
Packet-dropping Adversary Identification for
Data Plane Security∗

Xin Zhang
Carnegie Mellon University

xzhang1@cmu.edu

Abhishek Jain
UCLA

abhishek@cs.ucla.edu

Adrian Perrig
Carnegie Mellon University

perrig@cmu.edu

ABSTRACT
Until recently, the design of packet dropping adversary iden-
tification protocols that are robust to both benign packet loss
and malicious behavior has proven to be surprisingly elu-
sive. In this paper, we propose a secure and practical packet-
dropping adversary localization scheme that is robust and
achieves a high detection rate and low communication and
storage overhead – the three key performance metrics for
such protocols in realistic settings. Other recent work just
optimizes either the detection rate or the communication
overhead.

In this paper, we systematically explore the design space
of acknowledgment-based protocols to identify a packet drop-
ping adversary on a forwarding path. In particular, we inves-
tigate a set of basic protocols, each exemplifying a design di-
mension, and examine the underlying tradeoff between the
performance metrics. For each basic protocol, we present
both upper and lower performance bounds via theoretical
analysis, and average-case results via simulations. We con-
clude that the proposed PAAI-1 protocol outperforms other
related schemes.

1. INTRODUCTION
Even given a secure routing infrastructure, a malicious

forwarding node can drop packets to reduce legitimate net-
work throughput. Thus, packet-dropping attacks constitute a
major threat to data plane security.

∗This research was supported in part by CyLab at Carnegie Mellon
under grants DAAD19-02-1-0389 and MURI W 911 NF 0710287
from the Army Research Office, grants CNS-0347807, CT-CS
0433540 and CNS-0627357 from the National Science Foundation.
The views and conclusions contained here are those of the authors
and should not be interpreted as necessarily representing the offi-
cial policies or endorsements, either express or implied, of ARO,
CMU, NSF, or the U.S. Government or any of its agencies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM CoNEXT 2008, December 9-12, 2008, Madrid, SPAIN
Copyright 2008 ACM 978-1-60558-210-8/08/0012 ...$5.00.

A common protocol building block to identify a packet-
dropping adversary located on a forwarding path is for the
source node to require acknowledgement packets (ack) from
the destination and the intermediate nodes. In a realistic set-
ting, the forwarding links may incur some benign packet loss
due to congestion and/or channel errors. At the same time,
an adversary who potentially controls multiple intermediate
nodes may try to bias the identification procedure by selec-
tively dropping (and altering or injecting) packets in order to
evade detection or incriminate honest nodes. Consequently,
a secure ack-based adversary identification (AAI) protocol
must be simultaneously robust to both benign packet loss
and malicious behavior. In other words, it must exhibit low
false positive (falsely identifying a legitimate link as mali-
cious) and false negative (falsely leaving a malicious link
undetected) rates.

However, until recently, the design of such protocols has
proven to be surprisingly difficult, as exemplified by sev-
eral insecure protocols in the literature [1, 2, 6, 11, 12, 15,
16] (see §2). Furthermore, such an AAI scheme must also
be practical; in particular, it must possess all of the fol-
lowing properties: (a) fast detection rate (i.e., the time re-
quired to accurately localize the adversary), (b) low com-
munication overhead, and (c) low storage overhead. Failing
to achieve any of the above three properties may render the
protocol impractical. For example, an AAI protocol with
high communication and/or storage overhead will perform
poorly even when the forwarding path is not under attack;
this will be unacceptable in most settings, and especially
in resource-constrained networks such as sensor networks.
Similarly, an AAI protocol with a low detection rate will en-
force only a poor bound on an adversary’s ability to degrade
end-to-end throughput before being identified. This may re-
sult in a significant monetary loss to a service provider and,
worse, in cases where routing paths change periodically, the
attacker may escape unscathed. Unfortunately, prior work
optimizes either the detection rate [3, 4], or the communi-
cation overhead [7]. Therefore, AAI protocols that achieve
a good trade-off between the three aforementioned perfor-
mance metrics are more desirable than those that optimize
only a particular metric.

In this paper, we systematically explore the design space
of AAI protocols with the goal of designing a practical (and
secure) AAI protocol. In particular, we propose a set of basic

protocols, where each protocol exemplifies a distinct design
dimension. Such an approach helps us examine the underly-
ing tradeoff between the different performance metrics, and
lets us obtain a practical and secure AAI protocol even in
the presence of multiple adversarial packet-dropping nodes.

We observe that designing any AAI protocol involves mak-
ing two fundamental decisions:

1. which data packets to acknowledge; and

2. which intermediate nodes should respond to the ack
request.

With this in mind, we explore different design choices
along the two aforementioned aspects and investigate the
tradeoff between the performance metrics. More specifi-
cally, we study the following approaches:

1. A strawman approach: Every intermediate node sends
an ack for every lost data packet.

2. The Probabilistic Ack-based Adversary Identification
(PAAI) approaches: either (a) only a subset of data
packets must be acknowledged (PAAI-1), or (b) only
a subset of intermediate nodes must respond to an ack
request (PAAI-2).

The full-ack scheme achieves the best detection rate by
determining the link for every single packet drop. However,
gathering such fine-grained information introduces high com-
munication overhead. In contrast, PAAI-1 and PAAI-2 em-
ploy probabilistic sampling to gather only coarse-grained
information, differing from each other in that they perform
probabilistic sampling in different dimensions. In both PAAI
schemes, we aim to achieve a high detection rate while re-
taining practicality for most networks.

The PAAI-1 protocol is fairly intuitive, simple and flexi-
ble, yet achieves more desirable properties than the full-ack
scheme, PAAI-2, and other related work. Finally, we also
discuss the viability of constructing protocols that exemplify
hybrids of the basic design primitives (§10).

Contribution. To the best of our knowledge, this is the
first attempt to design a secure AAI protocol that obtains a
practical trade-off between the detection rate and the com-
munication and storage overhead for realistic network set-
tings. It is also the first systematic study of the design space
for AAI protocols (§4, §5 and §6). We propose a set of ba-
sic AAI protocols, one for each design dimension, where the
PAAI-1 protocol (§6.1) is distinctly more practical than the
others. We obtain theoretical bounds for the performance
of our protocols (§7), and also launch simulations to derive
average-case results and validate our theoretical results (§8).

2. RELATED WORK
A related line of research aims to only detect malicious

packet dropping activity [5, 9, 13], while in this paper, we
are interested in the more difficult problem of localizing the
packet dropping adversary. We now discuss prior work in
the localization category.

Since the work of Perlman [16], several works leveraged
acknowledgment-based approaches to identify Byzantine ad-
versaries at the network layer. Unfortunately, most of these
protocols either incur high overhead, or fail to achieve se-
curity in the presence of colluding adversaries and natural
packet loss (i.e., they fail to provide any effective bound on
an adversary’s ability to degrade network throughput before
being identified). Some vital vulnerabilities of certain re-
lated work [1,6,15] have been summarized by Barak et al. [7].
The protocols designed by Liu et al. [12] and Mike et al. [11]
fail to prevent colluding nodes from incriminating honest
links as malicious. Argyraki et al. propose a counting-based
protocol [2] in a restricted adversarial model where an at-
tacker can only drop but not alter or inject packets; con-
sequently, the protocol is insecure in our strong adversary
model (see §3.2). Avrampoulos et al. [3, 4] present a secure
routing protocol by combining techniques such as source
routing, hop-by-hop authentication and ack-based probing.
However, for a forwarding path of length d, their scheme in-
duces a key storage overhead of O(d2) and a high communi-
cation overhead equivalent to that of the strawman approach
described later (§4,§7,§8).

Recently, Barak et al. [7] proposed a set of fault local-
ization (FL) protocols for the Internet. However, we note
that their statistical FL protocol is mainly optimized to re-
duce communication overhead; and consequently achieves
a rather poor best case detection rate on the order of 106

packets. In contrast, our PAAI-1 protocol offers a flexible
trade-off between the performance metrics. In particular, al-
though PAAI-1 incurs more overhead (but still low enough
for a practical scenario) than the statistical FL protocol, it
achieves a detection rate that is almost three orders of magni-
tude faster. For example, assuming the source’s sending rate
of 100 packets per second, PAAI-1 converges in 8 minutes,
while the statistical FL protocol requires 50 hours for similar
parameter settings! We stress that, in most network settings,
the trade-off offered by the PAAI-1 protocol is more desir-
able than the combination of very low overhead and poor
detection rate offered by the statistical FL protocol (see §7
and §8 for details).

In a related line of research [8, 10, 14] that focuses on a
distributed monitoring approach to detect malicious routers
by using a traffic validation mechanism based on the law of
conservation of flow. However, that line of research requires
considerable overhead in terms of storing and communicat-
ing aggregated yet fine-grained per-flow state (e.g., finger-
prints of packets, packet ordering etc.) [14].

3. FORMAL PROBLEM SETTING
In this section, we first present the problem definition and

metrics we use to evaluate the performance of the protocols.
Next, we discuss our assumptions and basic notation.

3.1 Problem Definition
Given a set of adversarial nodes located on a forward-

ing path between a source and destination node, we are in-
terested in the design of protocols that enable the source

to monitor the forwarding path for packet dropping activity
over a period of time and then securely localize the presence
of the adversary on a particular link (or a set of links). We
build on the approach of requiring acknowledgment packets
from the destination and the intermediate nodes on the for-
warding path. We refer to such protocols as ack-based ad-
versary identification (AAI) protocols. The literature shows
that such protocols can only identify links adjacent to mali-
cious nodes, rather than identifying the nodes [7]. We con-
sider realistic network settings and a strong adversary model
(see §3.2 below).

Performance Metrics. In this paper, we consider AAI pro-
tocols that utilize symmetric key cryptography.1 We identify
three key metrics to evaluate such protocols, (a) detection
rate, i.e., the number of data packet transmissions required
to detect a malicious link (with the false positive and neg-
ative rates below a certain threshold), (b) communication
overhead, i.e., the additional packets (and their size) that
are sent per data packet from the source, and (c) storage
overhead, i.e., the amount of temporary storage that must
be maintained at each intermediate node per unit time.

Given the above definitions, one would seek an AAI pro-
tocol that (a) achieves detection time (defined as the detec-
tion rate divided by the source’s packet sending rate) in the
order of minutes or less, (b) incurs communication overhead
of less than 10% of the normal traffic, and (c) requires stor-
age overhead in the order of tens of kilobytes or less. Look-
ing ahead, the proposed PAAI-1 protocol achieves the afore-
mentioned trade-off between the performance metrics, while
other related protocols fail to achieve practical values for at
least one metric.

3.2 Assumptions

Network Assumptions. We assume a general multi-hop
network, and the presence of a routing infrastructure with
a certain lower bound on the time before the routing paths
change in the network.2 We assume that the links in the
network independently exhibit some natural packet loss due
to congestion and/or channel errors. In this paper, we only
consider unicast messages. Following the literature, we will
focus on a given forwarding path between a source and a
destination pair. Further, we assume the presence of sym-
metric paths, where the forward path (for data) and reverse
paths (for acknowledgements) are identical; and we assume
that a source node knows its forwarding path to the destina-
tion. Finally, we assume that the nodes on any given path are
loosely time-synchronized.

Security Infrastructure. Given a path from a source to
a destination, we assume that the source shares a pairwise

1Although a fairly simple AAI protocol that employs asymmetric
key cryptography exists (described in the full version due to lack
of space [17]), we note that protocols employing asymmetric key
cryptography are generally undesirable due to their high per-packet
computation and communication overhead.
2This is necessary since any AAI protocol requires some time to
converge in the face of natural packet loss.

fi fi+1 fd-1 fd
ld-1li

Upstream

f
0

f
1

l
0

Downstream

S Destination

Figure 1: Example topology

symmetric key with each intermediate node on the path to
the destination. We further assume that the nodes can per-
form symmetric key operations as well as compute a collision-
resistant hash function h and a keyed pseudorandom func-
tion PRF.

Adversary Model. We assume that the source and the des-
tination nodes on the path being monitored are honest. We
assume an adversary with polynomially bounded computa-
tional power is in complete control of an arbitrary number of
intermediate nodes on the path, including knowledge of their
secret keys. The adversary can eavesdrop and perform traf-
fic analysis anywhere on the path. The adversary may drop,
inject or alter packets on the links that are under its control.
We allow the protocol parameters to be public; consequently,
the adversary may try to bias the measurement results in or-
der to evade detection or incriminate honest links. Finally,
we assume that the adversary cannot influence the natural
packet loss rate on the links on the path.

3.3 Basic Notation
We consider one source S and a path of length d hops

to a destination D. The nodes along the path are denoted
as F0, . . . ,Fd, where Fi is i hops away from S (see Fig-
ure 1, where F0 = S). We call nodes closer toD downstream
nodes, and nodes that are further away from D as upstream
nodes. Let li be the link between node pair Fi,Fi+1. We
denote the round-trip time from a node Fi to Fd as ri. S
shares a pairwise symmetric key Ki with each intermediate
node Fi. Let EK(·) denote encryption using symmetric key
K. Further, let [m]K denote a message m authenticated by
key K using a message authentication code (MAC). For sim-
plicity, in our description, we do not differentiate between
the keys for encryption and MAC computation; although in
practice, one would derive separate keys for encryption and
MAC computation.

Ack Structure. For any data packet m sent out by S, let
the hash of m, denoted by H(m), be a packet identifier for
m. For any m, we define the corresponding ack from Fi

to have the structure ai = 〈H(m)||Am
i 〉, where Am

i is a
report computed by Fi. The report Am

i will be a function
of Fi’s local report Ri and its downstream neighbor Fi+1’s
ack (if present). Specific details may vary in each protocol
description.

Onion Reports. We recall the well-known notion of an
onion report. When each intermediate node Fi must return
a local report Ri to S in an authenticated manner, then we
have inductively, for i ∈ [1, d − 1], Ai = [i||Ri||Ai+1]Ki

,
while Ad = [d||Rd]Kd

.

4. A STRAWMAN APPROACH: FULL-ACK
We observe that designing any AAI protocol involves mak-

ing two fundamental decisions: (a) which data packets to
acknowledge, and (b) which intermediate nodes should re-
spond to the ack request. As a first step towards a systematic
exploration of the protocol design space for AAI protocols
along the two aforementioned aspects, we discuss the simple
and fairly intuitive ‘full-ack’ protocol (similar to the Opti-
mistic Per-Packet FL Protocol from Barak et al. [7]), where
every intermediate node on the forwarding path must return
an ack for every lost3 data packet sent by the source. Below,
we give a brief description of the protocol and discuss its
security and performance. A theoretical analysis and simu-
lation results for the full-ack protocol are given later in §7
and §8 respectively.

Protocol. Let us consider that S sends out a data packet m
towards the destinationD. On receiving m, Dmust return an
ack, ad, authenticated with the secret key shared with S, i.e.,
ad = [H(m)]Kd

. If no valid ack is received from D within
a pre-specified wait-time, S will send out an onion report
request. The onion report is computed by the intermediate
nodes in the manner explained earlier, wherein a local report
Ri is set to be 〈i||H(m)||ad〉. Upon receiving the ack con-
taining the onion report from F1, S can sequentially verify
each report embedded in it. For some i < d, if the MAC
from each intermediate node Fj , j ∈ [1, i] is valid but the
MAC from Fi+1 is invalid or not present in the final ack,
then S identifies link li as faulty and adds one to its drop
score. Over a period of time, if the drop score of a particular
link exceeds a fixed threshold determined from the natural
packet drop rate then that link is identified as malicious.

Security. In the above protocol, if a malicious node drops
a packet (data or ack), one of its adjacent links has its drop
score increased4. The adversarial nodes on the path may
collude to share the drops amongst themselves; however, in
this case, the drop rate will still be bounded (proportional to
the number of malicious nodes in the path).

Performance. For each dropped packet, the full-ack scheme
can determine precisely the location of the drop, thus it is
able to directly compute the drop rate of each link on a given
path and identify malicious links within a small number of
packet drops. However, this high detection rate is achieved
at the price of a large amount of communication overhead
at each node. Specifically, the full-ack scheme imposes an
overhead of at least one packet of O(1)-size per data packet
sent out by S; and an additional overhead of one packet of
O(d)-size (the onion report) in case of a drop. The storage
overhead is high in the worst case but lower on average due
to the fast detection rate. More details are given later in §7
and §8.

The high overhead makes the full-ack protocol unafford-

3A lost packet signifies one that fails to reach the destination.
4This follows largely from the security of onion reports. Since
PAAI-1 employs similar techniques, we defer more details to Sec-
tion 5 in order to conserve space.

able for most networks; therefore, AAI protocols with a bet-
ter trade off amongst the three performance metrics are de-
sirable.

5. OVERVIEW OF PAAI
In contrast to the full-ack protocol, where the ack mecha-

nism was completely deterministic, we now investigate prob-
abilistic AAI (PAAI) approaches with the underlying motive
of reducing the protocol overhead at the expense of slightly
worsening the detection rate in order to achieve a more rea-
sonable trade-off between the performance metrics. Loosely
speaking, we investigate two contrasting approaches; one
where only a subset of data packets must be acknowledged,
and another where only a subset of intermediate nodes must
ack5. In particular, we construct, (a) the PAAI-1 protocol:
every intermediate node sends an ack for only a selected
fraction of data packets; and (b) the PAAI-2 protocol: only
one selected intermediate node sends an ack for each data
packet. At first glance, the two approaches may seem to be
only minor variations of the full-ack mechanism; however,
we stress that there are several challenges involved in en-
suring security of these approaches. We now briefly outline
these approaches along with the challenges involved.

In the first approach (PAAI-1), S monitors the path for
only a fraction of the total traffic. More specifically, for a
given data packet, S solicits an ack from every intermediate
node only with some probability p. Now, since a fraction of
traffic is unmonitored, the protocol must ensure that a mali-
cious node Fz is not able to determine from the content of a
data packet m whether S solicits an ack for m. Otherwise,
on receiving m, if Fz determines that m need not be ac-
knowledged, then it could safely drop m without increasing
its probability of being identified.

In PAAI-2, Smonitors the path for every data packet, with
the provision that S solicits an ack for a lost data packet from
only one selected node on the path. However, the protocol
must ensure that a malicious node Fz cannot decipher the
identity of the selected node Fe from the content of a data
packet m. Otherwise, on receiving m, if Fz determines that
Fe ≤ Fz (i.e., whether Fe is upstream to or equal to Fz), then
it could safely drop m without increasing its probability of
being identified.

In order to circumvent the above documented attacks and
still perform probabilistic monitoring, we make use of a de-
layed sampling mechanism. Specifically, in both PAAI pro-
tocols, S sends out an ack request (henceforth referred to
as a probe) at a later time for a data packet sent earlier. In
PAAI-1, the probe conveys the information that the corre-
sponding data packet must be acknowledged (otherwise no
probe is sent). In PAAI-2, the probe content determines
which intermediate node is selected. However, in either pro-
tocol, a malicious node may withhold a data packet until the
arrival of the corresponding probe in an attempt to decide
whether to drop m. To circumvent this, we require loose
time-synchronization amongst the nodes in the network such
5It is natural to imagine the possibility of composing these ap-
proaches. We discuss this in Section 10.

that the clock error between two adjacent nodes Fi and Fi+1

is less than min(r0), i.e., the minimum value of the round
trip time from S to the destination. In this scenario, an in-
termediate node would discard a data packet if it carries an
expired timestamp.

Both PAAI protocols employ a scoring mechanism in or-
der to identify malicious links over a period of time. We set
a threshold for the end-to-end drop rate of data packets for a
given path. The threshold value is chosen based on the natu-
ral drop rate, such that the natural end-to-end drop rate will
not exceed the threshold value. At the end of each probe, S
computes the end-to-end drop rate so far, based on the num-
ber of sent data packets and successfully received acks from
the destination; if the drop rate exceeds the threshold value,
then it indicates that an adversary is present on the path. Us-
ing the history of scores (i.e., the scores accumulated so far)
of the links, S will identify the adversarial presence on a
link (or a set of links) whose score exceeds a per-link score
threshold within a bounded number of probes. On the other
hand, the score of an honest link will not exceed the per-link
score threshold.

We now give some details on the specific scoring mecha-
nism employed by each PAAI protocol. Loosely speaking,
in PAAI-1, if an intermediate node fails to return an ack for a
probed data packet, then S will increase the drop score of its
upstream link. However, note that if each intermediate node
were to send a separate ack, then a malicious node could se-
lectively drop the acks from legitimate nodes in order to in-
criminate honest links. To circumvent this, PAAI-1 employs
the use of onion reports similar to the full-ack protocol.

PAAI-2, on the other hand, utilizes a slightly different
scoring mechanism. For a given data packet, if the selected
node Fe fails to return an ack, then S infers that there exists
at least one malicious link upstream of Fe; consequently S
will increase the drop score of each link between Fe and it-
self. Now, suppose that a malicious drop occurred at a link
li−1. Then, let X be the event that the intermediate node
Fi is selected. We ensure that event X occurs with a fixed
probability. Due to the above scoring mechanism, each oc-
currence of X will create a difference in the scores of the
links on either side of Fi. Over a period of time, a difference
in the score of two adjacent links would indicate a potential
malicious link. In order to ensure that event X occurs with a
fixed probability, PAAI-2 selects an intermediate node uni-
formly at random for any data packet. The protocol must
also ensure that the identity of the selected node for any data
packet is not revealed at any point in time; otherwise, a mali-
cious node could selectively drop acks from legitimate nodes
in order to incriminate honest links6. In order to circumvent
this, we design an oblivious selection and acknowledgment
procedure, such that the identity of the selected node is hid-
den to each node (except S) even through traffic analysis.

Finally, we remark that an adversary may choose to alter

6Specifically, in order to incriminate an honest link lh, a malicious
node could drop the ack every time Fh+1 is selected, while be-
having honestly every time Fh is selected. This would create a
difference between the scores of lh−1 and lh.

or drop any of the following: (a) data packet, (b) probe, or
(c) ack. However, our protocol design ensures that the source
node S interprets each such activity simply as a data packet
drop. In what follows, we will simply use the term drop
to refer to any kind of packet alteration or drop. Looking
ahead, in §7, we show that an adversary achieves the same
total end-to-end drop rate by employing different individual
drop rates for different packet types.

6. THE PAAI PROTOCOLS
Formally, the two PAAI protocols, namely, PAAI-1 and

PAAI-2 consist of five phases: (a) send data and decide
whether to probe, (b) probe, (c) acknowledge, (d) score, and
(e) identify. We give the details of both the protocols below.

6.1 PAAI-1
PAAI-1 employs probabilistic sampling in order to deter-

mine which data packets must be acknowledged. For ev-
ery sampled data packet, PAAI-1 requires each intermediate
node and the destination to return an onion report. The pro-
tocol details follow.

Phase 1: send data and decide whether to probe
Consider that S sends out a data packet m = 〈data||timestamp〉
towards the destination. On receiving m, an intermediate
node Fi first checks whether the embedded timestamp is re-
cent. If verification fails, then m is dropped. Otherwise,
Fi stores the identifier H(m) for m and starts a wait timer
ti = r0/2. Finally, m is forwarded toward the destination.
S then uses a secure sampling (SS) algorithm to determine

whether it must send out a probe for m. When given any
input m, the SS algorithm must output “Yes” with a fixed
probability p, where p is the probe frequency fixed at setup
time. Such an algorithm can easily be constructed by mak-
ing use of a PRF keyed with a secret key known only to S.
Note that such a mechanism is necessary to prevent an ad-
versary from correctly predicting whether or not a specific
data packet is sampled.

If the SS algorithm outputs “No”, then the protocol is ter-
minated for the current round. Otherwise, S executes the
next phase of the protocol. In the following, it is implicit
that a node Fi accepts a packet (probe or ack) iff it contains
a data packet identifier already stored at Fi.

Phase 2: probe
S sends out a probe c = H(m) towards the destination. The
probe contains the identifier H(m) for the data packet m
sent earlier7. On receiving a probe, an intermediate node Fi

starts a wait-timer ti = ri, forwards the probe towards the
destination, and moves to the next phase.

Phase 3: acknowledge
In this phase, the destination D and intermediate nodes must
7Note that, in practice, the probe frequency p will be set to a very
low value. Therefore, if we use unauthenticated probes, an adver-
sary could potentially waste a lot of communication power of the
intermediate nodes by sending bogus probes. As a countermeasure,
one could use authenticated probe packets, where a chain of MACs
(one for each intermediate node) is attached to each probe.

return an onion report to S. Ideally, the onion report must
either originate at the destination, or at the upstream node
of the link where mj was dropped. To this end, we em-
ploy the following rules: (a) If no downstream ack is re-
ceived within the wait time ti, Fi originates an onion report
Ai = [i||H(m)]Ki

. (b) Otherwise, on receiving a down-
stream ack within the wait-time, Fi sets the local reportRi to
be 〈i||H(m)〉 to create an onion report Ai as explained ear-
lier in §3.3. Finally, Fi sends out an ack ai = 〈H(m)||Ai〉
towards S.

Phase 4: score
Upon receiving the ack containing the onion report from F1,
S can sequentially verify each report embedded in it. For
some i < d, if the MAC from each intermediate node Fj , j ∈
[1, i] is valid but the MAC from Fi+1 is invalid or not present
in the final ack, then S identifies link li as faulty and adds one
to its drop score8.

Phase 5: identify
At any point in time, let si be the drop score of link li, and
n be the total number of probes evoked by S so far. The
average loss rate θi for link li so far can be computed as
si

n . We set a per-link drop rate threshold (denoted by α)
according to the natural loss rate ρi (α > ρi). Then if θi >
α, S convicts li as a malicious link. More details are given
in §7.

6.2 PAAI-2
Now we turn to the other design alternative: probabilis-

tically sampling a subset of intermediate nodes which must
return an ack. We propose PAAI-2 where only one interme-
diate node is selected to return a report for every data packet.
We remark that the strategy of selecting a subset of interme-
diate nodes which must return an ack tends to be vulnera-
ble to selective dropping attacks (see §5). Consequently, we
find that PAAI-2 requires more algorithmic complexity but
achieves a slower detection rate than PAAI-1.

Phase 1: send data and decide whether to probe
Consider that S sends out a data packet m = 〈data||timestamp〉
towards D. On receiving m, an intermediate node (including
D) first checks whether the embedded timestamp is recent.
If verification fails, then m is dropped. Otherwise, Fi stores
the identifier H(m) for m and starts a wait timer ti = ri.
Finally, m is forwarded toward the destination.

On receiving m, D creates a report Ai = [H(m)]Kd
and

returns an ack ad = 〈H(m)||Ai〉 to S. On receiving an ack
from D within the wait-time, an intermediate node Fi stores
a copy of it, forwards it towards S, and starts a waiting time
ti = r0 − ri.

If S receives a valid ack from D within a waiting time, it
concludes that m arrived unaltered at D and the protocol is
terminated for the current round. Otherwise, S executes the
next phase of the protocol. In the following, it is implicit
that a node Fi accepts a packet (probe or ack) iff it contains
8In the case where S does not receive any report within a wait-time,
S can simply conclude that a drop occurred at its downstream link
l0.

a data packet identifier already stored at Fi.

Phase 2: probe
S sends out a probe c = 〈H(m)||Z〉 towards D. The probe
contains an identifier H(m) for m, and a random challenge
Z .

On receiving a probe within the wait-time9, an intermedi-
ate node Fi computes a PRFKi(·)-based predicate Ti over
input Z , where Ti returns “true” with probability 1

d−i+1 . In
what follows, we say that a node Fi is sampled for a data
packet m if Ti returns true on input R.

Finally, Fi starts a wait-timer ti = ri and forwards the
probe towards D.

Phase 3: acknowledge
In this phase, the intermediate nodes must return an ack to
S. Ideally, the ack must originate at the upstream node of the
link where m was dropped. To this end, we employ the fol-
lowing rules: (a) If an intermediate node Fi does not receive
any ack from its downstream neighbor within the wait-time
ti, it generates an encrypted reportAi = EKi([i||c||ad]Ki).

10

(b) Otherwise, on receiving a downstream ack within the
wait-time, Fi performs one of the following actions. If Fi

was sampled for m during phase 1, it generates an encrypted
reportAi (as described in previous case) to overwrite the re-
port in the received ack. Otherwise it re-encrypts the report
in the received ack, i.e., Ai = EKi

(Ai+1). Finally, Fi sends
out an ack ai = 〈H(m)||Ai〉 towards S.

DEFINITION 1. We say that a node Fe is selected for a
data packet m, if (a) Fe is sampled for m, and (b) F1, . . . ,Fe−1

are not sampled .

From the above definition, it follows that, for a given data
packet, only one intermediate node is selected uniformly at
random with probability 1

d . Observe that due to the ack for-
warding mechanism described above, S expects an ack that
was generated at the selected node Fe and re-encrypted by
each upstream node between Fe and S.

Phase 4: score
In this phase, S assigns numerical scores to the links. On re-
ceiving an ack from F1, S first decodes the embedded report
Am

1 by performing successive decryptions using the keys
K1, . . . , Ke in that order, where Ke is the secret key shared
between S and Fe. If the final decoded value matches the
expected value 〈[e||c]Ke

〉, then S decides that there was no
malicious activity in the interval [l0, le−1]; consequently, no
scores are updated. Otherwise, S is convinced that there ex-
ists at least one malicious link in the interval [l0, le−1]. Since
each link in this interval has equal probability of being ma-
licious, S adds 1 to the individual score of each link in the
interval. No scores are updated for the links in the interval
[le, ld−1].

Phase 5: identify

9If the wait-timer expires, then the state maintained for m is
deleted.

10If no ack was received from D in phase 1, then ad is set to ⊥.

S pre-determines a per-link drop rate threshold α, based on
which it further sets a threshold ψth for the end-to-end drop
rate of data packets. S constantly monitors the actual end-to-
end data packet drop rate ψ based on the number of sent data
packets and successfully received acks from the destination.
It is guaranteed that ψth < ψ iff there is at least one link
with a drop rate exceeding α. Then the source can compute
per-link loss rate based on the accumulated data and identify
the link with the excessive drop rate. More details are given
in §7.

7. THEORETICAL ANALYSIS
In this section, we theoretically analyze the guaranteed

end-to-end throughput, detection rate, communication and
storage overhead of the proposed protocols. Due to space
limitations, we only provide a high-level sketch for the proofs
of Theorems 1 and 2 in the appendix. The detailed proofs for
all the theorems and corollaries in this paper are given in the
full version available online [17]. The results are summa-
rized in Table 1, which also gives a clear comparison be-
tween the full-ack, PAAI, and statistical FL protocol11 [7].
In §8 we validate our theoretical results and present average-
case results from simulations.

Definitions and Notation. Let ρi be the natural drop rate
of link li, and suppose that ρi’s are i.i.d. random variables
with maximum value ρ. Let α denote the per-link drop rate
threshold; and θi be the actual average drop rate of link li,
including both natural and malicious drops. Let ζ be the
malicious end-to-end drop rate, i.e., the drop rate due to ma-
licious links. When the observed drop rate value approaches
its true value within a small uncertainty interval, the AAI
false positive/negative is limited below a certain threshold ε.
We call this the converged condition.

Let p be the probe frequency employed in PAAI-1. Fur-
ther, in PAAI-2, let ψth be the threshold of the end-to-end
data packet drop rate observed by the source. Let ηi be the
number of times that node Fi is selected so far.

7.1 Bounding Malicious End-to-End Drop Rate
For ease of understanding, all the theoretical bounds in

this subsection are computed under the converged condition.
In §7.2 we derive the detection rate (number of data packets
sent by the source required to reach converged condition)
for the full-ack and PAAI schemes. We can see the detection
rates are high in the full ack and PAAI-1 schemes, so the
“unconverged” time period is negligible.

For simplicity, we first assume that an adversary employs
an identical drop rate for all types of packets (data, probe or
ack packets) at a controlled link li, and thus the probabil-
ity that a packet of any kind is dropped at li is θi. Loosely
speaking, the following theorem provides a bound on the
damage that an adversary (with an arbitrary number of links

11In the following, we compare our PAAI protocols mainly with the
statistical FL protocol [7] because it is the state-of-the-art and the
only protocol with a rigorous theoretical analysis, to the best of our
knowledge.

under its control) can inflict to the network’s end-to-end through-
put.

THEOREM 1. Given a path of length D, an adversary in
control of z intermediate links can cause (at most) the fol-
lowing malicious end-to-end drop rates without being de-
tected: (a) ζ = zα in full-ack scheme and PAAI-1, and
(b) ζ = 1 − (1−α)2d

(1−ρ)2(d−z) in PAAI-2 by setting the end-to-end
drop rate threshold ψth as ψth = 1− (1− α)2d.

It is possible that an adversary may choose to drop dif-
ferent types of packets at different rates. However we can
intuitively see that the adversary cannot gain any advantage
by doing this, because dropping any type of packet will al-
ways result in an increase in the drop count of the link where
the packet was dropped. The following corollary proves the
statement.

COROLLARY 1. An adversary who employs different drop
rates for different types of packets achieves the same maxi-
mum end-to-end drop rate.

Corollary 2 presents the optimal strategy that an adver-
sary can employ in order to cause maximum degradation to
the network throughput. The corresponding bounds on the
degradation in network throughput under the optimal strat-
egy are also presented.

COROLLARY 2. Given a fixed number of malicious links,
the malicious end-to-end drop rate ζ increases approximately
linearly with the increase of natural loss rate ρ. Given a fixed
number z of malicious links, the optimal strategy for the ad-
versary in order to cause the maximum end-to-end drop rate
across all the paths containing malicious links in the net-
work is to deploy one malicious link for one path. In this
case, the total malicious drop rate across all paths contain-
ing compromised links increases linearly with z.

7.2 Detection Rate

We compute the detection rates of the full-ack scheme and
PAAIs in the following theorem.

THEOREM 2. Given the threshold α = ρ + ε and the
allowed false positive σ, the full-ack and the PAAI protocols
require the following number of packets transmitted by the
source to converge. (a) τ1 =

ln(2
σ

)

8ε2·(1−ρ)2+d for full-ack scheme,
(b) τ2 = τ1

p
for PAAI-1, where p is the probe frequency, and

(c) τ3 = 2d ln(2
σ

)

18ε2
· d · log(d) for PAAI-2.

Corollary 3 shows the sensitivity of the detection rate (achieved
by the full-ack and PAAI protocols) to the various protocol
parameters. As it turns out, PAAI-1 can achieve fast detec-
tion rates under various parameter settings (and thus, a wide
range of empirical scenarios).

COROLLARY 3. For both the full-ack scheme and PAAI-
1, the allowed false positive rate σ is the dominating factor
on their detection rates, while the network-related parame-
ters (natural loss rate ρ and path length D) have negligible

influence on the detection rates. However, the detection rate
of PAAI-2 heavily depends on the path length D.

For example, if we set σ = 0.03 and p = 1
d2 , and choose

an arbitrary network setting where α = 0.03, ρ = 0.01 and
d = 6, then we have τ1

.= 1500, τ2
.= 5× 104 and τ3

.= 6×
105; whereas the detection rate in statistical FL protocol [7]
is 2 × 107. Per Corollary 3, the detection rate for PAAI-1
does not vary much given other network-related parameter
settings. Table 1 compares the detection rates achieved by
the different protocols.

7.3 Communication Overhead
In this section we compute and compare the communica-

tion overhead incurred by the full-ack and the PAAI proto-
cols for a given path of length D. The analysis results are
presented in Table 1.

Full-ack. Recall from §4 that in the benign case where no
packet loss occurs, each data packet requires one O(1)-sized
ack from the destination. When a packet drop happens, the
source solicits a O(d)-sized onion report via a O(1)-sized
probe packet. Therefore, given the end-to-end loss rate ψ,
the overall communication overhead per packet is O(1+dψ).
H(m) using the secret key Kd shared with S, and sends out
an ack ad = 〈H(m)||Ad〉. On receiving an ack ai+1 from its
downstream neighbor, an intermediate node Fi “wraps” the
ack in an onion fashion: it extracts the report Ai+1 and then
computes its own report as a MAC over the concatenation of
the identifier H(m) and the downstream report Ai+1 using
the secret key Ki shared with S. It then sends out an ack
ai = 〈H(m)||Ai+1||[H(m)||Ai+1]Ki

〉 towards S. However,
if no ack is received within the wait-time, Fi creates a fresh
ack in a manner similar to the base station and sends it to-
wards S. Now, on receiving the final ack, S can sequentially
verify each report embedded in it. For some i < d, if the
MAC from each intermediate node Fj , j ∈ [1, i] is valid but
the MAC from Fi+1 is invalid or not present in the final ack,
then S concludes that either the data packet m, or an PAAI-

1. Recall from §6.1 that for each sampled data packet, the
source solicits one O(d)-sized onion report (in case of au-
thenticated probes, the size of a probe packet is also O(d)).
Since a given data packet is sampled only with probability
p, the amortized communication overhead per data packet is
O(pd). By setting p = 1

d2 we can get O(1
d) overall com-

munication overhead per packet. Note that the above results
apply regardless of whether there are packet drops or not.

PAAI-2. Recall from §6.2 that each intermediate node Fi

on the forwarding path either generates a new ack or re-
encrypts the ack received from downstream. Therefore, an
ack packet traversing the path has a constant size (O(1)) at
any point in time. Further, PAAI-2 requires one O(1)-sized
probe packet per data packet sent by the source. Note that the
above results apply regardless of whether there are packet
drops or not.

7.4 Storage Overhead

Storage is a major concern in certain resource-constrained
networks. An adversary may even exploit the storage limi-
tation and manipulate packet drops to intentionally create
the worst case condition for the storage overhead of an AAI
protocol. On the other hand, in practical settings, including
when the adversary has been identified (and bypassed), ex-
cessive packet dropping is infrequent (thus the worst cases
do not arise frequently). A high storage overhead in such
an ideal case is undesirable. Therefore, in this section we
analyze and compare the storage overhead in both worst and
ideal cases for the full-ack scheme and PAAIs. In §8 we
present the average-case storage overhead via simulations.

In the following, let ν be the number of data packets that
S sends out per unit time. Recall that ri denotes the round
trip time between node Fi and D. The results given below
are summarized in Table 1.

Full-ack. In the worst case, on receiving a data packet m,
an intermediate node Fi needs to first wait r0 time for a probe
from the source, and ri time for an ack from Fi+1. Therefore
Fi can at most store O(2r0ν) packets at a time. In the ideal
case without packet drop, Fi only needs to store a packet for
ri time before receiving an ack from Fi+1.

PAAI-1. If a data packet m is not selected for a probe, Fi

needs to wait r0
2 time for a probe packet from the source.

If m is selected for a probe, in the worst case Fi needs to
further wait ri time for an ack from Fi+1; whereas in the
ideal case, Fi needs to further wait ri time for the ack from
Fi+1. Therefore given the probe frequency p, Fi can at most
store (0.5 + p)r0× ν packets at a time in both the worst and
ideal cases.

PAAI-2. In the worst case, on receiving m, Fi waits ri

time for an ack from Fi+1, r0 − ri time for a probe from the
source, and ri time for an ack from Fi+1 again, which gives
the worst case storage overhead 0(2r0ν). In the ideal case,
Fi only needs to wait ri time for the ack from Fi+1. There-
fore in ideal case the storage bound is O(r0 × ν) packets at
a time.

8. SIMULATION RESULTS AND ANALYSIS
We implement a simulator to study the average-case per-

formance of the proposed protocols, and also contrast the
average-case results with the theoretical results (as listed in
Table 2). Through simulations, we not only validate our the-
oretical results and make comparisons, but also derive new
observations missing from theoretical analysis by itself.

8.1 Methodology
Adversary. Note that, in practice, an adversary usually di-
rectly compromises a node, dropping the traffic flowing through
that node at the adversary’s will. We emulate such a realistic
scenario by setting malicious nodes in the path to perform
malicious packet dropping activity. We simulate the adver-
sary’s optimal strategy by deploying exactly one malicious
node on the path (Corollary 1). Recall that, in our proto-
cols, if a malicious node drops packets, it can manifest high
drop rates only on its adjacent links. We also set the adver-

Protocol Detection Rate Communication Storage
worst ideal

Full-ack ln(2
σ

)

8ε2·(1−ρ)2+d O(1 + ψd) O(2r0ν) O(r0ν)

PAAI-1 p
ln(2

σ
)

8ε2·(1−ρ)2+d O(pd) O(r0(0.5 + p)ν) O(r0(0.5 + p)ν)

PAAI-2 2d ln(2
σ

)

18ε2
· d · log(d) O(1) O(2r0ν) O(r0ν)

Statistical FL [7] d2 ln d
σ

pε2
O(pε2

dln d
σ

) O(pr0ν) O(pr0ν)

Combination 1 p
ln(2

σ
)

8ε2·(1−ρ)2+d O(p(1 + ψd)) O(r0(0.5 + 2p)ν) O(r0(0.5 + 2p)ν)

Combination 2 2d ln(2
σ

)

18ε2×p
· d · log(d) O(p) O(r0(1 + p)ν) O(r0ν)

Table 1: Detection rate and overhead comparison. The notation is given at the beginning of §7. We translate the related results [7]
using our notation. Combination 1 and Combination 2 are described in §10.

sary to employ the following tactics: (a) Since the full-ack
scheme and PAAI protocols ensure that the adversary cannot
gain benefit by dropping different packets at different rates
(Corollary 1), the adversary drops all types of packets at the
same rate. (b) Without loss of generality, we assume that,
when the malicious node receives but drops a data packet,
on receiving an ack request it will still send back the ack
as if it were functioning correctly. In this way, a malicious
node Fi’s dropping activity always increases the drop counts
of its downstream adjacent link li. Therefore li is the target
to identify.

Topology and Parameters. Recall the example topology
given in Figure 1. We simulate the proposed protocols on
one path with various lengths and varying locations of the
malicious link. Due to lack of space, here we only present
the results for an arbitrary setting where d = 6 and F4 is
set to be the node controlled by the adversary (results from
other settings present similar trends and conclusions). Ac-
cording to our aforementioned adversarial setting, the ma-
licious drops will directly increase l4’s drop count; thus l4
is the target link for our AAI protocols to identify. In the
following we also call l4 as lM . We follow the example
parameter settings used in our previous theoretical analysis,
i.e., we set benign per-link loss rate threshold ρ = 0.01 and
malicious per-link drop rate α = 0.03 (we implement this
by setting a drop rate of 0.02 for the malicious node F4).
However, recall from Corollary 3 and Table 1 that the per-
formance of PAAI-1 does not degrade in the case of longer
paths and higher natural loss rates. Each packet traversing a
link (or the malicious node) has an independent probability
of being dropped bi-directionally below the corresponding
drop rate threshold of that link (or the malicious node). We
also set per-link bi-directional latency distributed within 0 to
5 ms uniformly at random.

Evaluation Metrics. We evaluate (a) AAI false positive
and negative rates (which directly reflect detection rates) and
(b) storage overhead of each node for the full-ack and PAAI
protocols.12 we run the simulation 10000 times for each pro-

12We did not simulate the communication overhead because the the-
oretical analysis already gives straightforward and tightly bounded
results.

Protocol Detection Rate (minutes) Storage (# pkt)
bound average bound average

Full-ack 0.25 0.17 12 3.2
PAAI-1 9 4.2 3.2 3.0
PAAI-2 100 50 12 6.4

Statistical FL [7] 3333 N/A < 1 N/A

Table 2: Comparison of detection rates between theoretical
results and simulation results. The source’s sending rate is set
to 100 data packets per second. The storage overhead is the
average number of packets stored in F1 with the presence of a
malicious link l4.

tocol to calculate the false positive and false negative rates
and plot their dynamics over time. Recall from Table 1 that
storage overhead directly depends on packet origination rate;
as such we evaluate it for different orders of origination rate:
1000 and 100 data packets per second (the storage overhead
under a source’s sending rate of 10 packets per second is too
low to exhibit any insightful traits).

8.2 Results and Analysis
As presented below, we are able to both validate our theo-

retical results and to derive new and interesting observations
from the simulation results.

8.2.1 False Positive and Negative
Figure 2 plots the false positive and false negative rates

observed from 10000 simulation runs for each protocol. From
the figure we can observe that, given the same false posi-
tive threshold σ = 0.03, the detection rates are nearly twice
of the corresponding theoretical bounds. We summarize the
comparisons between theoretical and experimental results in
Table 2. In addition, we can see that in PAAI-2, the source
takes more time to accurately observe the per-link drop rate
for a link farther away from the source. This fact can be the-
oretically proved via the mathematical formula (we defer the
proof to the full version).

8.2.2 Storage Overhead
We launch two different sets of simulations to study the

characteristics of storage overhead in AAI protocols. In each

0 500 1000 1500 2000 2500
10

−3

10
−2

10
−1

10
0

F
al

se
 P

os
iti

ve
 /

N
eg

at
iv

e

Time (No. of Packets)

Malicious Link Lm

Benign Link L5

Benign Link L0

(a) Full-ack scheme. We use logarithmic
scale for the y-axis.

0 1 2 3 4 5

x 10
4

10
−3

10
−2

10
−1

10
0

F
al

se
 P

os
iti

ve
 /

N
eg

at
iv

e

Time (No. of Packets)

Malicious Link Lm

Benign Link L0

Benign Link L5

(b) PAAI-1. We use logarithmic scale for
the y-axis.

10
3

10
4

10
5

10
6

10
7

10
−3

10
−2

10
−1

10
0

F
al

se
 P

os
iti

ve
 /

N
eg

at
iv

e

Time (No. of Packets)

Malicious Link Lm

Benign Link L5

Benign Link L0

(c) PAAI-2. We use logarithmic scale for
both axes.

Figure 2: False positive and negative. The time is measured by the number of packets sent by the source.

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

F
ra

ct
io

n
 o

f
T

im
e

Storage (No. of Packets)

Full−ACK w/o AAI
PAAI−1 w/o AAI
PAAI−2 w/o AAI
Full−ACK w/ AAI

(a) Sending rate = 1000 pkt/sec.

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F
ra

ct
io

n
 o

f
T

im
e

Storage (No. of Packets)

Full−ACK w/o AAI
PAAI−1 w/o AAI
PAAI−2 w/o AAI
Full−ACK w/ AAI

(b) Sending rate = 100 pkt/sec.

0 500 1000 1500 2000
0

5

10

15

20

25

30

35

40

45

Time (No. of Packets)

S
to

ra
ge

 (
N

o.
 o

f P
ac

ke
ts

)

Node 1

Node 3

Node 3

(c) Storage traits with sending rate = 1000
pkt/sec in full-ack scheme.

Figure 3: Storage overhead. The storage is measured by the number of packets stored at any given time.

scenario if an AAI protocol reaches the converged condi-
tion (after 103, 2.5 × 104 and 3 × 105 data packets sent by
the source in full-ack, PAAI-1 and PAAI-2 schemes, respec-
tively), we assume the source bypasses the identified l4 by
replacing F4 with a honest node F′4 to connect nodes F3 and
F5 (we implement this in the simulation by resetting F4’s
drop rate to zero). We label cases where adversary identi-
fication comes into play as “w/ AAI”. We also simulate the
case where the existing adversary is not identified and by-
passed, which is labeled as “w/o AAI”.

We first investigate the storage overhead of a single node
F1 (which has the highest storage overhead, as we show
later) under different source’s sending rates (1000 and 100
data packets per second). We first let the source send 2000
data packets in total, within which only the full-ack scheme
can reach the converged condition. However, we present
the results for the full-ack scheme in both “w/ AAI” and
“w/o AAI” cases to compare with the PAAI protocols. Fig-
ures 3(a) and 3(b) present F1’s storage overhead when the
source’s sending rate is 1000 or 100 data packets per sec-
ond, respectively. It is apparent that the storage overhead
decreases with the lower sending rate. We further observe
that, in the “w/o AAI” case, PAAI-1 possesses the lowest
storage overhead; and the storage overhead of each proto-
col increases roughly linearly with the source’s sending rate.

This fact complies with our theoretical bounds (Table 1).
In addition, it is clear that the full-ack scheme achieves a
lower storage overhead after bypassing the adversary (“w/
AAI”). Therefore, though the full-ack scheme presents the
highest theoretical bound of worst-case storage overhead, it
achieves the lowest storage overhead in practice when AAI
comes into play. This observation implies that, in essence,
a protocol with a higher detection rate benefits more from
ideal cases where packet drops are rare after the adversary is
quickly bypassed.

In another simulation, we investigate the storage overhead
of nodes at different locations in the path and the influence of
AAI on storage overhead. Since the full-ack scheme has the
highest detection rate, we only present the simulation results
of the full-ack scheme due to space limitations (the results
derived from other protocols present common trends). To
make the influence of AAI more graphically obvious, we
enlarge the drop rate of F4 to 0.1. In this simulation we let
the source send 2000 data packets at the rate of 1000 data
packets per second, and bypass the adversary after sending
1000 data packets. Figure 3(c) plots the resulting dynamics
of the storage overhead of nodes F1, F3 and F5, from which
we can observe that, nodes closer to the destination have
lower storage overhead and are less affected after adversarial
packet drops. This observation can be explained according

to the theoretical analysis in §7.4.

9. SUMMARY OF RESULTS
From the theoretical and experimental results presented

before, we can make the following major observations:

Theory vs. Simulation. The average-case results derived
from our simulations are within the corresponding theoreti-
cal bounds. For the detection rate, the average-case results
are nearly two times better than the corresponding theoret-
ical results. For the storage overhead, the average-case re-
sult of the full-ack scheme is far smaller than its worst-case
bound, thanks to its fast convergence. The PAAI-1 protocol
also presents low storage overhead, even with the presence
of an adversary.

Practicality. We make the following conclusions about the
trade-off between the three performance metrics achieved
by the various protocols: (a) The full-ack scheme offers the
fastest detection rate and incurs a low storage overhead, but
at the cost of impractical communication overhead. (b) The
PAAI-1 protocol offers a practical (though not the best) de-
tection rate and communication and storage overhead simul-
taneously. More specifically, given that each data packet is
1.5KB (which is the currently popular MTU standard), per
Figures 3(a) and 3(b), PAAI-1 introduces less than 45KB
additional storage overhead even at its peak value under an
intense packet sending rate of 1.5MB per second, and around
6KB at its peak value under a packet sending rate of 150KB
per second. Furthermore, by setting the sampling rate p =
1

5d2 , PAAI-1 poses only around 3% additional communica-
tion overhead in a path with length d = 6, per Table 1;
while the detection rate is 45 minutes given by the theoret-
ical bound, and around 20 minutes on average per Table 2
(in previous analysis and simulation we set p = 1

d2). (c) The
PAAI-2 protocol presents worse performance compared to
the full-ack scheme and PAAI-1 protocol, but still presents a
more practical detection rate compared to the statistical FL
scheme [7] (see below). (d) The statistical FL protocol [7]
incurs almost optimal communication and storage overhead,
but achieves a rather impractical detection rate – nearly 50
hours in the worst case (Table 2). We conclude that PAAI-1
offers the most desirable trade-off between the performance
metrics. In contrast, all the other protocols only optimize at
most two performance metrics at the cost of deteriorating the
other metric(s) undesirably.

10. COMBINATION
So far we have explored three different basic approaches,

namely: (a) every node acknowledges every lost data packet
(exemplified by the full-ack scheme), (b) every node ac-
knowledges a selected fraction of data packets (instantiated
by the PAAI-1 protocol), and (c) a selected subset of nodes
acknowledge every data packet (represented by the PAAI-2
protocol). Intuitively, it might be tempting to consider com-
binations of the above basic approaches in order to improve
upon a certain performance metric. However, as we demon-
strate below, the combinations may not necessarily achieve

a better trade-off between the performance metrics as com-
pared to the basic approaches, and may therefore be unfavor-
able in practice. Specifically, although a combination may
further optimize a certain performance metric, other metrics
can degrade undesirably at the same time. Due to lack of
space, we will briefly discuss two sample combinations and
analyze the corresponding tradeoff.

Combination 1. By combining the basic approaches (a)
and (b) above, we can design a protocol where every node
must acknowledge a selected fraction of lost data packets.
The PAAI-1 protocol can be easily modified to follow the
above approach. Specifically, instead of using a secret key
known only to S to implement the probe function, we will
use the secret key Kd shared between S and D. Now, on re-
ceiving a data packet, D can independently decide whether it
must be acknowledged. For a sampled data packet m, S will
send out a probe only if it fails to receive an ack fromD. The
remaining details follow from PAAI-1. While retaining the
same detection rate as PAAI-1, the new protocol further re-
duces the communication overhead, since S now solicits an
onion report for only a lost sampled packet (instead of every
sampled packet in PAAI-1). However, the storage overhead
increases: in the worst case, on receiving m, each node must
first wait an additional r0 time for an ack from D, such wait-
ing time which was not required in PAAI-1. Its performance
is summarized in Table 1.

Combination 2. By combining the basic approaches (b)
and (c) above, we can design a protocol where one selected
node acknowledges a selected fraction of data packets. Sim-
ilar to Combination 1, we will use a probe function that is
implemented using the secret key Kd. The data packet struc-
ture will be similar to that in PAAI-2. Now, on receiving a
data packet, D can independently decide whether it must be
acknowledged. If an intermediate node receives a valid ack
from D, it immediately knows that the packet was sampled
and that there will be no further probe. For a sampled data
packet, S will send out a probe only if it fails to receive an
ack from D. The remaining details follow from PAAI-2. It
is intuitive to see the new protocol incurs lower communica-
tion overhead than both PAAI-1 and PAAI-2, but at the price
of a lower detection rate. Its performance is summarized in
Table 1.

11. CONCLUSION
In this paper, we address the problem of designing a se-

cure AAI protocol that offers a practical trade-off between
the three essential performance metrics: detection rate, com-
munication overhead, and storage overhead. To this end, we
systematically explore the design space of AAI protocols,
and propose a set of basic protocols where each protocol ex-
emplifies a design dimension. Based on our theoretical anal-
ysis and simulation results, we conclude that the proposed
PAAI-1 protocol achieves the best trade-off, and as a result
is more practical than the other protocols.

We note, however, that as a first step toward a system-
atic exploration of the design space for AAI protocols, this

paper inevitably bears some limitations in its extensibility
and generality. The quest for an optimal AAI protocol still
remains an open problem. Finally, we note that our PAAI
protocols require the additional assumption of loose time-
synchronization, which, although a viable assumption for
many network settings, might limit their applicability.

12. ACKNOWLEDGEMENTS
The authors gratefully thank Haowen Chan for construc-

tive discussions and insightful suggestions, and the anony-
mous reviewers for their valuable feedback.

13. REFERENCES
[1] K. Argyraki, P. Maniatis, D. Cheriton, and S. Shenker.

Providing packet obituaries. In ACM Hotnets-III,
2004.

[2] K. Argyraki, P. Maniatis, O. Irzak, S. Ashish, and
S. Shenker. Loss and delay accountability interface for
the internet. In Proceedings of IEEE International
Conference on Network Protocols, 2007.

[3] I. Avramopoulos, H. Kobayashi, R. Wang, and
A. Krishnamurthy. Amendment to: Highly secure and
efficient routing. Available at
http://www.princeton.edu/˜iavramop/
amendment.pdf.

[4] I. Avramopoulos, H. Kobayashi, R. Wang, and
A. Krishnamurthy. Highly secure and efficient routing.
In IEEE Infocom, 2004.

[5] I. Avramopoulos and J. Rexford. Stealth probing:
Efficient data-plane security for ip routing. In
USENIX, 2006.

[6] B. Awerbuch, D. Holmer, C. Nita-Rotaru, and
H. Rubens. An on-demand secure routing protocol
resilient to byzantine failures. In ACM WiSe, 2002.

[7] B. Barak, S. Goldberg, and D. Xiao. Protocols and
lower bounds for failure localization in the internet. In
Proceedings of EUROCRYPT, 2008.

[8] K. A. Bradley, S. Cheung, N. Puketza, B. Mukherjee,
and R. A. Olsson. Detecting disruptive routers: A
distributed network monitoring approach. In
Proceedings of the IEEE Symposium on Research in
Security and Privacy, pages 115–124, Oakland, CA,
May 1998.

[9] S. Goldberg, D. Xiao, E. Tromer, B. Barak, and
J. Rexford. Path-quality monitoring in the presence of
adversaries. In Proceedings of SIGMETRICS, 2008.

[10] J. R. Hughes, T. Aura, and M. Bishop. Using
conservation of flow as a security mechanism in
network protocols. In Proceedings of IEEE
Symposium on Security and Privacy, 2000.

[11] M. Just, E. Kranakis, and W. Tao. Resisting malicious
packet dropping in wireless ad hoc networks. In
Proceedings of ADHOC-NOW, Oct. 2003.

[12] K. Liu, J. Deng, P. K. Varshney, and K. Balakrishnan.
An acknowledgement-based approach for the
detection of routing misbehavior in MANETs. IEEE
Transactions on Mobile Computing, May 2007.

[13] J. McCune, E. Shi, A. Perrig, and M. K. Reiter.
Detection of denial-of-message attacks on sensor
network broadcasts. In Proceedings of IEEE
Symposium on Security and Privacy, May 2005.

[14] A. T. Mizrak, Y.-C. Cheng, K. Marzullo, and
S. Savage. Fatih: detecting and isolating malicious
routers. In Proceedings of International Conference on
Dependable Systems and Networks, 2005.

[15] V. N. Padmanabhan and D. R. Simon. Secure
traceroute to detect faulty or malicious routing.
SIGCOMM Computer Communication Review (CCR),
33(1):77–82, 2003.

[16] R. Perlman. Network Layer Protocol with Byzantine
Agreement. PhD thesis, The MIT Press, Oct. 1988.
LCS TR-429.

[17] X. Zhang, A. Jain, and A. Perrig. Full version:
Packet-dropping adversary identification for data
plane security. Available at http://www.cs.cmu.
edu/˜xzhang1/doc/conext08_full.pdf.

APPENDIX
Due to space limitations, we only provide a high-level sum-
mary of proofs for Theorems 1 and 2. Detailed proofs for all
the theorems and corollaries in the paper body are contained
in the full version available online [17].

Proof of Theorem 1: In the following, we analyze the full-
ack and PAAI-1 protocols together, and PAAI-2 separately.

I. Full-ack and PAAI-1. Since the onion report used in the
full-ack and PAAI-1 schemes can be used to locate a specific
link for each lost packet, under converged condition each
malicious link can at most drop α fraction of packets without
being detected. This in turn implies our results in Theorem 1
for the full-ack and PAAI-1 schemes.

II. PAAI-2. First we establish an end-to-end drop rate thresh-
old ψth so that the actual end-to-end drop rate exceeds ψth

only when at least one malicious link drops more than α per-
centage of packets (where α is the per-link drop rate thresh-
old). If each link li has a drop rate θi < α, we can further
compute the end-to-end drop rate ψd. Then we compute the
maximum end-to-end drop rate that an adversary can cause
without being detected, i.e., without causing ψd > ψth.

Proof of Theorem 2: In the proof, we first study how many
packet transmissions are required to estimate the drop rate of
a single link li within a certain accuracy interval. Suppose
that the true value of drop rate of li is θ∗i , and the estimated
drop rate of li is θi. We compute the number of packets
needed to achieve a (εθi , σ)-accuracy for θi:

Pr(|θi − θ∗i | > εθi
) < σ

i.e., with probability 1− σ the estimated θi is within (θ∗i −
εθ, θ

∗
i + εθ). Then we compute the total number of pack-

ets needed to achieve a (εθi
, σ)-accuracy for every link’s

θi. We mainly leverage the Maximum Likelihood Estimation
and Hoeffding’s inequality for the above calculation.

