
Colibri: A Cooperative Lightweight Inter-domain
Bandwidth-Reservation Infrastructure

Giacomo Giuliari

ETH Zürich

Dominik Roos

Anapaya Systems

Marc Wyss

ETH Zürich

Juan Angel García-Pardo

ETH Zürich

Markus Legner

ETH Zürich

Adrian Perrig

ETH Zürich, Anapaya Systems

Abstract
Guarantees for traffic traversing the public Internet are hard to come

by, as service-level agreements are typically only available for traffic

within a single autonomous system or towards direct neighbors.

This deficiency leads to unpredictable performance already under

normal conditions and can cause outages in the face of network-

level distributed-denial-of-service (DDoS) attacks. In this paper, we

present an architecture achieving guaranteed bandwidth properties

for global inter-domain network traffic. The control plane of our

architecture is based on a distributed server infrastructure, while the

data plane enables efficient packet forwarding on per-flow stateless

routers. Our implementation demonstrates the technical feasibility

and scalability of the design.

CCS Concepts
• Security and privacy → Denial-of-service attacks; • Com-
puter systems organization→ Availability; • Networks→ Net-
work protocols.

Keywords
Bandwidth Reservations, DDoS Attacks, SLOs

ACM Reference Format:
Giacomo Giuliari, Dominik Roos, Marc Wyss, Juan Angel García-Pardo,

Markus Legner, and Adrian Perrig. 2021. Colibri: A Cooperative Lightweight

Inter-domain Bandwidth-Reservation Infrastructure. In The 17th Interna-
tional Conference on emerging Networking EXperiments and Technologies
(CoNEXT ’21), December 7–10, 2021, Virtual Event, Germany. ACM, New

York, NY, USA, 15 pages. https://doi.org/10.1145/3485983.3494871

1 Introduction
With the consolidation of computation in data centers, the ten-

sion created by co-location of multiple tenants sharing resources

has resulted in numerous separation mechanisms to provide re-

source guarantees. Consequently, service-level objectives (SLOs)

have been established at various levels: the CPU provides isolation

to prevent information leakage [52, 63]; hypervisors can be con-

figured to guarantee minimal amounts of resources to individual

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9098-9/21/12. . . $15.00

https://doi.org/10.1145/3485983.3494871

virtual machines [60]; and the local network optimizes communica-

tions within the data center [42]. The final frontier is the Internet,

raising a fundamental research question: can we provide SLOs in

an open Internet—even under the threat of denial-of-service (DoS)

attacks—in a scalable manner? While centralized control facilitates

SLOs (e.g., inside a data center), there are numerous interacting

entities on the heterogeneous Internet.

We consider three important areas that require scalability, given

an increase in network size, number of flows under an SLO, and

traffic volume: (1) control-plane scalability studies the growth of

communication, processing, and storage overhead for admission

control and resource allocation; (2) data-plane scalability considers

the processing and storage overhead for packet forwarding, includ-

ing authentication, monitoring, and policing to detect or prevent

adversarial actions; and (3) management scalability captures the hu-

man effort to configure and administer an autonomous system (AS).

Past efforts cannot handle adversarial settings, where some of

the actors behave maliciously, or fall short to achieve scalability in

one or multiple of these three areas. Of the many systems proposed

to achieve guarantees for global communication, the two arche-

typal and most widely deployed architectures are Integrated Services
(IntServ) and Differentiated Services (DiffServ). They constitute the

two extreme points in the trade-off spectrum between scalability

and strength of offered guarantees, and we will therefore use them

as representatives of other systems that employ the same ideas and

suffer from the same shortcomings (see §8 for a survey).

IntServ provides very strict guarantees on the communication

parameters through end-to-end reservations, but is known to scale

poorly in all three areas because of the complex decisions that must

be made for processing the Resource Reservation Protocol (RSVP)

requests and the amount of per-flow state that on-path routers

have to keep. DiffServ, on the other hand, provides hosts with a

way to divide their traffic into a number of classes according to

the application’s requirements, indicated in the IP packet’s type of

service (ToS) header field [8]. Packet scheduling and prioritization

to enforce the desired service level is then delegated to the on-path

routers. DiffServ scales well with respect to the three scalability

areas, as the only information needed for the traffic differentiation

is carried in the IP packet header. Unfortunately, the guarantees

provided by DiffServ are weak, as they lack signaling between

the entities on the path, which translates to per-hop forwarding

strategies that are blind to the state of the downstream networks.

These two examples reveal the apparent trade-off that all existing

resource-reservation architectures are forced to make: strong guar-

antees overload the network precluding Internet-wide scalability,

while in light-weight systems such guarantees are sacrificed. Fur-

ther, neither DiffServ nor IntServ protect against adversarial action:

https://doi.org/10.1145/3485983.3494871
https://doi.org/10.1145/3485983.3494871

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Giuliari et al.

an adversary can spoof protocol messages, over-use its reservations,

or interfere with communications between other entities.

In this work, we present Colibri, a concrete design and imple-

mentation of a collaborative lightweight inter-domain bandwidth-
reservation infrastructure for the global Internet that overcomes

the scalability–quality trade-off and can provide SLOs in the form

of worst-case minimum bandwidth guarantees. Colibri is made

possible through the confluence of several recently developed tech-

nologies: path-aware networking providing path choice and stabil-

ity [39]; a fair and scalable resource-allocation system [62]; a global

symmetric-key distribution system enabling efficient per-packet

authentication [43]; an efficient replay-suppression system [32];

and an overuse-flow-detection system [44, 64]. These systems and

their role are summarized in Table 1, and described in detail in §2.

Scalability of the system is achieved through hierarchical decom-

position at several levels:

• Topological: reservations are split between the Internet core

and local AS hierarchies, reducing the global coordination effort.

• Temporal: intermediate-term AS-to-AS reservations carry most

of the computational overhead, which is thus amortized over

time. Based on these, short-term reservations are inexpensively

set up for host-to-host communications.

• Monitoring: stateful reservation monitoring is performed at

the edge. At transit and core ASes—where the number of flows is

too high to be processed statefully—neighbor-based probabilistic

monitoring is used.

• Policing: each AS is responsible for preventing its hosts from

overusing a reservation; this in turn is enforced by other ASes:

per-packet authentication and duplicate suppression allow un-

ambiguously attributing misbehavior to the offending AS and

thus punishing it—e.g., by cancelling existing reservations and

declining future ones.

The core property we seek in Colibri is to provide minimum band-

width guarantees between any pair of ASes on a given path, irre-

spective of distributed-denial-of-service (DDoS) attacks or other

allocations. In the common (non-attack) case, allocations will be

much higher, but worst-case guarantees enable Internet-scale SLOs.

This work is thus the first to present a concrete, scalable system

design to solve the open problem of Internet-scale SLOs, bridging

the gap between the data center and the end user, and completing

the final step towards end-to-end-protected services. Our imple-

mentation of Colibri shows that it achieves the three notions of
scalability—control plane, data plane, and management—and can

operate securely in a federated Internet in the presence of adver-

saries: the control-plane services can process 2000 reservations per

second on a single core, while our software router can authenticate

and forward 34 million packets per second (312Gbps for 1 KB pack-

ets) without specialized equipment. Our implementation of Colibri

is now part of SCIONLab [29].
1

2 Background and Enabling Technologies
Traditionally, inter-domain bandwidth reservation systems were

fundamentally limited by the following challenges, each of which

needs to be resolved to achieve a viable system: (1) per-flow state

in the data plane, (2) lack of path stability, (3) lack of path diversity,

1
https://github.com/netsec-ethz/scion/pull/101

Table 1: Challenges faced by resource-reservation systems,
and the technical solutions used in Colibri.

Challenge Enabling technology

Per-flow state in the fast path PCFS §2.1

Re-convergence changes reservation path

Path-hijack invalidates reservation
★ Path stability §2.1

No reservation space available on path

On-path adversary
★ Path choice §2.1

Large number of reservations ISDs and segment types §2.2

Framing attack with spoofed packets
★

Per-packet source auth. §2.3

Authentication overhead of signatures Symmetric-key auth. §2.3

Framing or DoS through packet replay
★

Duplicate suppression §2.3

Over-use of legitimate reservation
★

Prob. monitoring §2.3

Difficult admission decisions Reservation hierarchy §3.1

★
Adversarial action.

(4) flows overusing their reservation, (5) framing attacks by on-path

routers through packet replay or alteration, (6) framing attacks by

off-path entities using source-address spoofing, and (7) DoS attack

on routers’ packet-authentication system. In the remainder of this

section, we describe the developments in networking that are at

the basis of Colibri and allow to overcome both performance and

security challenges. Table 1 presents a summary of these points.

Adversary Model. Regarding attacks, we consider two types of

adversaries:

• An on-path adversary is a malicious entity residing in or control-

ling one of the ASes on the forwarding path of the packet. It is

able to drop, alter, or replay the packets that traverse the AS, or

inject forged packets.

• An off-path adversary is not directly located on the forward-

ing path, but can still attempt to influence the communication

by hijacking traffic (therefore becoming an on-path adversary),

source-spoofing, creating congestion on the forwarding paths,

or by flooding the control plane with bogus announcements,

preventing convergence.

We provide an analysis of attacks and how they are prevented in §5.

2.1 Path-Aware Networking
Path-aware networking is embraced by several proposed future In-

ternet architectures such as Platypus [40, 41], PoMo [12], NIRA [68],

Pathlets [21], SCION [39, 73], and NEBULA [2]. Their defining trait

is that path information such as traversed ASes and measurements

are disclosed to end hosts, which obtain some control over the

forwarding path of their packets. This is often implemented using

packet-carried forwarding state (PCFS), where forwarding informa-

tion is included in the packet header. Path-aware networks provide

two essential properties for a resource-reservation architecture:

path stability and path choice.

Path Stability. Since routing decisions are decoupled from the

dissemination of path information, these networks do not suffer

from the long convergence times that affect path-vector protocols

such as the Border Gateway Protocol (BGP). Reservation guarantees

are hard to achieve and maintain if communication has to wait

for re-convergence after every routing event. Moreover, the PCFS

protects forwarding from routing attacks attempted by off-path

adversaries, preventing the denial of reservations by means of BGP

https://github.com/netsec-ethz/scion/pull/101

Colibri: A Cooperative Lightweight Inter-domain Bandwidth-Reservation Infrastructure CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

hijacking or similar attacks. Together, these properties ensure that

AS-level paths, and any reservations on them, are stable in time

and cannot be affected by off-path entities.

Path Choice. In the current Internet, the routing protocol selects

a single forwarding path; if the path is congested there is no reliable

way to reroute around the congestion. In path-aware architectures,

hosts can choose to use one (or several) of the paths discovered

by the routing protocol. This feature not only allows for much

more fine-grained routing optimization—as shown by Sobrinho

et al. [51]—but enables multiple options for reservation architec-

tures: in case the reservation request cannot be met on the first

path, Colibri can attempt to make a reservation on the alternative

paths, which increases the probability of a successful reservation.

Multiple reservations across multiple paths can also be used, e.g.,

by a multipath transport protocol.

2.2 Isolation Domains and Path Segments
Colibri builds on SCION as its underlying network architecture.

Besides its mature development stage [29], its open-source imple-

mentation [45], and its real-world deployment [1, 28, 54], we chose

SCION particularly for its hierarchical decomposition of ASes to

improve the scalability of the system.

SCION groups ASes into isolation domains (ISDs) [39] and dis-

tinguishes between core ASes and non-core ASes. Core ASes are typ-
ically larger entities that manage the ISD’s trust roots, and provide

connectivity to other ISDs. The routing process is then split into

(i) an intra-ISD process discovering up-segments (from non-core

ASes to core ASes) and down-segments (from core ASes to non-

core ASes), and (ii) an inter-ISD process discovering core-segments

between any pair of core ASes. At most one up-, one core-, and one

down-segment are then combined by source hosts to construct full

end-to-end paths. Thus, SCION tames the (worst-case exponential)

complexity of global path discovery by decomposing it into three

separate routing sub-problems, which are further simplified by ex-

isting customer-provider relationships between ASes. To avoid the

inefficiency of hierarchical routing, packets can be routed through

shortcuts between up- and down-segments. Finally, to uniquely

identify an inter-domain connection, SCION uses interfaces, which
need to be unique within an AS and can be defined by each AS inde-

pendently. Paths are represented by ingress–egress interface-pairs

for each on-path AS.

We also leverage SCION’s keying infrastructure to achieve per-

packet authentication, as described next.

2.3 Reservation Protection
In order to assign, enforce, and bill reservations correctly without

per-flow state on routers, a data packet must carry cryptographi-

cally protected information that allows an on-path AS to (i) verify

that the packet is sent over a valid reservation, and (ii) attribute

the packet to the source. As every packet must be checked indi-

vidually, efficient cryptographic mechanisms are vital. In addition,

control-plane messages must also be efficiently authenticated to

avoid additional attack vectors (e.g., signature flooding), and pre-

vent denial-of-capability (DoC) attacks [7]. Recent advances, which

we present in the following, enable these properties statelessly and

at line rate in path-aware networks.

DRKey. The dynamically-recreatable-key (DRKey) infrastruc-

ture allows Colibri to achieve line-rate per-packet authentication

of control-plane packets. At a high level, DRKey provides a mecha-

nism for ASes to derive symmetric keys shared with any other AS

on the fly, based on pseudo-random functions [43]. In the following,

we provide a summary of DRKey’s most important components.

An AS A has a secret value 𝐾𝐴 , that is used as a key for a pseudo-

random function (PRF) to derive an AS-level key used in the com-

munication with another AS B:
𝐾𝐴→𝐵 = PRF𝐾𝐴

(𝐵) . (1)

While these are symmetric keys, there is an asymmetry between

the two ASes, which is indicated by the arrow: the first AS A is

able to derive the key on the fly by evaluating the PRF—which

is faster than a memory lookup—while the second AS B needs to

fetch 𝐾𝐴→𝐵 with an explicit request to A’s key server, protected

by public-key cryptography. As the validity period of these keys

is on the order of a day, they can be fetched ahead of time and

only need to be infrequently renewed. Thus, DRKey provides a way

to perform source authentication: the source computes message-

authentication codes (MACs) for all on-path ASes, which can then

be checked by on-path ASes without per-source state and using only

highly efficient symmetric cryptography.
2
Statelessness is essential

to the availability of secure source authentication, as adversaries

cannot leverage state exhaustion or state inconsistencies to DDoS

the authentication endpoints.

Monitoring and Policing. Even if packets are source-authen-

ticated, the reservation architecture is still susceptible to replay

attacks: an on-path adversary can capture an authenticated packet

and send it repeatedly at a higher rate than what the reservation al-

lows, thus at the same time causing congestion and framing the hon-

est source. Because of this, an efficient duplicate-packet-suppression
system with minimal state requirements is needed [32]. Further, to

prevent overuse of reservations, additional monitoring and policing
systems need to be used, i.e., systems the ASes use in order to make

sure that flows originating from, traversing, or ending inside their

networks do not use more bandwidth than allocated. We integrate

such systems into Colibri in §4.8.

Finally, time synchronization between ASes is important to sched-

ule start- and end-times of reservations, and to perform duplicate

detection and traffic monitoring. Several different systems can be

used to achieve this goal [6, 24, 35], and even in adversarial set-

tings [4, 5]. In this paper, we assume that all ASes are synchronized

within ±0.1 seconds.

3 Colibri Overview
In this section, we provide a high-level description of the Colibri

system. The core ideas are summarized in Fig. 1.

3.1 General Concepts and Intuition
With Colibri, hosts can make short-term bandwidth reservations,

similarly to IntServ, to protect traffic end-to-end. However, as cen-

tral parts of the Internet—the “core”—could potentially serve an

enormous number of such end-to-end reservations (EERs), the de-

cision whether or not to allocate resources must be very efficient.

2
In practice, protocol- and host-specific keys are derived from the key 𝐾𝐴→𝐵 ; we

disregard these details in this paper in the interest of readability.

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Giuliari et al.

To simplify and speed up this process, Colibri bases the alloca-

tion of EERs on a second type of bandwidth reservations called

segment reservations (SegRs). SegRs have longer validity periods

than EERs and are fewer in number, as they are established between

ASes instead of end hosts. To increase efficiency, we offload the bur-

den of computationally expensive operations to SegR allocations;

hosts can then use the pre-computed SegRs to quickly set up EERs.

Figuratively, SegRs can be thought of as “tubes”, which are later

filled by EERs. We further restrict the number of SegRs by lever-

aging the decomposition of paths into segments of the underlying

path-aware network architecture (§3.3). Forwarding is not impacted

by reservation operations, as they take place in dedicated Colibri

services, outside the routers’ fast path. End hosts can then request

SegRs from their AS (§3.2) and assemble them to cover the complete

path to the destination’s AS. The resulting SegRs can be used to

request EERs (§3.3). This additional level of reservations allows an

AS on the path of an EER request to immediately grant or refuse the

request based on the available bandwidth in the respective SegR.

To avoid per-flow state in the fast path and to verify the legit-

imacy of a packet in the data plane, Colibri protects the packet-

carried forwarding state (PCFS) through cryptographic tags. The

keys to compute these tags, called hop authenticators (HopAuths),

are generated with pseudo-random functions by on-path ASes and

sent—in encrypted form—to the initiator during the reservation pro-

cess. At forwarding time, each on-path AS dynamically re-creates

the authentication key and verifies the tag, efficiently authenticat-

ing the packet and the reservation. Thus, Colibri overcomes another

major issue of previously-proposed bandwidth-reservation systems:

the need to maintain per-flow state on routers.

3.2 Infrastructure
An AS deploying Colibri needs to perform three main tasks: (i) con-

trol the admission procedure, (ii) manage SegRs, and (iii) rate-limit

EERs of their end hosts. Tasks (i–ii) are handled by the Colibri

service, task (iii) by the Colibri gateway.

Colibri Service. Every AS runs a Colibri service (CServ), which
handles all control-plane-related tasks within an AS:

• The CServ requests and renews SegRs according to expected

traffic requirements. Since link utilization often exhibits repeat-

ing patterns over time, an AS can forecast future requirements

and reserve appropriate bandwidth for segments in advance.

• It provides previously established and registered SegRs to end

hosts and remote CServs.

• It handles all reservation setup and renewal requests and per-

forms the necessary admission calculations.

To improve scalability, the CServ can be distributed: a central ser-

vice is used to keep track of SegRs, while the handling of EERs is

delegated to sub-services close to or at the border routers. This is

described in further detail in Appendix D.

Colibri Gateway. An AS is held accountable by other ASes for

misbehavior of its end-host customers. Therefore, it is crucial that

all Colibri traffic originating from end hosts within an AS pass

through a Colibri gateway, which

• performs stateful monitoring and rate limiting for all EERs;

• embeds cryptographic tags into packet headers, allowing border

routers to authenticate the source and data in packet headers.

CC C C
❷

❸
SegR Y-Z

❶ ❷
AS S AS X AS Y AS Z

❹ ❸

(a) Segment reservation setup.


CC C C


❶

❷ ❸❹
SegR Y-ZSegR S-Y

❸ ❸ ❸
❹G❺ ❹HS HD

(b) End-to-end reservation setup.

 B B B❶ M M M
❹ ❹ ❹

GHS HD❷ ❸ ❸ ❸

(c) Use of the end-to-end reservation.

Figure 1: Overview of the Colibri system. C are CServs, G
is the Colibri gateway, B are border routers, M are traffic
monitors. The description is provided in §3.3 and §3.4.

To ensure consistent processing and prevent attacks by end hosts,

every EER needs to be tied to one specific gateway.

End-Host Networking Stack. The path choice (§2.1) enabled

by path-aware network architectures requires a more sophisticated

end-host networking stack. Colibri modifies the SCIONDaemon [45]
to enable an application to explicitly request and renew EERs.

In principle, any transport protocol can be used with Colibri, as

the gateway drops packets if the guaranteed bandwidth is exceeded

and thus provides feedback to the congestion-control algorithm.

Still, a tighter integration with the transport protocol is necessary to

reap the full benefits of Colibri. For example, in QUIC, it is straight-

forward to disable congestion control and set the sending rate to

the reserved bandwidth.

3.3 Control Plane
Colibri’s control plane manages the selection, creation, and renewal

of (i) SegRs and (ii) EERs, which we discuss individually. Both SegRs

and EERs are unidirectional, which reflects traffic demand in the

Internet: while some ASes mainly send traffic (e.g., CDNs), oth-

ers predominantly receive data (e.g., eyeball ASes). Renewals are

discussed in detail in §4.2.

Segment Reservations. SegRs are intermediate-term reserva-

tions made between two ASes and are valid for approximately five

minutes. This duration has been chosen as a compromise between

excessive overhead for short intervals and insufficient flexibility

for long intervals. To improve the scalability of the SegRs and

avoid setting up SegRs between any pair of the currently over

70 000 ASes [10], we leverage the concept of ISDs described in §2.2.

Following this structure among ASes, Colibri distinguishes three

types of SegRs: up-SegRs (from non-core ASes towards core ASes

inside one ISD); down-SegRs (from core ASes towards non-core

ASes inside one ISD); and core-SegRs (among core ASes, potentially

in different ISDs). SegRs are always initiated by the first AS on the

segment. For down-SegRs, the first AS only sets up a SegR upon an

explicit request by the last AS.

Colibri: A Cooperative Lightweight Inter-domain Bandwidth-Reservation Infrastructure CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

An AS can decide which SegRs to request based on historical

data or traffic predictions. It selects segments generated by the

underlying path-aware routing architecture and sends a segment-
reservation setup request (SegReq) (➊ Fig. 1a) specifying require-

ments for the reservation such as requested minimum bandwidth.

Each AS on the segment can calculate how much bandwidth can

be granted; if this is higher than the requested minimum, it records

this reservation locally. It then updates the request with the granted

amount of bandwidth and forwards it to the next AS on the segment

(➋ Fig. 1a). The last AS sends a reply via the same segment to the

SegReq initiator (➌ Fig. 1a). If the request was successful (each AS

granted more than the minimum amount of bandwidth), each AS

locally stores the final amount of bandwidth granted and includes

a cryptographic token in the response that allows the request ini-

tiator to use the segment for Colibri traffic (➍ Fig. 1a; see §4.5 for

details). In case of an unsuccessful request, the ASes clean up their

temporary reservations and the initiator can determine the location

of potential bottlenecks on the segment. All important information

is authenticated using DRKey as discussed in §4.5.

A central mechanism in this procedure is the admission algo-

rithm that determines how much bandwidth can be granted; this

will be discussed in §4.7.

End-to-EndReservations. EERs are short-term reservations be-

tween two end hosts, with a fixed validity period (16 seconds in our

implementation). This interval is chosen by considering the trade-

off between the needs to (i) amortize the EER initialization overhead,

(ii) minimize the number of idle reservations, and (iii) maximize

the flexibility to adapt to changing traffic patterns.

An end host 𝐻S intending to communicate with another host

𝐻D must first obtain one or several SegRs that can be combined to

form a connected path between the ASes of 𝐻S and 𝐻D. 𝐻S obtains

these reservations from the CServ (➊ Fig. 1b), in a similar way as

it would otherwise obtain a path to 𝐻D in the underlying path-

aware network architecture (this is described in further detail in

Appendix C). It can combine SegRs to obtain a complete path and

send an end-to-end–reservation setup request (EEReq) (➋ Fig. 1b),

which has a similar format as the SegReq described above. Again,

each AS on the path decides how much bandwidth can be granted

and forwards the request packet (➌ Fig. 1b). In contrast to the

SegReq, this decision is simple: the intended bandwidth is granted

if there is sufficient available bandwidth in the underlying SegR (see

§4.7 for further details). It falls to the AS in which 𝐻S is situated

to set limits on the maximum bandwidth that 𝐻S can request. This

intra-AS admission policy can be defined by each AS independently.

In addition to all ASes on the path, the destination𝐻D also needs

to grant the request. A response is generated in a similar way as

for the SegReq: each AS on the path updates the reservation infor-

mation and (if the request was successful) includes the necessary

HopAuths, in the response (➍ Fig. 1b). The HopAuths are stored

at the source AS’s Colibri gateway (➎ Fig. 1b), and the rest of the

response is forwarded to 𝐻S, who can then start using the EER to

send traffic on that path.

The host can base the amount of requested bandwidth on the

expected traffic, e.g., the known bitrate of a video stream. In cases

of less regular traffic, the host may need to employ heuristics to

determine how much bandwidth to request. Both control and data

traffic are handled by the end-host networking stack.

3.4 Data Plane
Packet Creation and Forwarding. After setting up an EER, an

end host can use the reservation to send traffic to the specified

destination. The end host includes the Colibri routing information

in the packet header and sends it to the Colibri gateway of its

AS (➊ Fig. 1c). There, the AS performs stateful traffic monitoring

and uses the HopAuths that were set up during the request pro-

cess to calculate per-packet message-authentication codes (MACs)

for each AS on the path that at the same time (i) provide source

authentication, and (ii) prove that the Colibri path was previously

authorized by that AS (➋ Fig. 1c). The details are described in §4.5.

On-path routers check the corresponding MAC by recalculating

it locally (➌ Fig. 1c). It is crucial to note that they do not require per-
flow state for this: all necessary keys can be derived on the fly from

a single AS-specific secret value. Furthermore, no inter-domain

routing-table lookup is necessary as the routing information is

already included in the packet header. Thus, after authenticating

the packet, the router simply forwards the packet to the destination

host or next border router.

Traffic Split. Not all traffic can directly benefit fromColibri EERs:

First, reservations are only useful for flows of some minimum size.

Second, in some cases the communication requires replies that

are however not large enough to need their own reservation—e.g.,

the acknowledgments for a video stream. Since reservations are

unidirectional, these must be sent as best-effort traffic.

Therefore, Colibri reserves a fixed minimum bandwidth (e.g.,

20 % of the full link capacity) for best-effort traffic. The remain-

ing bandwidth is split further between Colibri control traffic on

SegRs (5 %)—which is used for protected SegRs renewal and EERs

establishment, as detailed in §4.4—and traffic over EERs (75 %). Note

that no bandwidth is wasted: in case SegRs or EERs are underuti-

lized, the remaining bandwidth can be used for best-effort traffic. In

practice, queuing techniques such as priority queuing or class-based
weighted fair queuing [46] can provide this separation on a shared

physical infrastructure, see Appendix B for details.

Monitoring andPolicing. Using cryptographicMACs in packet

headers guarantees that an end host can send traffic only over an

authorized reservation. However, a host can over-use a legitimate

reservation and exceed the allocated bandwidth. To avoid misuse

of reservations, an AS running Colibri performs two tasks: (i) it

ensures that its own customers respect the bandwidth of their

EERs (➋ Fig. 1c), and (ii) it monitors traffic from other ASes to detect

overuse of EERs or SegRs (➍ Fig. 1c). This second task provides

an incentive for ASes to comply and perform monitoring properly,

as they are held accountable for the behavior of their customers.

Further details are provided in §4.8.

4 Architecture Details

4.1 AS Types
For EERs, we distinguish between four types of ASes depending on

their position (they correspond to the ASes in Fig. 1): The source AS
is where 𝐻S is located (AS S); a transit AS is an on-path AS in the

middle of a SegR (AS X); a transfer AS is at the joint of two SegRs

and, according to the structure of segments (§2.2), necessarily a

core AS (AS Y); the destination AS is where 𝐻D is located (AS Z).

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Giuliari et al.

4.2 Reservation Versions and Renewal
Reservations are created with short lifetimes to ensure that they do

not occupy bandwidth for longer than necessary. If the initiator of

a reservation intends to keep using it beyond its expiration time, it

can issue a renewal request to extend the reservation, and possibly

adjust the bandwidth to shifting traffic demands. Expiration and

renewal work slightly differently for EERs and SegRs.

EERs. Since EERs are frequently renewed, it is crucial that they

can be renewed without service interruptions. For this purpose, the

design allows multiple versions of the same EER to exist simulta-

neously. The initiator can renew the reservation ahead of time to

obtain a new version with a later expiration time, which allows for

a seamless transition between two versions of an EER. To enhance

scalability, CServs can rate-limit the amount of renewal requests

for an EER (e.g., to one per second). EERs automatically expire,

and there is no mechanism to remove them earlier. The gateway

generally uses a single version (the latest one) to send traffic. How-

ever, even using multiple versions simultaneously does not increase

bandwidth use, as all versions are mapped to the same reservation

ID in the traffic monitor (see §4.8).

The initiator of an EER is not the only entity that could be in-

terested in adjusting the reserved bandwidth. An AS on the path

may also wish to reduce an EER’s bandwidth, e.g., if it receives an

increasing number of contending requests. As in the setup proce-

dure, during a renewal request all on-path ASes can specify the

amount of bandwidth they are willing to grant, enabling ASes to

quickly adapt to changes in demand without interrupting service

over existing reservations.

SegRs. Colibri’s design ensures that EERs are not affected by a

version change of their underlying SegR. In contrast to EERs, only a

single version of a SegR can exist at any time and a pending version

obtained through a renewal request must be activated explicitly

using a separate request. Making this switch explicit allows ASes

to precisely control the time to change to a new version and ensure

that no over-allocation with EERs can occur.

4.3 Colibri Packets
Packet Format andHeader Fields. A Colibri packet traversing

AS0–ASℓ has the format

Packet = (Path || ResInfo || EERInfo || Ts ||
𝑉0 || . . . ||𝑉ℓ || Payload),

(2a)

Path = ((In0, Eg0) || . . . || (Inℓ , Egℓ)) , (2b)

ResInfo = (SrcAS || ResId || Bw || ExpT || Ver) , (2c)

EERInfo = (SrcHost || DstHost) , (2d)

where 𝑉𝑖 is the hop validation field (HVF) of AS𝑖 , which authenti-

cates parts of the packet header; Path is a list of ingress–egress

interface-pairs; SrcAS is the source AS; SrcHost and DstHost are
end-host addresses, which are unique inside their AS; Bw, ExpT ,
and Ver denote the reservation bandwidth, expiration time, and

version, respectively; and Ts is a high-precision timestamp relative

to ExpT and uniquely identifies the packet for the particular source.

The EERInfo field is only used for EERs data-plane packets.

This packet format is used for all Colibri control- and data-plane

traffic. In the case of SegRs,AS0-ASℓ denote the ASes that constitute

the particular segment, for EERs they correspond to the ASes on

the end-to-end path.

Reservation IDs. The reservation ID (ResId) needs to be unique

per source AS. Therefore, the CServ increases the ResId for every

new SegR or EER. Thus, the pair (SrcAS, ResId) uniquely identifies

every SegR and EER globally.

4.4 Control-Plane Messages
The control plane comprises setup and renewal requests for SegRs

and EERs. The initiator AS relies on path segments of the underlying

path aware Internet architecture for the Path and AS IDs.

SegR Setup and Renewal Procedure. A SegR setup is initiated

by the source AS using best-effort traffic, where the packet’s pay-

load consists of the Path, the ResInfo, and the minimum acceptable

bandwidth. All on-path ASes add further data to the payload, which

is used on the backwards path to calculate and agree on the allo-

cation size. A SegR renewal can be made over the existing SegR.

Because SegR renewal packets already contain the Path, SrcAS,
and ResId, the source AS only needs to specify the new Bw (and

new minimum bandwidth), ExpT , and Ver in the payload. Further,

during SegR renewal, on-path ASes can also re-negotiate the band-

width granted to the SrcAS. Thus, they can quickly adapt to shifting

traffic demands and policy changes.

EER Setup and Renewal Procedure. Every EER is established

over one, two, or three SegRs. For an EER setup, the source AS

creates a Colibri packet for the first SegR, and adds the EER Path,

the EER ResInfo, the EERInfo, plus the ResIds of all segments to

the payload. If the EER is intended to be created over more than one

SegR, each transfer AS copies the payload of the previous SegR’s

Colibri packet to a new Colibri packet for the following SegR. This

is possible because the transfer AS can look up all the necessary

information for the following SegR based on the corresponding

ResId. This way each AS on the end-to-end path obtains the EER

setup information in the payload, based on which they either grant

or deny the requested allocation. Additionally, the request is also

forwarded using intra-AS communication from the CServ to the

destination end host specified in the DstHost field, who also has to

explicitly accept the EER request.

Similar to SegR renewals, an EER renewal can be made over the

existing EER, where the source AS only needs to specify the new

EER Bw, ExpT , and Ver in the payload.

4.5 Packet Authentication
Authentication of Control-Plane Messages. To authenticate

the payload of control-plane packets, Colibri leverages the DRKey

mechanism (§2.3). Thereby, the source AS calculates a MAC over

the payload for each on-path AS, using the key 𝐾AS𝑖→SrcAS . AS𝑖
can then efficiently recompute this key on the fly and verify the

authenticity of the payload. The same key is used to authenticate

the information that AS𝑖 itself adds to the payload.

Segment Reservations. The only packets that are sent over

SegRs are control-plane packets (SegR renewal and EER setup re-

quests), the payload of which is authenticated using DRKey as

discussed above. Nevertheless, it is important that routers can state-

lessly verify the validity of a SegR, and authenticate forwarding

information in the header. Therefore, during every SegR setup and

Colibri: A Cooperative Lightweight Inter-domain Bandwidth-Reservation Infrastructure CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

MAC (Eq. (4))

reservation metadata,

forwarding information

𝐾𝑖

unique packet identifier,

packet size

MAC (Eq. (6))

HVF𝑉𝑖HopAuth 𝜎𝑖

Figure 2: Two-stepMAC calculation for the ithHVF of a data
packet sent on an EER.

renewal, each on-path AS calculates a token in the form of a MAC

over reservation metadata and forwarding information, using the

AS’s secret key 𝐾𝑖 , truncated to the first ℓ
hvf

bytes:

𝑉
(S)
𝑖

= MAC𝐾𝑖
(ResInfo || (Ini, Egi)) J0:ℓ

hvf
K. (3)

These tokens are returned to the SegReq initiator and stored in its

local database. All the information included in this calculation is

explicitly contained in the header of packets sent over this reserva-

tion (see Eq. (2)), enabling the router to validate the token on the fly

during packet processing without requiring per-reservation state.

While this use of relatively short static MACs (we use ℓ
hvf

= 4)

in principle enables the reuse of once-observed or brute-forced

tokens [33], this is not problematic in practice due to the short

lifetime of reservations. Also, it is not necessary to “chain” the for-

warding information of different ASes, which is done in SCION [39]

and EPIC [33], to prevent path splicing, as Colibri tokens explicitly

include the globally unique combination of SrcAS and ResId (§4.3).

End-to-End Reservations. The authentication system for data

packets on EERs must, simultaneously,

• be highly efficient, to support rates of hundreds of Gbps;

• avoid any per-reservation state on routers; and

• enable each on-path AS to conclusively attribute the packet to a

reservation and the source AS.

We achieve these properties through the following two-step au-

thentication mechanism, sketched in Fig. 2.

First, during EER setup or renewal, each on-path AS calculates a

HopAuth, akin to the SegR token in Eq. (3) but without truncation:

𝜎𝑖 = MAC𝐾𝑖
(ResInfo || EERInfo || (Ini, Egi)) . (4)

Similar to SegRs, all the information included in this calculation is

an explicit part of the data-plane packet header enabling a router to

compute the HopAuth on the fly during packet processing. These

HopAuths are returned to the source ASAS0 over a channel secured
through authenticated encryption with associated data (AEAD):

AS𝑖 −→ AS0 : AEAD𝐾AS𝑖→AS
0

(𝜎𝑖) . (5)

Each HopAuth 𝜎𝑖 is then a secret, reservation-specific key, which

the CServ at the source AS now shares with the on-path AS𝑖 . The
resulting set of keys, one for each on-path AS, is subsequently

used to calculate and verify per-packet MACs in the data plane as

described in §4.6.

4.6 Processing at Gateway and Router
Colibri Gateway. The gateway receives Colibri EER packets

from end hosts, where all the Colibri header fields are empty, with

the exception of the ResId and the Payload. The gateway maps the

ResId of incoming EER packets to the corresponding Path, ResInfo,

EERInfo, and the HopAuths, which it obtained earlier during an

EER setup or renewal, and performs deterministic trafficmonitoring

as described in §4.8. It then generates a high-precision timestamp

Ts, from which it computes the HVFs for all on-path ASes,

𝑉
(E)
𝑖

= MAC𝜎𝑖 (Ts || PktSize) J0:ℓ
hvf

K, (6)

where PktSize is the size of the packet (including Colibri header).

The gateway thus confirms that it has performed the mandatory

flow monitoring and authorized this packet. After filling in the

missing EER packet contents, the gateway sends the packet to the

border router responsible for the egress interface Eg0 .

Router. Upon reception of a Colibri packet, the border router of

the 𝑖th on-path AS validates the packet format, header contents,

and packet freshness, and checks whether the reservation has not

expired yet. If the packet is a SegR packet, the border router vali-

dates the 𝑉𝑖 in the packet header by recomputing it using Eq. (3).

If the packet is an EER packet, the border router instead computes

the authenticator 𝜎𝑖 using Eq. (4), from which it derives the 𝑉𝑖 as

defined in Eq. (6). In both cases, if this recomputed HVFmatches the

one specified in the packet, the packet is forwarded to the next en-

tity. For a SegR—and therefore also SegReqs and EEReqs, which can

be made over existing SegRs (§3.3)—this entity is the local CServ;

for an EER it is the border router of the next AS according to the

information in the Path field, except for the border router of the

last AS, which forwards the EER packet to the host specified in

DstHost instead.

4.7 Admission Algorithm
Segment Reservations. As a first step, any two neighboring

ASes agree on the bandwidth available for Colibri traffic (the traffic
split in §3.4) on their inter-domain link and negotiate the pricing

model. These typically long-term contractual agreements—in the

order of months—are always bilateral to facilitate negotiation and

billing. Based on these, each AS can define a local traffic matrix that

describes the allocation of Colibri traffic between interface pairs.

A fundamental challenge of Colibri is to distribute the bandwidth

of an ingress–egress interface-pair in a fair manner. The admission

algorithm must ensure that no AS or group of ASes can reserve

excessive amounts of bandwidth for SegRs; this property has been

dubbed botnet-size independence by Basescu et al. [9]. We achieve

this property by employing an admission algorithm that guaran-

tees bounded tube fairness as described and formally analyzed in

a dissertation [62]. At a high level, Colibri’s admission algorithm

distributes the capacity among competing SegRs proportionally to

their adjusted bandwidth demand, which is obtained by

(1) limiting the total demand coming from an ingress interface

by that interface’s capacity;

(2) limiting the total demand between an ingress and an egress

interface by the egress interface’s capacity; and

(3) limiting the total demand of a particular source AS at a

particular egress interface by that interface’s capacity.

To perform the SegR admission calculation for a SegReq, the

CServ thus needs to look up all existing SegRs that use the same

egress interface. As we show in §6, a careful implementation using

memoization techniques still achieves the calculation in constant

time in the number of existing SegRs, on the order of a millisecond.

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Giuliari et al.

End-to-End Reservations. The EER admission depends on the

type of AS (§4.1).

• Source AS: The source AS has a direct business relationship with

the end host. It is free to define which EERs can be provided

to an individual end host in this contract. Upon receiving an

EEReq, the source AS checks (i) if there is sufficient bandwidth

in the first segment reservation, and (ii) whether the request is

to be granted under its policy. If these checks are successful, the

request is then forwarded along the path.

• Transit AS: Transit ASes only need to check if there is sufficient

bandwidth in the SegR underlying the EEReq. This is necessary

to defend against malicious source ASes, which may forward

EEReqs for more bandwidth than available in the SegR.

• Transfer AS: A transfer AS needs to check if there is sufficient

bandwidth in both SegRs it connects. Furthermore, the trans-

fer AS between up- and core-SegR needs to distribute the core-

SegR’s bandwidth between all up-SegRs in case more EER band-

width is requested than available in the core-SegR. This is done

proportionally to the total of all requested EERs (capped at the

up-SegR) that compete for the same core-SegR.

• Destination AS: The destination AS follows the same decision

process as the source AS.

4.8 Monitoring and Policing
Monitoring and policing in Colibri is split into multiple components,

which will be described in this section: deterministic monitoring

and traffic shaping at the source AS, probabilistic monitoring at all

other ASes, and policing of reservations. Control traffic on SegRs

does not need to be processed at line rate, and can therefore be

monitored and rate-limited at the CServ.

Deterministic Monitoring at Source AS. Traffic over EERs

from end hosts inside an AS is monitored deterministically by the

Colibri gateway (in parallel with the calculation of the HVFs). An

efficient approach to limit the transmission rate of the flows from

customers while still permitting short-term spikes in traffic is the

token bucket algorithm [36], which only needs to keep a time stamp

and a counter in memory for each flow. When a flow exceeds the

maximum transmission rate for longer than the burst threshold,

packets are simply dropped.

Probabilistic Monitoring at Other ASes. The probabilistic o-

veruse flow detector (OFD) represents the centerpiece of the moni-

toring architecture in transit and transfer ASes. The main challenge

with monitoring the traffic that originates from other ASes is that

it is generally composed of very large number of flows. Therefore,

in order to sustain line rate, the OFD must have a limited memory

footprint and maximize the use of fast cache. Recent proposals have

greatly improved the monitoring precision that is possible with

such limited resources [11, 44, 49, 64, 67].

Colibri uses an OFD in each AS to monitor EERs. For each

packet, the OFD receives as input (i) the normalized packet size
(= total packet size / reservation bandwidth) and (ii) the source AS

and the reservation ID, all of which can be read or calculated from

the packet. It then tracks bandwidth usage of each EER separately

using the pair (SrcAS, ResId) as a flow label; in particular, it com-

bines packets of all versions of an EER in the same flow. Normalizing

the packet size (i) enables monitoring reservations with different

bandwidth guarantees using a single OFD and (ii) guarantees that a

sender using multiple versions of the same EER can obtain at most

the maximum bandwidth of all valid versions but not more. As the

total packet size (including headers) is authenticated through the

HVFs (6), framing attacks are prevented. Including the header size

in the monitoring ensures that malicious source ASes cannot flood

the system with packets with very small or no payload.

Due to the probabilistic nature of the OFD, it may report false

positives—legitimate flows that appear to be overusing their band-

width. For this reason, the suspicious EERs are subjected to de-

terministic monitoring, which inspects the reservation precisely—

similar to the monitoring at the source AS—to determine overuse

with certainty.

Policing. When a flow is confirmed to be exceeding its EER band-

width, it can be concluded that the source AS did not perform its

monitoring task properly. Typically, the AS that detects the abuse

takes two measures: (i) block further traffic over the reservation and

(ii) penalize the source AS. Measure (i) is crucial to avoid deterio-

rating service to legitimate reservations and is achieved by keeping

a list of blocked source ASes. As this blocklist is very short—only a

tiny share of the 70 000 ASes is expected to misbehave at any point

in time—it can be implemented as a simple hash set.

After taking the immediate first step, the border router reports

the offense to the local CServ. As misbehavior of the source AS has

been established with certainty (due to the cryptographic checks),

it is possible for the service to take drastic measures such as com-

pletely denying future reservations originating from that AS.

5 DDoS Resilience Analysis
Although a full security analysis is beyond the scope of this paper,

we here briefly show how the interplay of cryptography, monitor-

ing, and policing—as presented in the previous sections—protects

Colibri reservations from attacks and thus enables worst-case min-

imum bandwidth guarantees.

5.1 Attacks on Reservation Traffic
Volumetric DDoS Attacks. DDoS attacks against Colibri traffic

can be carried out with (i) best-effort traffic, (ii) bogus Colibri traffic,

or even (iii) authentic Colibri traffic that is overusing a reserva-

tion. The first attack is prevented by traffic isolation (described in

Appendix B). As the authentication procedure at border routers

uses efficient symmetric cryptography (§4.5), bogus Colibri packets

are quickly identified and dropped, countering the second attack.

Finally, monitoring quickly identifies and blocks all overusing Coli-

bri reservations (§4.8). In the worst case, an attacker that controls

an AS can very briefly cause congestion, but would afterwards be

prevented from creating reservations. It is not possible to create

congestion with Colibri traffic that respects its reservations, as the

admission procedure ensures that the sum of all reservations does

not exceed the capacity (§4.7).

Framing DoS Attacks. An adversary could try to turn the mon-

itoring subsystem against benign ASes by (i) spoofing the source

AS, or (ii) capturing and replaying legitimate packets to overuse

the reserved bandwidth, thus framing the legitimate source. Since

overusing ASes are blocked by on-path ASes, this is another form

Colibri: A Cooperative Lightweight Inter-domain Bandwidth-Reservation Infrastructure CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

of DoS. Colibri avoids the first attack thanks to source authentica-

tion, and the second by using in-network duplicate suppression at

benign ASes (§2.3). All copies of the same packet are thus discarded.

5.2 Attacks on the Admission Algorithm
Another way to degrade the service of target users is to try and

obtain an unfairly large share of bandwidth from the reservation

process. For SegRs, the admission calculation guarantees that the

total amount of bandwidth that any AS or group of ASes can reserve

is limited, thus ensuring that a benign AS can always obtain a finite

minimum bandwidth [62].

The distribution of EER bandwidth is the responsibility of source

and destination ASes, as described in §4.7. These are free to define

policies on how to allocate the capacity of the SegRs they set up

among their customers. As they have direct business relationships

with end hosts and control their address space, they can easily

define and enforce these rules.

Finally, all on-path ASes check that the total bandwidth of EERs

on a particular SegR does not exceed that SegR’s capacity. Therefore,

a source AS cannot cause over-allocation by requesting an excessive

amount of EER bandwidth.

5.3 Attacks on Reservation Setup
As presented so far, Colibri traffic is fully protected against DoS at-

tacks when a reservation is established. The only remaining avenue

for malicious actors is to try and prevent legitimate ASes or end

hosts to set up Colibri reservations in the first place. In particular, an

adversary can attempt to (i) exhaust the resources of the CServ with

bogus requests, or (ii) block the reservation setup packet before it

reaches the CServ by congesting the network with best-effort traffic.

These attacks are known as denial-of-capability (DoC) attacks [7],

and Colibri is carefully designed with multiple mechanisms to de-

fend against them.

Efficient Authentication at the CServ. Every control-plane

message is authenticated using symmetric cryptography that can be

derived efficiently at the CServ. Thus, the CServ can very efficiently

filter unauthentic packets and employ per-AS rate limiting.

Protected Control Traffic. As soon as a SegR or EER exists,

renewal requests can be sent over this reservation and are thus

isolated from flooding attacks with best-effort traffic. Therefore,

ASes that want maximum protection against DoC—e.g, towards

business-critical destination ASes—can preemptively setup a low-

bandwidth, inexpensive SegR to these destinations; should the need

arise, the reserved bandwidth can be flexibly increased through

renewal requests that are then protected from DoC attacks. Finally,

EEReqs are sent as control traffic over existing SegRs and thus also

protected from best-effort traffic.

Prioritization of Initial Requests. Since renewals are protected

by existing reservations, the only remaining DoC attack surface is

the initial SegReq. Besides proactively setting up reservations ahead

of time as described above, ASes can use the isolation mechanisms

described in Appendix B to forward SegReqs with higher priority

than best-effort traffic. As SegReqs are processed, authenticated,

and filtered at each AS’s CServ, they could only be used to flood

the network of neighbor ASes, which is easily detectable.

0 2 4 6 8 10

0

500

1 000

1 500

Number of segment reservations [×103]

P
r
o
c
e
s
s
i
n
g
t
i
m
e
[
µ
s
]

ratio = 0

ratio = 0.1
ratio = 0.5
ratio = 0.9

Figure 3: Processing time required for one SegR admission
as a function of the number of existing SegRs over the same
interface pair, and the ratio of SegRs with the same source
as the one being processed (ratio).

6 Control-Plane Evaluation

6.1 Implementation and Evaluation Setup
All control-plane operations are centralized in the CServ, which is

implemented in Go. The service is in charge of handling admission

requests and renewing existing SegRs for the hosting AS. Each new

request is served by a separate go routine, and the communication

between services across different ASes is implemented via over

gRPC calls [55] on top of QUIC. Reservations are stored in a trans-

actional database. The CServ is part of the SCION codebase [45].

We measure the performance of control-plane operations as the

time needed to process new reservation setup requests—for both

SegRs and EERs—at the CServ. In the case of SegRs, we evaluate

the computational overhead of the admission procedure by varying

the number of distinct source ASes and the number of reservations

per AS present at the moment of the admission; for EER admissions,

we vary the number of end hosts and the number of SegRs.

To run the experiments, we load the pre-generated reservations

in the service, start the service, and trigger a new setup request.

We then observe the time elapsed between the request arriving

and the response leaving the service (disregarding propagation

delays). Each data point shows the average and standard error of

100 measurements. We run this evaluation on commodity hardware,

using a single core on an Intel Xeon 2.8 GHz CPU.

6.2 Results
Figure 3 shows that the time to process SegR admissions is indepen-

dent of the number of existing SegRs, even when crossing the same

interfaces. This result required the careful application of memo-

ization and parallelization, as the admission procedure for a new

SegR at a transit AS needs to consider the other SegRs present on

the pair of interfaces requested (§4.7). Should the need arise for

the CServ to process more than 800 SegReqs per second (1/1250 µs),

these computations can be scaled out to multiple cores, and even

distributed across multiple CServ replicas (see Appendix D). The

high scalability of the admission procedure suggests that Colibri’s

control plane will be able to scale to large, highly-interconnected

networks like today’s Internet, with consequently many SegRs.

In Fig. 4, we see that the overhead for the admission computa-

tion of EERs is independent of both the number of existing EERs

over the same SegR and the number of SegRs. This is as expected:

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Giuliari et al.

10
1

10
2

10
3

10
4

10
5

0

100

200

300

400

500

Number of end-to-end reservations

P
r
o
c
e
s
s
i
n
g
t
i
m
e
[
µ
s
]

𝑠 = 1

𝑠 = 5000

𝑠 = 10 000

Figure 4: Processing time required for one EER admission
in a transit AS, as a function of the number of existing EERs
sharing the same SegR and active SegRs sharing the same
source AS (𝑠).

EERs admission at transit ASes only requires checking whether

there is sufficient available bandwidth in the underlying SegR (§4.7).

With standard techniques, these checks can be performed in con-

stant time, and—similar to SegR admission—EERs admission can

parallelized over multiple cores, and distributed over multiple sub-

services. In our implementation, a single core can process more

than 2000 requests per second.

7 Data-Plane Evaluation
In the data plane, we want to evaluate (i) the ability of gateways

and border routers to forward EER traffic at high rates and (ii) the

effectiveness of the EER bandwidth reservations in protecting traffic

from extreme congestion.

7.1 Implementation and Evaluation Setup
We implement both the gateway and the border router as specified

in §4.6, using Intel DPDK [18]. At the gateway we deploy DPDK’s

ready-to-use rte_hash hash table, where the key is the ResId and the

value is a pointer to the reservation data. Note that we consider the

duplicate-suppression system to be a separate component, which

we do not include in the evaluation of the border router. For the

calculation and verification of the HopAuths and HVFs, we use

the AES-128 block cipher in CBC mode through native hardware-

accelerated instructions, which are available on all modern CPUs.

Speedtest. To evaluate the gateway and the border router, we

run them on a commodity machine with an Intel Xeon 2.1 GHz CPU.

This machine is connected by three 40Gbps bidirectional Ethernet

links to our Colibri packet generator (Spirent SPT-N4U), which also

serves as performance monitor.

For the border router, we evaluate how many packets per second

it can handle depending on the number of cores dedicated to packet

processing. For the gateway, we additionally evaluate the impact

of the path length (longer paths require more authenticators to

be calculated) and the number of existing reservations that the

gateway needs to keep track of. While the border router is stateless,

the gateway needs to store information about every reservation

starting at its AS. As caching can greatly influence the data access

speed, we evaluate the gateway in the worst-case scenario, packets

arrive with random reservation IDs (out of the set of valid ones).

2 4 8 16

0

0.5

1

1.5

2

2.5

Number of on-path ASes

P
e
r
f
o
r
m
a
n
c
e
[
M
p
p
s
]

𝑟 = 2
0

𝑟 = 2
10

𝑟 = 2
15

𝑟 = 2
17

𝑟 = 2
20

Figure 5: Forwarding performance of the gateway as a func-
tion of the number of on-path ASes and the number of ex-
isting reservations (𝑟), using one CPU core.

To test the limits of the gateway and border router, and avoid

possible bottlenecks on the Ethernet links, we conduct the measure-

ments using zero-payload Colibri packets. This is unproblematic as

for both the gateway and the border router the packet-processing

time is independent of payload size (see Appendix E).

Data-Plane Protection. In this second experiment, we measure

Colibri’s SLOs, and how effectively they are enforced at border

routers. Authenticated Colibri traffic has to be protected against

three different availability threats:

(1) Best-effort cross-traffic: as Colibri is intended to complement

best-effort traffic on the underlying network, it has to be

protected against congestion generated by co-existing best-

effort flows.

(2) Unauthentic Colibri packets: an adversary can send Colibri

packets without authorization, and replace the authentica-

tion tags with random strings hoping to overwhelm the

authentication process on the router.

(3) Authentic Colibri packets at unintended rates: a faulty or ma-

licious AS may not monitor Colibri flows originating in its

network and thus send more traffic than it has reserved.

To evaluate the data-plane protection against those threats, we

split our measurements into three phases, during which we send

different mixtures of best-effort and authentic and unauthentic

Colibri traffic over the three input ports, where the packets are all

destined to the same output port.

7.2 Results
Speedtest. The forwarding performance of the gateway is illus-

trated in Fig. 5. As expected, the performance decreases with the

number of on-path ASes and with the number of existing reser-

vations. Even in particularly extreme situations, where there are

over a million reservations and where every reservation is made

on a path consisting of 16 ASes,
3
one CPU core of the gateway can

forward 0.4Mpps (million packets per second). The performance

reduction observed when using a higher number of reservations is

mostly due to an increase in cache misses. In such cases the Colibri

gateway could be further sped up by adding more cache memory,

or by using multiple gateways, each handling only a fraction of all

reservations. By using random reservation IDs, we evaluated the

3
The current average path length in the Internet is 4–5 AS hops [15, 61].

Colibri: A Cooperative Lightweight Inter-domain Bandwidth-Reservation Infrastructure CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

1 2 4 8 16

0

5

10

15

20

25

30

35

Number of cores

P
e
r
f
o
r
m
a
n
c
e
[
M
p
p
s
]

BR GW, 𝑟 = 2
0

GW, 𝑟 = 2
10

GW, 𝑟 = 2
15

GW, 𝑟 = 2
17

GW, 𝑟 = 2
20

Figure 6: Forwarding performance of the gateway (GW) and
border router (BR) as a function of the number of used cores.
The gateway is evaluated for paths consisting of four ASes
and various numbers of existing reservations (𝑟).

Table 2: Measurement results in Gbps for different phases.
Reservations 1 and 2 have bandwidth guarantees of 0.4Gbps
and 0.8Gbps, respectively.

Inputs

Traffic class 1 2 3 Output

p
h
a
s
e
1 Reservation 1 0.400 — — 0.400

Reservation 2 — 0.800 — 0.800

Best effort — 39.200 40.000 38.669

p
h
a
s
e
2

Reservation 1 0.400 — — 0.400

Reservation 2 — 0.800 — 0.800

Best effort — 39.200 20.000 38.643

Colibri unauth. — — 20.000 —

p
h
a
s
e
3

Reservation 1 40.000 — — 0.400

Reservation 2 — 0.800 — 0.800

Best effort — 39.200 20.000 38.608

Colibri unauth. — — 20.000 —

gateway with worst-case inputs—for realistic traffic patterns the

performance would therefore further increase.

Figure 6 shows the scalability of the border router and the gate-

way. We observe that for both components, the performance is

almost perfectly linear in the number of cores dedicated to packet

processing. For realistic parameters such as paths consisting of four

ASes
3
and around 32 000 existing reservations, the gateway can

forward 18.7Mpps using 16 CPU cores. For packets with a payload

of 1000 B, this corresponds to a throughput of 170Gbps. The border

router achieves even higher rates of 34.4Mpps with 16 cores, which

corresponds to 312Gbps when using 1000 B packet payloads.

Data-Plane Protection. Through three phases, we show that

the border router is able to effectively protect the Colibri reserva-

tions from best-effort cross traffic (phase 1), unauthentic Colibri

attacks (phase 2), and overuse of the provided bandwidth guaran-

tees (phase 3), see Table 2.

Phase 1 shows that congestion in the best-effort traffic does not

impact the Colibri bandwidth due to the implemented traffic pri-

oritization. Phase 2 demonstrates that unauthentic Colibri traffic

is filtered effectively due to the cryptographic checks. In phase 3,

we simulate a state where reservations 1 and 2 were flagged by the

probabilistic flow monitor as suspicious (see §4.8) and are being

deterministically monitored by means of the token-bucket algo-

rithm. The overusing reservation 1 is limited to the guaranteed

bandwidth of 0.8 Gbps without impacting the well-behaved reser-

vation 2. Overall, the border router is able to process 120Gbps of

input (the maximum of our hardware) to fill the 40Gbps output

link under adversarial conditions without impacting the provided

bandwidth guarantees of honest flows.

8 Related Work
Resource Allocation. Multiple queuing protocols [37, 47] aim

to approximate the fair bandwidth allocation at each router. They

rely on the flow identifiers being reported correctly by the end hosts

and routers. The PCE architecture [57, 58] aims to provide inter-AS

support and allows resource allocations in GMPLS networks. Un-

fortunately, all on-path ASes must cooperate and trust each other.

RCS [14] is a mechanism to calculate fair traffic shares without

congestion control. DiffServ [8] enables traffic prioritization based

on multiple traffic classes but it does not provide any guarantees,

and its application is restricted to intra-domain settings. All of these

mechanisms lack security mechanisms and are thus not applicable

to the global Internet. Route Bazaar [16] uses a decentralized public

ledger to automate the negotiation of trustworthy SLOs on a path-

aware Internet. This architecture, however, does not specify how

such SLOs are created and enforced, as it is focused on their dissem-

ination, billing, and the detection of misbehavior. Colibri’s highly

secure SLOs are then complementary to Route Bazaar’s flexible

SLO negotiation framework.

RSVP. RSVP [13, 72] is a protocol to signal bandwidth reserva-

tions. As it was designed without any security considerations, reser-

vations may not be protected during DDoS attacks. RSVP forces

routers, even with aggregation [19], to keep a large amount of state

in the fast path.

Capability-Based Mechanisms. Many systems [3, 9, 22, 30, 31,

34, 38, 66, 69] try to isolate legitimate flows from illegitimate and

malicious flows by issuing network capabilities, i.e., access tokens
for on-path entities. Privileged channels—similar to Colibri’s EERs—

may only be used in case the packet carries the token. These

schemes require defense mechanisms to protect against DoC at-

tacks [7] and against collusion attacks [26, 53]. GLWP [65] also

achieves inter-domain reservations, but only provides a small, in-

flexible amount of bandwidth to each AS.

Comparison with SIBRA. The Scalable Internet Bandwidth Re-

servation Architecture (SIBRA) [9] is an ancestor of Colibri, and

they are both designed to operate on top of SCION. Therefore, they

share many design principles. However, Colibri makes numerous

substantial improvements.

Regarding security and performance, the major difference be-

tween the two systems is in the authenticationmechanisms. SIBRA’s

hop-field authenticators are at the same time more complex (e.g.,

because of chaining) and provide weaker security guarantees: they

do not allow an on-path AS to conclusively attribute a packet to the

source, and cannot prevent the replay of authenticators. In Colibri,

this problem is solved by the two-step calculation of HVFs (Eq. (6)).

Further, monitoring is more efficient in Colibri, as it uses a single

traffic monitor to track all bandwidth classes simultaneously and,

thanks to source authentication, policing is much simpler than in

SIBRA. Then, the lack of management scalability in SIBRA, where

core reservations are static contracts, is addressed in Colibri by

supporting the renegotiation of core reservations.

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Giuliari et al.

Finally, Colibri is implemented in a real system, and thus our

evaluation evaluation accounts for all processing steps (includ-

ing header updates, interactions with the NIC, etc.), in contrast to

SIBRA, where only the parsing andMAC verification was evaluated.

Other DDoS-Defense Mechanisms. There exists a vast litera-

ture on DDoS-defense mechanisms; Zargar et al. published a tax-

onomy and extensive survey in 2013 [71]. While it is impossible

to compare Colibri to all of them, a shortcoming shared by most

mechanisms is that they are reactive and are thus not able to provide
any availability guarantees. Furthermore, filtering techniques [48,

and references therein] are vulnerable to source-address spoofing—

unless cryptographic mechanisms (e.g., in the form of capabilities)

are deployed in conjunction—and it has been shown that cloud-

based traffic scrubbing can often be circumvented [59]. More re-

cently, routing-based defenses have been proposed [50] but later

shown to be ineffective in practice [56].

9 Discussion & Conclusion
The absence of global bandwidth-reservation architectures can be

attributed to many factors—excessive overhead, intricate manage-

ment, negligible benefits over best-effort—that amount to a general

lack of incentives for deployment [27]. By addressing these con-

cerns, Colibri contributes to the Internet ecosystem.

Low Overhead. Protecting performance-sensitive (e.g., low-la-

tency) traffic is one of the main benefits of bandwidth reservation

systems. However, if a system’s overhead creates similar or worse

effects as congestion, as in many past proposals, this benefit is

negated. Colibri, on the contrary, is efficient in the data plane and

can process multi-Gbps traffic in software (§7). Moreover, best-

effort traffic coexists with Colibri reservations and can scavenge

for unused bandwidth, thus avoiding network resource waste.

Simple Management. Coordinating reservation admission and

billing in a distributed, global setting poses many challenges. A

transit ISP does not have enough information to properly allocate

bandwidth to flows that are not terminating at its direct customers.

Further, billing such reservations is difficult, as costs are shared

among many entities.

End-to-end information on flows is however not necessary when

granting Colibri reservations, as the admission decision depends

on neighbor-based policies. The admission procedure is fully auto-

mated and built into the Colibri control plane; as we show in §6,

the system is fast and efficient in handing vast amounts of reser-

vations. Additionally, thanks to the locality of policies, billing can

be implemented with scalable neighbor-to-neighbor settlements,

similarly to today’s AS peering agreements.

A Profitable Service. Historically, overprovisioning has been

the primary means with which ISPs maintain SLOs [23]. As the

Internet remained successfully operational so far, the common belief

is that this measure is largely sufficient. However, congestion is

widely observable both at the edges and in the Internet core [17],

and routing optimization is also known to generate unexpected

congestion [25]. Further, recent attacks have been able to fill even

large inter-domain links [20, 70]. Colibri reservations enforce fair

sharing during peak traffic, mitigating the impact of these events,

and enhancing the survivability and profitability of ASes. These

characteristics add value to the service proposition of an ISP, and

will therefore be drivers for deployment.

Secure Operation. Past systems did not consider adversarial

actions, and could therefore be abused. Colibri employs a combina-

tion of light-weight cryptography, monitoring, and policing that

make it the first system to achieve worst-case SLOs in a distributed,

adversarial setting.

In summary, global network bandwidth guarantees in a public

Internet have been, so far, only a distant mirage. Now, building on

top of modern network architectures—providing per-packet source

authentication, path-aware networking, and multi-path commu-

nication—we can finally construct a scalable global bandwidth-

reservation system: Colibri. This is an important step towards pro-

viding strong Internet-wide SLOs and thus increasing the efficiency,

resilience, and profitability of inter-domain communication.

Acknowledgements
We would like to thank Tom Anderson for suggesting the inter-

pretation of bandwidth reservations as SLOs; Simon Leinen for

the illuminating discussions on Internet-scale QoS; Tobias Klenze,

Jonghoon Kwon, JoelWanner, and Samuel Hitz for their feedback on

the manuscript; and our shepherd Ignacio Castro and anonymous

reviewers for their insightful comments. We gratefully acknowl-

edge support from ETH Zurich, and from the Zurich Information

Security and Privacy Center (ZISC).

References
[1] Anapaya Systems. 2021. SCION-Internet: The New Way To Connect. https:

//www.anapaya.net/scion-the-new-way-to-connect.

[2] Tom Anderson, Ken Birman, Robert Broberg, Matthew Caesar, Douglas Comer,

Chase Cotton, Michael J. Freedman, Andreas Haeberlen, Zachary G. Ives, Arvind

Krishnamurthy, William Lehr, Boon Thau Loo, David Mazières, Antonio Nicolosi,

Jonathan M. Smith, Ion Stoica, Robbert van Renesse, Michael Walfish, Hakim

Weatherspoon, and Christopher S. Yoo. 2013. The NEBULA Future Internet

Architecture. In The Future Internet. Springer. https://doi.org/10.1007/978-3-642-

38082-2_2

[3] Tom Anderson, Timothy Roscoe, and David Wetherall. 2004. Preventing Internet

denial-of-service with capabilities. ACM SIGCOMM Computer Communication
Review (CCR) 34, 1 (2004). https://doi.org/10.1145/972374.972382

[4] R. Annessi, J. Fabini, and T. Zseby. 2017. It’s about Time: Securing Broadcast

Time Synchronization with Data Origin Authentication. In IEEE International
Conference on Computer Communication and Networks (ICCCN). https://doi.org/

10.1109/ICCCN.2017.8038418

[5] Robert Annessi, Joachim Fabini, and Tanja Zseby. 2017. SecureTime: Secure

Multicast Time Synchronization. https://arxiv.org/abs/1705.10669.

[6] Luis Arceo-Miquel, Yuriy S Shmaliy, and Oscar Ibarra-Manzano. 2009. Optimal

synchronization of local clocks by GPS 1PPS signals using predictive FIR filters.

IEEE Transactions on Instrumentation and Measurement 58, 6 (2009).
[7] Katerina Argyraki and David Cheriton. 2005. Network capabilities: The good,

the bad and the ugly. In ACM Workshop on Hot Topics in Networks (HotNets).
[8] Fred Baker, David L. Black, Kathleen Nichols, and Steven L. Blake. 1998. Definition

of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers. RFC
2474.

[9] Cristina Basescu, Raphael M. Reischuk, Pawel Szalachowski, Adrian Perrig, Yao

Zhang, Hsu-Chun Hsiao, Ayumu Kubota, and Jumpei Urakawa. 2016. SIBRA:

Scalable Internet Bandwidth Reservation Architecture. In Symposium on Network
and Distributed Systems Security (NDSS). https://doi.org/10.14722/ndss.2016.23132

[10] Tony Bates, Philip Smith, and GeoffHuston. 2021. CIDR Report. https://www.cidr-

report.org/as2.0/.

[11] R. Ben Basat, X. Chen, G. Einziger, R. Friedman, and Y. Kassner. 2019. Ran-

domized Admission Policy for Efficient Top-k, Frequency, and Volume Esti-

mation. IEEE/ACM Transactions on Networking (ToN) 27, 4 (2019). https:

//doi.org/10.1109/TNET.2019.2918929

[12] Bobby Bhattacharjee, Ken Calvert, Jim Griffioen, Neil Spring, and James P. G.

Sterbenz. 2006. Postmodern Internetwork Architecture. NSF Nets FIND Initiative
(2006).

[13] Robert T. Braden, Lixia Zhang, Steven Berson, Shai Herzog, and Sugih Jamin.

1997. Resource ReSerVation Protocol (RSVP) – Version 1 Functional Specification.
RFC 2205.

https://www.anapaya.net/scion-the-new-way-to-connect
https://www.anapaya.net/scion-the-new-way-to-connect
https://doi.org/10.1007/978-3-642-38082-2_2
https://doi.org/10.1007/978-3-642-38082-2_2
https://doi.org/10.1145/972374.972382
https://doi.org/10.1109/ICCCN.2017.8038418
https://doi.org/10.1109/ICCCN.2017.8038418
https://arxiv.org/abs/1705.10669
https://doi.org/10.14722/ndss.2016.23132
https://www.cidr-report.org/as2.0/
https://www.cidr-report.org/as2.0/
https://doi.org/10.1109/TNET.2019.2918929
https://doi.org/10.1109/TNET.2019.2918929

Colibri: A Cooperative Lightweight Inter-domain Bandwidth-Reservation Infrastructure CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

[14] Lloyd Brown, Ganesh Ananthanarayanan, Ethan Katz-Bassett, Arvind Krishna-

murthy, Sylvia Ratnasamy, Michael Schapira, and Scott Shenker. 2020. On the

Future of Congestion Control for the Public Internet. In ACM Workshop on Hot
Topics in Networks (HotNets). https://doi.org/10.1145/3422604.3425939

[15] Timm Böttger, Gianni Antichi, Eder L. Fernandes, Roberto di Lallo, Marc Bruyere,

Steve Uhlig, Gareth Tyson, and Ignacio Castro. 2019. Shaping the Internet: 10

Years of IXP Growth. https://arxiv.org/abs/1810.10963v3.

[16] Ignacio Castro, Aurojit Panda, Barath Raghavan, Scott Shenker, and Sergey

Gorinsky. 2015. Route Bazaar: Automatic Interdomain Contract Negotiation. In

USENIX Workshop on Hot Topics in Operating Systems.
[17] Amogh Dhamdhere, Kc Claffy, David D. Clark, Alexander Gamero-Garrido,

Matthew Luckie, Ricky K. P. Mok, Gautam Akiwate, Kabir Gogia, Vaibhav Bajpai,

and Alex C. Snoeren. 2018. Inferring persistent interdomain congestion. In ACM
SIGCOMM Conference. https://doi.org/10.1145/3230543.3230549

[18] DPDK Project. 2021. Data Plane Development Kit. https://dpdk.org.

[19] François Le Faucheur, Fred Baker, Dr. Bruce S. Davie, and Carol Iturralde. 2001.

Aggregation of RSVP for IPv4 and IPv6 Reservations. RFC 3175.

[20] Nick Galov. 2021. 39 Jaw-Dropping DDoS Statistics to Keep in Mind for 2021.

https://hostingtribunal.com/blog/ddos-statistics/.

[21] P. Brighten Godfrey, Igor Ganichev, Scott Shenker, and Ion Stoica. 2009. Pathlet

Routing. In ACM SIGCOMM Conference.
[22] Hsu-Chun Hsiao, Tiffany Hyun-Jin Kim, Sangjae Yoo, Xin Zhang, Soo Bum Lee,

Virgil Gligor, and Adrian Perrig. 2013. STRIDE: Sanctuary Trail – Refuge from

Internet DDoS Entrapment.. In ACM Symposium on Information, Computer, and
Communications Security (ASIACCS). https://doi.org/10.1145/2484313.2484367

[23] GeoffHuston. 2012. The QoS Emperor’sWardrobe. https://labs.ripe.net/Members/

gih/the-qos-emperors-wardrobe.

[24] IEEE. 2019. IEEE 1588-2019 – IEEE Standard for a Precision Clock Synchronization

Protocol for Networked Measurement and Control Systems.

[25] Min Suk Kang and Virgil D. Gligor. 2014. Routing Bottlenecks in the Internet.

In ACM Conference on Computer and Communications Security (CCS). https:

//doi.org/10.1145/2660267.2660299

[26] Min Suk Kang, Soo Bum Lee, and V. D. Gligor. 2013. The Crossfire Attack. In IEEE
Symposium on Security and Privacy (S&P). https://doi.org/10.1109/sp.2013.19

[27] Kalevi Kilkki and Benjamin Finley. 2019. In Search of Lost QoS. https://arxiv.org/

abs/1901.06867.

[28] Cyrill Krähnebühl, Seyedali Tabeiaghdaei, Christelle Gloor, Jonghoon Kwon,

Adrian Perrig, David Hausheer, and Dominik Roos. 2021. Deployment and

Scalability of an Inter-Domain Multi-Path Routing Infrastructure. In Conference
on Emerging Networking Experiments and Technologies (CoNEXT).

[29] Jonghoon Kwon, Juan A. García-Pardo, Markus Legner, François Wirz, Matthias

Frei, David Hausheer, and Adrian Perrig. 2020. SCIONLab: A Next-Generation

Internet Testbed. In IEEE Conference on Network Protocols (ICNP).
[30] Soo Bum Lee and Virgil D. Gligor. 2010. FLoc : Dependable Link Access for Legit-

imate Traffic in Flooding Attacks. In IEEE International Conference on Distributed
Computing Systems. https://doi.org/10.1109/icdcs.2010.78

[31] Soo Bum Lee, Min Suk Kang, and Virgil D. Gligor. 2013. CoDef: Collaborative

defense against large-scale link-flooding attacks. In Conference on Emerging
Networking Experiments and Technologies (CoNEXT). https://doi.org/10.1145/

2535372.2535398

[32] Taeho Lee, Christos Pappas, Adrian Perrig, Virgil Gligor, and Yih-Chun Hu.

2017. The Case for In-Network Replay Suppression. In ACM Asia Conference
on Computer and Communications Security (ASIACCS). https://doi.org/10.1145/

3052973.3052988

[33] Markus Legner, Tobias Klenze, Marc Wyss, Christoph Sprenger, and Adrian

Perrig. 2020. EPIC: Every Packet Is Checked in the Data Plane of a Path-Aware

Internet. In USENIX Security Symposium (USENIX Security).
[34] Zhuotao Liu, Hao Jin, Yih-Chun Hu, and Michael Bailey. 2016. MiddlePolice:

Toward enforcing destination-defined policies in the middle of the Internet. In

ACM Conference on Computer and Communications Security (CCS).
[35] Jim Martin, Jack Burbank, William Kasch, and Professor David L. Mills. 2010.

Network Time Protocol Version 4: Protocol and Algorithms Specification. RFC 5905.

[36] Deepankar Medhi and Karthikeyan Ramasamy. 2007. Network Routing: Algo-
rithms, Protocols, and Architectures. Morgan Kaufmann Publishers.

[37] Rong Pan, B. Prabhakar, and K. Psounis. 2000. CHOKe – a stateless active

queue management scheme for approximating fair bandwidth allocation. In IEEE
Conference on Computer Communications (INFOCOM). https://doi.org/10.1109/

infcom.2000.832269

[38] Bryan Parno, Dan Wendlandt, Elaine Shi, Adrian Perrig, Bruce Maggs, and

Yih-Chun Hu. 2007. Portcullis: Protecting Connection Setup from Denial-of-

Capability Attacks. In ACM SIGCOMM Conference. https://doi.org/10.1145/

1282380.1282413

[39] Adrian Perrig, Pawel Szalachowski, Raphael M. Reischuk, and Laurent Chuat.

2017. SCION: A Secure Internet Architecture. Springer. https://doi.org/10.1007/978-
3-319-67080-5

[40] Barath Raghavan and Alex C. Snoeren. 2004. A system for authenticated policy-

compliant routing. ACM SIGCOMM Computer Communication Review (CCR) 34,
4 (2004). https://doi.org/10.1145/1030194.1015487

[41] Barath Raghavan, Patric Verkaik, and Alex C. Snoeren. 2009. Secure and Policy-

Compliant Source Routing. IEEE/ACM Transactions on Networking (ToN) 17, 3
(2009). https://doi.org/10.1109/tnet.2008.2007949

[42] Henrique Rodrigues, Jose Renato Santos, Yoshio Turner, Paolo Soares, and Dorgi-

val O Guedes. 2011. Gatekeeper: Supporting bandwidth guarantees for multi-

tenant datacenter networks. In Conference of I/O virtualization (WIOV).
[43] Benjamin Rothenberger, Dominik Roos, Markus Legner, and Adrian Perrig.

2020. PISKES: Pragmatic Internet-Scale Key-Establishment System. In ACM
Asia Conference on Computer and Communications Security (ASIACCS). https:

//doi.org/10.1145/3320269.3384743

[44] Simon Scherrer, Che-Yu Wu, Yu-Hsi Chiang, Benjamin Rothenberger, Daniele

Asoni, Arish Sateesan, Jo Vliegen, Nele Mentens, Hsu-Chun Hsiao, and Adrian

Perrig. 2021. Low-Rate Overuse Flow Tracer (LOFT): An Efficient and Scalable

Algorithm for Detecting Overuse Flows. In Symposium on Reliable Distributed
Systems (SRDS).

[45] SCION Project. 2021. SCION Open-Source Implementation. https://github.com/

scionproto/scion.

[46] Chuck Semeria. 2001. Supporting differentiated service classes: queue scheduling
disciplines. Technical Report. Juniper Networks.

[47] M. Shreedhar and G. Varghese. 1996. Efficient fair queuing using deficit round-

robin. IEEE/ACM Transactions on Networking (ToN) 4, 3 (1996). https://doi.org/

10.1109/90.502236

[48] Devkishen Sisodia, Jun Li, and Lei Jiao. 2020. In-Network Filtering of Dis-

tributed Denial-of-Service Traffic with Near-Optimal Rule Selection. In ACM
Asia Conference on Computer and Communications Security (ASIACCS). https:

//doi.org/10.1145/3320269.3384755

[49] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S. Muthukrish-

nan, and Jennifer Rexford. 2017. Heavy-Hitter Detection Entirely in the Data

Plane. In Symposium on SDN Research (SOSR). https://doi.org/10.1145/3050220.

3063772

[50] Jared M Smith and Max Schuchard. 2018. Routing Around Congestion: Defeating

DDoS Attacks and Adverse Network Conditions via Reactive BGP Routing. In

IEEE Symposium on Security and Privacy (S&P). https://doi.org/10.1109/sp.2018.

00032

[51] João Luís Sobrinho and Miguel Alves Ferreira. 2020. Routing on Multiple Opti-

mality Criteria. In ACM SIGCOMM Conference. https://doi.org/10.1145/3387514.

3405864

[52] C. Song, H. Moon, M. Alam, I. Yun, B. Lee, T. Kim, W. Lee, and Y. Paek. 2016.

HDFI: Hardware-Assisted Data-Flow Isolation. In IEEE Symposium on Security
and Privacy (SP). https://doi.org/10.1109/SP.2016.9

[53] Ahren Studer and Adrian Perrig. 2009. The Coremelt Attack. In Computer Security
– ESORICS. Springer. https://doi.org/10.1007/978-3-642-04444-1_3

[54] Swisscom AG. 2021. Enhancing WAN connectivity and services for Swiss organi-

sations with the next-generation internet. https://www.swisscom.ch/scion.

[55] The gRPC Authors and The Linux Foundation. 2021. gRPC: A high performance,

open source universal RPC framework. https://grpc.io/.

[56] Muoi Tran, Min Suk Kang, Hsu-Chun Hsiao, Wei-Hsuan Chiang, Shu-Po Tung,

and Yu-Su Wang. 2019. On the Feasibility of Rerouting-based DDoS Defenses. In

IEEE Symposium on Security and Privacy (S&P). https://doi.org/10.1109/SP.2019.

00055

[57] JP Vasseur, Adrian Farrel, and Gerald Ash. 2006. A Path Computation Element
(PCE)-Based Architecture. RFC 4655.

[58] JP Vasseur and Jean-Louis Le Roux. 2009. Path Computation Element (PCE)
Communication Protocol (PCEP). RFC 5440.

[59] Thomas Vissers, Tom Van Goethem, Wouter Joosen, and Nick Nikiforakis. 2015.

Maneuvering around clouds: Bypassing cloud-based security providers. In ACM
Conference on Computer and Communications Security (CCS).

[60] VMware. 2020. vSphere Resource Management. https://docs.vmware.com/en/

VMware-vSphere/7.0/vsphere-esxi-vcenter-server-701-resource-management-

guide.pdf.

[61] Cun Wang, Zhengmin Li, Xiaohong Huang, and Pei Zhang. 2016. Inferring

the average AS path length of the Internet. In IEEE International Conference on
Network Infrastructure and Digital Content (IC-NIDC). https://doi.org/10.1109/

icnidc.2016.7974603

[62] Thilo Weghorn. 2019. Qualitative and Quantitative Guarantees for Access Control.
Ph.D. Dissertation. ETH Zürich. https://doi.org/10.3929/ethz-b-000397549

[63] Emmett Witchel, Josh Cates, and Krste Asanović. 2002. Mondrian Memory

Protection. SIGPLAN Notices 37, 10 (2002). https://doi.org/10.1145/605432.605429

[64] HaoWu, Hsu-ChunHsiao, and Yih-ChunHu. 2014. Efficient Large FlowDetection

over Arbitrary Windows. In ACM Internet Measurement Conference (IMC). https:

//doi.org/10.1145/2663716.2663724

[65] Marc Wyss, Giacomo Giuliari, Markus Legner, and Adrian Perrig. 2021. Secure

and Scalable QoS for Critical Applications. In IEEE/ACM International Symposium
on Quality of Service (IWQoS).

[66] A. Yaar, A. Perrig, and D. Song. 2004. SIFF: a stateless Internet flow filter to

mitigate DDoS flooding attacks. In IEEE Symposium on Security and Privacy (S&P).
https://doi.org/10.1109/secpri.2004.1301320

https://doi.org/10.1145/3422604.3425939
https://arxiv.org/abs/1810.10963v3
https://doi.org/10.1145/3230543.3230549
https://dpdk.org
https://hostingtribunal.com/blog/ddos-statistics/
https://doi.org/10.1145/2484313.2484367
https://labs.ripe.net/Members/gih/the-qos-emperors-wardrobe
https://labs.ripe.net/Members/gih/the-qos-emperors-wardrobe
https://doi.org/10.1145/2660267.2660299
https://doi.org/10.1145/2660267.2660299
https://doi.org/10.1109/sp.2013.19
https://arxiv.org/abs/1901.06867
https://arxiv.org/abs/1901.06867
https://doi.org/10.1109/icdcs.2010.78
https://doi.org/10.1145/2535372.2535398
https://doi.org/10.1145/2535372.2535398
https://doi.org/10.1145/3052973.3052988
https://doi.org/10.1145/3052973.3052988
https://doi.org/10.1109/infcom.2000.832269
https://doi.org/10.1109/infcom.2000.832269
https://doi.org/10.1145/1282380.1282413
https://doi.org/10.1145/1282380.1282413
https://doi.org/10.1007/978-3-319-67080-5
https://doi.org/10.1007/978-3-319-67080-5
https://doi.org/10.1145/1030194.1015487
https://doi.org/10.1109/tnet.2008.2007949
https://doi.org/10.1145/3320269.3384743
https://doi.org/10.1145/3320269.3384743
https://github.com/scionproto/scion
https://github.com/scionproto/scion
https://doi.org/10.1109/90.502236
https://doi.org/10.1109/90.502236
https://doi.org/10.1145/3320269.3384755
https://doi.org/10.1145/3320269.3384755
https://doi.org/10.1145/3050220.3063772
https://doi.org/10.1145/3050220.3063772
https://doi.org/10.1109/sp.2018.00032
https://doi.org/10.1109/sp.2018.00032
https://doi.org/10.1145/3387514.3405864
https://doi.org/10.1145/3387514.3405864
https://doi.org/10.1109/SP.2016.9
https://doi.org/10.1007/978-3-642-04444-1_3
https://www.swisscom.ch/scion
https://grpc.io/
https://doi.org/10.1109/SP.2019.00055
https://doi.org/10.1109/SP.2019.00055
https://docs.vmware.com/en/VMware-vSphere/7.0/vsphere-esxi-vcenter-server-701-resource-management-guide.pdf
https://docs.vmware.com/en/VMware-vSphere/7.0/vsphere-esxi-vcenter-server-701-resource-management-guide.pdf
https://docs.vmware.com/en/VMware-vSphere/7.0/vsphere-esxi-vcenter-server-701-resource-management-guide.pdf
https://doi.org/10.1109/icnidc.2016.7974603
https://doi.org/10.1109/icnidc.2016.7974603
https://doi.org/10.3929/ethz-b-000397549
https://doi.org/10.1145/605432.605429
https://doi.org/10.1145/2663716.2663724
https://doi.org/10.1145/2663716.2663724
https://doi.org/10.1109/secpri.2004.1301320

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Giuliari et al.

[67] T. Yang, H. Zhang, J. Li, J. Gong, S. Uhlig, S. Chen, and X. Li. 2019. HeavyKeeper:

AnAccurate Algorithm for Finding Top-k Elephant Flows. IEEE/ACMTransactions
on Networking (ToN) 27, 5 (2019). https://doi.org/10.1109/TNET.2019.2933868

[68] Xiaowei Yang, David Clark, and Arthur W. Berger. 2007. NIRA: A New Inter-

Domain Routing Architecture. IEEE/ACM Transactions on Networking (ToN)
(2007).

[69] Xiaowei Yang, David Wetherall, and Thomas Anderson. 2005. A DoS-limiting

network architecture. In ACM SIGCOMM Conference. https://doi.org/10.1145/

1080091.1080120

[70] Omer Yoachimik and Vivek Ganti. 2020. Network-layer DDoS attack trends for

Q3 2020. https://blog.cloudflare.com/network-layer-ddos-attack-trends-for-q3-

2020/.

[71] S. T. Zargar, J. Joshi, and D. Tipper. 2013. A Survey of Defense Mechanisms

Against Distributed Denial of Service (DDoS) Flooding Attacks. IEEE Commu-
nications Surveys & Tutorials 15, 4 (2013). https://doi.org/10.1109/SURV.2013.

031413.00127

[72] Lixia Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala. 2002. RSVP: a

new resource reservation protocol. IEEE Communications Magazine 40, 5 (2002).
https://doi.org/10.1109/mcom.2002.1006981

[73] Xin Zhang, Hsu-Chun Hsiao, Geoffrey Hasker, Haowen Chan, Adrian Perrig,

and David Andersen. 2011. SCION: Scalability, Control, and Isolation On Next-

Generation Networks. In IEEE Symposium on Security and Privacy (S&P).

A List of Acronyms
AEAD authenticated encryption with associated data

AS autonomous system

BGP the Border Gateway Protocol

CBWFQ class-based weighted fair queuing

CDN content-distribution network

CServ Colibri service

DoC denial-of-capability

DDoS distributed-denial-of-service

DoS denial-of-service

DRKey dynamically-recreatable-key

EER end-to-end reservation

EEReq end-to-end–reservation setup request

GMPLS generalized multi-protocol label switching

HopAuth hop authenticator

HVF hop validation field

ISD isolation domain

ISP Internet service provider

MAC message-authentication code

OFD overuse flow detector

PCFS packet-carried forwarding state

PRF pseudo-random function

QoS quality of service

RSVP the Resource Reservation Protocol

SLA service-level agreement

SLO service-level objective

SegR segment reservation

SegReq segment-reservation setup request

ToS type of service

WAN wide-area network

B Traffic Isolation
Colibri is intended to coexist with best-effort traffic of the underly-

ing network architecture, sharing the same physical infrastructure.

This raises the challenge of protecting Colibri traffic from conges-

tion and attacks in the best-effort traffic class, while, at the same

time, ensuring that unused Colibri bandwidth is available for best-

effort traffic.

We achieve this separation by defining three different traffic

classes—best-effort, Colibri control, and Colibri data traffic—and

using queuing techniques such as priority queuing4 or class-based
weighted fair queuing [46], which are available on most modern

networking equipment. It is crucial that priority is given to Colibri

traffic not only at border routers, but also at switches and routers in

each AS’s internal network. This requires encoding the traffic class

in the header of the intra-domain networking protocol in use. For

example, in an IP network, the traffic class can be encoded using

DiffServ and the DSCP field [8]. To defend against malicious hosts

in an AS’s network, all traffic should pass through a gateway that

sets this field to the correct value.

C Dissemination of Segment Reservations
To reduce the latency of setting up a bandwidth reservation, end

hosts need to efficiently obtain the SegRs that are necessary to

construct their desired EERs. For this purpose, Colibri uses a hier-

archical caching approach at CServs: hosts can then fetch SegRs

from their local AS with minimal latency.

Once a SegR is established, the initiator can choose to share it

publicly by registering it at its CServ along with a whitelist of ASes

that are allowed to use the SegR to create EERs. An end host can

then query its local CServ for SegRs to the intended destination,

which looks up SegRs in its database and contacts remote CServs if

necessary to fetch additional SegRs that together form a complete

path. These additional SegRs are then also cached at the local CServ.

With this hierarchical caching approach, queries can be answered

with low latency. However, it is not directly observable when the

version in a remote SegR is switched, which may lead to end hosts

initiating EEReqs with an outdated underlying reservation. This is

not an issue, as the remote CServ can indicate expiry of the SegR

during setup of the EER, allowing the end host to retry with the new

version of the SegR. As this reply also passes through the source

AS’s CServ, its cache can be invalidated.

D Distributed Colibri Service
For an AS that receives a very large amount of reservations (e.g., an

AS located in the Internet core), a CServ that is deployed on a single

machine will be subject to high load and can potentially become the

bottleneck. If this is the case, the AS can leverage the hierarchical

structure of reservations to distribute the load efficiently.

While admission for SegRs requires a complete view of all SegRs

passing through the AS, EEReqs can be handled using knowledge

of only a specific subset of the reservations in the AS. Concretely,

the decision of an AS to admit an EER depends only on the state

of the adjacent SegRs that are used in the requested reservation.

While this is a single SegR in most cases, a transfer AS (located

at the intersection of path segments) may need to consider both

the underlying incoming and the outgoing SegRs in the admission

process. Even in this more complex case, the decision can be split

into two separate problems: (i) admission based on the incoming

SegR, and (ii) admission based on the outgoing SegR.

4
As the CServ ensures that the total bandwidth of all active reservations does not

exceed the available bandwidth reserved for Colibri, strict priority queuing can be

used without risking starvation of best-effort traffic.

https://doi.org/10.1109/TNET.2019.2933868
https://doi.org/10.1145/1080091.1080120
https://doi.org/10.1145/1080091.1080120
https://blog.cloudflare.com/network-layer-ddos-attack-trends-for-q3-2020/
https://blog.cloudflare.com/network-layer-ddos-attack-trends-for-q3-2020/
https://doi.org/10.1109/SURV.2013.031413.00127
https://doi.org/10.1109/SURV.2013.031413.00127
https://doi.org/10.1109/mcom.2002.1006981

Colibri: A Cooperative Lightweight Inter-domain Bandwidth-Reservation Infrastructure CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

These observations enable a decomposition of the CServ into

three types of sub-services: the coordinator sub-service, which han-

dles all SegReq; (ii) the ingress sub-service, which handles EEReqs

that use a given ingress interface; and (iii) the egress sub-service,
which handles EEReqs that use a given egress interface and is only

necessary at transfer ASes. In case a load balancer is used to dis-

tribute requests across sub-services on the same interface, it must

assign the requests such that all EEReqs based on the same under-

lying SegR are processed by the same sub-service. This enables

the admission decisions to be parallelized easily. Depending on

the expected load, the AS can deploy the sub-service instances on

dedicated machines or routers.

E Additional Evaluation Results
We also explored the performance of the gateway and the border

router with respect to differently sized Colibri packets. Because the

size of the packet headers together with a payload of 1500 B exceeds

the Ethernet maximum transmission unit, we enabled jumbo frame

support in our test network.

For this experiment, we initialize the gateway with 2
15

pre-

existing reservations; the border router does not maintain state

on reservations. We observed that for both components, forward-

ing is not influenced by the payload size. The border router and the

gateway can forward 3Mpps and 1.5Mpps respectively, indepen-

dently of the payload size.

	Abstract
	1 Introduction
	2 Background and Enabling Technologies
	2.1 Path-Aware Networking
	2.2 Isolation Domains and Path Segments
	2.3 Reservation Protection

	3 Colibri Overview
	3.1 General Concepts and Intuition
	3.2 Infrastructure
	3.3 Control Plane
	3.4 Data Plane

	4 Architecture Details
	4.1 AS Types
	4.2 Reservation Versions and Renewal
	4.3 Colibri Packets
	4.4 Control-Plane Messages
	4.5 Packet Authentication
	4.6 Processing at Gateway and Router
	4.7 Admission Algorithm
	4.8 Monitoring and Policing

	5 DDoS Resilience Analysis
	5.1 Attacks on Reservation Traffic
	5.2 Attacks on the Admission Algorithm
	5.3 Attacks on Reservation Setup

	6 Control-Plane Evaluation
	6.1 Implementation and Evaluation Setup
	6.2 Results

	7 Data-Plane Evaluation
	7.1 Implementation and Evaluation Setup
	7.2 Results

	8 Related Work
	9 Discussion & Conclusion
	References
	A List of Acronyms
	B Traffic Isolation
	C Dissemination of Segment Reservations
	D Distributed Colibri Service
	E Additional Evaluation Results

