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How Do DDoS Defense Systems Work?

Goal: Guarantee availability of network resources under malicious traffic from many sources
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(Zhang et al. 2020) (Xing et al. 2021) (Liu et al. 2021) (Giuliari et al. 2021) (Alcoz et al. 2022)
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How Do DDoS Defense Systems Detect Suspicious Flows?

DDoS defense systems mostly use the algorithms CountMin-Sketch and Count-Sketch for detection

+ Limited memory + Efficient processing - Limited accuracy
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How Do Sketch Algorithms Perform Under Burst-Flood Attacks?

Scenario: Malicious bursts last for 200 milliseconds and are 20% larger than allowed
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How Can We Better Detect Malicious Bursts?

To withstand burst-flood attacks, a monitoring algorithm must satisfy the following requirements:

Time-window
flexibility

Memory
efficiency

Processing
efficiency
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ALBUS
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How Does ALBUS Work?

ALBUS: Adaptive Leaky-Bucket Undulation Sensor

Flows: f1 f2 f3 f4 f5 f6 f7 f8 ... f1475286

Leaky-bucket module

Background-counting module

Leaky-
bucket

counters:

LB 1 LB 2 LB 3 LB 4

...

... LB 256

f4 f7 f5 ... f8f3

Hashing:

Back-
ground

counters:

BC 1
Count c

Flow f2

BC 2
Count c

Flow f6

BC 3
Count c

Flow f1

BC 4
Count c

Flow □
...

... BC 256
Count c

Flow □

Overflow:
Report & Evict

Net inflow < 0:
Evict

On evict:
?

Filter:
Probabilistic

decay
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How Does the Leaky-Bucket Algorithm Work?

General idea:

Bucket
volume

β

Leakage
rate γ

Fill rate
from monitored

traffic flow

Net inflow
=

Inflow
−

Outflow

× Overflow
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What Properties Are Offered by the Leaky-Bucket Algorithm?

A leaky bucket reports a flow that sends more than γ w + β

during a time window with arbitrary width w

γ = Leakage rate = Flow base rate

β = Bucket volume = Burstiness allowance

> β

γw1

w1

> β

γw3

w3

< β

γw2

w2

Send rate

Time

γ

Time-window
flexibility

But: A leaky bucket can only monitor a single flow at a time! Memory
efficiency

×
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How Can We Apply the LB Algorithm in a Memory-Efficient Fashion?

Leaky-bucket
counters:

LB 1 LB 2 LB 3 LB 4

...

LB 256

Flows: f1 f2 f3 f4 f5 f6 f7 f8 ... f1475286

Hashing:

Monitored
flows:

f4 f7 f5 ... f8f3

× Report and
evict f8

on
overflow!

Eviction
criterion:

If LB net inflow turns negativeSend
rate

Time

γ
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How Does ALBUS Work?

ALBUS: Adaptive Leaky-Bucket Undulation Sensor

Flows: f1 f2 f3 f4 f5 f6 f7 f8 ... f1475286

Leaky-bucket module

Background-counting module

Leaky-
bucket

counters:

LB 1 LB 2 LB 3 LB 4

...

... LB 256

f4 f7 f5 ... f8f3

Hashing:

Back-
ground

counters:

BC 1
Count c

Flow f2

BC 2
Count c

Flow f6

BC 3
Count c

Flow f1

BC 4
Count c

Flow □
...

... BC 256
Count c

Flow □

Overflow:
Report & Evict

Net inflow < 0:
Evict

On evict:
?

Filter:
Probabilistic

decay
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What to Do When a Flow Is Evicted?

LB n

f1

Leaky-bucket
counter

f2f1 f3

× Evicted

Question:
How to find the most bursty flow
among the background flows

of a leaky-bucket counter?

BC n
Count c

Flow f2

Background
counter

Probabilistic decay (Yang et al. 2019)
Packet: Flow f2 , Size s2

Count: c + s2

Flow: f2

Packet: Flow f3 , Size s3

Count: c − s3

Probability p

Count: c
Flow: f2

else

Count: s3

Flow: f3

c − s3 ≤ 0
Count: c − s3

Flow: f2

else

Effective at finding
largest background flow!f2

Pull
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How Does ALBUS Work?

ALBUS: Adaptive Leaky-Bucket Undulation Sensor

Flows: f1 f2 f3 f4 f5 f6 f7 f8 ... f1475286

Leaky-bucket module

Background-counting module

Leaky-
bucket

counters:

LB 1 LB 2 LB 3 LB 4

...

... LB 256

f4 f7 f5 ... f8f3

Hashing:

Back-
ground

counters:
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Count c

Flow f2

BC 2
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Flow f6

BC 3
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Flow f1

BC 4
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Flow □
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... BC 256
Count c

Flow □

Overflow:
Report & Evict

Net inflow < 0:
Evict

On evict:
?

Filter:
Probabilistic

decay
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Do Background Counters Have Additional Benefits?

Background counters prevent flow masking
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How Does ALBUS Perform Under Burst-Flood Attacks?

Scenario: Malicious bursts last for 200 milliseconds and are 20% larger than allowed

Recall = Reported malicious bursts
Malicious bursts

0.1 0.8 1.5

100%

CountMin-Sketch

CountMin-Sketch
(Threshold 50%)

Reset period [seconds]

Recall

Precision = Reported malicious bursts
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CountMin-Sketch
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Precision

Perfect
precision
by design!

CountMin-Sketch:
Reset period

must fit
burst width

=⇒ Evasion
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Does ALBUS Satisfy All Requirements of Effective Burst Detection?

To withstand burst-flood attacks, a monitoring algorithm must satisfy the following requirements:

Time-window
flexibility

Memory
efficiency

Processing
efficiency

ALBUS

?
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Does ALBUS Allow Efficient Processing?

Yes. ALBUS has low computational complexity:

Single hash computation No counter-array iterations No associative arrays

=⇒ ALBUS is hardware-friendly

FPGA implementation
for Xilinx Virtex

UltraScale+ FPGA:
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Hardware design of
a LB-BC combination

Throughput:
200 million packets

per second
∼ 560 Gbps!
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Summary: What Is the Contribution of ALBUS?

ALBUS is considerably more effective under burst-flood attacks than previous monitoring algorithms.

CountMin-Sketch
Count-Sketch

How Do DDoS Defense Systems Detect Suspicious Flows?

DDoS defense systems mostly use the algorithms CountMin-Sketch and Count-Sketch for detection
+ Limited memory + Efficient processing - Limited accuracy

TimeReset Reset
Reset periodFor each flow:

Estimated
flow volume
over period

Expected
flow volume
over period

>

Suspicious flow!

Fl
ow

se
nd
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te

Link capacity
Elephant Flow: Detected

Burst-Flood Attack:
Medium-rate bursts in different flows

Small volume of each flow

Burst splits by resets

Network Security Group
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Fixed time-windows

How Do Sketch Algorithms Perform Under Burst-Flood Attacks?

Scenario: Malicious bursts last for 200 milliseconds and are 20% larger than allowed
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Network Security Group
Department of Computer Science 3/14

Accuracy trade-off

ALBUS

Time-window
flexibility

How Does the Leaky-Bucket Algorithm Work?

General idea:

Bucket
volume

β

Leakage
rate γ

Fill rate
from monitored

traffic flow

Net inflow
=

Inflow
−

Outflow

× Overflow
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Leaky-bucket algorithm

Memory
efficiency

How Does Everything Fit Together in ALBUS?

ALBUS: Adaptive Leaky-Bucket Undulation Sensor

Flows: f1 f2 f3 f4 f5 f6 f7 f8 ... f1475286
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counters:
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...
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ALBUS data-structure

Processing
efficiency

Does ALBUS Allow Efficient Processing?

Yes. ALBUS has low complexity:

Single hash computation No counter-array iterations No associative arrays
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How Do Background Counters Help Detection Accuracy?

Probabilistic decay identifies large background flows
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