
GMA: A Pareto Optimal Distributed
Resource-Allocation Algorithm

Giacomo Giuliari, Marc Wyss, Markus Legner, and Adrian Perrig

ETH Zürich, Universitätstrasse 6, 8092 Zürich, Switzerland
{giacomog, marc.wyss, markus.legner, adrian.perrig}@inf.ethz.ch

Abstract To address the raising demand for strong packet delivery
guarantees in networking, we study a novel way to perform graph re-
source allocation. We first introduce allocation graphs, in which nodes
can independently set local resource limits based on physical constraints
or policy decisions. In this scenario we formalize the distributed path-
allocation (PAdist) problem, which consists in allocating resources to
paths considering only local on-path information—importantly, not know-
ing which other paths could have an allocation—while at the same time
achieving the global property of never exceeding available resources.
Our core contribution, the global myopic allocation (GMA) algorithm,
is a solution to this problem. We prove that GMA can compute uncon-
ditional allocations for all paths on a graph, while never over-allocating
resources. Further, we prove that GMA is Pareto optimal with respect to
the allocation size, and it has linear complexity in the input size. Finally,
we show with simulations that this theoretical result could be indeed ap-
plied to practical scenarios, as the resulting path allocations are large
enough to fit the requirements of practically relevant applications.

1 Introduction

Allocating resources such as bandwidth in a network has proven to be a diffi-
cult problem from both a theoretical and practical perspective: in many cases,
networks consist of independent nodes without central controller and without a
global view of the topology and available resources. Furthermore, these nodes
often have their own policies on how to allocate resources. To the best of our
knowledge, the theoretical networking literature is lacking solutions that address
this distributed setting. In this paper, we consider allocation graphs, directed
graphs consisting of independent nodes augmented with local policies, i.e., the
amount of resources each node allocates for transit between any pair of neigh-
bors. While we interpret the resources as bandwidth, other interpretations—like
computations on behalf of the neighbors—are possible as well.

For any path in the allocation graph, we want to myopically compute a static
allocation, i.e., based only on the local policies of on-path nodes. This allocation
should guarantee that no local allocation is ever exceeded, even when all path
allocations in the network are fully used simultaneously. This is resource allo-
cation is therefore unconditional, since the size of one allocation is completely

2 G. Giuliari et al.

independent of any other allocation, and not determined by an admission pro-
cess, and thus cannot be influenced by single off-path nodes. In particular, nodes
do not need to keep track of allocations as each individual allocation is valid in-
dependently of whether or not any other allocations are used. We formalize the
problem of finding the size of such allocations as the distributed path alloca-
tion (PAdist) problem. Two major questions then arise: (i) Can unconditional
resource allocation indeed be performed in a distributed setting, where nodes
have only partial information on the network, without creating over-allocation?
And (ii), since an allocation is implicitly created for every path in the network,
can allocations be large enough to be useful in practice?

Our work addresses these problems, finding that it is possible to both avoid
over-allocation and create allocations that meet the demands of a number of
modern critical applications at the same time. We show this constructively, by
proposing the first unconditional resource allocation algorithm: the global myopic
allocation (GMA) algorithm. GMA interprets each node’s local allocations both
as capacity limits that must not be exceeded and as policy decisions about the
relative importance of links to neighbors. It efficiently computes allocations that
scale with these local policies, and ensures that capacities are not over-allocated.
We prove that GMA fulfills all desired properties and that it is Pareto optimal
with respect to all other algorithms that solve the PAdist problem. Finally, we
simulate GMA on random graphs, chosen to model real-world use cases; we
evaluate the size of the resulting path allocations and show that they are viable
for practical applications.

Practical relevance of the PAdist problem. Over the past decades, com-
puter networks have predominantly relied on the best-effort paradigm. End-
points run congestion-control algorithms to prevent a congestion-induced col-
lapse of the network [10, 12], but no further guarantees for packet delivery or
quality of service can be given. This has been shown to work reasonably well for
many applications like web browsing, but it is becoming increasingly clear that
it is far from optimal in terms of performance and fairness [18, 7].

Although the networking community has developed several protocols to re-
serve resources for individual connections [15, 4, 3], none of them has seen wide-
spread adoption because of their high complexity and poor scalability. These
drawbacks arise in all these systems as they offer conditional allocations: end-
points can select the amount of resource to allocate, the rationale being that sup-
ply and demand will eventually lead to optimal resource utilization. However,
this also means that all nodes have to store information about all individual
requests, and check that new requests do not exceed resource capacity.

An unconditional resource allocation system based on the GMA algorithm
avoids this problem. In a network of compliant sources using such a system,
nodes do not need to keep track of allocations as each allocation is valid inde-
pendently of whether or not any other allocations are used. Further, GMA guar-
antees that no over-allocation of bandwidth—and therefore congestion—occurs.
Thus, strong delivery guarantees can be provided to the communications in this
network, without the overhead required by conditional systems. Appendix A

Global myopic resource allocation 3

presents overview of the critical applications that would benefit the most from
an unconditional resource allocation system.

2 Preliminaries: formalizing resource allocation

We now introduce the formalism we use throughout the paper, and characterize
the path-allocation (PA) problem. Although the PA problem arises from an
applied networking context (as some of the terminology also suggests), we seek
to provide a formulation that is not tied to networking, such that our solution
can also be applied to other areas. Therefore, we define the problem with the
abstraction of allocation graphs.

Allocation graphs. We augment the standard directed graph definition,
comprising nodes and edges, with a set of interfaces at every node.1 An in-
terface denotes the end of one of the edges attached to a node, while a local
interface, which is not associated with any edge, represents internal sources or
sinks (these concepts are shown in Figs. 1a and 1b on page 6). In an alloca-
tion graph, a resource—a generic quantity of interest—is associated with edges,
and is a measure of supply. The capacity of an edge is a fixed, positive real
number that represents the maximum amount of resource it can provide;2 it is
denoted by cap

(k)
i,IN, for the capacity of the edge incoming to interface i of node

k, and cap
(k)
i,OUT for the outgoing edge. Further, we assume that an allocation

matrix M (k) is given for each node k. Allocation matrices are illustrated in
Figs. 1b and 1c. An entry M (k)

i,j in the allocation matrix, called pair allocation,
denotes the maximum amount of resource that can be allocated in total to all
the paths incoming at interface i and outgoing at interface j. Allocation matrices
are non-negative and not necessarily symmetric. We call the maximum amount
of resource that can be allocated from an interface i to every other interface
the divergent, and the maximum amount of resource that can be allocated from
every other interface towards an interface j the convergent. They are calculated
as the sum of rows or columns of M (k), respectively:

DIV
(k)
i =

∑
j

M
(k)
i,j , CON

(k)
j =

∑
i

M
(k)
i,j . (1)

The matrix M (k) must be defined to fulfill ∀i. DIV
(k)
i ≤ cap

(k)
i,IN,CON

(k)
i ≤

cap
(k)
i,OUT, that is, neither DIV

(k)
i nor CON

(k)
i respectively exceed the capacity

of the incoming and outgoing edges, connected to interface i of node k.
Intuitively, an interface pair (i, j) is the logical connection between two in-

terfaces of a node, and thus a pair allocation expresses the maximum amount of
resource the node is willing to provide from one neighbor to the next. Allocation
1 A node can be thought of as, e.g., an autonomous system in the Internet, or any
other entity part of a distributed system that acts independently from other entities.

2 We use dimensionless values for the resource; in practice, these could correspond to,
e.g., bandwidth (in Gbps) or computations per second.

4 G. Giuliari et al.

matrices can therefore be seen as a way for nodes to encode policies on the level
of service they want to grant to each pair of neighbors.

In this model, we represent a path of ` nodes N1, . . . ,N ` as a list of nodes
and interface pairs π = [(N1, i1, j1), (N2, i2, j2), . . . , (N `, i`, j`)].3 To simplify
the presentation, we will omit the nodes from the list when they are implicitly
clear; we will also use the abbreviation M

(k)
i,j ≡ M

(Nk)

ik,jk
. We say that a path is

terminated, if the first interface of the first pair and the second interface of the
last pair are local interfaces. Otherwise the path is called preliminary. A path is
considered simple or loop-free, if it contains each node at most once. Furthermore,
we use πk to denote the preliminary prefix-path of length k of some terminated
path π of length ` (πk = [(i1, j1), (i2, j2), . . . , (ik, jk)] for 1 ≤ k < `). Finally, we
call a path valid, if M (1)

i,j , . . . ,M
(`)
i,j > 0, otherwise it is invalid.

The PA problem. We are interested in the problem of allocating the resource
on an allocation graph to paths. A path allocation is created when a certain
amount of resource is allocated for that path, exclusively reserving this amount
on every edge and interface pair of the path and thus making it unavailable for
any other path. If the sum of the path allocations traversing an edge exceeds
the capacity of the edge, we say that the edge is over-allocated. Similarly, an
interface pair (ik, jk) is over-allocated if this sum is larger than its corresponding
pair allocation M (k)

i,j .

Given an allocation graph and information on the allocation matrices, the PA
problem is to calculate a path allocation for any path π in this graph with the
following constraint:

C1 No-over-allocation: For all allocation graphs, even if there is an allo-
cation on every possible valid path in the graph, no edge and no interface
pair is ever over-allocated.4

Solving the PA problem then requires finding an algorithm A that can compute
such path allocations. We intentionally left underspecified the precise input that
such an algorithm receives, as it depends on whether the algorithm is centralized
or distributed. If centralized, A’s input is the whole network topology, as well
as the allocation matrices of all the nodes. Thus, the centralized PA problem
can be viewed as a variant of the multicommodity flow problem [9], with the
additional constraint that pair allocations have to be respected.

In the distributed version of the PA problem (PAdist), the algorithm has to
run consistently on each node, with partial information about the allocation
graph. Since nodes on a path are assumed to be able to exchange information,
we restrict this information by requiring A’s input to contain only information
about the path for which the path allocation is computed. This is captured by
the following definition:
3 This definition implicitly includes edges. Also, we assume that the interfaces match,
i.e., j(k−1) and i(k) are interfaces at opposite ends of the same directed edge.

4 Paths with loops, and of arbitrary length, are also included in this definition.

Global myopic resource allocation 5

The PAdist problem is to solve the PA problem with this additional restriction:

C2 Locality: The path allocation is a function of the on-path allocation
matrices M (1), . . . ,M (`) only.

Among the set of algorithms that fit this definition, we are naturally interested in
the ones that lead to higher path allocations. Since a precise optimality condition
on the algorithm depends on the practical application for which it is used, we
generally postulate that meaningful algorithms provide path allocations that
cannot be strictly increased. This is captured by Pareto optimality:

Opt Optimality: Consider the class of all algorithms fulfilling the require-
ment of either PA or PAdist. Algorithm A from this class is (Pareto) opti-
mal if there is no other algorithm B from the same class that can provide
at least the same path allocation for every path of every allocation graph,
and a strictly better allocation for at least one path. Formally, if there
exists a graph with a path π for which B(π) = A(π) + δ with δ > 0, then
there exists at least one other path π′, possibly in a different graph, where
B(π′) = A(π′)− δ′ with δ′ > 0.5

In addition, we specify three supplementary properties that make an algorithm
more amenable to practical settings. First, the algorithm should provide non-zero
allocations for all valid paths, second, we require the algorithm to be efficient
in the length of the path and the size of the on-path allocation matrices, and
lastly, we enforce stricter requirements on the policy of individual nodes with
the monotonicity property: if a node increases one of its pair allocations, we
expect all path allocations crossing the interface pair to at least not decrease.
Increasing one pair allocation also increases the corresponding divergent and
convergent, while all other pair allocations that contribute to this convergent or
divergent remain the same. Therefore the relative contribution of the increased
pair allocation becomes higher, while the relative contribution of the other pair
allocations decreases. This way, a node’s allocation matrix can also be under-
stood as a policy that defines the relative importance of its neighbors. Since a
path containing loops might traverse the same node both through a pair allo-
cation with increased importance and through one with decreased importance,
monotonicity is only meaningful in the context of simple paths. 6

S1 Usability: For every valid path π, the resulting allocation is positive
(A(π) > 0).

S2 Efficiency: Algorithm A should have at most polynomial complexity as a
function of input size. Specifically, for PAdist this means polynomial in the
total size of the allocation matrices of on-path nodes. This is a relatively
loose requirement, we will show a linear algorithm in the following.

5 The loose constraint that π′ is possibly in a different graph comes from the fact that
because of the locality property in the PAdist problem, the algorithm has no way to
differentiate two graphs having a path with the same nodes and allocation matrices.

6 For ik1 6= ik2 , increasing M
(k)
i1,j

decreases the relative contribution of M (k)
i2,j

(Eq. (1)).

6 G. Giuliari et al.

S3 Monotonicity: If the pair allocation of some node k on a simple path
π is increased and all other allocations remain unchanged, the resulting
allocation must not decrease: M (k)

i,j ≤ M̃
(k)
i,j =⇒ A(π) ≤ Ã(π).

The challenge of devising an optimal PAdist algorithm is clear: A can only rely
on a myopic view of the path, without any further knowledge about the larger
graph. However, it has to achieve the global constraints of Pareto-optimality
and no-over-allocation, which consider the result of performing allocations on
all valid paths. In the remainder of the paper, we present the global myopic
allocation (GMA) algorithm as a solution to the PAdist problem. GMA fulfills
requirements C1 and C2, and is optimal according to Opt, which we formally
prove in §4. Furthermore, we prove in Appendix E that GMA also satisfies all
the supplementary requirements (S1–S3). An additional property, extensibility,
is presented and proven in Appendix F.

Node B

A

A1 A2

C 1

C 2

C 3

C

b
c

d
e

f

g
h

qp

r

a

1

1

1

1

2

1

1
1

 1π

2π

(a) An allocation graph.

1

Internal
interface p

Maximum
total allocation
for the pair (d,q)

CONd

DIVc

Mc,d=
(A)

Interface d

d

p
qc

(b) Detailed structure
of A.

Allocation matrix
for node A:

c d p q
c
d
p
q

0
1
1
0

1
0
0
1

1
0
0
1

0
1
1
0

iface OUT

iface
IN

CONd

DIVc

Mc,d

(A)

M
(A)

(c) Allocation matrix
of A.

Figure 1: Example of an allocation graph. Pair allocations are represented
in Fig. 1a by dashed lines—their size shown by the number in the respective node.
If two interfaces are not connected by dashed lines, their pair allocation is zero.
All pair allocations are bidirectional, as shown in Fig. 1b. For clarity, we use
globally unique interface identifiers. Figure 1a also shows paths π1 and π2, used
in the examples (π3 is the reverse of π2).

3 Introducing the GMA algorithm

We present the GMA algorithm in three steps: starting from a simple first-cut
approach, at each step we present a refinement of the previous algorithm. This
section is meant to provide a profound yet intuitive understanding of the GMA
algorithm and its properties—accompanied by the example in Fig. 1a—leading
to the final formulation of GMA in Eq. (10).

Global myopic resource allocation 7

3.1 Step 1: towards no-over-allocation

As a first attempt to achieve no-over-allocation, we take the pair allocation of
the first node on a path, and multiply it by the ratio of the pair allocation and
the divergent for each of the traversed interface pairs. With this approach, each
node receives a preliminary allocation from the previous node, fairly splits it
among all interfaces according to the pair allocations, and passes it on to the
next node. This leads to the following formula:

A1(π) =M
(1)
i,j ·

∏̀
k=2

M
(k)
i,j

DIV
(k)
i

. (2)

Example Consider the path π1 = [(A1, a, b), (A, c, d), (B, e, f), (C, g, h)] in
Fig. 1a. Then, Eq. (2) results in an allocation A1(π1) = 1 · 12 ·

2
4 ·

1
4 = 1

16 .

To understand the idea behind this formula we consider some node k with inter-
face i, connected through this interface to a neighboring node n. If node n can
guarantee that the sum the preliminary allocations of all preliminary paths going
towards node k is at most DIV

(k)
i , then A1 ensures that for each of node k’s

interfaces j, the sum of all preliminary allocations of all preliminary paths going
through (i, j) is at most M (k)

i,j . If all neighbors can provide this guarantee, no
pair allocation of node k will be over-allocated, which implies that also none
of its convergents will be over-allocated. If node k’s convergents are smaller or
equal to the corresponding divergents of its neighbors, also node k can give this
guarantee to all of its neighbors. Therefore A1 will never cause over-allocation,
if every node’s convergents are smaller or equal to the corresponding divergents
of its neighbors—which is an assumption we want to get rid of.

Example The graph in Fig. 1a ensures that the divergent of a node is
always larger than the convergent of the previous node when going up-
wards. Going downwards, this is not the case. Indeed, already two paths
π2 = [(B, r, e), (A, d, c), (A1, b, a)] with A1(π2) = 2 · 1

2 ·
1
1 = 1 and π3 =

[(C, h, g), (B, f, e), (A, d, c), (A1, b, a)] (reverse of π1) with A1(π3) = 1· 24 ·
1
2 ·

1
1 =

1
4 together cause an over-allocation of interface pairs (d, c) and (b, a).

3.2 Step 2: a general solution for no-over-allocation

As over-allocation with A1 can only occur when some node’s convergent is larger
than the corresponding divergent of its neighbor, we can normalize each prelim-
inary allocation to compensate this disparity. More concretely, if CON

(k−1)
i >

DIV
(k)
j for an on-path node k, the preliminary allocation from node k − 1 is

multiplied with:

DIV
(k)
j

CON
(k−1)
i

·
M

(k)
i,j

DIV
(k)
j

=
M

(k)
i,j

CON
(k−1)
i

. (3)

8 G. Giuliari et al.

Adapting Eq. (2) to this modification gives rise to the following formula:

A2(π) =M
(1)
i,j ·

∏̀
k=2

M
(k)
i,j

max{CON
(k−1)
j ,DIV

(k)
i }

. (4)

Example We find A2(π3) = 1· 24 ·
1
4 ·

1
2 = 1

16 = A2(π1); A2(π2) = 2· 14 ·
1
2 = 1

4 .

This algorithm will never cause over-allocation, which follows directly from our
proof in §4.1. Unfortunately, A2 is neither monotonic nor Pareto optimal. We
can see why this is the case by taking a closer look at the contribution of some
node k to the calculated allocations, which consists of the values (DIV

(k)
i ,M

(k)
i,j ,

CON
(k)
j). In Eq. (4), the only subterm depending on those values is

M
(k)
i,j

max{CON
(k−1)
j ,DIV

(k)
i } ·max{CON

(k)
j ,DIV

(k+1)
i }

. (5)

IncreasingM (k)
i,j by δ > 0, and thus, implicitly, also DIV

(k)
i and CON

(k)
j by δ, can

potentially contribute twice to the denominator and only once to the nominator
of Eq. (5), thereby reducing all the allocations going through the interface (i, j).

Example Consider increasing the pair allocation (c, d) to M̃ (A)
c,d = 9, leaving

everything else unchanged. Then, Ã2(π2) = 2 · 9
10 ·

1
10 = 18

100 <
1
4 = A2(π2).

In general, A2 provides suboptimal allocations when there is a node k with “su-
perfluous allocations”, i.e., where DIV

(k)
i > CON

(k−1)
j and CON

(k)
j > DIV

(k+1)
i .

We explain how to strictly improve this and present GMA in the next section.

3.3 Step 3: monotonic and Pareto-optimal allocations

The main idea to resolve the violation of monotonicity and optimality is to
implicitly scale down the three-tuple of a node k with superfluous allocations to
(s · DIV

(k)
i , s ·M (k)

i,j , s · CON
(k)
j) for 0 < s < 1, such that either s · DIV

(k)
i ≤

CON
(k−1)
j or s · CON

(k)
j ≤ DIV

(k+1)
i . The intuition is that a third algorithm,

based on A2 but with scaled-down three-tuples, does not cause over-allocation
while observing monotonicity. We will prove later in §4 that this statement holds.

For some arbitrary path, we now want to find a way to optimally scale down
the three-tuple (DIV

(k)
i ,M

(k)
i,j ,CON

(k)
j) of each node k. The result is a new

algorithm that takes the original inputs, scales them down implicitly, and finally
uses A2 to compute the allocation.

As we prove in Appendix B, down-scaling improves the resulting path allo-
cation only for the case—as considered above—in which superfluous allocations
are present (DIV

(k)
i > CON

(k−1)
j and CON

(k)
j > DIV

(k+1)
i).7 It is therefore

sufficient to scale down the divergent of node k to the convergent of node k− 1,

7 CON
(k−1)
j and DIV

(k+1)
i might have already been scaled down.

Global myopic resource allocation 9

any further scaling will not improve the allocation. This observation results in
the following iterative algorithm.

On a path π with ` nodes, we start from node 1. As there is no previous node,
scaling is not possible, and the scaling factor is f (1) = 1. At the second node, the
convergent of the first node can either be smaller than the divergent of the second
node, or larger. In the first case, we scale down the three-tuple of the second node
by CON

(1)
j /DIV

(2)
i . In the second, no scaling down is possible. In both cases we

thus scale down the three-tuples of node 2 by f (2) = min{1,CON
(1)
j /DIV

(2)
i },

and so the first factor of the product in Eq. (4) becomes

M
(2)
i,j · f (2)

max{CON
(1)
j ,DIV

(2)
i · f (2)}

=
M

(2)
i,j · f (2)

CON
(1)
j

. (6)

At the third node this case distinction is repeated. However, recall that the
convergent of the second node might have been scaled down, so we have to
use the value (f (2) ·CON

(2)
j) instead of CON

(2)
j in the computation. Therefore,

taking f (3) = min{1, (CON
(2)
j · f (2))/DIV

(3)
i }, we obtain the third factor of the

product in Eq. (4):

M
(3)
i,j · f (3)

max{CON
(2)
j · f (2),DIV

(3)
i · f (3)}

=
M

(3)
i,j · f (3)

CON
(2)
j · f (2)

. (7)

Continuing this expansion, we can define the scaling factors f recursively for
each node as

f (1) = 1; f (k) = min

{
1,

CON
(k−1)
j · f (k−1)

DIV
(k)
i

}
. (8)

Overall, we modify Eq. (4) in the following way:

G(π) =M
(1)
i,j ·

∏̀
k=2

M
(k)
i,j · f (k)

CON
(k−1)
j · f (k−1)

= f (`) ·
∏`
k=1M

(k)
i,j∏`

k=2 CON
(k−1)
j

, (9)

which is equivalent to computing A2 on the scaled-down input three-tuples. The
last step follows from rearranging indices and realizing that f (k) can be factored
out recursively, apart from the first (f (1) = 1) and the last one. Instead of this
recursive formulation, Eq. (9) can also be written as a direct formula (the proof
can be found in Appendix C).

The global myopic allocation (GMA) algorithm:

G(π) = min
x

(
x−1∏
k=1

M
(k)
i,j

CON
(k)
j

·M (x)
i,j ·

∏̀
k=x+1

M
(k)
i,j

DIV
(k)
i

)
(10)

Example Consider again our example of Fig. 1a with M̃
(A)
c,d = 9. In this

case we have DIV
(A)
d = 10 > CON (B)

e = 4 and CON (A)
c = 10 > DIV

(A1)
b = 1.

The three-tuple of A can thus be scaled down by a factor of 4
10 . Using Eq. (10)

10 G. Giuliari et al.

for the path π2, we find that the argument of the minimum is A1 and G(π2) =
2
4 ·

9
10 · 1 = 9

20 >
18
100 = Ã2(π2).

4 Proofs of GMA’s properties

In this section, we prove that GMA’s computation described in Eq. (10) satisfies
the properties defined in §2. We prove the core property C1 in §4.1 and Opt
in §4.2. Locality (C2) follows directly from Eq. (10), as the computation only
involves allocation-matrix entries of the nodes on the path. The supplementary
properties S1–S3 are proven in Appendix E.

4.1 Proof of no-over-allocation (C1)

In this subsection we prove that there is no resource overuse of any of the pair
allocationM (k)

i,j , which, by the fact that convergent and divergent of an interface
must be smaller than the capacity of the edge connected to it, implies that there
is also no overuse on any edge of the graph. In the context of this proof, the +
operator is not only used for addition, but also for list concatenation. We denote
the set of non-local interfaces of some node k as I

(k)
ext . We will use the notation

M
(k)
i,j (π) to state more precisely which path the variable refers to. We want to

prove that for every node k and all of its interface pairs, the corresponding pair
allocation is greater than or equal to the sum of all resource allocations of all
paths going through that interface pair. For this we distinguish the following
cases an interface pair can be assigned to, and prove each case individually:
Case 1: The interface pair starts from a local interface: (⊥, j)
Case 2: The interface pair ends in a local interface: (i,⊥)
Case 3: The interface pair starts and ends in non-local interfaces: (i, j)
Case 1: We will prove a stronger statement, captured by the following lemma:

Lemma 1. For an arbitrary node A and an arbitrary non-local interface jA, let
Sxt be the set of terminated paths of length at most x that start in (⊥, jA), and
Sxp the set of preliminary paths of length exactly x that start in (⊥, jA). Then

∀x ≥ 1 :
∑
π∈Sx

p

G(π) +
∑
π∈Sx

t

G(π) ≤M (A)
⊥,j . (11)

We emphasize that, by the definition in Eq. (10), GMA not only allows to calcu-
late allocations on terminated, but also on preliminary paths. The lemma implies
our original statement, i.e., ∀x ≥ 1:

∑
π∈Sx

t
G(π) ≤M (A)

⊥,j .

Proof. We prove Lemma 1 by induction over x for arbitrary A and jA.

Base case (x = 1): We have S1
p = { [(⊥, jA)] } and S1

t = {}, which directly
implies

∑
π∈S1

p
G(π) +

∑
π∈S1

t
G(π) =M

(A)
⊥,j ≤M

(A)
⊥,j .

Global myopic resource allocation 11

Inductive step:
Induction hypothesis: For a particular x:

∑
π∈Sx

p
G(π) +

∑
π∈Sx

t
G(π) ≤

M
(A)
⊥,j .

To show:
∑
π∈Sx+1

p
G(π) +

∑
π∈Sx+1

t
G(π) ≤M (A)

⊥,j .

Definitions: For some preliminary path π of length `, let node Z be the
node that is connected to j` and let the corresponding interface of Z be iZ .
We define the local extension of a path π as Eloc(π) := { π + [(iZ ,⊥)] }, the
non-local extension of a path π as Eext(π) := ∪

jZ∈I (Z)
ext
{ π + [(iZ , jZ)] } and

their union as E(π) := Eloc(π) ∪ Eext(π).

Proof:∑
π∈Sx+1

p

G(π) +
∑

π∈Sx+1
t

G(π) =

∑
π∈Sx

p

∑
φ∈Eext(π)

G(φ)

+

∑
π∈Sx

t

G(π) +
∑
π∈Sx

p

∑
φ∈Eloc(π)

G(φ)

(12a)

=
∑
π∈Sx

p

∑
φ∈E(π)

G(φ) +
∑
π∈Sx

t

G(π) (12b)

=
∑
π∈Sx

p

∑
φ∈E(π)

min

(
G(π) ·

M
(Z)
i,j

DIV
(Z)
i

,
∏̀
k=1

1

CON
(k)
j

·M (Z)
i,j

)
+
∑
π∈Sx

t

G(π) (12c)

≤
∑
π∈Sx

p

∑
φ∈E(π)

M
(Z)
i,j

DIV
(Z)
i

· G(π) +
∑
π∈Sx

t

G(π) =
∑
π∈Sx

p

G(π) +
∑
π∈Sx

t

G(π) ≤ M
(A)
⊥,j

(12d)

In the step from Eq. (12b) to Eq. (12c), we used the fact that when extending
the path, the argument of the minimum of Eq. (10) either stays the same, or
the newly added node now minimizes the formula, which follows directly from
Eq. (9). The transition in Eq. (12d) follows from

∑
φ∈E(π)M

(Z)
i,j = DIV

(Z)
i .

Case 2: The proof is exactly the same as for case 1, except that we extend the
path in the backward instead of the forward direction. The only change required
is the adaptation of the definitions of local and non-local extensions of a path
and we use

∑
φ∈E(π)M

(Z)
i,j = CON

(Z)
j .

Case 3: Choose an arbitrary node A. Then choose arbitrary non-local interfaces
iA, jA ∈ I

(A)
ext of node A. Using exactly the same procedure as for the proof of

case 2, but using (iA, jA) as the interface pair where the paths “end” (it does
not terminate in a local interface), we can show that the sum of all resource
allocations for all paths ending in (iA, jA) is always smaller or equal toM (A)

i,j . We
then choose an arbitrary path π that ends in (iA, jA). Using the same procedure
as for the proof of case 1, but using (iA, jA) as the interface pair where the paths
“begin” (it does not start in a local interface) and setting M̂ (A)

i,j := G(π), we can
show that the sum of the resource allocations of all the (terminated) paths that

12 G. Giuliari et al.

extend π never exceeds G(π). It follows that the sum of the resource allocations
of all the paths going through (iA, jA) never exceeds M (A)

i,j .

4.2 Proof of optimality (Opt)

In this section we show that GMA is optimal according to Opt, which means
that there is no better local (C2) algorithm that does not over-allocate any edge
or interface pair (C1). As every invocation of a local algorithm is only based
on the nodes of one path, and is oblivious of all the other nodes of the graph,
in order to prevent overuse the algorithm has to consider all possible graphs
containing this path. This insight is central for the proof of optimality and is
formalized in the following lemma:

Lemma 2. For every allocation graph and every one of its paths π, there exists
another allocation graph that contains a path with the same sequence of allocation
matrices, where the pair allocation M (x)

i,j of some on-path node x is fully utilized
(there is no available resource left) if there is a GMA allocation on every path
containing (x, ix, jx) in this new graph.

Proof. Let π be an arbitrary path of an arbitrary allocation graph, and let x be
the index for which Eq. (10) is minimized. We construct a new allocation graph
around π as follows:

– Remove all the nodes that are not part of π.
– Keep the on-path nodes, their interfaces, and their allocation matrices as

they are.
– For every node, create identical copies of the node for each of its occurrences

on the path (multiple copies, in case the path contains loops) and only keep
the edges to the previous and subsequent node on the path.

– For all these on-path nodes, attach new nodes to the non-local interfaces
that are not already part of π. Those new nodes only have one local and
one non-local interface (the interface through which they are attached to the
on-path node).

– For every node k ∈ {1, . . . ,x − 1} and each of its interfaces ĩ to which
a new node was attached, the pair allocation (from its local to its non-
local interface) of the new node is set to DIV

(k)

ĩ
. This implies that also

the divergent (at the local interface) and the convergent (at the non-local
interface) of the new node are equal to DIV

(k)

ĩ
.

– For x, the newly attached nodes can have arbitrary allocation-matrix entries.
– For every node k ∈ {x+1, . . . , `} and each of its interfaces j̃ to which a new

node was attached, the pair allocation (from its non-local to its local inter-
face) of the new node is set to CON

(k)

j̃
. This implies that also the divergent

(at the non-local interface) and the convergent (at the local interface) of the
new node are equal to CON

(k)

j̃
.

Global myopic resource allocation 13

Given that there is a GMA allocation on every possible path (in our new graph)
going through (ix, jx), we want to show that M (x)

i,j is fully utilized. We charac-
terize all possible paths for three cases: If 1 < x < ` (case 1), a path starts at
a local interface of some node k ≤ x − 1 or at the local interface of some of its
attached nodes, and ends at a local interface of some node m ≥ x+ 1 or at the
local interface of some of its attached nodes. If x = 1 (case 2), every path starts
at the local interface of x, and ends at a local interface of some node k ≥ 2 or
at the local interface of some of its attached nodes. If x = ` (case 3), every path
starts at a local interface of some node k ≤ `−1 or at the local interface of some
of its attached nodes, and ends at the local interface of node `.
Case 1: We use the following notation in order to simplify our proof:

a(u) =
M

(u)
i,j

CON
(u)
j

, b(u) =
M

(u)
i,j

DIV
(u)
i

(13)

Let Ru be the sum of all allocations of all the nodes k ∈ {1, . . . ,x− 1} starting
either at a local interface or at the local interface of some of its attached nodes,
and ending either at a local interface of node u or at the local interface of some
of its attached nodes, divided by M (x)

i,j . Thus, we need to prove

M
(x)
i,j ·

∑̀
u=x+1

Ru =M
(x)
i,j ⇔

∑̀
u=x+1

Ru = 1. (14)

We formulate two lemmas, which are proven in Appendix D:

Lemma 3. For a1, . . . , ax > 0:
∏x
i=1 ai +

∑x
k=1

(
(1− ak) ·

∏x
i=k+1 ai

)
= 1.

Lemma 4. R` =
∏`−1
k=x+1 b

(k) and Ru = (
∏u−1
k=x+1 b

(k)) · (1− b(u)) (for x+ 1 ≤
u ≤ `− 1).

These lemmas immediately imply our proof goal:∑̀
u=x+1

Ru =

`−1∑
u=x+1

Ru +R` =

`−1∑
u=x+1

u−1∏
k=x+1

b(k) · (1− b(u)) +

`−1∏
k=x+1

b(k) = 1. (15)

Case 2+3: The proofs follow a simplified structure of the proof of case 1.

Theorem 5. GMA is Pareto optimal among all algorithms in the sense of Opt.

Proof. This follows directly from Lemma 2: for a given path (nodes with their
associated allocation matrices) there always exists a graph containing that path,
where increasing the allocation calculated by GMA will cause overuse, which
can only be prevented by decreasing allocations on other paths.

5 GMA provides meaningful allocations

A potential limitation of GMA is the size of the allocations it provides. We
proved that GMA’s path allocations are small enough that, even if all the paths

14 G. Giuliari et al.

have an allocation, no over-allocation occurs. In this section we show that GMA’s
path allocations are still large enough to satisfy the requirements of the critical
applications that motivate this work (details in Appendix A). We do this by
simulating GMA on random graphs, thereby exploring the trade-offs between
graph topology and the resulting GMA allocation sizes.

5.1 Simulation setup

Graph topology. We use the well-known Barabási–Albert random graph
model to generate allocation graphs [2]. This algorithm is designed to produce
scale-free random graphs, which are found to well approximate real-life techno-
logical networks [6].

At the topological level, the size of a GMA allocation for some path depends
on (i) the degree of the nodes on the path, as it determines the size of the
allocation matrix, (ii) the length of the path, since Eq. (10) contains an iterative
product on each node on the path, and (iii) the capacity of each on-path edge
(discussed in the next paragraph). We aggregate the first two metrics at the
graph level by considering the average node degree and the diameter of the
graph, i.e., the length of the longest path.8 Therefore, we generate 275 random
graphs for our simulations, with 8 to 2048 nodes, varying average degree and
diameter. Additional details on graph generation can be found in Appendix G.

Resources and Allocation matrices. In the simulations, we model the
varying bandwidth of real-world network links by assigning different capacities to
the edges of graphs. To assign capacity to edges based on a degree–gravity model:
the capacity of a (directed) edge is selected proportionally to the product of the
degrees of its adjacent nodes [14]. We discretize these values to 10 different levels
from 40 to 400. This choice is motivated by real networks, where more connected
nodes also tend to have higher forwarding capabilities.

Based on these edge capacities, we then create the allocation matrices. Al-
though each node might have different policies, simulating those policies for the
nodes introduces many additional degrees of complexity, beyond the scope of
this evaluation. Therefore, we assume a simple proportional sharing policy to
construct an allocation matrix, which we obtain by performing the following
three steps for each node k and all its interfaces i and j: (i) M (k)

i,j ← cap
(k)
i ,

while for the local interface ⊥, M (k)
⊥,j ,M

(k)
i,⊥ ← maxi{cap(k)

i }; (ii) M
(k)
i,j ←M

(k)
i,j ·

cap
(k)
j /CON

(k)
j ; (iii) if DIV

(k)
i > cap

(k)
j , then M (k)

i,j ←M
(k)
i,j · cap

(k)
i /DIV

(k)
i .

Path selection. In this simulation, the goal is to create path allocations
between every pair of nodes. Motivated again by networking practice, we consider
allocations made on k-shortest paths, with k ∈ {1, 2, 3}. For k = 1, we create
allocations on the single-shortest path for every pair of nodes. However, GMA
8 These two factors are closely related with each other and to the number of nodes
in the graph: keeping the number of nodes fixed, a graph with higher average node
degree will inevitably have smaller diameter.

Global myopic resource allocation 15

23 25 27 29 211

Nodes

0.00

0.25

0.50

0.75

1.00

C
ov

er

Median case
Best case
Worst case

Figure 2: Minimum, maximum, and median single-path 10−4-cover.
The highlighted markers show the max :, median l, and min 6 cover for one
specific graph (which is further analyzed in Figs. 5 and 6 in Appendix G).

can compute an allocation for any path in the graph. Therefore, if two nodes are
able to use multiple paths simultaneously, the total allocation for the pair is the
aggregate of the allocations on the individual paths. We then create allocations
on the 2- and 3-shortest paths for every pair of nodes, and evaluate the advantage
that multipath communication can provide.

Metrics: α-cover. Given a source node, the size of the GMA allocations to
different destination nodes can vary greatly, and computing average statistics
does not reflect the binary nature of critical application requirements: either
the allocation exceeds the minimum usability threshold, or the allocation is not
useful (see Appendix A for details).

Therefore, we introduce a new metric to aggregate this information and com-
pare the effectiveness of GMA across different topologies, called α-cover. Given
a source node in a graph and a path selection strategy, the node’s α-cover is
the fraction of destination nodes to which the sum of the path allocations com-
puted over the available paths is more than α. Therefore, α-cover captures the
size of the sub-graph with which the source node can communicate using an
adequately-sized GMA allocation. For example, a node with a 10−4-cover of 0.7
can reach 70% of the nodes in the graphs with an allocation of at least 10−4.
Naturally, higher values of α-cover are better. We define the median α-cover of a
graph as the median of the α-covers of its nodes (and similarly for minimum and
maximum). While different applications will require different values of α, we use
a 10−4-cover in all simulations. Again, this is motivated by practical considera-
tions: if we set 1 unit of resource = 1Gbps, 10−4 units correspond to 100 kbps.
The applications that motivate this work, such as blockchains and inter-bank
transaction clearing, can comfortably operate within this boundary.

5.2 Results

For each of the generated graphs, Fig. 2 relates its minimum, maximum, and
median 10−4-cover to the number of nodes, where we used the single shortest
path selection scheme. We see that all graphs have a median cover in the upper

16 G. Giuliari et al.

50% range , while the minimum cover decreases to just a few percent for graphs
with a high number of nodes. Graphs with lower median cover are the ones that
have low or high diameter, as Fig. 5 in Appendix G shows. This confirms the
observation that large allocation matrices (low diameter) or long paths (high
diameter) decrease the size of allocations. Further, in all graphs, we find at least
one node with cover greater than 89%, and observe that the cover increases with
the degree of the nodes: central nodes have therefore better cover, an important
property in practical applications. An example is shown in Fig. 5 in Appendix G.

Figure 3 in Appendix G shows the improvement in the median cover of the
graphs when using the 2- or 3-shortest path selection schemes in place of of the
single shortest path selection scheme. We see that the returns for using additional
paths are high, reaching over 120% increase over single-path cover when using
three paths instead of one. Graphs with lower number of nodes benefit less from
the additional paths, as many already achieve perfect cover. A higher k could
further increase the cover, but this exploration is left to future work.

6 Related work

Flow problems and algorithms. A class of theoretical problems that are
related to our path-allocation problem are multi-commodity flow problems, which
have been studied extensively since the 1950s [9]. The variant which is most
closely related to our setting is themaximum concurrent flow problem [16], where
fairness between different commodities is taken into account, but the ratios are
set by a central controller. All variants differ from our PAdist problem in that
they (i) do not consider independent nodes with their own properties and (ii)
require a global knowledge of the topology. They have thus been applied mostly
to centrally controlled networks [8].

Resource allocation in networks. Bandwidth guarantees were a central
concept of virtual-circuit architectures like ATM [15]. For today’s IP-based In-
ternet, bandwidth reservations have been proposed in the Integrated Services
(IntServ) architecture [4], in which they are negotiated through the Resource
Reservation Protocol (RSVP) [5]. However, due to its high reliance on in-network
state, IntServ has never been widely adopted. Further, these systems do not
specify how much bandwidth should be allocated to flows. The Internet over-
whelmingly relies on congestion control [10, 12] as a distributed mechanism for
bandwidth allocation between flows, which provides no guarantees to the com-
munication partners and has no support to implement traffic policies. There
exists a wide range of traffic-engineering systems suitable to intra-domain con-
texts, such as MPLS [13] with OSPF-TE [11] and RSVP-TE [1] or SDN-based
solutions [17]. However, in contrast to GMA, which supports autonomous nodes,
all these systems require a central controller.

Global myopic resource allocation 17

7 Discussion and Conclusion

In this paper, we revisit an old networking and distributed-systems problem—
how to allocate resources in a network of independent nodes when no central
controller is available. After introducing the formalism of allocation graphs, in
which each node is associated with local allocations based on available resources
and policies, we ask a novel question: can an algorithm compute resource allo-
cations for all paths in an allocation graph, without causing over-allocation, and
relying only on local information? This is the foundation of the PAdist problem.
We answer with our global myopic allocation (GMA) algorithm, showing how
these local decisions give rise to meaningful and sustainable global allocations.
Further, we prove that these allocations are Pareto-optimal, and therefore cannot
be trivially improved.

Relevance to networking. The allocations calculated through GMA are
static and depend only on the policies of on-path nodes; in particular, they
are independent of other allocations and resource demands. They thus provide
strong minimal resource guarantees that are valid under all networking condi-
tions and are particularly relevant for applications where centralized solutions
based on dedicated network infrastructure are too expensive or inherently im-
possible. By their very nature, these guaranteed allocations are smaller than
what can be achieved through dynamic resource-allocation systems. However,
our simulations show that, even under conservative assumptions, GMA provides
sufficient communication bandwidth to virtually all pairs of nodes in small to
medium-sized networks. Thus, GMA-based allocations with strong availability
guarantees could complement other systems with higher network utilization but
weaker guarantees, such as best-effort traffic.

Future work. The novel results on graph resource allocation presented in this
paper open many new and exciting avenues for future research, both theoretical
and applied. First of all, this paper did not explore the fairness implications of
GMA allocations. The properties of monotonicity and Pareto-optimality, along
with the proportional use of pair allocations in the computation, point towards
a strong neighbor-based fairness notion. We leave the analysis of such a notion to
future work. Second, we see great potential for further research on PAdist algo-
rithms. For instance, Pareto optimality does not satisfy the question of whether
GMA is optimal in a global sense, i.e., whether it maximizes a function over
all path allocations—their sum, for example. The discovery of globally optimal
PAdist algorithms could lead to interesting theoretical advancements, with pro-
found practical implications.

Finally, in this paper we have discussed how allocations can be computed in
a distributed setting. This is orthogonal to the development of specific protocols
necessary to communicate and authenticate necessary information and enforce
the allocations. Future research could focus on the development of such a protocol
and investigate its interplay with other networking paradigms like best-effort
traffic and congestion control.

18 G. Giuliari et al.

Acknowledgments

We would like to thank Mohsen Ghaffari for the illuminating discussions; Tobias
Klenze, Simon Scherrer, Stefan Schmid, and Joel Wanner for their feedback on
the manuscript; and the anonymous reviewers for their insightful comments.

References

1. Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V., Swallow, G.: RSVP-TE:
Extensions to RSVP for LSP Tunnels. RFC 3209, IETF (2001)

2. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science
286(5439) (1999)

3. Basescu, C., Reischuk, R.M., Szalachowski, P., Perrig, A., Zhang, Y., Hsiao, H.C.,
Kubota, A., Urakawa, J.: SIBRA: Scalable Internet bandwidth reservation archi-
tecture. In: NDSS (2016)

4. Braden, R., Clark, D., Shenker, S.: Integrated Services in the Internet Architecture:
an Overview. RFC 1633, IETF (1994)

5. Braden, R., Zhang, L., Berson, S., Herzog, S., Jamin, S.: Resource ReSerVation
Protocol (RSVP) – Version 1 Functional Specification. RFC 2205, IETF (1997)

6. Broido, A.D., Clauset, A.: Scale-free networks are rare. Nature Communications
10(1) (2019)

7. Brown, L., Ananthanarayanan, G., Katz-Bassett, E., Krishnamurthy, A., Rat-
nasamy, S., Schapira, M., Shenker, S.: On the future of congestion control for
the public internet. In: ACM HotNets (2020)

8. Chang, T., Tang, Y., Chen, Y., Hsu, W., Tsai, M.: Maximum concurrent flow prob-
lem in MPLS-based software defined networks. In: IEEE Global Communications
Conference (GLOBECOM) (2018)

9. Ford Jr, L.R., Fulkerson, D.R.: A suggested computation for maximal multi-
commodity network flows. Management Science 5(1) (1958)

10. Jacobson, V.: Congestion avoidance and control. SIGCOMM CCR 18(4) (1988)
11. Katz, D., Kompella, K., Yeung, D.: Traffic Engineering (TE) Extensions to OSPF

Version 2. RFC 3630, IETF (2003)
12. Kelly, F.P., Maulloo, A.K., Tan, D.K.: Rate control for communication networks:

shadow prices, proportional fairness and stability. Journal of the Operational Re-
search society 49(3) (1998)

13. Rosen, E., Viswanathan, A., Callon, R.: Multiprotocol Label Switching Architec-
ture. RFC 3031, IETF (2001)

14. Saino, L., Cocora, C., Pavlou, G.: A toolchain for simplifying network simulation
setup. In: International Conference on Simulation Tools and Techniques (2013)

15. Saitō, H.: Teletraffic Technologies in ATM Networks. Artech House (1994)
16. Shahrokhi, F., Matula, D.W.: The maximum concurrent flow problem. Journal of

the ACM 37(2) (1990)
17. Shu, Z., Wan, J., Lin, J., Wang, S., Li, D., Rho, S., Yang, C.: Traffic engineering

in software-defined networking: Measurement and management. IEEE Access 4
(2016)

18. Ware, R., Mukerjee, M.K., Seshan, S., Sherry, J.: Beyond Jain’s fairness index:
Setting the bar for the deployment of congestion control algorithms. In: ACM
HotNets (2019)

Global myopic resource allocation 19

A Critical networking applications

For many critical applications, reliability, security, and scalability of communica-
tion systems are of paramount importance. These application require relatively
low traffic volumes, but availability has to be guaranteed at all times for these
services to achieve their task. We provide two examples of such applications.

The first is inter-bank transactions. The SWIFT financial messaging network
is a prominent example in this market, as it handles transactions between its
11 000 member institutions and accounts for half of global cross-border inter-
bank transactions [2]. Despite the importance of these transactions for today’s
financial system, their actual bandwidth requirements are modest. On an average
day, SWIFT processes around 40 million messages in total [6], which corresponds
to fewer than 500 messages per second—globally. Each transaction is encoded
in an XML file of variable size, usually around a few kilobytes (estimate based
on real-world examples of the XML-encoded ISO 20022 transaction message
format [5]), resulting on an average load of less than 1Mbps between all 11 000
institutions.

The Bitcoin network provides a second example. Each Bitcoin miner node
needs to run the consensus protocol in order to verify the transaction that are
being committed to the blockchain. Today, the network processes 7 transactions
per second [3], with an average transaction size of 500B, and very rarely above
1 kB [7, 8]. This directly translates to modest bandwidth requirements of less
than 100 kbps per node. However, delays or interruptions of communication can
result in financial loss [1]. A further complication complication that arises in
blockchain networks is decentralization. As nodes are run by different—and often
untrusted—entities, centralized solutions are avoided as they introduce a single
point of failure. Even permissioned blockchains, like the Libra network, impose
node decentralization by design as a way to build trust [4].

In general, critical applications share these common traits: (i) the required
traffic volumes are relatively small, less than 100 kbps per end-to-end commu-
nication, but (ii) connectivity has to be ensured at all times (availability), (iii)
even in the presence of denial-of-service (DoS) attacks (security). Finally, (iv)
the guarantees have to be extended to large networks, in many cases under the
assumption of decentralized control.

B Cases in which down-scaling improves the allocation
calculated by Eq. (4)

Lemma 6. Let π be an arbitrary path consisting of ` nodes, and let k be one if its
on-path nodes. If 1 < k < `, scaling down its contributed values (DIV

(k)
i ,M

(k)
i,j ,

CON
(k)
j) (without scaling down any values of other nodes) can only improve

A2(π) if DIV
(k)
i > CON

(k−1)
j and CON

(k)
j > DIV

(k+1)
i .

If k = 1 or k = `, scaling-down its hop values will never increase A2(π).

20 G. Giuliari et al.

Proof.
Case 1 < k < `: The contributed values of node k are part of the following
factor of Eq. (4):

F :=
M

(k)
i,j

max{CON
(k−1)
j ,DIV

(k)
i } ·max{CON

(k)
j ,DIV

(k+1)
i }

. (16)

We write F̃ for the same factor after scaling down the values (DIV
(k)
i ,M

(k)
i,j ,

CON
(k)
j).

Case (DIV
(k)
i > CON

(k−1)
j) ∧ (CON

(k)
j > DIV

(k+1)
i): Scaling down the

contributed values by s := CON
(k−1)
j /DIV

(k)
i < 1 leads to

F̃ =
s ·M (k)

i,j

s ·DIV
(k)
i ·max{s · CON

(k)
j ,DIV

(k+1)
i }

>
M

(k)
i,j

DIV
(k)
i · CON

(k)
j

= F . (17)

Case (DIV
(k)
i > CON

(k−1)
j) ∧ (CON

(k)
j ≤ DIV

(k+1)
i): Scaling down the

contributed values by s where CON
(k−1)
j /DIV

(k)
i ≤ s < 1 has no impact on

Eq. (16):

F̃ =
s ·M (k)

i,j

s ·DIV
(k)
i ·max{s · CON

(k)
j ,DIV

(k+1)
i }

=
M

(k)
i,j

DIV
(k)
i ·DIV

(k+1)
i

= F . (18)

Any further down-scaling only decreases the allocation, as shown in the last
case.

Case (DIV
(k)
i ≤ CON

(k−1)
j)∧ (CON

(k)
j > DIV

(k+1)
i): The proof follows the

same structure as in the previous case.

Case (DIV
(k)
i ≤ CON

(k−1)
j) ∧ (CON

(k)
j ≤ DIV

(k+1)
i): Scaling down the

contributed values by any factor s < 1 leads to

F̃ =
s ·M (k)

i,j

max{CON
(k−1)
j , s ·DIV

(k)
i } ·max{s · CON

(k)
j ,DIV

(k+1)
i }

(19a)

=
s ·M (k)

i,j

CON
(k−1)
j ·DIV

(k+1)
i

<
M

(k)
i,j

CON
(k−1)
j ·DIV

(k+1)
i

= F . (19b)

Case k = `: The contributed values of node ` are part of the following factor of
Eq. (4):

M
(`)
i,j

max{CON
(`−1)
j ,DIV

(`)
i }

(20)

Global myopic resource allocation 21

Scaling down the contributed values by any factor s < 1 modifies Eq. (20) to

s ·M (`)
i,j

max{CON
(`−1)
j , s ·DIV

(`)
i }

=
M

(`)
i,j

max{ 1s · CON
(`−1)
j ,DIV

(`)
i }

(21a)

≤
M

(`)
i,j

max{CON
(`−1)
j ,DIV

(`)
i }

. (21b)

Case k = 1: The proof follows the same structure as in the case k = `.

C Equivalence of recursive and direct GMA formulas

Lemma 7. Equation (9) is equivalent to Eq. (10).

Proof. We prove Lemma 7 by induction over the path length `.

Base case (` = 1): Because f (1) = 1, we get M (1)
i,j = f (1) ·M (1)

i,j .

Inductive step:
Induction hypothesis:
For a particular `:

f (`) ·
∏`
k=1M

(k)
i,j∏`

k=2 CON
(k−1)
j

= min
0≤x≤`

(x−1∏
k=1

M
(k)
i,j

CON
(k)
j

·M (x)
i,j ·

∏̀
k=x+1

M
(k)
i,j

DIV
(k)
i

)
To show:

f (`+1) ·
∏`+1
k=1M

(k)
i,j∏`+1

k=2 CON
(k−1)
j

= min
0≤x≤`+1

(x−1∏
k=1

M
(k)
i,j

CON
(k)
j

·M (x)
i,j ·

`+1∏
k=x+1

M
(k)
i,j

DIV
(k)
i

)
Proof:

f (`+1) ·
∏`+1
k=1M

(k)
i,j∏`+1

k=2 CON
(k−1)
j

= min

(
1,

CON
(`)
j · f (`)

DIV
(`+1)
i

)
·

∏`+1
k=1M

(k)
i,j∏`+1

k=2 CON
(k−1)
j

(22a)

= min

(∏`+1
k=1M

(k)
i,j∏`+1

k=2 CON
(k−1)
j

,
M

(`+1)
i,j

DIV
(`+1)
i

· f (`) ·
∏`
k=1M

(k)
i,j∏`

k=2 CON
(k−1)
j

)
(22b)

= min

(∏`+1
k=1M

(k)
i,j∏`+1

k=2 CON
(k−1)
j

, min
0≤x≤`

(x−1∏
k=1

M
(k)
i,j

CON
(k)
j

·M (x)
i,j ·

`+1∏
k=x+1

M
(k)
i,j

DIV
(k)
i

))
(22c)

= min
0≤x≤`+1

(x−1∏
k=1

M
(k)
i,j

CON
(k)
j

·M (x)
i,j ·

`+1∏
k=x+1

M
(k)
i,j

DIV
(k)
i

)
(22d)

In the first step we applied the definition of f from Eq. (8). To get Eq. (22b)
we moved the rightmost factor into the min term, and in the following step
used the induction hypothesis. The last equation follows from min

1≤x≤`+1
(g(x)) =

min
(
g(`+ 1), min

1≤x≤`
(g(x))

)
, which holds for any function g.

22 G. Giuliari et al.

D Lemmas used in the proof of optimality

We first formulate some additional lemmas and then prove Lemmas 3 and 4 used
in §4.1. To simplify the notation, we drop the nodes in the paths in this section.

D.1 Auxiliary lemmas

In the following lemmas we consider an arbitrary path π = [(i1, j1), (i2, j2), . . . ,
(i`, j`)] and denote the index for which Eq. (10) is minimized as x?.

Lemma 8. If x? ≥ 3, then the GMA allocation for the path π̃ = [(ĩ2, j2), . . . ,
(i`, j`)] beginning at some interface of node 2 is still minimized at node x?.

Proof.

x? = argmin
x

(
x−1∏
k=1

M
(k)
i,j

CON
(k)
j

·M (x)
i,j ·

∏̀
k=x+1

M
(k)
i,j

DIV
(k)
i

)
(23a)

= argmin
x

(
x−1∏
k=1

1

CON
(k)
j

·
∏̀

k=x+1

1

DIV
(k)
i

)
(23b)

= argmin
x

(
x−1∏
k=2

1

CON
(k)
j

·
∏̀

k=x+1

1

DIV
(k)
i

)
(23c)

= argmin
x

 M
(2)

ĩ,j

CON
(2)
j

·
x−1∏
k=3

M
(k)
i,j

CON
(k)
j

·M (x)
i,j ·

∏̀
k=x+1

M
(k)
i,j

DIV
(k)
i

 (23d)

In Eqs. (23b) and (23d) we used the fact that the allocation-matrix entries do
not contribute to the argument of the minimum (they are constant among all
the possible values for x). This is also true for the convergent of node 1 (because
x ≥ 3), which is used in Eq. (23c).

Lemma 9. If x? ≤ ` − 2, then the GMA allocation for the path π̃ = [(i1, j1),

(i2, j2), . . . , (i`−1, j̃`−1)] ending at some interface of node `−1 is still minimized
at node x?.

Proof. The proof follows the same structure as the proof of Lemma 8.

Lemma 10. When extending the path on a non-local interface ĩ1 of node 1
with some node 0 that only consists of a local and a non-local interface to π̃ =

[(i0, j0), (ĩ1, j1), . . . , (i`, j`)], and given that M (0)
i,j = CON

(0)
j = DIV

(1)

ĩ
, then the

resulting allocation will be independent of the allocation matrix of node 0 and
will still be minimized at node x?.

Proof. We define

g1(x) :=
∏̀
k=1

M
(k)
i,j ·

x−1∏
k=1

1

CON
(k)
j

·
∏̀

k=x+1

1

DIV
(k)
i

, (24a)

Global myopic resource allocation 23

g0(x) :=M
(0)
i,j ·M

(1)

ĩ,j
·
∏̀
k=2

M
(k)
i,j ·

x−1∏
k=0

1

CON
(k)
j

·
∏̀

k=x+1

1

DIV
(k)
i

. (24b)

We see that

g1(x
?) = G(π) by def

=
∏̀
k=1

M
(k)
i,j · min

1≤x≤`

(x−1∏
k=1

1

CON
(k)
j

·
∏̀

k=x+1

1

DIV
(k)
i

)
, (25)

because x? is the argument of the minimum of G(π). By multiplying the terms

on both sides of the equation with
M

(0)
i,j ·M

(1)

ĩ,j

CON
(0)
j ·M

(1)
i,j

, we get

g0(x
?) =M

(0)
i,j ·M

(1)

ĩ,j
·
∏̀
k=2

M
(k)
i,j · min

1≤x≤`

(x−1∏
k=0

1

CON
(k)
j

·
∏̀

k=x+1

1

DIV
(k)
i

)
(26a)

=M
(0)
i,j ·M

(1)

ĩ,j
·
∏̀
k=2

M
(k)
i,j · min

0≤x≤`

(x−1∏
k=0

1

CON
(k)
j

·
∏̀

k=x+1

1

DIV
(k)
i

)
(26b)

by def
= G(π̃). (26c)

Equation (26b) shows that G(π̃) is still minimized at node x?; it follows from
the inequality

g0(x
?) ≤

M
(0)
i,j

CON
(0)
j

·M (1)

ĩ,j
·
∏̀
k=2

M
(k)
i,j ·

∏̀
k=2

1

DIV
(k)
i

(27a)

=M
(0)
i,j ·M

(1)

ĩ,j
·
∏̀
k=2

M
(k)
i,j ·

∏̀
k=1

1

DIV
(k)
i

. (27b)

Here we first used that, as x? minimizes the right side of Eq. (26a), g0(x?) is
at most as high as the expression of the minimum for index 1. The second step
follows from CON

(0)
j = DIV

(1)

ĩ
. Note that the resulting allocation g0(x) on path

π̃ is independent of node 0, becauseM (0)
i,j = CON

(0)
j , meaning that those terms

cancel each other out, see Eq. (24b).

Lemma 11. When extending the path on a non-local interface j̃` of node ` with
some node ` + 1 that only consists of a local and a non-local interface to π̃ =

[(i1, j1), . . . , (i`, j̃`), (i`+1, j`+1)], and given that M (`+1)
i,j = CON

(`+1)
i = DIV

(`)

j̃
,

then the resulting allocation will be independent of the allocation matrix of node
`+ 1 and will still be minimized at node x?.

Proof. The proof follows the same structure as the proof of Lemma 10.

24 G. Giuliari et al.

D.2 Lemmas used in main text

Lemma 3. For a1, . . . , ax > 0 it holds that

x∏
i=1

ai +

x∑
k=1

(
(1− ak) ·

x∏
i=k+1

ai

)
= 1. (28)

Proof. We do the proof by induction.

Base case (x = 1): a1 + (1− a1) = 1

Inductive step:
Induction hypothesis:

∏x
i=1 ai +

∑x
k=1

(
(1− ak) ·

∏x
i=k+1 ai

)
= 1.

To show:
∏x+1
i=1 ai +

∑x+1
k=1

(
(1− ak) ·

∏x+1
i=k+1 ai

)
= 1.

Proof:
x+1∏
i=1

ai +

x+1∑
k=1

(
(1− ak) ·

x+1∏
i=k+1

ai

)
(29a)

= ax+1 ·
x∏
i=1

ai + ax+1 ·
x∑
k=1

(
(1− ak) ·

x+1∏
i=k

ai

)
+ (1− ax+1) (29b)

= ax+1 · 1 + (1− ax+1) = 1 (29c)

In Eq. (29c) we used the induction hypothesis.

Lemma 4. We defined x as the index for which Eq. (10) is minimized and
assume 1 < x < `. We defined Ru as the sum of all allocations of all the nodes
k ∈ {1, . . . ,x− 1} starting either at a local interface or at the local interface of
some of its attached nodes, and ending either at a local interface of node u or
at the local interface of some of its attached nodes, divided by M (x)

i,j .
Then, it holds that

R` =

`−1∏
k=x+1

b(k), (30a)

Ru = (

u−1∏
k=x+1

b(k)) · (1− b(u)) (for x+ 1 ≤ u ≤ `− 1). (30b)

Proof. Let I (u) be the set of interfaces of node u. For each node we will use ⊥
to refer to its local interface. R` consists of all allocations starting at the local
interface of node 1 plus all the allocations starting at the local interface of some
node that is attached to one of the nodes 1 to x − 1, where the allocations are
ending either at a local interface of node ` or at the local interface of some of its
attached nodes:

Global myopic resource allocation 25

R` =

x−1∏
k=1

a(k) ·
`−1∏

k=x+1

b(k) ·
(
b(`) +

∑
t∈I (`)

\{i`,⊥}

M
(`)
i,t

DIV
(`)
i

)

+
∑

1≤p≤x−1

∑
t∈I (p)

\{ip,jp}

M
(p)
t,j

CON
(p)
j

·
x−1∏
k=p+1

a(k) ·
`−1∏

k=x+1

b(k) ·
(
b(`) +

∑
t∈I (`)

\{i`,⊥}

M
(`)
i,t

DIV
(`)
i

)
.

(31)

Note that for all paths going through (ix, jx), the argument of the minimum of
Eq. (10) is always the index x: every such path can be constructed from the initial
path by first dropping interface pairs at its origin and its end, and then extending
the reduced path with the attached nodes. Both operations preserve x as the ar-
gument of the minimum of Eq. (10), as shown in Lemmas 8–11. Furthermore, the
attached nodes do not have an influence on the GMA allocation, which is a con-

sequence of Lemmas 10 and 11. We observed that b(`)+
∑
t∈I (`)\{i`,⊥}

M
(`)
i,t

DIV
(`)
i

= 1

and obtain

R` =

x−1∏
k=1

a(k) ·
`−1∏

k=x+1

b(k) +
∑

1≤p≤x−1

∑
t∈I (p)

\{ip,jp}

M
(p)
t,j

CON
(p)
j

·
x−1∏
k=p+1

a(k) ·
`−1∏

k=x+1

b(k)

(32a)

=

x−1∏
k=1

a(k) ·
`−1∏

k=x+1

b(k) +
∑

1≤p≤x−1

(1− a(p)) ·
x−1∏
k=p+1

a(k) ·
`−1∏

k=x+1

b(k) (32b)

=

`−1∏
k=x+1

b(k), (32c)

where we used the observation that
∑
t∈I (p)\{ip,jp}

M
(p)
t,j

CON
(p)
j

= 1− a(p) in the step

to Eq. (32b) and Lemma 3 for the last step.
With the same reasoning as above, we get, for x+ 1 ≤ u ≤ `− 1,

Ru =

x−1∏
k=1

a(k) ·
u−1∏
k=x+1

b(k) ·
(∑

t∈I (u)

−{iu,ju}

M
(u)
i,t

DIV
(u)
i

)

+
∑

1≤p≤x−1

∑
t∈I (p)

\{ip,jp}

M
(p)
t,j

CON
(p)
j

·
x−1∏
k=2

a(k) ·
u−1∏
k=x+1

b(k) ·
(∑

t∈I (u)

\{iu,ju}

M
(u)
i,t

DIV
(u)
i

)

(33a)

=

x−1∏
k=1

a(k) ·
u−1∏
k=x+1

b(k) · (1− b(u)) (33b)

26 G. Giuliari et al.

+
∑

1≤p≤x−1

(1− a(p)) ·
x−1∏
k=p+1

a(k) ·
u−1∏
k=x+1

b(k) · (1− b(u)) (33c)

=

x−1∏
k=1

a(k) ·
u−1∏
k=x+1

b(k) +
∑

1≤p≤x−1

(1− a(p)) ·
x−1∏
k=p+1

a(k) ·
u−1∏
k=x+1

b(k)

 · (1− b(u))

(33d)

=

(
u−1∏
k=x+1

b(k)

)
· (1− b(u)). (33e)

E Proofs of supplementary properties

Usability (S1). For every valid path, all the pair allocations used to calculate
the allocation are positive by definition. Moreover, convergents and divergents
at each node contain the respective pair allocation as part of the sum in Eq. (1),
and are therefore positive. Every allocation is then positive, as it is a product of
positive factors (Eq. (10)).

Efficiency (S2). The polynomial complexity of GMA follows directly from
Eqs. (8) and (9). In fact, GMA has linear complexity in the path length (as-
suming convergents and divergents are precomputed together with the allocation
matrices).

Monotonicity (S3). In the proof of monotonicity we will make use of the
following lemma:

Lemma 12. If a, b, δ > 0 and a ≤ b, then it holds that a+δ
b+δ ≥

a
b .

Proof. a+δ
b+δ = a

b ·
b·(a+δ)
a·(b+δ) =

a
b ·

ab+bδ
ab+aδ = a

b ·
(
1 + δ(b−a)

ab+aδ

)
≥ a

b

Let π be an arbitrary simple path and let node n be one of its on-path nodes.
We want to show that increasing the pair allocationM (n)

i,j by some amount δ > 0
does not decrease the allocation calculated by GMA for path π. Let G(π) be the
formula from Eq. (10) and x? be the argument of its minimum before increasing
M

(n)
i,j , and let Ĝ(π) be the formula from Eq. (10) and x̂? the argument of its

minimum after increasing M (n)
i,j . We can distinguish three cases and write Ĝ(π)

as follows:

x̂? < n :

Ĝ(π) =
x̂?−1∏
k=1

M
(k)
i,j

CON
(k)
j

·M (x̂?)
i,j ·

n−1∏
k=x̂?+1

M
(k)
i,j

DIV
(k)
i

·
M

(n)
i,j + δ

DIV
(n)
i + δ

·
∏̀

k=n+1

M
(k)
i,j

DIV
(k)
i

(34a)

Global myopic resource allocation 27

x̂? = n :

Ĝ(π) =
x̂?−1∏
k=1

M
(k)
i,j

CON
(k)
j

· (M (n)
i,j + δ) ·

∏̀
k=x̂?+1

M
(k)
i,j

DIV
(k)
i

(34b)

x̂? > n :

Ĝ(π) =
n−1∏
k=1

M
(k)
i,j

CON
(k)
j

·
M

(n)
i,j + δ

CON
(n)
j + δ

·
x̂?−1∏
k=n+1

M
(k)
i,j

CON
(k)
j

·M (x̂?)
i,j ·

∏̀
k=x̂?+1

M
(k)
i,j

DIV
(k)
i

(34c)

The following derivation holds for all of the cases above and directly proves
monotonicity:

Ĝ(π) ≥
x̂?−1∏
k=1

M
(k)
i,j

CON
(k)
j

·M (x̂?)
i,j ·

∏̀
k=x̂?+1

M
(k)
i,j

DIV
(k)
i

(35a)

≥
x?−1∏
k=1

M
(k)
i,j

CON
(k)
j

·M (x?)
i,j ·

∏̀
k=x?+1

M
(k)
i,j

DIV
(k)
i

= G(π) (35b)

To get Eq. (35a), we applied Lemma 12 to Eqs. (34a) and (34c) and the assump-
tion that δ > 0 to Eq. (34b). In the step from Eq. (35a) to Eq. (35b), we used
the fact that x? is the argument of the minimum of Eq. (10).

F Extensibility

In real-world implementations of resource-allocation protocols, messages need
to be sent on the desired paths in order to discover information about the al-
location matrices of the on-path nodes. To avoid unnecessary communication
overhead, we want intermediate nodes to be able to drop allocation messages if
the preliminary allocation up to such a node is below a certain threshold. This
is captured by the following supplementary property:

S4 Extensibility: Algorithm A should allow to calculate a preliminary allo-
cation for every preliminary prefix-path πz of length z of some terminated
path π (πz = [(i1, j1), (i2, j2), . . . , (iz, jz)] for 1 ≤ z < `), where we require
that A(π1) ≥ A(π2) ≥ · · · ≥ A(π).

Theorem 13. GMA satisfies property S4.

Proof. For every prefix-path πz = [(i1, j1), (i2, j2), . . . , (iz, jz)] (2 ≤ z ≤ `) of
some terminated path π, we have

G(πz) =

(
z∏
k=1

M
(k)
i,j

)
· min
1≤x≤z

(
x−1∏
k=1

1

CON
(k)
j

·
z∏

k=x+1

1

DIV
(k)
i

)
(36a)

28 G. Giuliari et al.

=

(
z∏
k=1

M
(k)
i,j

)
·min

(
min

1≤x≤z−1

(
x−1∏
k=1

1

CON
(k)
j

·
z−1∏

k=x+1

1

DIV
(k)
i

)

· 1

DIV
(z)
i

,

z−1∏
k=1

1

CON
(k)
j

)
(36b)

≤

(
z∏
k=1

M
(k)
i,j

)
· min
1≤x≤z−1

(
x−1∏
k=1

1

CON
(k)
j

·
z−1∏

k=x+1

1

DIV
(k)
i

)
· 1

DIV
(z)
i

(36c)

=
M

(z)
i,j

DIV
(z)
i

· G(πz−1) (36d)

≤ G(πz−1). (36e)

We started with Eq. (10) and in the step from Eq. (36a) to Eq. (36b) used the

fact that min
1≤x≤z

(f(x)) = min

(
min

1≤x≤z−1
(f(x)) , f(z)

)
. The last inequality follows

from Eq. (1).

G Simulation details

23 25 27 29 211

Nodes

0

40

80

120

C
ov

er
 im

pr
ov

. (
%

) SPs: 2
SPs: 3

Figure 3: Improvement in the median 10−4-cover when using the 2- and
3-shortest path selection schemes instead of the single-shortest selection scheme.

In the Barabási–Albert model, average degree and diameter are controlled by
a preferential attachment parameter, and the total number of nodes. A higher
preferential attachment will yield graphs with higher average degree and smaller
diameter. We vary these two parameters to obtain 275 random graphs, with the
number of nodes varying exponentially from 8 to 2048, and the attachment from
1 to 32 (the attachment always has to be smaller than the number of nodes).

The relation between the average degree and the diameter of the resulting
topologies is visualized in Fig. 4. Figures 3 and 5 show additional evaluation
results. Figure 6 shows the detail of the 10−4-cover for each node in the graph
highlighted in Figs. 2 and 5.

Global myopic resource allocation 29

0 5 10 15 20 25 30 35
Average degree

0

5

10

15

20

25

D
ia

m
et

er

Figure 4: Simulated graphs by degree and diameter. As the marginals
show, graphs span a wide range of values in diameter and average node degree.

3 9 15 21
Diameter

0.00

0.25

0.50

0.75

1.00

C
ov

er

Median case
Best case
Worst case

Figure 5: Minimum, maximum, and median single-path 10−4-cover
breakdown. The highlighted markers show the maximum :, median l, and
minimum 6 cover for one specific graph.

0 50 100 150
Node degree

0.00

0.25

0.50

0.75

1.00

N
od

e
co

ve
r

Figure 6: Cover and degree of a single graph. Each point is a node of the
graph highlighted in Figs. 2 and 5.

30 G. Giuliari et al.

References

1. Apostolaki, M., Zohar, A., Vanbever, L.: Hijacking bitcoin: Routing attacks on cryp-
tocurrencies. In: 2017 IEEE Symposium on Security and Privacy (SP) (2017)

2. Arnold, M.: Ripple and swift slug it out over cross-border payments. https://www.
ft.com/content/631af8cc-47cc-11e8-8c77-ff51caedcde6 (2018)

3. Croman, K., Decker, C., Eyal, I., Gencer, A.E., Juels, A., Kosba, A., Miller, A.,
Saxena, P., Shi, E., Sirer, E.G., Song, D., Wattenhofer, R.: On scaling decentralized
blockchains. In: Financial Cryptography and Data Security. Springer (2016)

4. Libra Association, T.: White paper v2.0. https://libra.org/en-US/white-paper/
(2020)

5. Standards, S.: Message definition report part 1. https://www2.swift.com/
knowledgecentre/rest/v1/publications/stdsmx_pcs_mdrs/3.0/SR2020_MX_
PaymentsClearingAndSettlement_MDR1_Standards.pdf?logDownload=true (2020)

6. SWIFT: SWIFT FIN traffic and figures. https://www.swift.com/about-us/
swift-fin-traffic-figures/monthly-figures (2020)

7. Tradeblock: Analysis of bitcoin transaction size trends. https://tradeblock.com/
bitcoin/historical/1w-f-tsize_per_avg-01101 (2015)

8. Tradeblock: Bitcoin historical data. https://tradeblock.com/bitcoin/
historical/1w-f-tsize_per_avg-01101 (2020)

https://www.ft.com/content/631af8cc-47cc-11e8-8c77-ff51caedcde6
https://www.ft.com/content/631af8cc-47cc-11e8-8c77-ff51caedcde6
https://libra.org/en-US/white-paper/
https://www2.swift.com/knowledgecentre/rest/v1/publications/stdsmx_pcs_mdrs/3.0/SR2020_MX_PaymentsClearingAndSettlement_MDR1_Standards.pdf?logDownload=true
https://www2.swift.com/knowledgecentre/rest/v1/publications/stdsmx_pcs_mdrs/3.0/SR2020_MX_PaymentsClearingAndSettlement_MDR1_Standards.pdf?logDownload=true
https://www2.swift.com/knowledgecentre/rest/v1/publications/stdsmx_pcs_mdrs/3.0/SR2020_MX_PaymentsClearingAndSettlement_MDR1_Standards.pdf?logDownload=true
https://www.swift.com/about-us/swift-fin-traffic-figures/monthly-figures
https://www.swift.com/about-us/swift-fin-traffic-figures/monthly-figures
https://tradeblock.com/bitcoin/historical/1w-f-tsize_per_avg-01101
https://tradeblock.com/bitcoin/historical/1w-f-tsize_per_avg-01101
https://tradeblock.com/bitcoin/historical/1w-f-tsize_per_avg-01101
https://tradeblock.com/bitcoin/historical/1w-f-tsize_per_avg-01101

	GMA: A Pareto Optimal Distributed Resource-Allocation Algorithm

