authoritative, even if it is sufficient to “answer the
question.”

Regarding the cache lookups, we adopt a literal interpretation,
i.e., the cache is only checked in Step 1 of the algorithm.

B.2 Ambiguities in QMIN

We now address the ambiguities in the QMIN algorithm, which
substantially changes a resolver’s behavior with respect to both the
qname and qtype sent to authoritative nameservers. RFC 9156 [11]
contains an extended resolver algorithm using QMIN, as shown
in Listing 2. We omit small parts that are only relevant for types
used in dnssec or for nameservers that are not compliant with
RFC 8020 [12]. Even though this algorithm is already a refined
version of an earlier version [10], it still suffers from numerous
problems, which we address in the following.
Avoiding Unnecessary Final Queries. Recall that obfuscating
the original qtype by querying for a different type may introduce
an additional query once the authoritative nameserver for a name
has been discovered. To minimize the additional work that this
introduces, RFC 9156 suggests using the most common qtype for
obfuscation, which saves the extra query for many queries. How-
ever, the omission of this final query is not clearly reflected in the
algorithm. In particular, a suitable final response received for the
full qname would match case (6c), which states to “continue with
the algorithm from Step 3 by building the original qname.” In Step
3, the condition is satisfied, i.e., child is the same as qname, and we
thus need to “resolve the original query as normal, starting from
ancestor’s name servers.” This suggests that we directly query the
nameservers for ancestor, which would lead to an unnecessary
query. Instead, we should first check the cache, and only query
ancestor’s nameservers in case of a miss.

Whether or not the cache is checked in Step (3) also has con-
sequences for the handling of cname responses. As indicated in
Case (6c), a cname received for an incomplete qname must not be
followed. However, if the full qname was queried, the cname can
be followed safely regardless of the query type. However, this opti-
mization is only performed when the cache is checked in Step (3).

As a side remark, note that the “referral” response in Case (6a)
only means pure referrals for the queried name, i.e., without any
query rewriting applied. For example, a response containing a
cname for an incomplete qname and a referral for the canonical
name should not match Case (6a).
Limiting the Number of Iterations. Recall that the process of
discovering the authoritative nameserver for a name may involve
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(0) If the query can be answered from the cache , do so; otherwise , iterate as follows:

(1) Get the closest delegation point that can be used for the original QNAME from the cache.

(1a) [...]
(1b) For queries with other original QTYPEs , this is the NS RRset with the owner matching the most labels with QNAME. QNAME will be

equal to or a subdomain of this NS RRset. Call this ANCESTOR.

(2) Initialise CHILD to the same as ANCESTOR.

(3) If CHILD is the same as QNAME [...], resolve the original query as normal , starting from ANCESTOR 's name servers. Start over from step 0
if new names need to be resolved as a result of this answer , for example , when the answer contains a CNAME or DNAME [RFC6672] record.

(4) Otherwise , update the value of CHILD by adding the next relevant label or labels from QNAME to the start of CHILD. The number of labels
to add is discussed in Section 2.3.

(5) Look for a cache entry for the RRset at CHILD with the original QTYPE. If the cached response code is NXDOMAIN [...], the NXDOMAIN can
be used in response to the original query , and stop. If the cached response code is NOERROR (including NODATA), go back to step 3.
[...]

(6) Query for CHILD with the selected QTYPE using one of ANCESTOR 's nameservers. The response can be:

(6a) A referral. Cache the NS RRset from the authority section , and go back to step 1.
(6b) A DNAME response. Proceed as if a DNAME is received for the original query. Start over from step 0 to resolve the new name based on

the DNAME target.
(6c) All other NOERROR answers (including NODATA). Cache this answer. Regardless of the answered RRset type , including CNAMEs , continue

with the algorithm from step 3 by building the original QNAME.
(6d) An NXDOMAIN response. [...] Return an NXDOMAIN response to the original query , and stop. [...]
(6e) A timeout or response with another RCODE. The implementation may choose to retry step 6 with a different ANCESTOR name server.

Listing 2: The QNAME minimization algorithm, with some parts omitted that are only relevant for DNSSEC-specific types or

nameservers that are not compliant with RFC 8020.

querying the same nameserver multiple times, with one more label
added in each iteration. Clearly, the resolver must enforce some lim-
its on the number of extra iterations performed for this. The mech-
anism suggested in RFC 9156 [11, §2.3] involves two configuration
parameters, called max_minimise_count and minimise_one_lab.
The first one is the maximum number of extra iterations the resolver
performs for a single name, excluding the possible additional query
for the original qtype. To enforce this limit, the resolver splits the
total number of labels with unknown zone cuts evenly among the
remaining iterations, and may thus add more than one label at a
time. The second parameter, which must be strictly smaller than
the first one, is the number of iterations where only one label should
be added, no matter how many labels follow. The motivation is that
the largest privacy gains can typically be achieved with respect
to nameservers higher up in the hierarchy (e.g., root servers and
top-level domain servers). The values recommended in the RFC are
10 for max_minimise_count and 4 for the number of guaranteed
one-label iterations.

An important point (yet not made explicit in the RFC) is that
the maximum number of iterations is enforced per name. When
the qname is rewritten due to cnames or dnames, the limits are
reset.11 In combination with long rewrite chains, the number of
extra iterations introduced by QMIN can thus be much larger than
max_minimise_count, an attack vector that has been overlooked
so far and which we exploit in different ways in Section 6.
Finding Zone Cuts. Finally, we discuss Step (5) of the algorithm.
This step retrieves information on the absence of zone cuts from
the cache, which would allow the resolver to safely add additional
labels without revealing unnecessary information. However, there
are a number of logical flaws in the specification:

11While it is conceivable that the limits are not reset upon query rewriting, this would
inevitably sacrifice all privacy guarantees for the rewritten name because the resolver
cannot allocate iterations to the labels in a yet-unknown rewritten name.

(1) If the resolver had a nxdomain cached for an ancestor of
qname, it would never reach Step (5) of the algorithm. In-
stead, it would use this cached nxdomain to directly answer
the query in Step (0).

(2) The DNS specification neither mandates nor suggests that a
resolver stores zone cut information along with positive au-
thoritative answers. Thus, the positive cache does not convey
any information on the absence of zone cuts. In particular,
it may be the case that child lies in a different zone than
ancestor, but the ns records for the zone containing child
have expired. Note that there may still be other records from
the zone containing child in the cache, either because they
have a longer ttl than the ns records or because they were
introduced into cache later.

(3) In contrast, entries in the negative cache do convey informa-
tion about the absence of zone cuts through the associated
soa records. For example, if there is a nodata cache en-
try for dept.example.com, and the associated soa record is
for the example.com zone, the resolver can conclude that
dept.example.com is not delegated and can indeed go back
to Step (3) to add more labels.

(4) It is unclear why Step (5) mandates searching for a cache
entry for the rrset at child with the original qtype. As ar-
gued above, the positive cache does not help. For the nodata
cache, an entry for any qtype will provide information on
the zone in which the child is contained.

We address these issues by proposing (and formalizing) our own
version of Step (5):

(5) Look for a NODATA cache entry at CHILD for any QTYPE.
If there is a hit and the associated SOA record 's
owner name is ANCESTOR , go back to Step (3).
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C RANDOM ZONE GENERATION

An essential component of our initial-state generator is the genera-
tion of random zones. We create a random zone using the following
sequence of steps.

(1) Choose the underlying tree uniformly at random among
all non-isomorphic rooted unlabelled trees with the given
number of nodes.

(2) Choose labels for each node of the tree, ensuring uniqueness
among sibling nodes. We do not currently generate wildcard
labels, although this could be easily changed.

(3) For each node, choose which RRsets are present. Note that
the allowed combinations depend on the type of node, e.g.,
a non-terminal node cannot have a dname record, and the
apex cannot have a cname.

(4) For each RRset, choose its size, i.e., the number of records. For
many types, the number of records is either limited to one
(cname, dname) or does not influence resolution apart from
the contents of the final answer (txt, a, etc.). However, for ns
RRsets, the number of records is highly relevant because the
resolver may have to create subqueries to resolve unknown
addresses. Thus, we choose the size of ns RRsets among the
(arbitrary) candidates 1, 2, 5, or 10.

(5) For records that have names as values (cname, dname, ns),
choose among the names appearing elsewhere, e.g., in the
benign zones, other malicious zones, or even the zone itself.
Note that one might also wish to allow prefixes of existing
names, even if they do not have any associated RRsets. Sim-
ilarly, records can point to non-existent names, which are
created by adding a number of non-existent labels to an ex-
isting name. Note that this existing name can be the root
label, thus any non-existent name is possible. The values
of address or txt records are filled with the dummy values
1.2.3.4 or ’...’, respectively. This step is retried until the
zone is free of pathological errors such as in-zone cname
loops.

(6) Finally, add the mandatory soa and ns records to the zone, as
well as the address record for the authoritative nameserver.

D PREDEFINED PROPERTIES

Table 4 lists our predefined properties, alongside their description.

E ZONE FILES FOR REWRITE BLACKHOLING

Using model checking, we can detect misconfigurations in zone
files that lead to a rewrite blackhole. Consider a setup with a client,
a recursive resolver, and various authoritative nameservers. In
particular, there are two nameservers for the example.com zone,
namely ns1.example.com and ns2.example.com. However, these
nameservers are misconfigured with inconsistent zone files for
the example.com zone. The zone file used by ns1.example.com is
shown below:

--- zone records
< example.com., SOA , soaData(testTTL) >
< example.com., NS, ns1.example.com. >
< example.com., NS, ns2.example.com. >

--- nameserver addresses
< ns1.example.com., A, addrNS1example >

< ns2.example.com., A, addrNS2example >

--- other records
< www.example.com., A, 1.2.3.4 >
< alias.example.com., CNAME , www.example.com. >

The zone contains the mandatory soa and ns records, along-
side the address records for the nameservers. In addition, there
is a type a record for www.example.com and a cname record at
alias.example.com, pointing to www.example.com.

The other zone file, used by ns2.example.com, is almost iden-
tical, except that the cname record points to the (non-existent)
domain nxdomain.example.com.

--- other records are identical
< alias.example.com., CNAME , nxdomain.example.com. >

Whether a client that sends a query for alias.example.com
encounters an instance of rewrite blackholing thus depends on
which nameserver the resolver asks, which is a non-deterministic
choice in DNS.

F UNSOUNDNESS OF GROOT’S ECS

We show that the GRoot’s equivalence classes (ECs) are unsound
with respect to our semantic model. This means even if two queries
are resolved in the same way under GRoot’s simplified semantics,
they may resolve to different answers under our more realistic
semantic model.

To illustrate this unsoundness, we show two queries that are
in the same GRoot’s EC, but have different resolution behaviors.
Consider two zones, example.com and example.net. The authori-
tative nameservers are ns.example.com and ns.example.net, re-
spectively. The zone for example.com contains the mandatory soa,
ns and address records, as well as a wildcard cname record.

< example.com , SOA , ... >
< example.com , NS, ns.example.com >
< ns.example.com , A, ... >

< *. example.com , CNAME , a.dname.example.net >

The zone for example.net contains the mandatory records plus
a dname record, rewriting any domain below dname.example.net
to the corresponding domain below example.com:

< example.net , SOA , ... >
< example.net , NS, ns.example.net >
< ns.example.net , A, ... >

< dname.example.net , DNAME , example.com >

Let us now consider two queries for the same type with qnames
a.example.com and b.example.com. Neither of the names appear
in the zone files. Hence, both queries are contained in the equiva-
lence class 𝛼.example.com for that type.

First, consider the resolution of a.example.com, starting from
an empty cache. After following some delegations, the recursive
resolver sends the query to the authoritative nameserver for the
example.com zone, where it will match the wildcard cname record.
The resolver thus receives the cname < a.example.com, CNAME,
a.dname.example.net > and rewrites the query to the canonical
name (i.e., it changes the sname to a.dname.example.net). Af-
ter following a few referrals for the rewritten name, it sends the
query to the authoritative nameserver for the example.net zone,
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Table 4: Our library of predefined properties. Properties 1–10 are also considered by GRoot [26].

# Property Kind Description Comment

1 Delegation Inconsistency Qualitative The ns or a records in a referral response differ
from the records in an authoritative response.

2 Lame Delegation Qualitative The resolver is referred to a nameserver that is
not authoritative for the zone and cannot provide
a referral.

We check for refused responses. Note that a re-
ferral “back up” in the hierarchy is not considered
a lame delegation here.

3 Glueless Delegation Qualitative ns records in a referral response are not accompa-
nied by glue records.

Note that this checks for any delegation with miss-
ing glue records, not for missing required glue.

4 Non-Existent Domain Qualitative The query is answered with nxdomain.
5 Cyclic Zone Dependency Qualitative The delegations involved in the query’s resolution

are cyclically dependent.
6 Rewrite Loop Qualitative The query is rewritten to itself.
7 Domain Overflow Qualitative The query name at some point exceeds the maxi-

mum domain length.
This can happen due to dname substitution.

8 Answer Inconsistency Qualitative The query can produce different answers. This can happen due to inconsistent zone files.
9 Zero TTL Qualitative Resolution of the query involves records with a

TTL of 0.
10 Rewrite Blackholing Qualitative The query is rewritten to a name that does not

exist.
11 Repeated Query Qualitative The same query is sent to the same nameserver

multiple times during resolution of a client query.
Captures circular dependencies, qname minimiza-
tion inefficiencies, or insufficient ttls.

12 Domain Overflow at
Nameserver

Qualitative The nameserver sends a yxdomain response due
to a domain overflow after dname substitution.

This captures only the overflows at nameservers,
but not those at resolvers (due to cached dnames).

13 Inconsistent RRsets Qualitative Different nameservers have inconsistent RRsets
for the same name and type.

This static property can be checked without con-
sidering resolution dynamics.

14 Amplification Factor Quantitative The number of messages received by victim di-
vided by the nuber of messages sent by attacker

15 Query Duration Quantitative How long the resolution of a client query takes
16 Query Success Ratio Quantitative The probability for a client query to be answered

where it will match the dname record. The resolver receives a re-
sponse indicating that a.dname.example.net should be rewritten
to a.example.com. At this point, the resolver detects that there is
a rewrite loop and signals an error to the client.

Now consider the second query, b.example.com, again starting
from an empty cache. When the resolver sends this query to the
authoritative nameserver for the example.com zone, it receives
a slightly different cname record synthesized from the wildcard,
namely < b.example.com, CNAME, a.dname.example.net >.
The resolver again rewrites the query to a.dname.example.net

and (eventually) sends this query to the authoritative nameserver
for example.net, where it matches the dname record as before.
However, the dname response (indicating a.dname.example.net
should be rewritten to a.example.com) does not yet allow the
resolver to detect the rewrite loop as it does not know anything
about a.example.com. Instead, it has to send another query for that
name, and only then will be able to detect the rewrite loop. Clearly,
the two queries are not resolved in the same way, and should thus
not be in the same EC. Hence, we can conclude that the GRoot’s
ECs are unsound with respect to our semantic model.
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