
Network Security Group
Department of Computer Science

ALBUS:
a Probabilistic Monitoring Algorithm
to Counter Burst-Flood Attacks
Simon Scherrer, Adrian Perrig
ETH Zürich
Jo Vliegen, Arish Sateesan, Nele Mentens*
KU Leuven, *Leiden University
Hsu-Chun Hsiao
National Taiwan University

SRDS 2023, Marrakech



How Do DDoS Defense Systems Work?

Goal: Guarantee availability of network resources under malicious traffic from many sources

Poseidon Ripple Jaqen COLIBRI ACC-Turbo
(Zhang et al. 2020) (Xing et al. 2021) (Liu et al. 2021) (Giuliari et al. 2021) (Alcoz et al. 2022)

DDoS Defense System

Traffic
Packet =

(Flow, Size, Time)
Filtered
Traffic

Detection
Identify suspiciously large flows

Mitigation
Restrict suspiciously large flows

Network operator

Configuration,
Programming

Network Security Group
Department of Computer Science 1/19



How Do DDoS Defense Systems Work?

Goal: Guarantee availability of network resources under malicious traffic from many sources

Poseidon Ripple Jaqen COLIBRI ACC-Turbo
(Zhang et al. 2020) (Xing et al. 2021) (Liu et al. 2021) (Giuliari et al. 2021) (Alcoz et al. 2022)

DDoS Defense System

Traffic
Packet =

(Flow, Size, Time)
Filtered
Traffic

Detection
Identify suspiciously large flows

Mitigation
Restrict suspiciously large flows

Network operator

Configuration,
Programming

Network Security Group
Department of Computer Science 1/19



How Do DDoS Defense Systems Work?

Goal: Guarantee availability of network resources under malicious traffic from many sources

Poseidon Ripple Jaqen COLIBRI ACC-Turbo
(Zhang et al. 2020) (Xing et al. 2021) (Liu et al. 2021) (Giuliari et al. 2021) (Alcoz et al. 2022)

DDoS Defense System

Traffic
Packet =

(Flow, Size, Time)
Filtered
Traffic

Detection
Identify suspiciously large flows

Mitigation
Restrict suspiciously large flows

Network operator

Configuration,
Programming

Network Security Group
Department of Computer Science 1/19



How Do DDoS Defense Systems Work?

Goal: Guarantee availability of network resources under malicious traffic from many sources

Poseidon Ripple Jaqen COLIBRI ACC-Turbo
(Zhang et al. 2020) (Xing et al. 2021) (Liu et al. 2021) (Giuliari et al. 2021) (Alcoz et al. 2022)

DDoS Defense System

Traffic
Packet =

(Flow, Size, Time)

Filtered
Traffic

Detection
Identify suspiciously large flows

Mitigation
Restrict suspiciously large flows

Network operator

Configuration,
Programming

Network Security Group
Department of Computer Science 1/19



How Do DDoS Defense Systems Work?

Goal: Guarantee availability of network resources under malicious traffic from many sources

Poseidon Ripple Jaqen COLIBRI ACC-Turbo
(Zhang et al. 2020) (Xing et al. 2021) (Liu et al. 2021) (Giuliari et al. 2021) (Alcoz et al. 2022)

DDoS Defense System

Traffic
Packet =

(Flow, Size, Time)
Filtered
Traffic

Detection
Identify suspiciously large flows

Mitigation
Restrict suspiciously large flows

Network operator

Configuration,
Programming

Network Security Group
Department of Computer Science 1/19



How Do DDoS Defense Systems Work?

Goal: Guarantee availability of network resources under malicious traffic from many sources

Poseidon Ripple Jaqen COLIBRI ACC-Turbo
(Zhang et al. 2020) (Xing et al. 2021) (Liu et al. 2021) (Giuliari et al. 2021) (Alcoz et al. 2022)

DDoS Defense System

Traffic
Packet =

(Flow, Size, Time)
Filtered
Traffic

Detection
Identify suspiciously large flows

Mitigation
Restrict suspiciously large flows

Network operator

Configuration,
Programming

Network Security Group
Department of Computer Science 1/19



How Do DDoS Defense Systems Work?

Goal: Guarantee availability of network resources under malicious traffic from many sources

Poseidon Ripple Jaqen COLIBRI ACC-Turbo
(Zhang et al. 2020) (Xing et al. 2021) (Liu et al. 2021) (Giuliari et al. 2021) (Alcoz et al. 2022)

DDoS Defense System

Traffic
Packet =

(Flow, Size, Time)
Filtered
Traffic

Detection
Identify suspiciously large flows

Mitigation
Restrict suspiciously large flows

Network operator

Configuration,
Programming

Network Security Group
Department of Computer Science 1/19



How Do DDoS Defense Systems Work?

Goal: Guarantee availability of network resources under malicious traffic from many sources

Poseidon Ripple Jaqen COLIBRI ACC-Turbo
(Zhang et al. 2020) (Xing et al. 2021) (Liu et al. 2021) (Giuliari et al. 2021) (Alcoz et al. 2022)

DDoS Defense System

Traffic
Packet =

(Flow, Size, Time)
Filtered
Traffic

Detection
Identify suspiciously large flows

Mitigation
Restrict suspiciously large flows

Network operator

Configuration,
Programming

Network Security Group
Department of Computer Science 1/19



How Do DDoS Defense Systems Work?

Goal: Guarantee availability of network resources under malicious traffic from many sources

Poseidon Ripple Jaqen COLIBRI ACC-Turbo
(Zhang et al. 2020) (Xing et al. 2021) (Liu et al. 2021) (Giuliari et al. 2021) (Alcoz et al. 2022)

DDoS Defense System

Traffic
Packet =

(Flow, Size, Time)
Filtered
Traffic

Detection
Identify suspiciously large flows

Mitigation
Restrict suspiciously large flows

Network operator

Configuration,
Programming

Network Security Group
Department of Computer Science 1/19



How Do DDoS Defense Systems Detect Suspicious Flows?

DDoS defense systems mostly use the algorithms CountMin-Sketch and Count-Sketch for detection

+ Limited memory + Efficient processing - Limited accuracy

TimeReset Reset
Reset periodFor each flow:

Estimated
flow volume

in period so far

Expected
flow volume
over period

>

Suspicious flow!

Fl
ow

se
nd

in
g

ra
te

Link capacity
Elephant Flow: Detected

Burst-Flood Attack:
Medium-rate bursts in different flows

Small volume of each flow

Bursts split by resets

Network Security Group
Department of Computer Science 2/19



How Do DDoS Defense Systems Detect Suspicious Flows?

DDoS defense systems mostly use the algorithms CountMin-Sketch and Count-Sketch for detection
+ Limited memory + Efficient processing - Limited accuracy

TimeReset Reset
Reset periodFor each flow:

Estimated
flow volume

in period so far

Expected
flow volume
over period

>

Suspicious flow!

Fl
ow

se
nd

in
g

ra
te

Link capacity
Elephant Flow: Detected

Burst-Flood Attack:
Medium-rate bursts in different flows

Small volume of each flow

Bursts split by resets

Network Security Group
Department of Computer Science 2/19



How Do DDoS Defense Systems Detect Suspicious Flows?

DDoS defense systems mostly use the algorithms CountMin-Sketch and Count-Sketch for detection
+ Limited memory + Efficient processing - Limited accuracy

Time

Reset Reset
Reset periodFor each flow:

Estimated
flow volume

in period so far

Expected
flow volume
over period

>

Suspicious flow!

Fl
ow

se
nd

in
g

ra
te

Link capacity
Elephant Flow: Detected

Burst-Flood Attack:
Medium-rate bursts in different flows

Small volume of each flow

Bursts split by resets

Network Security Group
Department of Computer Science 2/19



How Do DDoS Defense Systems Detect Suspicious Flows?

DDoS defense systems mostly use the algorithms CountMin-Sketch and Count-Sketch for detection
+ Limited memory + Efficient processing - Limited accuracy

TimeReset Reset

Reset periodFor each flow:

Estimated
flow volume

in period so far

Expected
flow volume
over period

>

Suspicious flow!

Fl
ow

se
nd

in
g

ra
te

Link capacity
Elephant Flow: Detected

Burst-Flood Attack:
Medium-rate bursts in different flows

Small volume of each flow

Bursts split by resets

Network Security Group
Department of Computer Science 2/19



How Do DDoS Defense Systems Detect Suspicious Flows?

DDoS defense systems mostly use the algorithms CountMin-Sketch and Count-Sketch for detection
+ Limited memory + Efficient processing - Limited accuracy

TimeReset Reset
Reset period

For each flow:

Estimated
flow volume

in period so far

Expected
flow volume
over period

>

Suspicious flow!

Fl
ow

se
nd

in
g

ra
te

Link capacity
Elephant Flow: Detected

Burst-Flood Attack:
Medium-rate bursts in different flows

Small volume of each flow

Bursts split by resets

Network Security Group
Department of Computer Science 2/19



How Do DDoS Defense Systems Detect Suspicious Flows?

DDoS defense systems mostly use the algorithms CountMin-Sketch and Count-Sketch for detection
+ Limited memory + Efficient processing - Limited accuracy

TimeReset Reset
Reset period

For each flow:

Estimated
flow volume

in period so far

Expected
flow volume
over period

>

Suspicious flow!

Fl
ow

se
nd

in
g

ra
te

Link capacity
Elephant Flow: Detected

Burst-Flood Attack:
Medium-rate bursts in different flows

Small volume of each flow

Bursts split by resets

Network Security Group
Department of Computer Science 2/19



How Do DDoS Defense Systems Detect Suspicious Flows?

DDoS defense systems mostly use the algorithms CountMin-Sketch and Count-Sketch for detection
+ Limited memory + Efficient processing - Limited accuracy

TimeReset Reset
Reset periodFor each flow:

Estimated
flow volume

in period so far

Expected
flow volume
over period

>

Suspicious flow!

Fl
ow

se
nd

in
g

ra
te

Link capacity
Elephant Flow: Detected

Burst-Flood Attack:
Medium-rate bursts in different flows

Small volume of each flow

Bursts split by resets

Network Security Group
Department of Computer Science 2/19



How Do DDoS Defense Systems Detect Suspicious Flows?

DDoS defense systems mostly use the algorithms CountMin-Sketch and Count-Sketch for detection
+ Limited memory + Efficient processing - Limited accuracy

TimeReset Reset
Reset periodFor each flow:

Estimated
flow volume

in period so far

Expected
flow volume
over period

>

Suspicious flow!

Fl
ow

se
nd

in
g

ra
te

Link capacity
Elephant Flow: Detected

Burst-Flood Attack:
Medium-rate bursts in different flows

Small volume of each flow

Bursts split by resets

Network Security Group
Department of Computer Science 2/19



How Do DDoS Defense Systems Detect Suspicious Flows?

DDoS defense systems mostly use the algorithms CountMin-Sketch and Count-Sketch for detection
+ Limited memory + Efficient processing - Limited accuracy

TimeReset Reset
Reset periodFor each flow:

Estimated
flow volume

in period so far

Expected
flow volume
over period

>

Suspicious flow!

Fl
ow

se
nd

in
g

ra
te

Link capacity
Elephant Flow: Detected

Burst-Flood Attack:
Medium-rate bursts in different flows

Small volume of each flow

Bursts split by resets

Network Security Group
Department of Computer Science 2/19



How Do DDoS Defense Systems Detect Suspicious Flows?

DDoS defense systems mostly use the algorithms CountMin-Sketch and Count-Sketch for detection
+ Limited memory + Efficient processing - Limited accuracy

TimeReset Reset
Reset periodFor each flow:

Estimated
flow volume

in period so far

Expected
flow volume
over period

>

Suspicious flow!

Fl
ow

se
nd

in
g

ra
te

Link capacity

Elephant Flow: Detected
Burst-Flood Attack:

Medium-rate bursts in different flows
Small volume of each flow

Bursts split by resets

Network Security Group
Department of Computer Science 2/19



How Do DDoS Defense Systems Detect Suspicious Flows?

DDoS defense systems mostly use the algorithms CountMin-Sketch and Count-Sketch for detection
+ Limited memory + Efficient processing - Limited accuracy

TimeReset Reset
Reset periodFor each flow:

Estimated
flow volume

in period so far

Expected
flow volume
over period

>

Suspicious flow!

Fl
ow

se
nd

in
g

ra
te

Link capacity
Elephant Flow: Detected

Burst-Flood Attack:
Medium-rate bursts in different flows

Small volume of each flow

Bursts split by resets

Network Security Group
Department of Computer Science 2/19



How Do DDoS Defense Systems Detect Suspicious Flows?

DDoS defense systems mostly use the algorithms CountMin-Sketch and Count-Sketch for detection
+ Limited memory + Efficient processing - Limited accuracy

TimeReset Reset
Reset periodFor each flow:

Estimated
flow volume

in period so far

Expected
flow volume
over period

>

Suspicious flow!

Fl
ow

se
nd

in
g

ra
te

Link capacity
Elephant Flow: Detected

Burst-Flood Attack:
Medium-rate bursts in different flows

Small volume of each flow

Bursts split by resets

Network Security Group
Department of Computer Science 2/19



How Do DDoS Defense Systems Detect Suspicious Flows?

DDoS defense systems mostly use the algorithms CountMin-Sketch and Count-Sketch for detection
+ Limited memory + Efficient processing - Limited accuracy

TimeReset Reset
Reset periodFor each flow:

Estimated
flow volume

in period so far

Expected
flow volume
over period

>

Suspicious flow!

Fl
ow

se
nd

in
g

ra
te

Link capacity
Elephant Flow: Detected

Burst-Flood Attack:
Medium-rate bursts in different flows

Small volume of each flow

Bursts split by resets

Network Security Group
Department of Computer Science 2/19



How Do DDoS Defense Systems Detect Suspicious Flows?

DDoS defense systems mostly use the algorithms CountMin-Sketch and Count-Sketch for detection
+ Limited memory + Efficient processing - Limited accuracy

TimeReset Reset
Reset periodFor each flow:

Estimated
flow volume

in period so far

Expected
flow volume
over period

>

Suspicious flow!

Fl
ow

se
nd

in
g

ra
te

Link capacity
Elephant Flow: Detected

Burst-Flood Attack:
Medium-rate bursts in different flows

Small volume of each flow

Bursts split by resets

Network Security Group
Department of Computer Science 2/19



How Do DDoS Defense Systems Detect Suspicious Flows?

DDoS defense systems mostly use the algorithms CountMin-Sketch and Count-Sketch for detection
+ Limited memory + Efficient processing - Limited accuracy

TimeReset Reset
Reset periodFor each flow:

Estimated
flow volume

in period so far

Expected
flow volume
over period

>

Suspicious flow!

Fl
ow

se
nd

in
g

ra
te

Link capacity
Elephant Flow: Detected

Burst-Flood Attack:
Medium-rate bursts in different flows

Small volume of each flow

Bursts split by resets

Network Security Group
Department of Computer Science 2/19



How Do Sketch Algorithms Perform Under Burst-Flood Attacks?

Scenario: Malicious bursts last for 200 milliseconds and are 20% larger than allowed

Recall = Reported malicious bursts
Malicious bursts

0.1 0.8 1.5

100%

Reset period [seconds]

Recall

Precision = Reported malicious bursts
Reported bursts

0.1 0.8 1.5

100%

Reset period [seconds]

Precision

Trade-off
between recall
and precision

Reset period
must fit

burst width
=⇒ Evasion

Network Security Group
Department of Computer Science 3/19



How Do Sketch Algorithms Perform Under Burst-Flood Attacks?

Scenario: Malicious bursts last for 200 milliseconds and are 20% larger than allowed

Recall = Reported malicious bursts
Malicious bursts

0.1 0.8 1.5

100%

Reset period [seconds]

Recall

Precision = Reported malicious bursts
Reported bursts

0.1 0.8 1.5

100%

Reset period [seconds]

Precision

Trade-off
between recall
and precision

Reset period
must fit

burst width
=⇒ Evasion

Network Security Group
Department of Computer Science 3/19



How Do Sketch Algorithms Perform Under Burst-Flood Attacks?

Scenario: Malicious bursts last for 200 milliseconds and are 20% larger than allowed

Recall = Reported malicious bursts
Malicious bursts

0.1 0.8 1.5

100%

Reset period [seconds]

Recall

Precision = Reported malicious bursts
Reported bursts

0.1 0.8 1.5

100%

Reset period [seconds]

Precision

Trade-off
between recall
and precision

Reset period
must fit

burst width
=⇒ Evasion

Network Security Group
Department of Computer Science 3/19



How Do Sketch Algorithms Perform Under Burst-Flood Attacks?

Scenario: Malicious bursts last for 200 milliseconds and are 20% larger than allowed

Recall = Reported malicious bursts
Malicious bursts

0.1 0.8 1.5

100%

Reset period [seconds]

Recall

Precision = Reported malicious bursts
Reported bursts

0.1 0.8 1.5

100%

Reset period [seconds]

Precision

Trade-off
between recall
and precision

Reset period
must fit

burst width
=⇒ Evasion

Network Security Group
Department of Computer Science 3/19



How Do Sketch Algorithms Perform Under Burst-Flood Attacks?

Scenario: Malicious bursts last for 200 milliseconds and are 20% larger than allowed

Recall = Reported malicious bursts
Malicious bursts

0.1 0.8 1.5

100%

CountMin-Sketch

Reset period [seconds]

Recall

Precision = Reported malicious bursts
Reported bursts

0.1 0.8 1.5

100% CountMin-Sketch

Reset period [seconds]

Precision

Trade-off
between recall
and precision

Reset period
must fit

burst width
=⇒ Evasion

Network Security Group
Department of Computer Science 3/19



How Do Sketch Algorithms Perform Under Burst-Flood Attacks?

Scenario: Malicious bursts last for 200 milliseconds and are 20% larger than allowed

Recall = Reported malicious bursts
Malicious bursts

0.1 0.8 1.5

100%

CountMin-Sketch

Report if:

Estimated
flow volume

in period so far

Expected
flow volume
over period

>

Reset period [seconds]

Recall

Precision = Reported malicious bursts
Reported bursts

0.1 0.8 1.5

100% CountMin-Sketch

Reset period [seconds]

Precision

Trade-off
between recall
and precision

Reset period
must fit

burst width
=⇒ Evasion

Network Security Group
Department of Computer Science 3/19



How Do Sketch Algorithms Perform Under Burst-Flood Attacks?

Scenario: Malicious bursts last for 200 milliseconds and are 20% larger than allowed

Recall = Reported malicious bursts
Malicious bursts

0.1 0.8 1.5

100%

CountMin-Sketch

Report if:

Estimated
flow volume

in period so far

Expected
flow volume
over period

>

50% of

Reset period [seconds]

Recall

Precision = Reported malicious bursts
Reported bursts

0.1 0.8 1.5

100% CountMin-Sketch

Reset period [seconds]

Precision

Trade-off
between recall
and precision

Reset period
must fit

burst width
=⇒ Evasion

Network Security Group
Department of Computer Science 3/19



How Do Sketch Algorithms Perform Under Burst-Flood Attacks?

Scenario: Malicious bursts last for 200 milliseconds and are 20% larger than allowed

Recall = Reported malicious bursts
Malicious bursts

0.1 0.8 1.5

100%

CountMin-Sketch

CountMin-Sketch
(Threshold 50%)

Reset period [seconds]

Recall

Precision = Reported malicious bursts
Reported bursts

0.1 0.8 1.5

100% CountMin-Sketch

CountMin-Sketch
(Threshold 50%)

Reset period [seconds]

Precision

Trade-off
between recall
and precision

Reset period
must fit

burst width
=⇒ Evasion

Network Security Group
Department of Computer Science 3/19



How Do Sketch Algorithms Perform Under Burst-Flood Attacks?

Scenario: Malicious bursts last for 200 milliseconds and are 20% larger than allowed

Recall = Reported malicious bursts
Malicious bursts

0.1 0.8 1.5

100%

CountMin-Sketch

CountMin-Sketch
(Threshold 50%)

Reset period [seconds]

Recall

Precision = Reported malicious bursts
Reported bursts

0.1 0.8 1.5

100% CountMin-Sketch

CountMin-Sketch
(Threshold 50%)

Reset period [seconds]

Precision

Trade-off
between recall
and precision

Reset period
must fit

burst width
=⇒ Evasion

Network Security Group
Department of Computer Science 3/19



How Do Sketch Algorithms Perform Under Burst-Flood Attacks?

Scenario: Malicious bursts last for 200 milliseconds and are 20% larger than allowed

Recall = Reported malicious bursts
Malicious bursts

0.1 0.8 1.5

100%

CountMin-Sketch

CountMin-Sketch
(Threshold 50%)

Reset period [seconds]

Recall

Precision = Reported malicious bursts
Reported bursts

0.1 0.8 1.5

100% CountMin-Sketch

CountMin-Sketch
(Threshold 50%)

Reset period [seconds]

Precision

Trade-off
between recall
and precision

Reset period
must fit

burst width
=⇒ Evasion

Network Security Group
Department of Computer Science 3/19



How Can We Better Detect Malicious Bursts?

To withstand burst-flood attacks, a monitoring algorithm must satisfy the following requirements:

Time-window
flexibility

Memory
efficiency

Processing
efficiency

CountMin-Sketch
Count-Sketch

ALBUS

Network Security Group
Department of Computer Science 4/19



How Can We Better Detect Malicious Bursts?

To withstand burst-flood attacks, a monitoring algorithm must satisfy the following requirements:

Time-window
flexibility

Memory
efficiency

Processing
efficiency

CountMin-Sketch
Count-Sketch

ALBUS

Network Security Group
Department of Computer Science 4/19



How Can We Better Detect Malicious Bursts?

To withstand burst-flood attacks, a monitoring algorithm must satisfy the following requirements:

Time-window
flexibility

Memory
efficiency

Processing
efficiency

CountMin-Sketch
Count-Sketch

ALBUS

Network Security Group
Department of Computer Science 4/19



How Can We Better Detect Malicious Bursts?

To withstand burst-flood attacks, a monitoring algorithm must satisfy the following requirements:

Time-window
flexibility

Memory
efficiency

Processing
efficiency

CountMin-Sketch
Count-Sketch

ALBUS

Network Security Group
Department of Computer Science 4/19



How Can We Better Detect Malicious Bursts?

To withstand burst-flood attacks, a monitoring algorithm must satisfy the following requirements:

Time-window
flexibility

Memory
efficiency

Processing
efficiency

CountMin-Sketch
Count-Sketch

ALBUS

Network Security Group
Department of Computer Science 4/19



How Can We Better Detect Malicious Bursts?

To withstand burst-flood attacks, a monitoring algorithm must satisfy the following requirements:

Time-window
flexibility

Memory
efficiency

Processing
efficiency

CountMin-Sketch
Count-Sketch

ALBUS

Network Security Group
Department of Computer Science 4/19



How Does ALBUS Work?

ALBUS: Adaptive Leaky-Bucket Undulation Sensor

Flows: f1 f2 f3 f4 f5 f6 f7 f8 ... f1475286

Leaky-bucket module

Background-counting module

Leaky-
bucket

counters:

LB 1 LB 2 LB 3 LB 4

...

... LB 256

f4 f7 f5 ... f8f3

Hashing:

Back-
ground

counters:

BC 1
Count c

Flow f2

BC 2
Count c

Flow f6

BC 3
Count c

Flow f1

BC 4
Count c

Flow □
...

... BC 256
Count c

Flow □

Overflow:
Report & Evict

Net inflow < 0:
Evict

On evict:
?

Filter:
Probabilistic

decay

Network Security Group
Department of Computer Science 5/19



How Does ALBUS Work?

ALBUS: Adaptive Leaky-Bucket Undulation Sensor

Flows: f1 f2 f3 f4 f5 f6 f7 f8 ... f1475286

Leaky-bucket module

Background-counting module

Leaky-
bucket

counters:

LB 1 LB 2 LB 3 LB 4

...

... LB 256

f4 f7 f5 ... f8f3

Hashing:

Back-
ground

counters:

BC 1
Count c

Flow f2

BC 2
Count c

Flow f6

BC 3
Count c

Flow f1

BC 4
Count c

Flow □
...

... BC 256
Count c

Flow □

Overflow:
Report & Evict

Net inflow < 0:
Evict

On evict:
?

Filter:
Probabilistic

decay

Network Security Group
Department of Computer Science 5/19



How Does ALBUS Work?

ALBUS: Adaptive Leaky-Bucket Undulation Sensor

Flows: f1 f2 f3 f4 f5 f6 f7 f8 ... f1475286

Leaky-bucket module

Background-counting module

Leaky-
bucket

counters:

LB 1 LB 2 LB 3 LB 4

...

... LB 256

f4 f7 f5 ... f8f3

Hashing:

Back-
ground

counters:

BC 1
Count c

Flow f2

BC 2
Count c

Flow f6

BC 3
Count c

Flow f1

BC 4
Count c

Flow □
...

... BC 256
Count c

Flow □

Overflow:
Report & Evict

Net inflow < 0:
Evict

On evict:
?

Filter:
Probabilistic

decay

Network Security Group
Department of Computer Science 5/19



How Does ALBUS Work?

ALBUS: Adaptive Leaky-Bucket Undulation Sensor

Flows: f1 f2 f3 f4 f5 f6 f7 f8 ... f1475286

Leaky-bucket module

Background-counting module

Leaky-
bucket

counters:

LB 1 LB 2 LB 3 LB 4

...

... LB 256

f4 f7 f5 ... f8f3

Hashing:

Back-
ground

counters:

BC 1
Count c

Flow f2

BC 2
Count c

Flow f6

BC 3
Count c

Flow f1

BC 4
Count c

Flow □
...

... BC 256
Count c

Flow □

Overflow:
Report & Evict

Net inflow < 0:
Evict

On evict:
?

Filter:
Probabilistic

decay

Network Security Group
Department of Computer Science 5/19



How Does the Leaky-Bucket Algorithm Work?

General idea:

Bucket
volume

β

Leakage
rate γ

Fill rate
from monitored

traffic flow

Net inflow
=

Inflow
−

Outflow

× Overflow

Network Security Group
Department of Computer Science 6/19



How Does the Leaky-Bucket Algorithm Work?

General idea:

Bucket
volume

β

Leakage
rate γ

Fill rate
from monitored

traffic flow

Net inflow
=

Inflow
−

Outflow

× Overflow

Network Security Group
Department of Computer Science 6/19



How Does the Leaky-Bucket Algorithm Work?

General idea:

Bucket
volume

β

Leakage
rate γ

Fill rate
from monitored

traffic flow

Net inflow
=

Inflow
−

Outflow

× Overflow

Network Security Group
Department of Computer Science 6/19



How Does the Leaky-Bucket Algorithm Work?

General idea:

Bucket
volume

β

Leakage
rate γ

Fill rate
from monitored

traffic flow

Net inflow
=

Inflow
−

Outflow

× Overflow

Network Security Group
Department of Computer Science 6/19



How Does the Leaky-Bucket Algorithm Work?

General idea:

Bucket
volume

β

Leakage
rate γ

Fill rate
from monitored

traffic flow

Net inflow
=

Inflow
−

Outflow

× Overflow

Network Security Group
Department of Computer Science 6/19



How Does the Leaky-Bucket Algorithm Work?

General idea:

Bucket
volume

β

Leakage
rate γ

Fill rate
from monitored

traffic flow

Net inflow
=

Inflow
−

Outflow

× Overflow

Network Security Group
Department of Computer Science 6/19



How Does the Leaky-Bucket Algorithm Work?

General idea:

Bucket
volume

β

Leakage
rate γ

Fill rate
from monitored

traffic flow

Net inflow
=

Inflow
−

Outflow

× Overflow

Network Security Group
Department of Computer Science 6/19



How Does the Leaky-Bucket Algorithm Work?

General idea:

Bucket
volume

β

Leakage
rate γ

Fill rate
from monitored

traffic flow

Net inflow
=

Inflow
−

Outflow

× Overflow

Network Security Group
Department of Computer Science 6/19



How Does the Leaky-Bucket Algorithm Work?

General idea:

Bucket
volume

β

Leakage
rate γ

Fill rate
from monitored

traffic flow

Net inflow
=

Inflow
−

Outflow

× Overflow

Network Security Group
Department of Computer Science 6/19



What Properties Are Offered by the Leaky-Bucket Algorithm?

A leaky bucket reports a flow that sends more than γ w + β

during a time window with arbitrary width w

γ = Leakage rate = Flow base rate

β = Bucket volume = Burstiness allowance

> β

γw1

w1

> β

γw3

w3

< β

γw2

w2

Send rate

Time

γ

Time-window
flexibility

But: A leaky bucket can only monitor a single flow at a time! Memory
efficiency

×

Network Security Group
Department of Computer Science 7/19



What Properties Are Offered by the Leaky-Bucket Algorithm?

A leaky bucket reports a flow that sends more than γ w + β

during a time window with arbitrary width w

γ = Leakage rate = Flow base rate

β = Bucket volume = Burstiness allowance

> β

γw1

w1

> β

γw3

w3

< β

γw2

w2

Send rate

Time

γ

Time-window
flexibility

But: A leaky bucket can only monitor a single flow at a time! Memory
efficiency

×

Network Security Group
Department of Computer Science 7/19



What Properties Are Offered by the Leaky-Bucket Algorithm?

A leaky bucket reports a flow that sends more than γ w + β

during a time window with arbitrary width w

γ = Leakage rate = Flow base rate

β = Bucket volume = Burstiness allowance

> β

γw1

w1

> β

γw3

w3

< β

γw2

w2

Send rate

Time

γ

Time-window
flexibility

But: A leaky bucket can only monitor a single flow at a time! Memory
efficiency

×

Network Security Group
Department of Computer Science 7/19



What Properties Are Offered by the Leaky-Bucket Algorithm?

A leaky bucket reports a flow that sends more than γ w + β

during a time window with arbitrary width w

γ = Leakage rate = Flow base rate
β = Bucket volume = Burstiness allowance

> β

γw1

w1

> β

γw3

w3

< β

γw2

w2

Send rate

Time

γ

Time-window
flexibility

But: A leaky bucket can only monitor a single flow at a time! Memory
efficiency

×

Network Security Group
Department of Computer Science 7/19



What Properties Are Offered by the Leaky-Bucket Algorithm?

A leaky bucket reports a flow that sends more than γ w + β

during a time window with arbitrary width w

γ = Leakage rate = Flow base rate
β = Bucket volume = Burstiness allowance

> β

γw1

w1

> β

γw3

w3

< β

γw2

w2

Send rate

Time

γ

Time-window
flexibility

But: A leaky bucket can only monitor a single flow at a time! Memory
efficiency

×

Network Security Group
Department of Computer Science 7/19



What Properties Are Offered by the Leaky-Bucket Algorithm?

A leaky bucket reports a flow that sends more than γ w + β

during a time window with arbitrary width w

γ = Leakage rate = Flow base rate
β = Bucket volume = Burstiness allowance

> β

γw1

w1

> β

γw3

w3

< β

γw2

w2

Send rate

Time

γ

Time-window
flexibility

But: A leaky bucket can only monitor a single flow at a time! Memory
efficiency

×

Network Security Group
Department of Computer Science 7/19



What Properties Are Offered by the Leaky-Bucket Algorithm?

A leaky bucket reports a flow that sends more than γ w + β

during a time window with arbitrary width w

γ = Leakage rate = Flow base rate
β = Bucket volume = Burstiness allowance

> β

γw1

w1

> β

γw3

w3

< β

γw2

w2

Send rate

Time

γ

Time-window
flexibility

But: A leaky bucket can only monitor a single flow at a time! Memory
efficiency

×

Network Security Group
Department of Computer Science 7/19



What Properties Are Offered by the Leaky-Bucket Algorithm?

A leaky bucket reports a flow that sends more than γ w + β

during a time window with arbitrary width w

γ = Leakage rate = Flow base rate
β = Bucket volume = Burstiness allowance

> β

γw1

w1

> β

γw3

w3

< β

γw2

w2

Send rate

Time

γ

Time-window
flexibility

But: A leaky bucket can only monitor a single flow at a time! Memory
efficiency

×

Network Security Group
Department of Computer Science 7/19



What Properties Are Offered by the Leaky-Bucket Algorithm?

A leaky bucket reports a flow that sends more than γ w + β

during a time window with arbitrary width w

γ = Leakage rate = Flow base rate
β = Bucket volume = Burstiness allowance

> β

γw1

w1

> β

γw3

w3

< β

γw2

w2

Send rate

Time

γ

Time-window
flexibility

But: A leaky bucket can only monitor a single flow at a time! Memory
efficiency

×

Network Security Group
Department of Computer Science 7/19



What Properties Are Offered by the Leaky-Bucket Algorithm?

A leaky bucket reports a flow that sends more than γ w + β

during a time window with arbitrary width w

γ = Leakage rate = Flow base rate
β = Bucket volume = Burstiness allowance

> β

γw1

w1

> β

γw3

w3

< β

γw2

w2

Send rate

Time

γ

Time-window
flexibility

But: A leaky bucket can only monitor a single flow at a time!

Memory
efficiency

×

Network Security Group
Department of Computer Science 7/19



What Properties Are Offered by the Leaky-Bucket Algorithm?

A leaky bucket reports a flow that sends more than γ w + β

during a time window with arbitrary width w

γ = Leakage rate = Flow base rate
β = Bucket volume = Burstiness allowance

> β

γw1

w1

> β

γw3

w3

< β

γw2

w2

Send rate

Time

γ

Time-window
flexibility

But: A leaky bucket can only monitor a single flow at a time! Memory
efficiency

×

Network Security Group
Department of Computer Science 7/19



How Can We Apply the LB Algorithm in a Memory-Efficient Fashion?

Leaky-bucket
counters:

LB 1 LB 2 LB 3 LB 4

...

LB 256

Flows: f1 f2 f3 f4 f5 f6 f7 f8 ... f1475286

Hashing:

Monitored
flows:

f4 f7 f5 ... f8f3

× Report and
evict f8

on
overflow!

Eviction
criterion:

If LB net inflow turns negativeSend
rate

Time

γ

Network Security Group
Department of Computer Science 8/19



How Can We Apply the LB Algorithm in a Memory-Efficient Fashion?

Leaky-bucket
counters:

LB 1 LB 2 LB 3 LB 4

...

LB 256

Flows: f1 f2 f3 f4 f5 f6 f7 f8 ... f1475286

Hashing:

Monitored
flows:

f4 f7 f5 ... f8f3

× Report and
evict f8

on
overflow!

Eviction
criterion:

If LB net inflow turns negativeSend
rate

Time

γ

Network Security Group
Department of Computer Science 8/19



How Can We Apply the LB Algorithm in a Memory-Efficient Fashion?

Leaky-bucket
counters:

LB 1 LB 2 LB 3 LB 4

...

LB 256

Flows: f1 f2 f3 f4 f5 f6 f7 f8 ... f1475286

Hashing:

Monitored
flows:

f4 f7 f5 ... f8f3

× Report and
evict f8

on
overflow!

Eviction
criterion:

If LB net inflow turns negativeSend
rate

Time

γ

Network Security Group
Department of Computer Science 8/19



How Can We Apply the LB Algorithm in a Memory-Efficient Fashion?

Leaky-bucket
counters:

LB 1 LB 2 LB 3 LB 4

...

LB 256

Flows: f1 f2 f3 f4 f5 f6 f7 f8 ... f1475286

Hashing:

Monitored
flows:

f4 f7 f5 ... f8f3

× Report and
evict f8

on
overflow!

Eviction
criterion:

If LB net inflow turns negativeSend
rate

Time

γ

Network Security Group
Department of Computer Science 8/19



How Can We Apply the LB Algorithm in a Memory-Efficient Fashion?

Leaky-bucket
counters:

LB 1 LB 2 LB 3 LB 4

...

LB 256

Flows: f1 f2 f3 f4 f5 f6 f7 f8 ... f1475286

Hashing:

Monitored
flows:

f4 f7 f5 ... f8f3

× Report and
evict f8

on
overflow!

Eviction
criterion:

If LB net inflow turns negativeSend
rate

Time

γ

Network Security Group
Department of Computer Science 8/19



How Can We Apply the LB Algorithm in a Memory-Efficient Fashion?

Leaky-bucket
counters:

LB 1 LB 2 LB 3 LB 4

...

LB 256

Flows: f1 f2 f3 f4 f5 f6 f7 f8 ... f1475286

Hashing:

Monitored
flows:

f4 f7 f5 ... f8f3

× Report and
evict f8

on
overflow!

Eviction
criterion:

If LB net inflow turns negativeSend
rate

Time

γ

Network Security Group
Department of Computer Science 8/19



How Can We Apply the LB Algorithm in a Memory-Efficient Fashion?

Leaky-bucket
counters:

LB 1 LB 2 LB 3 LB 4

...

LB 256

Flows: f1 f2 f3 f4 f5 f6 f7 f8 ... f1475286

Hashing:

Monitored
flows:

f4 f7 f5 ... f8f3

× Report and
evict f8

on
overflow!

Eviction
criterion:

If LB net inflow turns negativeSend
rate

Time

γ

Network Security Group
Department of Computer Science 8/19



How Can We Apply the LB Algorithm in a Memory-Efficient Fashion?

Leaky-bucket
counters:

LB 1 LB 2 LB 3 LB 4

...

LB 256

Flows: f1 f2 f3 f4 f5 f6 f7 f8 ... f1475286

Hashing:

Monitored
flows:

f4 f7 f5 ... f8f3

× Report and
evict f8

on
overflow!

Eviction
criterion:

If LB net inflow turns negativeSend
rate

Time

γ

Network Security Group
Department of Computer Science 8/19



How Can We Apply the LB Algorithm in a Memory-Efficient Fashion?

Leaky-bucket
counters:

LB 1 LB 2 LB 3 LB 4

...

LB 256

Flows: f1 f2 f3 f4 f5 f6 f7 f8 ... f1475286

Hashing:

Monitored
flows:

f4 f7 f5 ... f8f3

× Report and
evict f8

on
overflow!

Eviction
criterion:

If LB net inflow turns negative

Send
rate

Time

γ

Network Security Group
Department of Computer Science 8/19



How Can We Apply the LB Algorithm in a Memory-Efficient Fashion?

Leaky-bucket
counters:

LB 1 LB 2 LB 3 LB 4

...

LB 256

Flows: f1 f2 f3 f4 f5 f6 f7 f8 ... f1475286

Hashing:

Monitored
flows:

f4 f7 f5 ... f8f3

× Report and
evict f8

on
overflow!

Eviction
criterion:

If LB net inflow turns negativeSend
rate

Time

γ

Network Security Group
Department of Computer Science 8/19



How Does ALBUS Work?

ALBUS: Adaptive Leaky-Bucket Undulation Sensor

Flows: f1 f2 f3 f4 f5 f6 f7 f8 ... f1475286

Leaky-bucket module

Background-counting module

Leaky-
bucket

counters:

LB 1 LB 2 LB 3 LB 4

...

... LB 256

f4 f7 f5 ... f8f3

Hashing:

Back-
ground

counters:

BC 1
Count c

Flow f2

BC 2
Count c

Flow f6

BC 3
Count c

Flow f1

BC 4
Count c

Flow □
...

... BC 256
Count c

Flow □

Overflow:
Report & Evict

Net inflow < 0:
Evict

On evict:
?

Filter:
Probabilistic

decay

Network Security Group
Department of Computer Science 9/19



How Does ALBUS Work?

ALBUS: Adaptive Leaky-Bucket Undulation Sensor

Flows: f1 f2 f3 f4 f5 f6 f7 f8 ... f1475286

Leaky-bucket module

Background-counting module

Leaky-
bucket

counters:

LB 1 LB 2 LB 3 LB 4

...

... LB 256

f4 f7 f5 ... f8f3

Hashing:

Back-
ground

counters:

BC 1
Count c

Flow f2

BC 2
Count c

Flow f6

BC 3
Count c

Flow f1

BC 4
Count c

Flow □
...

... BC 256
Count c

Flow □

Overflow:
Report & Evict

Net inflow < 0:
Evict

On evict:
?

Filter:
Probabilistic

decay

Network Security Group
Department of Computer Science 9/19



How Does ALBUS Work?

ALBUS: Adaptive Leaky-Bucket Undulation Sensor

Flows: f1 f2 f3 f4 f5 f6 f7 f8 ... f1475286

Leaky-bucket module

Background-counting module

Leaky-
bucket

counters:

LB 1 LB 2 LB 3 LB 4

...

... LB 256

f4 f7 f5 ... f8f3

Hashing:

Back-
ground

counters:

BC 1
Count c

Flow f2

BC 2
Count c

Flow f6

BC 3
Count c

Flow f1

BC 4
Count c

Flow □
...

... BC 256
Count c

Flow □

Overflow:
Report & Evict

Net inflow < 0:
Evict

On evict:
?

Filter:
Probabilistic

decay

Network Security Group
Department of Computer Science 9/19



How Does ALBUS Work?

ALBUS: Adaptive Leaky-Bucket Undulation Sensor

Flows: f1 f2 f3 f4 f5 f6 f7 f8 ... f1475286

Leaky-bucket module

Background-counting module

Leaky-
bucket

counters:

LB 1 LB 2 LB 3 LB 4

...

... LB 256

f4 f7 f5 ... f8f3

Hashing:

Back-
ground

counters:

BC 1
Count c

Flow f2

BC 2
Count c

Flow f6

BC 3
Count c

Flow f1

BC 4
Count c

Flow □
...

... BC 256
Count c

Flow □

Overflow:
Report & Evict

Net inflow < 0:
Evict

On evict:
?

Filter:
Probabilistic

decay

Network Security Group
Department of Computer Science 9/19



How Does ALBUS Work?

ALBUS: Adaptive Leaky-Bucket Undulation Sensor

Flows: f1 f2 f3 f4 f5 f6 f7 f8 ... f1475286

Leaky-bucket module

Background-counting module

Leaky-
bucket

counters:

LB 1 LB 2 LB 3 LB 4

...

... LB 256

f4 f7 f5 ... f8f3

Hashing:

Back-
ground

counters:

BC 1
Count c

Flow f2

BC 2
Count c

Flow f6

BC 3
Count c

Flow f1

BC 4
Count c

Flow □
...

... BC 256
Count c

Flow □

Overflow:
Report & Evict

Net inflow < 0:
Evict

On evict:
?

Filter:
Probabilistic

decay

Network Security Group
Department of Computer Science 9/19



How Does ALBUS Work?

ALBUS: Adaptive Leaky-Bucket Undulation Sensor

Flows: f1 f2 f3 f4 f5 f6 f7 f8 ... f1475286

Leaky-bucket module

Background-counting module

Leaky-
bucket

counters:

LB 1 LB 2 LB 3 LB 4

...

... LB 256

f4 f7 f5 ... f8f3

Hashing:

Back-
ground

counters:

BC 1
Count c

Flow f2

BC 2
Count c

Flow f6

BC 3
Count c

Flow f1

BC 4
Count c

Flow □
...

... BC 256
Count c

Flow □

Overflow:
Report & Evict

Net inflow < 0:
Evict

On evict:
?

Filter:
Probabilistic

decay

Network Security Group
Department of Computer Science 9/19



What to Do When a Flow Is Evicted?

LB n

f1

Leaky-bucket
counter

f2f1 f3

× Evicted

Question:
How to find the most bursty flow
among the background flows

of a leaky-bucket counter?

BC n
Count c

Flow f2

Background
counter

Probabilistic decay (Yang et al. 2019)
Packet: Flow f2 , Size s2

Count: c + s2

Flow: f2

Packet: Flow f3 , Size s3

Count: c − s3

Probability p

Count: c
Flow: f2

else

Count: s3

Flow: f3

c − s3 ≤ 0
Count: c − s3

Flow: f2

else

Effective at finding
largest background flow!f2

Pull

Network Security Group
Department of Computer Science 10/19



What to Do When a Flow Is Evicted?

LB n

f1

Leaky-bucket
counter

f2f1 f3

× Evicted

Question:
How to find the most bursty flow
among the background flows

of a leaky-bucket counter?

BC n
Count c

Flow f2

Background
counter

Probabilistic decay (Yang et al. 2019)
Packet: Flow f2 , Size s2

Count: c + s2

Flow: f2

Packet: Flow f3 , Size s3

Count: c − s3

Probability p

Count: c
Flow: f2

else

Count: s3

Flow: f3

c − s3 ≤ 0
Count: c − s3

Flow: f2

else

Effective at finding
largest background flow!f2

Pull

Network Security Group
Department of Computer Science 10/19



What to Do When a Flow Is Evicted?

LB n

f1

Leaky-bucket
counter

f2f1 f3

× Evicted

Question:
How to find the most bursty flow
among the background flows

of a leaky-bucket counter?

BC n
Count c

Flow f2

Background
counter

Probabilistic decay (Yang et al. 2019)
Packet: Flow f2 , Size s2

Count: c + s2

Flow: f2

Packet: Flow f3 , Size s3

Count: c − s3

Probability p

Count: c
Flow: f2

else

Count: s3

Flow: f3

c − s3 ≤ 0
Count: c − s3

Flow: f2

else

Effective at finding
largest background flow!f2

Pull

Network Security Group
Department of Computer Science 10/19



What to Do When a Flow Is Evicted?

LB n

f1

Leaky-bucket
counter

f2f1 f3

× Evicted

Question:
How to find the most bursty flow
among the background flows

of a leaky-bucket counter?

BC n
Count c

Flow f2

Background
counter

Probabilistic decay (Yang et al. 2019)
Packet: Flow f2 , Size s2

Count: c + s2

Flow: f2

Packet: Flow f3 , Size s3

Count: c − s3

Probability p

Count: c
Flow: f2

else

Count: s3

Flow: f3

c − s3 ≤ 0
Count: c − s3

Flow: f2

else

Effective at finding
largest background flow!f2

Pull

Network Security Group
Department of Computer Science 10/19



What to Do When a Flow Is Evicted?

LB n

f1

Leaky-bucket
counter

f2f1 f3

× Evicted

Question:
How to find the most bursty flow
among the background flows

of a leaky-bucket counter?

BC n
Count c

Flow f2

Background
counter

Probabilistic decay (Yang et al. 2019)
Packet: Flow f2 , Size s2

Count: c + s2

Flow: f2

Packet: Flow f3 , Size s3

Count: c − s3

Probability p

Count: c
Flow: f2

else

Count: s3

Flow: f3

c − s3 ≤ 0
Count: c − s3

Flow: f2

else

Effective at finding
largest background flow!f2

Pull

Network Security Group
Department of Computer Science 10/19



What to Do When a Flow Is Evicted?

LB n

f1

Leaky-bucket
counter

f2f1 f3

× Evicted

Question:
How to find the most bursty flow
among the background flows

of a leaky-bucket counter?

BC n
Count c

Flow f2

Background
counter

Probabilistic decay (Yang et al. 2019)
Packet: Flow f2 , Size s2

Count: c + s2

Flow: f2

Packet: Flow f3 , Size s3

Count: c − s3

Probability p

Count: c
Flow: f2

else

Count: s3

Flow: f3

c − s3 ≤ 0
Count: c − s3

Flow: f2

else

Effective at finding
largest background flow!f2

Pull

Network Security Group
Department of Computer Science 10/19



What to Do When a Flow Is Evicted?

LB n

f1

Leaky-bucket
counter

f2f1 f3

× Evicted

Question:
How to find the most bursty flow
among the background flows

of a leaky-bucket counter?

BC n
Count c

Flow f2

Background
counter

Probabilistic decay (Yang et al. 2019)

Packet: Flow f2 , Size s2

Count: c + s2

Flow: f2

Packet: Flow f3 , Size s3

Count: c − s3

Probability p

Count: c
Flow: f2

else

Count: s3

Flow: f3

c − s3 ≤ 0
Count: c − s3

Flow: f2

else

Effective at finding
largest background flow!f2

Pull

Network Security Group
Department of Computer Science 10/19



What to Do When a Flow Is Evicted?

LB n

f1

Leaky-bucket
counter

f2f1 f3

× Evicted

Question:
How to find the most bursty flow
among the background flows

of a leaky-bucket counter?

BC n
Count c

Flow f2

Background
counter

Probabilistic decay (Yang et al. 2019)
Packet: Flow f2 , Size s2

Count: c + s2

Flow: f2

Packet: Flow f3 , Size s3

Count: c − s3

Probability p

Count: c
Flow: f2

else

Count: s3

Flow: f3

c − s3 ≤ 0
Count: c − s3

Flow: f2

else

Effective at finding
largest background flow!f2

Pull

Network Security Group
Department of Computer Science 10/19



What to Do When a Flow Is Evicted?

LB n

f1

Leaky-bucket
counter

f2f1 f3

× Evicted

Question:
How to find the most bursty flow
among the background flows

of a leaky-bucket counter?

BC n
Count c

Flow f2

Background
counter

Probabilistic decay (Yang et al. 2019)
Packet: Flow f2 , Size s2

Count: c + s2

Flow: f2

Packet: Flow f3 , Size s3

Count: c − s3

Probability p

Count: c
Flow: f2

else

Count: s3

Flow: f3

c − s3 ≤ 0
Count: c − s3

Flow: f2

else

Effective at finding
largest background flow!f2

Pull

Network Security Group
Department of Computer Science 10/19



What to Do When a Flow Is Evicted?

LB n

f1

Leaky-bucket
counter

f2f1 f3

× Evicted

Question:
How to find the most bursty flow
among the background flows

of a leaky-bucket counter?

BC n
Count c

Flow f2

Background
counter

Probabilistic decay (Yang et al. 2019)
Packet: Flow f2 , Size s2

Count: c + s2

Flow: f2

Packet: Flow f3 , Size s3

Count: c − s3

Probability p

Count: c
Flow: f2

else

Count: s3

Flow: f3

c − s3 ≤ 0
Count: c − s3

Flow: f2

else

Effective at finding
largest background flow!f2

Pull

Network Security Group
Department of Computer Science 10/19



What to Do When a Flow Is Evicted?

LB n

f1

Leaky-bucket
counter

f2f1 f3

× Evicted

Question:
How to find the most bursty flow
among the background flows

of a leaky-bucket counter?

BC n
Count c

Flow f2

Background
counter

Probabilistic decay (Yang et al. 2019)
Packet: Flow f2 , Size s2

Count: c + s2

Flow: f2

Packet: Flow f3 , Size s3

Count: c − s3

Probability p

Count: c
Flow: f2

else

Count: s3

Flow: f3

c − s3 ≤ 0
Count: c − s3

Flow: f2

else

Effective at finding
largest background flow!f2

Pull

Network Security Group
Department of Computer Science 10/19



What to Do When a Flow Is Evicted?

LB n

f1

Leaky-bucket
counter

f2f1 f3

× Evicted

Question:
How to find the most bursty flow
among the background flows

of a leaky-bucket counter?

BC n
Count c

Flow f2

Background
counter

Probabilistic decay (Yang et al. 2019)
Packet: Flow f2 , Size s2

Count: c + s2

Flow: f2

Packet: Flow f3 , Size s3

Count: c − s3

Probability p

Count: c
Flow: f2

else

Count: s3

Flow: f3

c − s3 ≤ 0
Count: c − s3

Flow: f2

else

Effective at finding
largest background flow!f2

Pull

Network Security Group
Department of Computer Science 10/19



What to Do When a Flow Is Evicted?

LB n

f1

Leaky-bucket
counter

f2f1 f3

× Evicted

Question:
How to find the most bursty flow
among the background flows

of a leaky-bucket counter?

BC n
Count c

Flow f2

Background
counter

Probabilistic decay (Yang et al. 2019)
Packet: Flow f2 , Size s2

Count: c + s2

Flow: f2

Packet: Flow f3 , Size s3

Count: c − s3

Probability p

Count: c
Flow: f2

else

Count: s3

Flow: f3

c − s3 ≤ 0

Count: c − s3

Flow: f2

else

Effective at finding
largest background flow!f2

Pull

Network Security Group
Department of Computer Science 10/19



What to Do When a Flow Is Evicted?

LB n

f1

Leaky-bucket
counter

f2f1 f3

× Evicted

Question:
How to find the most bursty flow
among the background flows

of a leaky-bucket counter?

BC n
Count c

Flow f2

Background
counter

Probabilistic decay (Yang et al. 2019)
Packet: Flow f2 , Size s2

Count: c + s2

Flow: f2

Packet: Flow f3 , Size s3

Count: c − s3

Probability p

Count: c
Flow: f2

else

Count: s3

Flow: f3

c − s3 ≤ 0
Count: c − s3

Flow: f2

else

Effective at finding
largest background flow!f2

Pull

Network Security Group
Department of Computer Science 10/19



What to Do When a Flow Is Evicted?

LB n

f1

Leaky-bucket
counter

f2f1 f3

× Evicted

Question:
How to find the most bursty flow
among the background flows

of a leaky-bucket counter?

BC n
Count c

Flow f2

Background
counter

Probabilistic decay (Yang et al. 2019)
Packet: Flow f2 , Size s2

Count: c + s2

Flow: f2

Packet: Flow f3 , Size s3

Count: c − s3

Probability p

Count: c
Flow: f2

else

Count: s3

Flow: f3

c − s3 ≤ 0
Count: c − s3

Flow: f2

else

Effective at finding
largest background flow!

f2

Pull

Network Security Group
Department of Computer Science 10/19



What to Do When a Flow Is Evicted?

LB n

f1

Leaky-bucket
counter

f2f1 f3

× Evicted

Question:
How to find the most bursty flow
among the background flows

of a leaky-bucket counter?

BC n
Count c

Flow f2

Background
counter

Probabilistic decay (Yang et al. 2019)
Packet: Flow f2 , Size s2

Count: c + s2

Flow: f2

Packet: Flow f3 , Size s3

Count: c − s3

Probability p

Count: c
Flow: f2

else

Count: s3

Flow: f3

c − s3 ≤ 0
Count: c − s3

Flow: f2

else

Effective at finding
largest background flow!

f2

Pull

Network Security Group
Department of Computer Science 10/19



What to Do When a Flow Is Evicted?

LB n

f1

Leaky-bucket
counter

f2f1 f3

× Evicted

Question:
How to find the most bursty flow
among the background flows

of a leaky-bucket counter?

BC n
Count c

Flow f2

Background
counter

Probabilistic decay (Yang et al. 2019)
Packet: Flow f2 , Size s2

Count: c + s2

Flow: f2

Packet: Flow f3 , Size s3

Count: c − s3

Probability p

Count: c
Flow: f2

else

Count: s3

Flow: f3

c − s3 ≤ 0
Count: c − s3

Flow: f2

else

Effective at finding
largest background flow!f2

Pull

Network Security Group
Department of Computer Science 10/19



How Does ALBUS Work?

ALBUS: Adaptive Leaky-Bucket Undulation Sensor

Flows: f1 f2 f3 f4 f5 f6 f7 f8 ... f1475286

Leaky-bucket module

Background-counting module

Leaky-
bucket

counters:

LB 1 LB 2 LB 3 LB 4

...

... LB 256

f4 f7 f5 ... f8f3

Hashing:

Back-
ground

counters:

BC 1
Count c

Flow f2

BC 2
Count c

Flow f6

BC 3
Count c

Flow f1

BC 4
Count c

Flow □
...

... BC 256
Count c

Flow □

Overflow:
Report & Evict

Net inflow < 0:
Evict

On evict:
?

Filter:
Probabilistic

decay

Network Security Group
Department of Computer Science 11/19



How Does ALBUS Work?

ALBUS: Adaptive Leaky-Bucket Undulation Sensor

Flows: f1 f2 f3 f4 f5 f6 f7 f8 ... f1475286

Leaky-bucket module

Background-counting module

Leaky-
bucket

counters:

LB 1 LB 2 LB 3 LB 4

...

... LB 256

f4 f7 f5 ... f8f3

Hashing:

Back-
ground

counters:

BC 1
Count c

Flow f2

BC 2
Count c

Flow f6

BC 3
Count c

Flow f1

BC 4
Count c

Flow □
...

... BC 256
Count c

Flow □

Overflow:
Report & Evict

Net inflow < 0:
Evict

On evict:
Pull from BC

Filter:
Probabilistic

decay

Network Security Group
Department of Computer Science 11/19



How Does ALBUS Work?

ALBUS: Adaptive Leaky-Bucket Undulation Sensor

Flows: f1 f2 f3 f4 f5 f6 f7 f8 ... f1475286

Leaky-bucket module

Background-counting module

Leaky-
bucket

counters:

LB 1 LB 2 LB 3 LB 4

...

... LB 256

f4 f7 f5 ... f8f3

Hashing:

Back-
ground

counters:

BC 1
Count c

Flow f2

BC 2
Count c

Flow f6

BC 3
Count c

Flow f1

BC 4
Count c

Flow □
...

... BC 256
Count c

Flow □

Overflow:
Report & Evict

Net inflow < 0:
Evict

On evict:
Pull from BC

Filter:
Probabilistic

decay

Network Security Group
Department of Computer Science 11/19



How Does ALBUS Work?

ALBUS: Adaptive Leaky-Bucket Undulation Sensor

Flows: f1 f2 f3 f4 f5 f6 f7 f8 ... f1475286

Leaky-bucket module

Background-counting module

Leaky-
bucket

counters:

LB 1 LB 2 LB 3 LB 4

...

... LB 256

f4 f7 f5 ... f8f3

Hashing:

Back-
ground

counters:

BC 1
Count c

Flow f2

BC 2
Count c

Flow f6

BC 3
Count c

Flow f1

BC 4
Count c

Flow □
...

... BC 256
Count c

Flow □

Overflow:
Report & Evict

Net inflow < 0:
Evict

On evict:
Pull from BC

Filter:
Probabilistic

decay

Additional
benefits?

Network Security Group
Department of Computer Science 11/19



Do Background Counters Have Additional Benefits?

Background counters prevent flow masking

LB n

□

f1 f2

BC n
Count c

Flow □
Time

Flow
send
rate

γ (Base rate)

f1

f2

f1 masks f2will be high!

Check c >
Threshold

Push
×f2

Network Security Group
Department of Computer Science 12/19



Do Background Counters Have Additional Benefits?

Background counters prevent flow masking

LB n

□

f1 f2

BC n
Count c

Flow □

Time

Flow
send
rate

γ (Base rate)

f1

f2

f1 masks f2will be high!

Check c >
Threshold

Push
×f2

Network Security Group
Department of Computer Science 12/19



Do Background Counters Have Additional Benefits?

Background counters prevent flow masking

LB n

□

f1 f2

BC n
Count c

Flow □
Time

Flow
send
rate

γ (Base rate)

f1

f2

f1 masks f2will be high!

Check c >
Threshold

Push
×f2

Network Security Group
Department of Computer Science 12/19



Do Background Counters Have Additional Benefits?

Background counters prevent flow masking

LB n

□

f1 f2

BC n
Count c

Flow □
Time

Flow
send
rate

γ (Base rate)

f1

f2

f1 masks f2will be high!

Check c >
Threshold

Push
×f2

Network Security Group
Department of Computer Science 12/19



Do Background Counters Have Additional Benefits?

Background counters prevent flow masking

LB n

□

f1 f2

BC n
Count c

Flow □
Time

Flow
send
rate

γ (Base rate)

f1

f2

f1 masks f2will be high!

Check c >
Threshold

Push
×f2

Network Security Group
Department of Computer Science 12/19



Do Background Counters Have Additional Benefits?

Background counters prevent flow masking

LB n

□

f1 f2

BC n
Count c

Flow □
Time

Flow
send
rate

γ (Base rate)

f1

f2

f1 masks f2will be high!

Check c >
Threshold

Push
×f2

Network Security Group
Department of Computer Science 12/19



Do Background Counters Have Additional Benefits?

Background counters prevent flow masking

LB n

f1

f1 f2

BC n
Count c

Flow □
Time

Flow
send
rate

γ (Base rate)

f1

f2

f1 masks f2will be high!

Check c >
Threshold

Push
×f2

Network Security Group
Department of Computer Science 12/19



Do Background Counters Have Additional Benefits?

Background counters prevent flow masking

LB n

f1

f1 f2

BC n
Count c

Flow f2
Time

Flow
send
rate

γ (Base rate)

f1

f2

f1 masks f2will be high!

Check c >
Threshold

Push
×f2

Network Security Group
Department of Computer Science 12/19



Do Background Counters Have Additional Benefits?

Background counters prevent flow masking

LB n

f1

f1 f2

BC n
Count c

Flow f2
Time

Flow
send
rate

γ (Base rate)

f1

f2

f1 masks f2

will be high!

Check c >
Threshold

Push
×f2

Network Security Group
Department of Computer Science 12/19



Do Background Counters Have Additional Benefits?

Background counters prevent flow masking

LB n

f1

f1 f2

BC n
Count c

Flow f2
Time

Flow
send
rate

γ (Base rate)

f1

f2

f1 masks f2will be high!

Check c >
Threshold

Push
×f2

Network Security Group
Department of Computer Science 12/19



Do Background Counters Have Additional Benefits?

Background counters prevent flow masking

LB n

f1

f1 f2

BC n
Count c

Flow f2
Time

Flow
send
rate

γ (Base rate)

f1

f2

f1 masks f2will be high!

Check c >
Threshold

Push
×f2

Network Security Group
Department of Computer Science 12/19



Do Background Counters Have Additional Benefits?

Background counters prevent flow masking

LB n

f1

f1 f2

BC n
Count c

Flow f2
Time

Flow
send
rate

γ (Base rate)

f1

f2

f1 masks f2will be high!

Check c >
Threshold

Push
×f2

Network Security Group
Department of Computer Science 12/19



How Does ALBUS Work?

ALBUS: Adaptive Leaky-Bucket Undulation Sensor

Flows: f1 f2 f3 f4 f5 f6 f7 f8 ... f1475286

Leaky-bucket module

Background-counting module

Leaky-
bucket

counters:

LB 1 LB 2 LB 3 LB 4

...

... LB 256

f4 f7 f5 ... f8f3

Hashing:

Back-
ground

counters:

BC 1
Count c

Flow f2

BC 2
Count c

Flow f6

BC 3
Count c

Flow f1

BC 4
Count c

Flow □
...

... BC 256
Count c

Flow □

Overflow:
Report & Evict

Net inflow < 0:
Evict

On evict:
Pull from BC

Filter:
Probabilistic

decay

Network Security Group
Department of Computer Science 13/19



How Does ALBUS Work?

ALBUS: Adaptive Leaky-Bucket Undulation Sensor

Flows: f1 f2 f3 f4 f5 f6 f7 f8 ... f1475286

Leaky-bucket module

Background-counting module

Leaky-
bucket

counters:

LB 1 LB 2 LB 3 LB 4

...

... LB 256

f4 f7 f5 ... f8f3

Hashing:

Back-
ground

counters:

BC 1
Count c

Flow f2

BC 2
Count c

Flow f6

BC 3
Count c

Flow f1

BC 4
Count c

Flow □
...

... BC 256
Count c

Flow □

Overflow:
Report & Evict

Net inflow < 0:
Evict

On evict:
Pull from BC

Filter:
Probabilistic

decay

High count:
Push to LB

Network Security Group
Department of Computer Science 13/19



How Does ALBUS Perform Under Burst-Flood Attacks?

Scenario: Malicious bursts last for 200 milliseconds and are 20% larger than allowed

Recall = Reported malicious bursts
Malicious bursts

0.1 0.8 1.5

100%

CountMin-Sketch

CountMin-Sketch
(Threshold 50%)

Reset period [seconds]

Recall

Precision = Reported malicious bursts
Reported bursts

0.1 0.8 1.5

100% CountMin-Sketch

CountMin-Sketch
(Threshold 50%)

Reset period [seconds]

Precision

Perfect
precision
by design!

CountMin-Sketch:
Reset period

must fit
burst width

=⇒ Evasion

Network Security Group
Department of Computer Science 14/19



How Does ALBUS Perform Under Burst-Flood Attacks?
Scenario: Malicious bursts last for 200 milliseconds and are 20% larger than allowed

Recall = Reported malicious bursts
Malicious bursts

0.1 0.8 1.5

100%

CountMin-Sketch

CountMin-Sketch
(Threshold 50%)

Reset period [seconds]

Recall

Precision = Reported malicious bursts
Reported bursts

0.1 0.8 1.5

100% CountMin-Sketch

CountMin-Sketch
(Threshold 50%)

Reset period [seconds]

Precision

Perfect
precision
by design!

CountMin-Sketch:
Reset period

must fit
burst width

=⇒ Evasion

Network Security Group
Department of Computer Science 14/19



How Does ALBUS Perform Under Burst-Flood Attacks?
Scenario: Malicious bursts last for 200 milliseconds and are 20% larger than allowed

Recall = Reported malicious bursts
Malicious bursts

0.1 0.8 1.5

100%

CountMin-Sketch

CountMin-Sketch
(Threshold 50%)

ALBUS

Reset period [seconds]

Recall

Precision = Reported malicious bursts
Reported bursts

0.1 0.8 1.5

100% CountMin-Sketch

CountMin-Sketch
(Threshold 50%)

ALBUS

Reset period [seconds]

Precision

Perfect
precision
by design!

CountMin-Sketch:
Reset period

must fit
burst width

=⇒ Evasion

Network Security Group
Department of Computer Science 14/19



How Does ALBUS Perform Under Burst-Flood Attacks?
Scenario: Malicious bursts last for 200 milliseconds and are 20% larger than allowed

Recall = Reported malicious bursts
Malicious bursts

0.1 0.8 1.5

100%

CountMin-Sketch

CountMin-Sketch
(Threshold 50%)

ALBUS

Reset period [seconds]

Recall

Precision = Reported malicious bursts
Reported bursts

0.1 0.8 1.5

100% CountMin-Sketch

CountMin-Sketch
(Threshold 50%)

ALBUS

Reset period [seconds]

Precision

Perfect
precision
by design!

CountMin-Sketch:
Reset period

must fit
burst width

=⇒ Evasion

Network Security Group
Department of Computer Science 14/19



How Does ALBUS Perform Under Burst-Flood Attacks?
Scenario: Malicious bursts last for 200 milliseconds and are 20% larger than allowed

Recall = Reported malicious bursts
Malicious bursts

0.1 0.8 1.5

100%

CountMin-Sketch

CountMin-Sketch
(Threshold 50%)

ALBUS

Reset period [seconds]

Recall

Precision = Reported malicious bursts
Reported bursts

0.1 0.8 1.5

100% CountMin-Sketch

CountMin-Sketch
(Threshold 50%)

ALBUS

Reset period [seconds]

Precision

Perfect
precision
by design!

CountMin-Sketch:
Reset period

must fit
burst width

=⇒ Evasion

Network Security Group
Department of Computer Science 14/19



Does ALBUS Satisfy All Requirements of Effective Burst Detection?

To withstand burst-flood attacks, a monitoring algorithm must satisfy the following requirements:

Time-window
flexibility

Memory
efficiency

Processing
efficiency

ALBUS

?

Network Security Group
Department of Computer Science 15/19



Does ALBUS Satisfy All Requirements of Effective Burst Detection?

To withstand burst-flood attacks, a monitoring algorithm must satisfy the following requirements:

Time-window
flexibility

Memory
efficiency

Processing
efficiency

ALBUS

?

Network Security Group
Department of Computer Science 15/19



Does ALBUS Satisfy All Requirements of Effective Burst Detection?

To withstand burst-flood attacks, a monitoring algorithm must satisfy the following requirements:

Time-window
flexibility

Memory
efficiency

Processing
efficiency

ALBUS

?

Network Security Group
Department of Computer Science 15/19



Does ALBUS Satisfy All Requirements of Effective Burst Detection?

To withstand burst-flood attacks, a monitoring algorithm must satisfy the following requirements:

Time-window
flexibility

Memory
efficiency

Processing
efficiency

ALBUS

?

Network Security Group
Department of Computer Science 15/19



Does ALBUS Allow Efficient Processing?

Yes. ALBUS has low computational complexity:

Single hash computation No counter-array iterations No associative arrays

=⇒ ALBUS is hardware-friendly

FPGA implementation
for Xilinx Virtex

UltraScale+ FPGA:

π .c

π .f

Σ

0

CTE_unused

λ.t
CTE

Σ

λ.f

Σ

λ.c
>> 3

>> 3
0

>> 3

ΣCTE_βoverγ

CMP

CMP

CMP

FSM allow

0

Σ

CTE_β

CMP

flow
size

flow
ts

flow
ID

Hardware design of
a LB-BC combination

Throughput:
200 million packets

per second
∼ 560 Gbps!

Network Security Group
Department of Computer Science 16/19



Does ALBUS Allow Efficient Processing?

Yes. ALBUS has low computational complexity:

Single hash computation No counter-array iterations No associative arrays

=⇒ ALBUS is hardware-friendly

FPGA implementation
for Xilinx Virtex

UltraScale+ FPGA:

π .c

π .f

Σ

0

CTE_unused

λ.t
CTE

Σ

λ.f

Σ

λ.c
>> 3

>> 3
0

>> 3

ΣCTE_βoverγ

CMP

CMP

CMP

FSM allow

0

Σ

CTE_β

CMP

flow
size

flow
ts

flow
ID

Hardware design of
a LB-BC combination

Throughput:
200 million packets

per second
∼ 560 Gbps!

Network Security Group
Department of Computer Science 16/19



Does ALBUS Allow Efficient Processing?

Yes. ALBUS has low computational complexity:

Single hash computation

No counter-array iterations No associative arrays

=⇒ ALBUS is hardware-friendly

FPGA implementation
for Xilinx Virtex

UltraScale+ FPGA:

π .c

π .f

Σ

0

CTE_unused

λ.t
CTE

Σ

λ.f

Σ

λ.c
>> 3

>> 3
0

>> 3

ΣCTE_βoverγ

CMP

CMP

CMP

FSM allow

0

Σ

CTE_β

CMP

flow
size

flow
ts

flow
ID

Hardware design of
a LB-BC combination

Throughput:
200 million packets

per second
∼ 560 Gbps!

Network Security Group
Department of Computer Science 16/19



Does ALBUS Allow Efficient Processing?

Yes. ALBUS has low computational complexity:

Single hash computation No counter-array iterations

No associative arrays

=⇒ ALBUS is hardware-friendly

FPGA implementation
for Xilinx Virtex

UltraScale+ FPGA:

π .c

π .f

Σ

0

CTE_unused

λ.t
CTE

Σ

λ.f

Σ

λ.c
>> 3

>> 3
0

>> 3

ΣCTE_βoverγ

CMP

CMP

CMP

FSM allow

0

Σ

CTE_β

CMP

flow
size

flow
ts

flow
ID

Hardware design of
a LB-BC combination

Throughput:
200 million packets

per second
∼ 560 Gbps!

Network Security Group
Department of Computer Science 16/19



Does ALBUS Allow Efficient Processing?

Yes. ALBUS has low computational complexity:

Single hash computation No counter-array iterations No associative arrays

=⇒ ALBUS is hardware-friendly

FPGA implementation
for Xilinx Virtex

UltraScale+ FPGA:

π .c

π .f

Σ

0

CTE_unused

λ.t
CTE

Σ

λ.f

Σ

λ.c
>> 3

>> 3
0

>> 3

ΣCTE_βoverγ

CMP

CMP

CMP

FSM allow

0

Σ

CTE_β

CMP

flow
size

flow
ts

flow
ID

Hardware design of
a LB-BC combination

Throughput:
200 million packets

per second
∼ 560 Gbps!

Network Security Group
Department of Computer Science 16/19



Does ALBUS Allow Efficient Processing?

Yes. ALBUS has low computational complexity:

Single hash computation No counter-array iterations No associative arrays

=⇒ ALBUS is hardware-friendly

FPGA implementation
for Xilinx Virtex

UltraScale+ FPGA:

π .c

π .f

Σ

0

CTE_unused

λ.t
CTE

Σ

λ.f

Σ

λ.c
>> 3

>> 3
0

>> 3

ΣCTE_βoverγ

CMP

CMP

CMP

FSM allow

0

Σ

CTE_β

CMP

flow
size

flow
ts

flow
ID

Hardware design of
a LB-BC combination

Throughput:
200 million packets

per second
∼ 560 Gbps!

Network Security Group
Department of Computer Science 16/19



Does ALBUS Allow Efficient Processing?

Yes. ALBUS has low computational complexity:

Single hash computation No counter-array iterations No associative arrays

=⇒ ALBUS is hardware-friendly

FPGA implementation
for Xilinx Virtex

UltraScale+ FPGA:

π .c

π .f

Σ

0

CTE_unused

λ.t
CTE

Σ

λ.f

Σ

λ.c
>> 3

>> 3
0

>> 3

ΣCTE_βoverγ

CMP

CMP

CMP

FSM allow

0

Σ

CTE_β

CMP

flow
size

flow
ts

flow
ID

Hardware design of
a LB-BC combination

Throughput:
200 million packets

per second
∼ 560 Gbps!

Network Security Group
Department of Computer Science 16/19



Does ALBUS Allow Efficient Processing?

Yes. ALBUS has low computational complexity:

Single hash computation No counter-array iterations No associative arrays

=⇒ ALBUS is hardware-friendly

FPGA implementation
for Xilinx Virtex

UltraScale+ FPGA:

π .c

π .f

Σ

0

CTE_unused

λ.t
CTE

Σ

λ.f

Σ

λ.c
>> 3

>> 3
0

>> 3

ΣCTE_βoverγ

CMP

CMP

CMP

FSM allow

0

Σ

CTE_β

CMP

flow
size

flow
ts

flow
ID

Hardware design of
a LB-BC combination

Throughput:
200 million packets

per second
∼ 560 Gbps!

Network Security Group
Department of Computer Science 16/19



Summary: What Is the Contribution of ALBUS?

ALBUS is considerably more effective under burst-flood attacks than previous monitoring algorithms.

CountMin-Sketch
Count-Sketch

How Do DDoS Defense Systems Detect Suspicious Flows?

DDoS defense systems mostly use the algorithms CountMin-Sketch and Count-Sketch for detection
+ Limited memory + Efficient processing - Limited accuracy

TimeReset Reset
Reset periodFor each flow:

Estimated
flow volume
over period

Expected
flow volume
over period

>

Suspicious flow!

Fl
ow

se
nd

in
g

ra
te

Link capacity
Elephant Flow: Detected

Burst-Flood Attack:
Medium-rate bursts in different flows

Small volume of each flow

Burst splits by resets

Network Security Group
Department of Computer Science 2/14

Fixed time-windows

How Do Sketch Algorithms Perform Under Burst-Flood Attacks?

Scenario: Malicious bursts last for 200 milliseconds and are 20% larger than allowed

Recall = Reported malicious bursts
Malicious bursts

0.1 0.8 1.5

100%

CountMin-Sketch

CountMin-Sketch
(Threshold 50%)

Reset period [seconds]

Recall

Precision = Reported malicious bursts
Reported bursts

0.1 0.8 1.5

100% CountMin-Sketch

CountMin-Sketch
(Threshold 50%)

Reset period [seconds]

Precision

Trade-off
between recall
and precision

CountMin-Sketch:
Reset period

must fit
burst width

=⇒ Evasion

Network Security Group
Department of Computer Science 3/14

Accuracy trade-off

ALBUS

Time-window
flexibility

How Does the Leaky-Bucket Algorithm Work?

General idea:

Bucket
volume

β

Leakage
rate γ

Fill rate
from monitored

traffic flow

Net inflow
=

Inflow
−

Outflow

× Overflow

Network Security Group
Department of Computer Science 5/16

Leaky-bucket algorithm

Memory
efficiency

How Does Everything Fit Together in ALBUS?

ALBUS: Adaptive Leaky-Bucket Undulation Sensor

Flows: f1 f2 f3 f4 f5 f6 f7 f8 ... f1475286

Leaky-
bucket

counters:

LB 1 LB 2 LB 3 LB 4

...

LB 256

f4 f7 f5 ... f8f3

Back-
ground

counters:

BC 1
Count c

Flow f2

BC 2
Count c

Flow f6

BC 3
Count c

Flow f1

BC 4
Count c

Flow □
...

BC 256
Count c

Flow □

Hashing:
Overflow:

Report & Evict

Net inflow < 0:
Evict

On evict:
Pull from BC

Filter:
Probabilistic

decay

High count:
Push to LB

Network Security Group
Department of Computer Science 10/14

ALBUS data-structure

Processing
efficiency

Does ALBUS Allow Efficient Processing?

Yes. ALBUS has low complexity:

Single hash computation No counter-array iterations No associative arrays

=⇒ ALBUS is hardware-friendly

FPGA implementation
for Xilinx Virtex

UltraScale+ FPGA:

π .c

π .f

Σ

0

CTE_unused

λ.t
CTE

Σ

λ.f

Σ

λ.c
>> 3

>> 3
0

>> 3

ΣCTE_βoverγ

CMP

CMP

CMP

FSM allow

0

Σ

CTE_β

CMP

flow
size

flow
ts

flow
ID

Hardware design of
a LB-BC combination

Throughput:
200 million packets

per second
∼ 560 Gbps!

Network Security Group
Department of Computer Science 13/14

FPGA implementation

Network Security Group
Department of Computer Science 17/19



Summary: What Is the Contribution of ALBUS?

ALBUS is considerably more effective under burst-flood attacks than previous monitoring algorithms.

CountMin-Sketch
Count-Sketch

How Do DDoS Defense Systems Detect Suspicious Flows?

DDoS defense systems mostly use the algorithms CountMin-Sketch and Count-Sketch for detection
+ Limited memory + Efficient processing - Limited accuracy

TimeReset Reset
Reset periodFor each flow:

Estimated
flow volume
over period

Expected
flow volume
over period

>

Suspicious flow!

Fl
ow

se
nd

in
g

ra
te

Link capacity
Elephant Flow: Detected

Burst-Flood Attack:
Medium-rate bursts in different flows

Small volume of each flow

Burst splits by resets

Network Security Group
Department of Computer Science 2/14

Fixed time-windows

How Do Sketch Algorithms Perform Under Burst-Flood Attacks?

Scenario: Malicious bursts last for 200 milliseconds and are 20% larger than allowed

Recall = Reported malicious bursts
Malicious bursts

0.1 0.8 1.5

100%

CountMin-Sketch

CountMin-Sketch
(Threshold 50%)

Reset period [seconds]

Recall

Precision = Reported malicious bursts
Reported bursts

0.1 0.8 1.5

100% CountMin-Sketch

CountMin-Sketch
(Threshold 50%)

Reset period [seconds]

Precision

Trade-off
between recall
and precision

CountMin-Sketch:
Reset period

must fit
burst width

=⇒ Evasion

Network Security Group
Department of Computer Science 3/14

Accuracy trade-off

ALBUS

Time-window
flexibility

How Does the Leaky-Bucket Algorithm Work?

General idea:

Bucket
volume

β

Leakage
rate γ

Fill rate
from monitored

traffic flow

Net inflow
=

Inflow
−

Outflow

× Overflow

Network Security Group
Department of Computer Science 5/16

Leaky-bucket algorithm

Memory
efficiency

How Does Everything Fit Together in ALBUS?

ALBUS: Adaptive Leaky-Bucket Undulation Sensor

Flows: f1 f2 f3 f4 f5 f6 f7 f8 ... f1475286

Leaky-
bucket

counters:

LB 1 LB 2 LB 3 LB 4

...

LB 256

f4 f7 f5 ... f8f3

Back-
ground

counters:

BC 1
Count c

Flow f2

BC 2
Count c

Flow f6

BC 3
Count c

Flow f1

BC 4
Count c

Flow □
...

BC 256
Count c

Flow □

Hashing:
Overflow:

Report & Evict

Net inflow < 0:
Evict

On evict:
Pull from BC

Filter:
Probabilistic

decay

High count:
Push to LB

Network Security Group
Department of Computer Science 10/14

ALBUS data-structure

Processing
efficiency

Does ALBUS Allow Efficient Processing?

Yes. ALBUS has low complexity:

Single hash computation No counter-array iterations No associative arrays

=⇒ ALBUS is hardware-friendly

FPGA implementation
for Xilinx Virtex

UltraScale+ FPGA:

π .c

π .f

Σ

0

CTE_unused

λ.t
CTE

Σ

λ.f

Σ

λ.c
>> 3

>> 3
0

>> 3

ΣCTE_βoverγ

CMP

CMP

CMP

FSM allow

0

Σ

CTE_β

CMP

flow
size

flow
ts

flow
ID

Hardware design of
a LB-BC combination

Throughput:
200 million packets

per second
∼ 560 Gbps!

Network Security Group
Department of Computer Science 13/14

FPGA implementation

Network Security Group
Department of Computer Science 17/19



Summary: What Is the Contribution of ALBUS?

ALBUS is considerably more effective under burst-flood attacks than previous monitoring algorithms.

CountMin-Sketch
Count-Sketch

How Do DDoS Defense Systems Detect Suspicious Flows?

DDoS defense systems mostly use the algorithms CountMin-Sketch and Count-Sketch for detection
+ Limited memory + Efficient processing - Limited accuracy

TimeReset Reset
Reset periodFor each flow:

Estimated
flow volume
over period

Expected
flow volume
over period

>

Suspicious flow!

Fl
ow

se
nd

in
g

ra
te

Link capacity
Elephant Flow: Detected

Burst-Flood Attack:
Medium-rate bursts in different flows

Small volume of each flow

Burst splits by resets

Network Security Group
Department of Computer Science 2/14

Fixed time-windows

How Do Sketch Algorithms Perform Under Burst-Flood Attacks?

Scenario: Malicious bursts last for 200 milliseconds and are 20% larger than allowed

Recall = Reported malicious bursts
Malicious bursts

0.1 0.8 1.5

100%

CountMin-Sketch

CountMin-Sketch
(Threshold 50%)

Reset period [seconds]

Recall

Precision = Reported malicious bursts
Reported bursts

0.1 0.8 1.5

100% CountMin-Sketch

CountMin-Sketch
(Threshold 50%)

Reset period [seconds]

Precision

Trade-off
between recall
and precision

CountMin-Sketch:
Reset period

must fit
burst width

=⇒ Evasion

Network Security Group
Department of Computer Science 3/14

Accuracy trade-off

ALBUS

Time-window
flexibility

How Does the Leaky-Bucket Algorithm Work?

General idea:

Bucket
volume

β

Leakage
rate γ

Fill rate
from monitored

traffic flow

Net inflow
=

Inflow
−

Outflow

× Overflow

Network Security Group
Department of Computer Science 5/16

Leaky-bucket algorithm

Memory
efficiency

How Does Everything Fit Together in ALBUS?

ALBUS: Adaptive Leaky-Bucket Undulation Sensor

Flows: f1 f2 f3 f4 f5 f6 f7 f8 ... f1475286

Leaky-
bucket

counters:

LB 1 LB 2 LB 3 LB 4

...

LB 256

f4 f7 f5 ... f8f3

Back-
ground

counters:

BC 1
Count c

Flow f2

BC 2
Count c

Flow f6

BC 3
Count c

Flow f1

BC 4
Count c

Flow □
...

BC 256
Count c

Flow □

Hashing:
Overflow:

Report & Evict

Net inflow < 0:
Evict

On evict:
Pull from BC

Filter:
Probabilistic

decay

High count:
Push to LB

Network Security Group
Department of Computer Science 10/14

ALBUS data-structure

Processing
efficiency

Does ALBUS Allow Efficient Processing?

Yes. ALBUS has low complexity:

Single hash computation No counter-array iterations No associative arrays

=⇒ ALBUS is hardware-friendly

FPGA implementation
for Xilinx Virtex

UltraScale+ FPGA:

π .c

π .f

Σ

0

CTE_unused

λ.t
CTE

Σ

λ.f

Σ

λ.c
>> 3

>> 3
0

>> 3

ΣCTE_βoverγ

CMP

CMP

CMP

FSM allow

0

Σ

CTE_β

CMP

flow
size

flow
ts

flow
ID

Hardware design of
a LB-BC combination

Throughput:
200 million packets

per second
∼ 560 Gbps!

Network Security Group
Department of Computer Science 13/14

FPGA implementation

Network Security Group
Department of Computer Science 17/19



Summary: What Is the Contribution of ALBUS?

ALBUS is considerably more effective under burst-flood attacks than previous monitoring algorithms.

CountMin-Sketch
Count-Sketch

How Do DDoS Defense Systems Detect Suspicious Flows?

DDoS defense systems mostly use the algorithms CountMin-Sketch and Count-Sketch for detection
+ Limited memory + Efficient processing - Limited accuracy

TimeReset Reset
Reset periodFor each flow:

Estimated
flow volume
over period

Expected
flow volume
over period

>

Suspicious flow!

Fl
ow

se
nd

in
g

ra
te

Link capacity
Elephant Flow: Detected

Burst-Flood Attack:
Medium-rate bursts in different flows

Small volume of each flow

Burst splits by resets

Network Security Group
Department of Computer Science 2/14

Fixed time-windows

How Do Sketch Algorithms Perform Under Burst-Flood Attacks?

Scenario: Malicious bursts last for 200 milliseconds and are 20% larger than allowed

Recall = Reported malicious bursts
Malicious bursts

0.1 0.8 1.5

100%

CountMin-Sketch

CountMin-Sketch
(Threshold 50%)

Reset period [seconds]

Recall

Precision = Reported malicious bursts
Reported bursts

0.1 0.8 1.5

100% CountMin-Sketch

CountMin-Sketch
(Threshold 50%)

Reset period [seconds]

Precision

Trade-off
between recall
and precision

CountMin-Sketch:
Reset period

must fit
burst width

=⇒ Evasion

Network Security Group
Department of Computer Science 3/14

Accuracy trade-off

ALBUS

Time-window
flexibility

How Does the Leaky-Bucket Algorithm Work?

General idea:

Bucket
volume

β

Leakage
rate γ

Fill rate
from monitored

traffic flow

Net inflow
=

Inflow
−

Outflow

× Overflow

Network Security Group
Department of Computer Science 5/16

Leaky-bucket algorithm

Memory
efficiency

How Does Everything Fit Together in ALBUS?

ALBUS: Adaptive Leaky-Bucket Undulation Sensor

Flows: f1 f2 f3 f4 f5 f6 f7 f8 ... f1475286

Leaky-
bucket

counters:

LB 1 LB 2 LB 3 LB 4

...

LB 256

f4 f7 f5 ... f8f3

Back-
ground

counters:

BC 1
Count c

Flow f2

BC 2
Count c

Flow f6

BC 3
Count c

Flow f1

BC 4
Count c

Flow □
...

BC 256
Count c

Flow □

Hashing:
Overflow:

Report & Evict

Net inflow < 0:
Evict

On evict:
Pull from BC

Filter:
Probabilistic

decay

High count:
Push to LB

Network Security Group
Department of Computer Science 10/14

ALBUS data-structure

Processing
efficiency

Does ALBUS Allow Efficient Processing?

Yes. ALBUS has low complexity:

Single hash computation No counter-array iterations No associative arrays

=⇒ ALBUS is hardware-friendly

FPGA implementation
for Xilinx Virtex

UltraScale+ FPGA:

π .c

π .f

Σ

0

CTE_unused

λ.t
CTE

Σ

λ.f

Σ

λ.c
>> 3

>> 3
0

>> 3

ΣCTE_βoverγ

CMP

CMP

CMP

FSM allow

0

Σ

CTE_β

CMP

flow
size

flow
ts

flow
ID

Hardware design of
a LB-BC combination

Throughput:
200 million packets

per second
∼ 560 Gbps!

Network Security Group
Department of Computer Science 13/14

FPGA implementation

Network Security Group
Department of Computer Science 17/19



Summary: What Is the Contribution of ALBUS?

ALBUS is considerably more effective under burst-flood attacks than previous monitoring algorithms.

CountMin-Sketch
Count-Sketch

How Do DDoS Defense Systems Detect Suspicious Flows?

DDoS defense systems mostly use the algorithms CountMin-Sketch and Count-Sketch for detection
+ Limited memory + Efficient processing - Limited accuracy

TimeReset Reset
Reset periodFor each flow:

Estimated
flow volume
over period

Expected
flow volume
over period

>

Suspicious flow!

Fl
ow

se
nd

in
g

ra
te

Link capacity
Elephant Flow: Detected

Burst-Flood Attack:
Medium-rate bursts in different flows

Small volume of each flow

Burst splits by resets

Network Security Group
Department of Computer Science 2/14

Fixed time-windows

How Do Sketch Algorithms Perform Under Burst-Flood Attacks?

Scenario: Malicious bursts last for 200 milliseconds and are 20% larger than allowed

Recall = Reported malicious bursts
Malicious bursts

0.1 0.8 1.5

100%

CountMin-Sketch

CountMin-Sketch
(Threshold 50%)

Reset period [seconds]

Recall

Precision = Reported malicious bursts
Reported bursts

0.1 0.8 1.5

100% CountMin-Sketch

CountMin-Sketch
(Threshold 50%)

Reset period [seconds]

Precision

Trade-off
between recall
and precision

CountMin-Sketch:
Reset period

must fit
burst width

=⇒ Evasion

Network Security Group
Department of Computer Science 3/14

Accuracy trade-off

ALBUS

Time-window
flexibility

How Does the Leaky-Bucket Algorithm Work?

General idea:

Bucket
volume

β

Leakage
rate γ

Fill rate
from monitored

traffic flow

Net inflow
=

Inflow
−

Outflow

× Overflow

Network Security Group
Department of Computer Science 5/16

Leaky-bucket algorithm

Memory
efficiency

How Does Everything Fit Together in ALBUS?

ALBUS: Adaptive Leaky-Bucket Undulation Sensor

Flows: f1 f2 f3 f4 f5 f6 f7 f8 ... f1475286

Leaky-
bucket

counters:

LB 1 LB 2 LB 3 LB 4

...

LB 256

f4 f7 f5 ... f8f3

Back-
ground

counters:

BC 1
Count c

Flow f2

BC 2
Count c

Flow f6

BC 3
Count c

Flow f1

BC 4
Count c

Flow □
...

BC 256
Count c

Flow □

Hashing:
Overflow:

Report & Evict

Net inflow < 0:
Evict

On evict:
Pull from BC

Filter:
Probabilistic

decay

High count:
Push to LB

Network Security Group
Department of Computer Science 10/14

ALBUS data-structure

Processing
efficiency

Does ALBUS Allow Efficient Processing?

Yes. ALBUS has low complexity:

Single hash computation No counter-array iterations No associative arrays

=⇒ ALBUS is hardware-friendly

FPGA implementation
for Xilinx Virtex

UltraScale+ FPGA:

π .c

π .f

Σ

0

CTE_unused

λ.t
CTE

Σ

λ.f

Σ

λ.c
>> 3

>> 3
0

>> 3

ΣCTE_βoverγ

CMP

CMP

CMP

FSM allow

0

Σ

CTE_β

CMP

flow
size

flow
ts

flow
ID

Hardware design of
a LB-BC combination

Throughput:
200 million packets

per second
∼ 560 Gbps!

Network Security Group
Department of Computer Science 13/14

FPGA implementation

Network Security Group
Department of Computer Science 17/19



Summary: What Is the Contribution of ALBUS?

ALBUS is considerably more effective under burst-flood attacks than previous monitoring algorithms.

CountMin-Sketch
Count-Sketch

How Do DDoS Defense Systems Detect Suspicious Flows?

DDoS defense systems mostly use the algorithms CountMin-Sketch and Count-Sketch for detection
+ Limited memory + Efficient processing - Limited accuracy

TimeReset Reset
Reset periodFor each flow:

Estimated
flow volume
over period

Expected
flow volume
over period

>

Suspicious flow!

Fl
ow

se
nd

in
g

ra
te

Link capacity
Elephant Flow: Detected

Burst-Flood Attack:
Medium-rate bursts in different flows

Small volume of each flow

Burst splits by resets

Network Security Group
Department of Computer Science 2/14

Fixed time-windows

How Do Sketch Algorithms Perform Under Burst-Flood Attacks?

Scenario: Malicious bursts last for 200 milliseconds and are 20% larger than allowed

Recall = Reported malicious bursts
Malicious bursts

0.1 0.8 1.5

100%

CountMin-Sketch

CountMin-Sketch
(Threshold 50%)

Reset period [seconds]

Recall

Precision = Reported malicious bursts
Reported bursts

0.1 0.8 1.5

100% CountMin-Sketch

CountMin-Sketch
(Threshold 50%)

Reset period [seconds]

Precision

Trade-off
between recall
and precision

CountMin-Sketch:
Reset period

must fit
burst width

=⇒ Evasion

Network Security Group
Department of Computer Science 3/14

Accuracy trade-off

ALBUS

Time-window
flexibility

How Does the Leaky-Bucket Algorithm Work?

General idea:

Bucket
volume

β

Leakage
rate γ

Fill rate
from monitored

traffic flow

Net inflow
=

Inflow
−

Outflow

× Overflow

Network Security Group
Department of Computer Science 5/16

Leaky-bucket algorithm

Memory
efficiency

How Does Everything Fit Together in ALBUS?

ALBUS: Adaptive Leaky-Bucket Undulation Sensor

Flows: f1 f2 f3 f4 f5 f6 f7 f8 ... f1475286

Leaky-
bucket

counters:

LB 1 LB 2 LB 3 LB 4

...

LB 256

f4 f7 f5 ... f8f3

Back-
ground

counters:

BC 1
Count c

Flow f2

BC 2
Count c

Flow f6

BC 3
Count c

Flow f1

BC 4
Count c

Flow □
...

BC 256
Count c

Flow □

Hashing:
Overflow:

Report & Evict

Net inflow < 0:
Evict

On evict:
Pull from BC

Filter:
Probabilistic

decay

High count:
Push to LB

Network Security Group
Department of Computer Science 10/14

ALBUS data-structure

Processing
efficiency

Does ALBUS Allow Efficient Processing?

Yes. ALBUS has low complexity:

Single hash computation No counter-array iterations No associative arrays

=⇒ ALBUS is hardware-friendly

FPGA implementation
for Xilinx Virtex

UltraScale+ FPGA:

π .c

π .f

Σ

0

CTE_unused

λ.t
CTE

Σ

λ.f

Σ

λ.c
>> 3

>> 3
0

>> 3

ΣCTE_βoverγ

CMP

CMP

CMP

FSM allow

0

Σ

CTE_β

CMP

flow
size

flow
ts

flow
ID

Hardware design of
a LB-BC combination

Throughput:
200 million packets

per second
∼ 560 Gbps!

Network Security Group
Department of Computer Science 13/14

FPGA implementation

Network Security Group
Department of Computer Science 17/19



Summary: What Is the Contribution of ALBUS?

ALBUS is considerably more effective under burst-flood attacks than previous monitoring algorithms.

CountMin-Sketch
Count-Sketch

How Do DDoS Defense Systems Detect Suspicious Flows?

DDoS defense systems mostly use the algorithms CountMin-Sketch and Count-Sketch for detection
+ Limited memory + Efficient processing - Limited accuracy

TimeReset Reset
Reset periodFor each flow:

Estimated
flow volume
over period

Expected
flow volume
over period

>

Suspicious flow!

Fl
ow

se
nd

in
g

ra
te

Link capacity
Elephant Flow: Detected

Burst-Flood Attack:
Medium-rate bursts in different flows

Small volume of each flow

Burst splits by resets

Network Security Group
Department of Computer Science 2/14

Fixed time-windows

How Do Sketch Algorithms Perform Under Burst-Flood Attacks?

Scenario: Malicious bursts last for 200 milliseconds and are 20% larger than allowed

Recall = Reported malicious bursts
Malicious bursts

0.1 0.8 1.5

100%

CountMin-Sketch

CountMin-Sketch
(Threshold 50%)

Reset period [seconds]

Recall

Precision = Reported malicious bursts
Reported bursts

0.1 0.8 1.5

100% CountMin-Sketch

CountMin-Sketch
(Threshold 50%)

Reset period [seconds]

Precision

Trade-off
between recall
and precision

CountMin-Sketch:
Reset period

must fit
burst width

=⇒ Evasion

Network Security Group
Department of Computer Science 3/14

Accuracy trade-off

ALBUS

Time-window
flexibility

How Does the Leaky-Bucket Algorithm Work?

General idea:

Bucket
volume

β

Leakage
rate γ

Fill rate
from monitored

traffic flow

Net inflow
=

Inflow
−

Outflow

× Overflow

Network Security Group
Department of Computer Science 5/16

Leaky-bucket algorithm

Memory
efficiency

How Does Everything Fit Together in ALBUS?

ALBUS: Adaptive Leaky-Bucket Undulation Sensor

Flows: f1 f2 f3 f4 f5 f6 f7 f8 ... f1475286

Leaky-
bucket

counters:

LB 1 LB 2 LB 3 LB 4

...

LB 256

f4 f7 f5 ... f8f3

Back-
ground

counters:

BC 1
Count c

Flow f2

BC 2
Count c

Flow f6

BC 3
Count c

Flow f1

BC 4
Count c

Flow □
...

BC 256
Count c

Flow □

Hashing:
Overflow:

Report & Evict

Net inflow < 0:
Evict

On evict:
Pull from BC

Filter:
Probabilistic

decay

High count:
Push to LB

Network Security Group
Department of Computer Science 10/14

ALBUS data-structure

Processing
efficiency

Does ALBUS Allow Efficient Processing?

Yes. ALBUS has low complexity:

Single hash computation No counter-array iterations No associative arrays

=⇒ ALBUS is hardware-friendly

FPGA implementation
for Xilinx Virtex

UltraScale+ FPGA:

π .c

π .f

Σ

0

CTE_unused

λ.t
CTE

Σ

λ.f

Σ

λ.c
>> 3

>> 3
0

>> 3

ΣCTE_βoverγ

CMP

CMP

CMP

FSM allow

0

Σ

CTE_β

CMP

flow
size

flow
ts

flow
ID

Hardware design of
a LB-BC combination

Throughput:
200 million packets

per second
∼ 560 Gbps!

Network Security Group
Department of Computer Science 13/14

FPGA implementation

Network Security Group
Department of Computer Science 17/19



Additional
Material

Network Security Group
Department of Computer Science 18/19



How Do Background Counters Help Detection Accuracy?

Probabilistic decay identifies large background flows

p = Count-modification probability

p = 1: Majority algorithm (Boyer et al. 1981)
BC contains flow f with probability

qf (1) = min
(

1,
Volume of flow f

Volume of all flows ̸= f

)
p < 1: Bias BC flow towards largest flow g

p

qg(p)

0 0.001 0.01 0.1 1

Optimal p

Majority
algorithm

Network Security Group
Department of Computer Science 19/19



How Do Background Counters Help Detection Accuracy?

Probabilistic decay identifies large background flows

p = Count-modification probability

p = 1: Majority algorithm (Boyer et al. 1981)
BC contains flow f with probability

qf (1) = min
(

1,
Volume of flow f

Volume of all flows ̸= f

)
p < 1: Bias BC flow towards largest flow g

p

qg(p)

0 0.001 0.01 0.1 1

Optimal p

Majority
algorithm

Network Security Group
Department of Computer Science 19/19



How Do Background Counters Help Detection Accuracy?

Probabilistic decay identifies large background flows

p = Count-modification probability

p = 1: Majority algorithm (Boyer et al. 1981)

BC contains flow f with probability

qf (1) = min
(

1,
Volume of flow f

Volume of all flows ̸= f

)
p < 1: Bias BC flow towards largest flow g

p

qg(p)

0 0.001 0.01 0.1 1

Optimal p

Majority
algorithm

Network Security Group
Department of Computer Science 19/19



How Do Background Counters Help Detection Accuracy?

Probabilistic decay identifies large background flows

p = Count-modification probability

p = 1: Majority algorithm (Boyer et al. 1981)
BC contains flow f with probability

qf (1) = min
(

1,
Volume of flow f

Volume of all flows ̸= f

)

p < 1: Bias BC flow towards largest flow g

p

qg(p)

0 0.001 0.01 0.1 1

Optimal p

Majority
algorithm

Network Security Group
Department of Computer Science 19/19



How Do Background Counters Help Detection Accuracy?

Probabilistic decay identifies large background flows

p = Count-modification probability

p = 1: Majority algorithm (Boyer et al. 1981)
BC contains flow f with probability

qf (1) = min
(

1,
Volume of flow f

Volume of all flows ̸= f

)
p < 1: Bias BC flow towards largest flow g

p

qg(p)

0 0.001 0.01 0.1 1

Optimal p

Majority
algorithm

Network Security Group
Department of Computer Science 19/19



How Do Background Counters Help Detection Accuracy?

Probabilistic decay identifies large background flows

p = Count-modification probability

p = 1: Majority algorithm (Boyer et al. 1981)
BC contains flow f with probability

qf (1) = min
(

1,
Volume of flow f

Volume of all flows ̸= f

)
p < 1: Bias BC flow towards largest flow g

p

qg(p)

0 0.001 0.01 0.1 1

Optimal p

Majority
algorithm

Network Security Group
Department of Computer Science 19/19



How Do Background Counters Help Detection Accuracy?

Probabilistic decay identifies large background flows

p = Count-modification probability

p = 1: Majority algorithm (Boyer et al. 1981)
BC contains flow f with probability

qf (1) = min
(

1,
Volume of flow f

Volume of all flows ̸= f

)
p < 1: Bias BC flow towards largest flow g

p

qg(p)

0 0.001 0.01 0.1 1

Optimal p

Majority
algorithm

Network Security Group
Department of Computer Science 19/19



How Do Background Counters Help Detection Accuracy?

Probabilistic decay identifies large background flows

p = Count-modification probability

p = 1: Majority algorithm (Boyer et al. 1981)
BC contains flow f with probability

qf (1) = min
(

1,
Volume of flow f

Volume of all flows ̸= f

)
p < 1: Bias BC flow towards largest flow g

p

qg(p)

0 0.001 0.01 0.1 1

Optimal p

Majority
algorithm

Network Security Group
Department of Computer Science 19/19



How Do Background Counters Help Detection Accuracy?

Probabilistic decay identifies large background flows

p = Count-modification probability

p = 1: Majority algorithm (Boyer et al. 1981)
BC contains flow f with probability

qf (1) = min
(

1,
Volume of flow f

Volume of all flows ̸= f

)
p < 1: Bias BC flow towards largest flow g

p

qg(p)

0 0.001 0.01 0.1 1

Optimal p

Majority
algorithm

Network Security Group
Department of Computer Science 19/19



How Do Background Counters Help Detection Accuracy?

Probabilistic decay identifies large background flows

p = Count-modification probability

p = 1: Majority algorithm (Boyer et al. 1981)
BC contains flow f with probability

qf (1) = min
(

1,
Volume of flow f

Volume of all flows ̸= f

)
p < 1: Bias BC flow towards largest flow g

p

qg(p)

0 0.001 0.01 0.1 1

Optimal p

Majority
algorithm

Network Security Group
Department of Computer Science 19/19



How Do Background Counters Help Detection Accuracy?

Probabilistic decay identifies large background flows

p = Count-modification probability

p = 1: Majority algorithm (Boyer et al. 1981)
BC contains flow f with probability

qf (1) = min
(

1,
Volume of flow f

Volume of all flows ̸= f

)
p < 1: Bias BC flow towards largest flow g

p

qg(p)

0 0.001 0.01 0.1 1

Optimal p

Majority
algorithm

Network Security Group
Department of Computer Science 19/19


