
Secure and Scalable QoS for Critical Applications
Marc Wyss, Giacomo Giuliari, Markus Legner, and Adrian Perrig

Department of Computer Science, ETH Zurich, Switzerland
{marc.wyss, giacomog, markus.legner, adrian.perrig}@inf.ethz.ch

Abstract—With the proliferation of online payment systems,
the emergence of globally distributed consensus algorithms, and
the increase of remotely managed critical IoT infrastructure,
the need for critical-yet-frugal communication—high-availability
and low-rate—is becoming increasingly pressing. For many of
these applications, the use of leased lines or SD-WAN solutions
is impractical due to their inflexibility and high costs, while
standard Internet communication lacks the necessary reliability
and attack resilience.

To address this rising demand for strong quality-of-service
(QoS) guarantees, we develop the GMA-based light-weight com-
munication protocol (GLWP), building on a recent theoretical
result, the GMA algorithm. GLWP is a capability-based protocol
which is able to bootstrap network-wide bandwidth allocations
in single round-trip times, and achieves high availability even
under active attacks. Due to its clever use of cryptographic
mechanisms, GLWP introduces minimal state in the network
and causes low computation and communication overhead. We
implement a GLWP prototype using Intel DPDK and show that
it achieves line rate on a 40 Gbps link running on commodity
hardware, thus showing that GLWP is a viable solution to provide
strong QoS guarantees for critical-yet-frugal communications.

I. INTRODUCTION

With the steady advance of digitalization, the reliance on
communication availability in critical sectors is increasing.
This trend is further fueled by the move to digital payment
systems, cloud infrastructure, and distributed IoT systems.

For many critical applications, reliability, security, and scal-
ability of communication systems are of paramount impor-
tance. Yet, current approaches fall short of achieving all objec-
tives simultaneously. Critical applications often rely on leased
lines, sacrificing on scalability and flexibility while incurring
high cost. On the other hand, best-effort Internet connectivity
cannot satisfy the reliability and security requirements.

Many of these use cases can be characterized as critical-
yet-frugal (CyF) applications: the traffic volumes exchanged
are relatively low, but availability has to be guaranteed at all
times for the service to achieve its mission. We provide two
examples of such applications.

The first is inter-bank transactions. The SWIFT financial
messaging network is of crucial importance for today’s fi-
nancial system, as it accounts for half of global cross-border
inter-bank transactions [1]. However, the network’s actual
bandwidth requirements are modest: a recent estimate [2]
shows that the average load on the network is likely less than
1 Mbps between all 11 000 of its member institutions.

The Bitcoin network provides a second example. Today,
this network processes 7 transactions per second [3], with

an average transaction size of 500 B, and very rarely above
1 kB [4]. This directly translates to modest bandwidth re-
quirements of less than 100 kbps per node. In both these
examples low-bitrate communications carry immense value
and are therefore susceptible to attacks: it has been shown
that disruptions can result in severe financial loss [5]. A
further complication in securing communication in blockchain
networks is decentralization: as nodes are run by many, often
untrusted, entities, centralized solutions have to be avoided as
they introduce a single point of failure. Even when centralized
control could in principle be achieved, e.g., in permissioned
blockchains, decentralization is used as a way to build trust [6].

Motivated by these examples, we define critical-yet-frugal
applications to share these common traits: (i) the required
traffic volumes are relatively small, less than 100 kbps per end-
to-end communication, but (ii) connectivity has to be ensured
at all times (availability), (iii) even in the presence of denial-
of-service (DoS) attacks (security). Finally, (iv) the guarantees
have to be extended to large networks, even under the assump-
tion of decentralized control. These peculiar characteristics
make existing solutions ill-suited to support CyF traffic.

Why are new ideas needed? Two main avenues exist
to satisfy CyF applications: either deploying—or leasing—
dedicated communications infrastructure (i.e., completely iso-
lating traffic), or implementing a protocol-based quality-of-
service (QoS) system over existing infrastructure. Unfortu-
nately, both directions have shortcomings:
• High cost: Dedicated infrastructure provides the highest

security guarantees due to complete traffic separation.
However, this comes at high cost, translating to low
redundancy and thus reduced availability.

• Central control: Most forms of QoS, as well as dedicated
infrastructure, require centralized orchestration. This is
not a drawback per-se, but can clash with the require-
ments of decentralized applications.

• No protection against adversaries: Most protocol-based
QoS solutions are designed under the assumption of a be-
nign environment, in which the only threat is congestion.

• Network state: Even in non-adversarial environments,
QoS mechanism such as IntServ heavily rely on in-
network state. Nodes have to keep state for all the al-
locations they provide—usually at the flow level—which
causes inherent scalability issues. In fact, in-network state
has been identified as a threat to the deployment of
network protocols [7].
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step these obstacles by leveraging the unconditional resource
allocation of the global myopic allocation (GMA) algo-
rithm [2]. GMA allows to compute non-zero bandwidth al-
locations for any allowed path in a network. These allocations
are unconditional, i.e., the amount of allocated bandwidth for
one path is independent of the allocated bandwidth on all the
other paths. At the same time, GMA guarantees that—even if
all allocations in the network are fully utilized—no link will
ever be congested. To calculate the allocation of a specific
path, GMA purely relies on information of on-path nodes,
and therefore no global coordination is needed. Although an
allocation is diminishing with increasing path length, these
allocations are sufficient to carry and protect CyF traffic in
real networks. Moreover, best-effort traffic can make use the
of the (potentially) unused GMA bandwidth, as we describe
in §V, further increasing network utilization and efficiency.

We concretize this theoretical result and propose a secure,
efficient bandwidth-allocation protocol for the Internet: the
GMA-based light-weight communication protocol (GLWP).
Since GMA only requires path-local information, GLWP can
collect this information and compute the corresponding allo-
cation efficiently in a discovery phase in the control plane.
These allocations are then disseminated to traffic sources in
the form of cryptographic tokens, eliminating the need for per-
allocation state in the network. As GMA allocations guarantee
congestion-freeness, monitoring and policing traffic in the data
plane is sufficient to enforce correct use of the allocations.
GLWP is very efficient and highly scalable, and able to
saturate today’s high-speed (40 Gbps) network links even on
commodity hardware.
This paper makes the following core contributions:
• We present GLWP, the first distributed protocol to

achieve forwarding guarantees for any path in the Inter-
net, even in adversarial settings.

• We modify the original GMA algorithm and apply it
to the Internet, introducing realistic assumptions on the
operation of autonomous systems (ASes).1 Most impor-
tantly, we extend the algorithm with the notion of time.

• We analyze the security and availability properties of
GLWP, and how they arise from GMA allocations.

• We implement and evaluate GLWP, demonstrating scal-
ability and high throughput on commodity hardware.

II. BACKGROUND: UNCONDITIONAL ALLOCATIONS

In this section, we summarize the main ideas of the GMA
algorithm, and the details necessary to understand GLWP’s
operation. The GMA paper [2] contains the full details.

A. The GMA algorithm

Allocation graphs and computer networks. The GMA algo-
rithm is defined on allocation graphs, which are composed
of nodes and edges. Each edge has assigned a non-negative
amount called resource. In this paper, we are interested in

1ASes are the centrally-operated networks that interconnect through an
exterior gateway protocol and form the Internet.

the applications of GMA to digital communications and QoS;
therefore, we identify the graph with the Internet, nodes with
ASes, and the resource with link bandwidth. Every node is
augmented with a set of interfaces, each of which represents
the interconnection point between two nodes; concretely, in
our setting, interfaces are connections among ASes at border
routers. An additional local interface represents the traffic
sources and destinations internal to the node.

A path π in an allocation graph is specified to the granularity
of interfaces, i.e., it is the sequence of interfaces traversed by
the path. For any node on the path, the interface pair denotes
the interfaces where the path enters and exits the node. In
an allocation graph, each node further defines an allocation
matrix (see §II-B) which captures the local decision, or policy,
on the maximum bandwidth each neighbor is allowed to
allocate on the node’s links.

Algorithmic objective. The goal of GMA is to compute
the size of a bandwidth allocation for any specific path on
the network, reserving it for the communication between the
source and destination nodes of the path. Most importantly,
allocations are unique to a specific path and are not granted,
for example, to single flows. Therefore, two communicating
nodes can use a single allocation per path. These allocations
resemble a tunnel between source and destination nodes, with
two important properties: the allocation ‘tunnel’ is tied to the
path it was granted for, and the bandwidth granted to this
tunnel is fixed. This greatly reduces complexity, and avoids the
pitfalls that arise when implementing per-flow allocations [8].

GMA’s properties. The GMA algorithm provides an essen-
tial property to our goal of supporting network-wide QoS for
CyF applications: it ensures that the allocations are sized in
such a way that, even if all paths in the network receive
an allocation, and these are fully utilized, no link is ever
congested. This property, called no-over-allocation in the
GMA paper, is mathematically proven to hold for all networks.
Further, allocations are computed based only on information
local to the path, i.e., without the need for global coordination.

These strong guarantees are achieved at the expense of
flexibility: the size of the allocation is determined by the
algorithm, run on all on-path nodes, and cannot therefore be
adapted to communication requirements. Interestingly, GMA
allocations can be thought of as an emergent behavior: they
arise from the purely local, myopic policies of individual nodes
and exist implicitly at all times irrespective of whether they are
used, until they are finally “discovered” in the control plane.

It may seem that the inflexible and relatively small amount
of bandwidth computed by GMA might pose an obstacle in
practice. However, the GMA paper shows that in real-world
networks these allocations suffice to support CyF traffic.

B. Essential details of GMA

Allocation matrices. Each node k defines an allocation ma-
trix, M (k), in which every entry M (k)

i,j represents the maximum
amount of bandwidth that the node is willing to allocate to
all the paths transiting from interface i to interface j. Given



this matrix, the maximum amount of bandwidth that can be
allocated from an interface i to any other interface within
the node is called divergent, and the maximum amount of
bandwidth that can be allocated from any interface in the node
towards interface j is called convergent:

DIV
(k)
i =

∑
j

M
(k)
i,j , CON

(k)
j =

∑
i

M
(k)
i,j . (1)

Allocation computation. Starting from allocation matrices,

the GMA allocation G(π) for some path π (expressed as a
sequence of ` interface pairs) can be computed using Eq. (10)
in the GMA paper:
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Specifically, three values are needed as input from each on-
path node k ∈ {1, . . . , `}: M (k)

i,j , DIV
(k)
i , CON

(k)
j , given

that the path traverses node k, incoming at interface i and
outgoing at interface j. These three values are also referred to
as the hop values. Finally, GMA also allows to derive an upper
bound on the allocation G(π), called preliminary guarantee,
by computing an allocation for any k-subprefix of the path,
i.e., using the hop values of the first k nodes only. This is
referred to as the extensibility property.

The GMA paper does not specify, however, how allocations
can be created and used in practice. Many questions arise when
considering concrete applications of the algorithm: How can
nodes exchange hop values? How can allocation matrices be
updated to reflect changes in the network, without causing
over-use? How can we secure the allocation computation and
the data traffic from adversarial action? How can this be done
without causing excessive computation and communication
overhead? GLWP is a solution to these open problems.

III. REQUIREMENTS AND ARCHITECTURE

Although many different types of networks can in prin-
ciple support GMA-based allocations, our aim is to design
a protocol that enables CyF communications in the Internet.
Therefore, we instantiate nodes with ASes, which are seeking
to provide a highly-available communication service alongside
best-effort traffic. Edges then map to inter-domain links, and
interfaces to border routers.

In the following, we specify the security and efficiency
requirements for GLWP, as well as the adversary and network
models we consider for our design. From now on, we will
only refer to non-source ASes as on-path ASes.

A. Adversary model
We consider a Dolev–Yao adversary [9] that can intercept,

modify, drop, and inject packets anywhere in the network
but cannot break cryptographic primitives. We further assume
that some of the ASes are malicious, but that those ASes
still protect themselves from other ASes, meaning that they
actively monitor misbehavior (announcements of inconsistent
hop values). The adversary’s objective is to interfere with the
protocol such that the intended properties are violated.

B. Network model

AS structure. To participate in GLWP, ASes must compute
their allocation matrices based on local policies and historical
data—e.g., the traffic volumes from and to neighboring ASes.
Internet service providers (ISPs) carry out a similar procedure
already today, as they need to build traffic matrices to provision
internal routing [10]. The operations required by the GLWP
control plane are (logically) centralized in a GLWP service
(GServ) in each AS, while, in the data plane, border routers
have to support GLWP traffic.

Path stability. A crucial prerequisite for any system that
provides meaningful allocations for specific paths is path sta-
bility: if forwarding paths change frequently, or can be easily
disrupted by external action, no guarantee can be provided for
traffic on those paths. In centrally managed networks, path sta-
bility can be achieved through, for example, software-defined
networking (SDN) [11] or MPLS [12]. Segment routing [13]
can provide path stability even for larger networks. In the
context of inter-domain routing, where central coordination
is not available, the SCION Internet architecture provides AS-
level path stability [14].

Key management. In order to fulfill the protocol require-
ments in adversarial settings, a layer of (cryptographic) mea-
sures needs to be implemented. Unfortunately, asymmetric
cryptography is computationally expensive and enables addi-
tional attack vectors such as signature-flooding attacks. We
therefore rely on systems that efficiently distribute symmetric
keys between any pair of ASes such as Passport [15] or
PISKES [16] in an inter-domain context, or Kerberos [17] if
a trusted authority exists. Irrespective of the key-distribution
mechanism, storage requirements are modest: for example,
storing a 16 B symmetric key for 10 000 ASes only requires
160 kB. We denote the shared symmetric keys between two
ASes k and m as Km

k ( = Kk
m). Since GMA allocations

depend on the allocation-matrix entries of all on-path ASes, we
use message-authentication codes (MACs) based on the pair-
wise shared symmetric keys to authenticate this information
(§V-A). Furthermore, we assume that every AS k has a secret
key Kk, which is known to AS k alone. Finally, we assume
that ASes are time-synchronized with second-level precision
and that an in-network duplicate-suppression system scrubs
replayed packets [18].

C. Protocol requirements

Function and security. For arbitrary paths (every AS might
potentially be malicious) we require the following properties:
F1 ASes only communicate the information necessary to

compute the bandwidth allocation. This is to prevent
excessive disclosure of sensitive information.

F2 ASes cannot communicate inconsistent values that could
cause an overuse of capacities anywhere in the network.

For paths with only benign on-path ASes (the source may
be malicious) we additionally require the following:



F3 A source AS can only obtain one guarantee per path.
F4 The source cannot overuse the bandwidth guarantee.

For a path consisting only of benign ASes, GLWP must
further satisfy the following requirements:
F5 The bandwidth guarantee calculated by the ASes is given

by the GMA algorithm.
F6 Each guarantee is only valid for one specific path.
F7 Malicious off-path ASes cannot disrupt the guarantee.
F8 No AS can frame the source of overusing its guarantee.

Finally, for a path with only benign ASes and no attacker
on the links, GLWP must achieve the following properties:
F9 No off-path attacker can prevent the source AS from

obtaining a guarantee.
F10 The delivery of data traffic is guaranteed.
The restriction to benign entities is necessary as some could
drop packets to trivially interrupt communication.

Efficiency. There are several non-functional requirements:
E1 Data-plane packets must be processed within hundreds of

nanoseconds to achieve line rate on gigabit links.
E2 Routers in the dataplane only need to store a constant

amount of state, irrespective of the number of ASes, the
number of flows, or the number of paths.

Summing up. Assuming a network that provides path sta-
bility and an adequate key-management system, the role of
GLWP is to (i) gather and authenticate the necessary infor-
mation to compute the allocation with GMA, and (ii) protect
forwarding. We will use the convention that a path consists of a
source AS and multiple on-path ASes. As the length of a path is
`, there are λ := `−1 on-path ASes. To calculate an allocation
using GMA, each AS only needs to contribute three terms:
the divergent of the incoming interface, the allocation-matrix
entry for the interface pair, and the convergent of the outgoing
interface—i.e., the hop values (DIV i, Mi,j , CON j).

IV. GLWP OVERVIEW

GLWP is designed starting from two key insights:
1) GMA allocations are computed only on path-local hop

values, which are then the only values that the allocation
protocol has to distribute and authenticate. This removes
the need for global coordination.

2) Since GMA allocations are unconditional and can never
cause over-allocation, each allocation can be granted
independently of already existing allocations without the
risk of causing congestion. Thus, each AS does not need
to keep track of the amount of bandwidth it allocates.
This greatly reduces the computation overhead and state
required at GServs, and enables stateless border routers.

We now present how these insights are used in GLWP.

A. Control- and data-plane overview

In the discovery phase (Fig. 1a), the computation and
authentication of the allocations is carried out in the control
plane. The source initiates the process by sending a discovery
packet towards the destination. The GServs in on-path ASes

append their hop values for the computation of the allocation,
and forward the modified and authenticated packet along the
path (insight 1). Once the destination receives the packet,
it is sent back along the same path, so that all ASes can
gather the authenticated hop values, compute the allocation
using GMA, and append capabilities—authorizations to use the
allocation—in the form of cryptographic keys for the source.
It is important to note that the on-path ASes can forget the
allocations and the capability tokens they have granted, and
do not need to store them.

In the transmission phase in the data plane (Fig. 1b), the
source encapsulates the application payload in GLWP packets,
which are then further encapsulated in network-layer packets.
Using the previously received cryptographic keys, the source
calculates authenticators for every AS on the path. The border
routers of those ASes can subsequently check the validity of
the allocation and the authenticity of the source and the GLWP
header statelessly on the fly by recomputing the authenticators
(insight 2). As the GLWP header contains the size of the
allocation that was computed in the control plane, each on-
path AS can monitor and enforce the allocations.

B. Enforcing QoS

CyF applications are often deployed in a decentralized,
adversarial setting. Our system is therefore designed to provide
strong guarantees even in the presence of adversaries. Two
attack vectors are open for an adversary to disrupt GLWP
communications: tampering with the control-plane setup phase
in order to, e.g., obtain larger allocations, and volumetric DoS
attacks with GLWP traffic. The first attack is prevented by
mutually authenticating all the values and entities participating
in the allocation setup. The second attack, DoS with GLWP
traffic, is precluded because (i) GMA computes allocations that
will never cause over-allocation at any link (where the correct-
ness of those calculations is enforced in the control plane),
and (ii) the GLWP traffic is monitored (which is possible as
every single packet is authenticated) to check that allocations
are not abused. We implement monitoring with two systems
found in the literature: highly scalable probabilistic bandwidth
monitor [19], complemented by a replay-suppression system
that avoids framing attacks with spoofed packets [18].

Thanks to recent advances in key-distribution protocols [16],
the cryptographic operations can be performed efficiently even
at line rate. We describe further details in Sections V-A and
V-B and evaluate a prototype implementation in §VII. The
adversary model and security landscape is defined in §III-A.

The role of GLWP is therefore to authentically distribute
the hop values of each AS on a path to all others, such
that they can locally use the GMA algorithm to compute the
allocation size. GLWP then creates cryptographic authoriza-
tions (capabilities) for the source to use this allocation, and
enforces them in the data plane. With source authentication
and monitoring, GLWP further ensures that the allocated
bandwidth is not exceeded.



(a) Discovery phase: ¶ AS A initiates the discovery
on the path (π), sending its Hop Values (HV); ·
ASes append HVs to the packet, authenticated to all
other ASes on the path; ¸ on the return path, ASes
use HVs to compute the allocation G(π) and
authenticate it by creating Hop Keys (HK); HKs are
encrypted and appended to the packet; on-path ASes
do not need to store HVs nor HKs; ¹ AS A stores
the HKs for use in the transmission phase.
(b) Transmission phase: AS A wants to send a
packet to AS D; ¶ it generates Hop Authenticators
(HA) starting from the HKs and the packet header,
and appends them to the packet; · each AS verifies
that the header of the packet matches its HA, and
uses a traffic monitor and a duplicate-suppression
system to ensure that the communication does not
exceed the allocation G(π).

Figure 1: Overview of GLWP, discovery phase and transmission phase.

V. PROTOCOL DESCRIPTION

We now proceed to present the detail of GLWP. In the dis-
covery phase (control plane, Algorithm 1), an AS discovers the
bandwidth guarantee on a chosen path and obtains credentials
for using it to send data traffic during the subsequent trans-
mission phase (data plane, Algorithm 2). Finally, we provide
a sub-protocol to handle updates to allocation matrices.

A. Discovery phase

As every AS on the path should be able to authenticate
the data for every other AS, λ2 MACs need to be calculated
and transmitted for a path consisting of ` ASes. To avoid
excessive communication overhead, we propose to use a single
authentication field per AS (so ` fields in total) together with
aggregate MACs [20], [21]. All the following operations are
carried out by the GServ of the respective ASes.

At the beginning of the discovery phase, the source AS
selects a path π (interface pairs) and a sequence of correspond-
ing node identifiers (AS numbers, NId for short), denoting
the ASes that it intends to use. It then deterministically
constructs an allocation identifier (AID) by hashing the path,
so AID = H(π). Using the shared symmetric keys, the source
authenticates its information, which includes its hop values, by
calculating an authenticator for each on-path AS.

Upon receiving the packet, an on-path AS recalculates and
verifies the AID. The AS validates the authenticity of all the
previous hop values using the aggregate MACs, appends its
own hop values to the packet, and adds authenticators for every
other AS to the aggregate MACs. Using GMA, it calculates a
preliminary bandwidth guarantee (see §II-B) based on the hop
values discovered so far. If it is smaller than some threshold,
i.e., it is too low to be usable, the AS sends an error message
to the source, otherwise it forwards the packet to the next
on-path AS. The last AS on the path sends the packet back
towards the source, on the reversed path.

On the backward path each AS again checks whether all
the information is authentic and that the announced allocation-
matrix entries do not exceed the corresponding convergent and

divergent. Also, every AS stores the announced hop values of
each of its neighbors. If those are inconsistent across time,
the AS can take action against this misbehavior. For example,
it can refuse any further allocation requests coming through
that neighbor. Announced hop values are inconsistent, if one
of the following situation arises: (i) for some interface pair
of the neighbor different hop values were announced, (ii) for
the neighbor’s interface that connects it to the AS execut-
ing the consistency checks, different divergents/convergents
or interface identifiers were announced, or (iii) the sum of
the announced matrix entries for some interface exceeds the
divergent/convergent corresponding to that interface.

As long as the hop values are consistent, there will never be
an over-allocation of any link (this follows from GMA’s no-
over-allocation property). Each on-path AS then uses the hop
values to compute the final bandwidth allocation according to
GMA. It also derives a hop key (HK ) for the source, encrypts
and authenticates it, and adds it to the packet. The hop keys
created by the on-path ASes represent capabilities that allow
the source to send traffic along this path using the guaranteed
bandwidth, until the hop keys expire.

When the source finally receives the packet, it checks the
authenticity of the information, and decrypts the hop keys. It
stores the AID , the hop keys, the expiration time, and the
allocated bandwidth together with the path.

B. Transmission phase

During the transmission phase, the source AS uses the
hop keys it received previously in order to calculate a per-
packet hop authenticator (HA) for each on-path AS. The
hop authenticators are different for each packet, because
they depend on the source AS identifier (Src) and a packet
timestamp (tspkt), which together uniquely define a packet.
The hop authenticators then allow on-path ASes to authenticate
the source and verify the length of the packet. If its dedicated
hop authenticator is valid, each on-path AS passes the Src,
AID , bandwidth allocation G(π), as well as the packet length
to a separate probabilistic traffic monitor [19] and forwards
the packet to the next AS on the path. The traffic monitor



Algorithm 1 Discovery phase. Packet fields are denoted
by FIELD and ← is an assignment. To ensure recentness
of packets, the on-path GServs compare the timestamp to
the current time while allowing a lifetime L (hundreds of
milliseconds), taking into account a clock skew ε (up to a
few seconds). τ denotes the minimum useful guarantee value.
L, ε, and τ are globally fixed parameters.
1: procedure PACKET INITIALIZATION AT THE GSERV OF THE SOURCE AS

Require: Src (= NId1), NId2, . . . , NId`, π (path), HV 1, K2
1 , . . . , K`

1
2: tspkt← (current time)
3: AID← H(π)
4: Auth1 ← 0
5: for m ∈ {2, . . . , `} do
6: Authm ← MACKm

1
(Src, tspkt, AID,HV 1)

7: Create packet with Src,NId2, . . . ,NId`, tspkt,AID,Auth1, . . . ,Auth`,
and HV 1

8: procedure APPENDING HOP VALUES BY ON-PATH AS K (FORWARD PATH)
Require: HV k , ∀m ∈ {1, . . . , `} \ {k} : Km

k

9: if packet was not received through interface ik then drop packet

10: if NIdk−1 or NIdk+1 do not match AS k’s neighbors then drop packet

11: if (current time)− tspkt 6∈ [−ε,L+ ε] then drop packet
. invalid timestamp (lifetime L, clock skew ε)

12: AID← H
(
π
)

13: if AID 6= AID then drop packet . invalid allocation ID

14: Authk ←
⊕

m∈{1,...,k−1}
MAC

Kk
m

(Src, tspkt, AID,HVm)

15: if Authk 6= Authk then drop packet

16: HV k ← HV k

17: for m ∈ {1, . . . , `} \ {k} do
18: Authm ← Authm ⊕MAC

Kk
m

(Src, tspkt, AID,HV k)

19: calculate preliminary guarantee using HV 1 , . . . , HV k . §II-B
20: if preliminary bandwidth < τ then
21: send error packet back to source AS
22: else
23: forward packet to the next AS according to π

24: procedure HOP KEY GENERATION BY ON-PATH AS K (RETURN PATH)
Require: HV k , Kk , ∀m ∈ {1, . . . , `} \ {k} : Km

k
25: repeat checks from lines 9-13
26: if HV k 6= HV k then drop packet

27: tsexp ← tspkt + ∆T

28: Authk ←
⊕

m∈{1,...,`}\{k}
MACKm

k
(Src, tspkt, AID,HVm)

29: if Authk 6= Authk then drop packet

30: for m ∈ {1, . . . , `} do
31: if

(
M

(m)
im,jm

> DIV
(m)
im

)
∨
(
M

(m)
im,jm

> CON
(m)
jm

)
then

32: drop packet / blame AS m
33: check that the hop values promoted by the neighboring ASes are consistent
34: calculate final bandwidth guarantee β ← G(π) . §II-B
35: HKk ← MACKk

(Src,AID, β, ik, jk, tsexp)
36: IV ← (Src,AID, tspkt)
37: (Ciphk,Tagk)← AuthEnc

K1
k

(IV ,HKk)

38: Ciphk ← Ciphk

39: Auth1 ← Auth1 ⊕ Tagk

40: forward packet to the next AS according to π

41: procedure STORING HOP KEYS AT THE GSERV OF THE SOURCE AS
Require: K2

1 , . . . , K`
1

42: repeat checks and calculations from lines 25-27 (with k = 1)
43: for m ∈ {2, . . . , `} do
44: (HKm,Tagm)← AuthDecKm

1
( IV , Ciphm )

45: Auth1 ←
⊕

m∈{2,...,`}

(
MACKm

1
(Src, tspkt, AID,HVm)⊕ Tagm

)
46: repeat checks from lines 29-34 (with k = 1)
47: store the AID , the hop keys, β, and tsexp as attributes of the path

Algorithm 2 Transmission phase. Syntax as in Algorithm 1.
1: procedure PACKET GENERATION AT THE GSERV OF THE SOURCE AS

Require: Src, π (path), HK1, . . . , HK `, AID , β, tsexp, P (payload)
2: tspkt← (current time)
3: pkt← (create new packet with reserved space for header and payload)
4: pkt-len← length(pkt)
5: for all k ∈ {2, . . . , `} do
6: HAk ← MACHKk

(Src, tspkt, pkt-len)J0:lHAK
7: create packet with Src, π, AID , β, tspkt, tsexp, HA2, . . . , HA`, and P
8: send packet to the next AS according to π

9: procedure VALIDATION AT BORDER ROUTER OF ON-PATH AS K
Require: Kk

10: if packet was not received through interface ik then drop packet

11: if (current time)− tspkt 6∈ [−ε,L+ ε] then drop packet

12: if tsexp < (current time) + L+ ε then drop packet . allocation expired

13: HKk ← MACKk
(Src,AID, β, ik, jk, tsexp)

14: HAk ← MACHKk
(Src, tspkt, pkt-len) J0:lHAK

15: if HAk 6= HAk then drop packet

16: pass (Src, AID , β, pkt-len) to traffic monitor
17: pass (Src, tspkt) to duplicate-suppression system
18: forward the packet according to π

detects when the source overuses the bandwidth guarantee for
the path identified by the AID . In such a case, the AS can
take measures such as blacklisting the source.

C. Expiration and traffic-matrix updates

To enable topology changes and modifications to allocation
matrices, GLWP guarantees expire after a fixed amount of time
∆T . As the topology and allocation matrices are expected to
be relatively stable and to minimize overhead due to discovery
packets, we propose to set ∆T to one day. If an AS wants to
modify its allocation matrix at some time t1, there may be
valid “old” GLWP guarantees until t2 = t1 + ∆T ; only at t2
the definitive change in values may occur. To prevent over-
allocation, the AS needs to announce temporary hop values
during [t1, t2], which consist of the maximum of the old and
new divergent and convergent and the minimum of the old and
new allocation-matrix entry. This ensures that the temporary
guarantees calculated with GMA are smaller than or equal
to guarantees calculated based on the old and new allocation
matrix (see Eq. (2)); in particular, over-allocation cannot occur
in the intervals [t1, t2] (where old and temporary allocations
exist simultaneously) and [t2, t2 + ∆T ] (where temporary and
new allocations exist simultaneously).

Because such changes in the announcements would contra-
dict the consistency checks described in §V-A, we need to
adapt those checks to allow changes in the allocation matrix.
For that, the ASes implement the following protocol:

Consistency-check subprotocol.
1) Every time an AS wants to update its allocation matrix

(also when it joins the network for the first time), it
authentically sends the row and column corresponding
to a particular neighbor towards that neighbor. For a
neighbor connected to interface i, this would be the ith
column and the ith row of the allocation matrix.

2) The neighbor checks the authenticity of this update
message and stores row and column, as well as their



sum (convergent and divergent), with a current timestamp.
In order to limit space and prevent resource exhaustion
attacks, it rate-limits the number of updates.

3) For each setup request in the discovery phase, the AS
promotes the modified hop values as described in §V-C.

4) When a neighbor receives such a setup request, it fetches
the convergent, divergent, and matrix values stored in
step 2; then, it compares them to the hop values that
were promoted in the request (step 3).

Note that this row and column of a matrix is exactly the in-
formation that the corresponding neighbor might learn anyway
through different setup requests, and thus the subprotocol does
not weaken property F1.

D. Notes on monitoring

The purpose of the traffic monitor is to enforce bandwidth
allocations [19]. The monitor was designed such that it can
support a wide range of protocols—in the case of GLWP, we
can directly deploy the monitor by setting the flow ID key
to the AID field (hash over the path) of the GLWP packets.
The required state is minimal and fits into L2 or even L1
cache, and the monitor can handle traffic in the order of tens
of Gbps. Higher throughput can be achieved by distributing
flows among multiple copies of the system.

The in-network duplicate-suppression system, which uses
Bloom filters to identify duplicates, can filter out replayed
packets at traffic rates of 10 Gbps using only two cores on
a commodity machine [18]. The packet timestamp (tspkt) of
GLWP can serve as the required packet sequence number.
Thanks to timestamps, the system only needs to keep track
of recent packets (and discard old packets), which makes this
process practical even for high-bandwidth applications.

Both the traffic monitor and the duplicate-suppression sys-
tem assume network-layer source authentication, which GLWP
provides by (i) authenticating the source in the discovery phase
and (ii) sending the hop keys only in encrypted form to the
source, thus establishing another shared secret. These systems
and GLWP can but do not necessarily have to be executed on
the same machine.

VI. AVAILABILITY AND SCALABILITY ANALYSIS

We now show that GLWP can withstand adversarial action
both in the control and data plane and after that analyze the
scalability of the discovery phase. A comprehensive evaluation
of the transmission phase can be found in §VII.

A. Discovery-phase attacks

On-path network link attacks. During the discovery phase,
an adversary could tamper with the hop values, attempting to
influence the allocation size resulting from GMA. The mutual
authentication of hop values prevents this attack (F5).

Malicious parameter announcement. Malicious ASes could
report contradicting hop values to other ASes in order to
induce congestion by violating the assumptions for GMA’s
no-over-allocation property. We protect against this attack

by having ASes monitor the hop values of their neighbors
over time. Inconsistent announcements can then be punished
by refusing GLWP allocation requests from/to the neighbor.
Therefore, property F2 holds.

Multiple allocation requests. A source AS may try to get
multiple allocations for the same path by issuing multiple
setup requests. However, even though the source will receive
different hop keys for the same path (the hop key is calculated
based on a fresh timestamp: line 35 in Algorithm 1), the
calculated bandwidth and the AID will still be the same.
The bandwidth monitor will therefore still account the packets
authenticated with different hop keys to the same allocation,
so a source cannot send more traffic on the same path (F3).

Path manipulation. An attacker could try to manipulate the
path field (list of interface pairs) in the discovery phase packets
in order to get an allocation based on a different AID . If
such a manipulation is performed by an attacker on a link or
some malicious on-path AS, then this will be detected by other
ASes, because the path field is authenticated from every AS
towards every other AS on the path. If such a manipulation
is performed by a malicious source however, the modification
can affect the interface pair of the source or the interface pair
of some on-path AS. The first case can only have negative
implications (potential over-allocation) for the other ASes if
the source promotes inconsistent values, which is checked by
the first on-path AS. In the second case, the corresponding
on-path AS will either receive the setup request on a wrong
interface and drop the packet, or forward it to a wrong interface
(effectively changing the path for the allocation). In any case
it is not possible to violate property F3.

Measures against denial of capability (DoC). While GLWP
data-plane traffic cannot be affected by DoS attacks, the
discovery packets need to be sent as best-effort traffic unless
previous hop keys are available. To rule out DoC attacks, we
propose to leverage GMA and its allocation matrices: Each AS
can implement rate limiting for GLWP requests, where each
of its neighbors i is allowed a rate of requests proportional
to DIV i. By this, the properties of GMA are transferred to
the discovery phase and no AS can prevent other ASes from
obtaining GLWP guarantees (F9).

B. Transmission phase attacks

In the following, we cover the attack surface of the trans-
mission phase and show how we defend against each attack.

Overuse. A malicious source trying to overuse the band-
width will be detected by the bandwidth monitor (F4).

Framing attack with spoofed packets. An attacker may try to
spoof the packet source and to subsequently cause bandwidth
overuse. Since the overuse of an allocation is detected by the
monitoring subsystem and leads to allocation revocation, this
attack leads to the DoS of a benign AS. This event is prevented
by per-packet source authentication.



Framing attack with replayed packets. Similarly to the
previous attack, the adversary tries to blame a benign AS for
bandwidth overuse. In this case, however, they capture and
replay valid packets from the legitimate source, thus correctly
passing the checks for source authentication. However, the
in-network duplicate-suppression system prohibits this option,
and therefore precludes framing benign source ASes (F8).

Volumetric (D)DoS with best-effort and GLWP traffic. When
trying to prevent the legitimate use of a GLWP allocation
for specific path, off-path ASes can send traffic along (i) an
unrelated path (a path with different interface pairs); (ii) along
a path that has at least one common interface pair using best-
effort traffic; or (iii) along a path that has at least one common
interface pair using a different GLWP allocation.

Case (i) trivially does not present a threat for the commu-
nication. There may still be an intradomain overlap. How-
ever, this has to be taken into account when calculating the
allocation matrix. In case (ii), QoS is maintained by using
different queues for GLWP and best-effort traffic, effectively
isolating the legitimate communication from the attack traffic.
Finally, case (iii) is protected by GMA’s no-over-allocation
property: since both the adversary’s and the benign allocation
are legitimate—i.e., they have been computed in the authen-
ticated discovery phase with legitimate values—they cannot
create mutual congestion. Monitoring will detect and block an
adversary trying to abuse such allocation. Therefore, malicious
off-path ASes can not disrupt the bandwidth guarantees (F7).

Hop-key reuse. Using the hop keys issued for some path
also for another path is not possible, because at least one on-
path AS will rederive a different hop key based on its own,
different private key (line 13 in Algorithm 2), which results
in an authentication failure. Thus, property F6 is satisfied.

C. Scalability
During the discovery and transmission phase, on-path ASes

only need to store their allocation matrix, the mutually shared
symmetric keys, their secret key, and the promoted hop values
(to check consistency). Even for Internet-scale networks, the
required state is only in the order of megabytes (E2).

Discovery-phase scalability. For this phase, processing
speed is of secondary importance, as only a single discov-
ery packet is sent per connection and it is handled by the
GServ, outside the routers’ fast path. We therefore provide a
complexity analysis and leave the implementation to future
work. During the discovery phase, every AS authenticates
its hop values to every other AS, and conversely checks the
authenticity of the hop values of every other AS. In total, the
discovery phase requires O(`2) flops, O(`2) MAC computa-
tions, O(`) encryptions and decryptions, as well as O(`) other
checks and memory lookups. This complexity is equivalent
to previously proposed data-plane protocols like ICING [21].
The current average path length in the Internet is 4–5 AS-level
hops [22], therefore resulting in low overhead. The discovery
phase only requires one round-trip, after which the source can
start sending GLWP packets using its guaranteed bandwidth.

Table I: Size (in bytes) and number of occurrences (#) of the
data-plane GLWP header fields for λ = `− 1 on-path ASes.

field content # size

Src source AS identifier (=NId1) 1 4
λ number of on-path ASes (λ = `− 1) 1 1

HP hop pointer: number of already traversed ASes 1 1
π path: array of interface pairs (2 B / interface) ` 4
β guaranteed bandwidth 1 4

AID allocation identifier 1 8
tspkt packet timestamp 1 8
tsexp expiration time of the allocation 1 4
HA hop authenticators λ 3

Transmission-phase bandwidth efficiency. GLWP is intended
to complement and coexist with best-effort traffic. Isolation be-
tween GLWP and best-effort traffic is achieved using queuing
disciplines on routers [23]. If the capacity is not fully utilized
by GLWP, free capacity can be automatically reallocated to
best-effort traffic, such that no bandwidth is wasted.

VII. IMPLEMENTATION AND EVALUATION

To show that GLWP satisfies efficiency requirement E1, we
implemented the transmission phase procedures for the data
plane (§V-B) according to the specification in Algorithm 2.

A. Transmission-phase implementation

Implementation. Our implementations of the GServ of the
source AS (transmission phase only) and on-path border
routers are based on Intel DPDK [24]. We use a secure MAC
construction for hop keys and hop authenticators [25], CBC-
MAC, with AES-128 as the underlying block cipher. We use
the widely-available Intel’s AES-NI hardware instructions to
speed up AES computations [26].

GLWP packet structure. GLWP transmission packets are
encapsulated inside the packets of the hosting network. In
our evaluation, GLWP packets contain an Ethernet header, a
GLWP header, and some GLWP payload. Apart from the fields
described in Algorithm 2, the GLWP header also contains the
number of on-path ASes (λ) and a hop pointer (HP), that
allows routers to locate the hop authenticator in the header at
forwarding time. The lengths of the path and hop authenticator
fields are dynamic and grow with the number of ASes on the
path. The GLWP header fields are described in Table I.

Measurement setup. Our evaluation testbed consists of a
Spirent SPT-N4U, which serves as a packet generator and
bandwidth monitor, and a commodity server with an 18-core
Intel Xeon 2.1 GHz processor. The latter runs GLWP as either
the source router or an on-path router. The two machines
are connected with a 40 Gbps Ethernet link. We measure the
throughput (total traffic forwarded) and the goodput (payload-
only fraction of traffic) at the bandwidth monitor, and the
packet-processing time at the server.

Evaluation metrics. We evaluate the influence on perfor-
mance of (i) GLWP payload size (p), (ii) number of CPU cores
dedicated to packet processing, and (iii) number of on-path
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Figure 2: GLWP packet throughput generated on a single core
of the source AS’s GServ, for different GLWP payload sizes.
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Figure 3: Throughput (TP) and goodput (GP) of the GServ
of the source AS as a function of the number of cores, for
different GLWP payload sizes, and for 8 on-path ASes.

ASes (λ). Because the length of the GLWP header depends
on λ, the maximal GLWP payload that fits into a standard
Ethernet packet also depends on λ. To allow for measurements
with a constant but comprehensive payload range, independent
of λ, we enable Ethernet jumbo frames (frames with more than
1500 B payload) on both machines.

B. Results

Source AS’s GServ. Figure 2 shows the throughput achieved
by one CPU core of the source’s GServ. Because the over-
head caused by the computation of the hop authenticators
increases with the number of on-path ASes, the throughput
decreases with the path length. Further measurements showed
that packet-processing time does not depend on the payload
size. Using more cores, the link can be saturated even for
packets with minimal payloads (Fig. 3).

On-path border routers. The forwarding performance of a
border router of an on-path AS is depicted in Fig. 4. The
results show that eight cores are sufficient to saturate the link
for all (non-zero) payload sizes. Further evaluation showed
that the packet-processing time is around 280 ns, irrespective
of the payload size and of the number of on-path ASes. We
were able to forward 45 million packets (without payload) per
second using only 14 cores. The calculation and expansion of
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Figure 4: Throughput (TP) and goodput (GP) of an on-path
border router as a function of the GLWP payload for 2, 4, and
8 cores, and for a path consisting of 8 on-path ASes.

the hop key (Fig. 5) causes the largest overhead. The traffic
monitor and the duplicate-suppression system are also causes
of overhead for on-path ASes. However, as we argue in §V-D,
these additional systems do not pose a threat to scalability.
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Figure 5: On-path border router packet-processing times
for different sub-tasks. The category ‘Others’ aggregates all
further operations, for example checking that the packet times-
tamp is current, verifying that the packet was received through
the correct interface, or increasing the hop pointer. ‘Calculate
hop key’ also includes the AES key expansion overhead.

VIII. RELATED WORK

Resource allocation and QoS. Bandwidth guarantees were a
central concept of virtual-circuit architectures like ATM [27].
In today’s IP-based Internet, the Integrated Services (IntServ)
architecture allows to setup bandwidth reservations [28], which
can be negotiated through the Resource Reservation Protocol
(RSVP) [29]. Due to its high reliance on in-network state,
IntServ has never seen widespread adoption.

A wide range of traffic-engineering systems can provide
QoS guarantees in intra-domain contexts, such as MPLS [12]
with OSPF-TE [30] or SDN-based solutions [31]. However, in
contrast to GLWP, which supports autonomous nodes, all these
systems require a central controller. Differentiated Services
(DiffServ) [32] uses the prioritization of certain types of traffic
to achieve QoS objectives. However, DiffServ does not provide
any bandwidth guarantees or authentication and is thus also
limited to intra-domain contexts.



Capability-based protocols. Following Anderson et al. [33],
several mechanisms use cryptographic tokens to express ca-
pabilities and counter (D)DoS attacks, including SIFF [34],
NetFence [35], and CoDef [36]. However, these systems only
convey information about which flows are desired by the
destination, and do not perform network resource allocation. In
contrast, GLWP provides a ready-to use allocation algorithm.

Based on future Internet architectures, the bandwidth-
reservation architectures STRIDE [37] and SIBRA [38] have
been proposed recently. While increasing scalability compared
to previous systems like IntServ, they fundamentally rely on
concepts of future architectures and require a substantially
more complicated reservation setup compared to GLWP.

IX. DISCUSSION AND CONCLUSION

With the emergence of safety-critical applications, Internet
communication has become systemically important to deliver
a high level of availability. We leverage the GMA algo-
rithm [2] to propose the GMA-based light-weight communi-
cation protocol (GLWP), a concrete approach for achieving
high-availability low-rate communication in the Internet. GMA
allows each node to define its own neighbor-based policies,
which give rise to implicit and sustainable global allocations.

Inspired by previous capability-based protocols, GLWP en-
ables scalable bandwidth guarantees even in an adversarial
environment without requiring per-path or per-connection
state at the ASes. It can thus scale to Internet-size networks,
while its efficient forwarding process makes it suitable for
multi-Gbps network links. In addition to achieving high per-
formance, GLWP can also withstand malicious actions against
both the reservation setup and the forwarding process. As
GLWP is a distributed protocol, its bandwidth allocations are
particularly relevant for inter-domain routing, where central
control is inherently impossible and dedicated network in-
frastructure is prohibitively expensive. Thanks to the unique
blend of these three characteristics—scalability, security, and
decentralization—GLWP is perfectly positioned to provide
QoS protection to critical-yet-frugal traffic.
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