
A Distributed Stealthy Coordination Mechanism for
Worm Synchronization

Gaurav Kataria, Gaurav Anand, Rudolph Araujo, Ramayya Krishnan and Adrian Perrig
Carnegie Mellon University

Abstract— Once a critical mass of nodes is infected by a
worm it becomes very difficult to stop the worm from infecting
a large fraction of vulnerable nodes. Therefore, the focus of
strategies for worm defense has been to detect the worm before
it reaches that critical mass. In this paper we present a novel
distributed coordination technique for worm propagation and
synchronization that can persist under the radar of detection
mechanisms long enough to achieve critical mass for a full
fledged attack. We discuss the stealthy worm propagation and
synchronization approach exploiting a P2P file-sharing network.

I. I NTRODUCTION

The emergence of flash worms in the wild, as hypothesized
by Staniford et al. [24], [25], has stimulated interest in
automated detection of Internet worms [9], [16], [23]. Early
detection being crucial in immunizing hosts and/or setting
up network filters, many techniques have been developed to
detect and diffuse worms and viruses in early stages [14],
[20], [26], [35]. In response, worm writers have attempted to
develop even quicker propagation techniques to outpace these
defensive mechanisms. Although faster propagation helps in
gaining quick momentum, it also leads to early detection
of worms, thereby helping the defensive mechanisms. Ma
et al. have proposed self-stopping worms that stop scanning
after a critical mass of nodes is infected in order to avoid
further exposing infected hosts [10]. In this paper, we propose
slow and covert propagation even in early stages of worm
infection to avoid worm detection until a critical mass of
nodes is infected. In addition, we propose a stealthy distributed
coordination mechanism for worm synchronization that does
not require command and control channels like IRC, which
could be easily detected by network monitors. Instead, via use
of discreet in-channel communication of an overlay network,
a worm can spread and coordinate without raising an alarm.

P2P file-sharing networks can provide a vast overlay net-
work ideal for stealthy propagation. P2P networks are not
alone in providing an application-specific network overlay;
email is another example, which has recently seen numerous
worm outbreaks. Though what makes P2P file-sharing net-
works unique is that (1) they are large and distributed networks
that are neither managed nor controlled by anyone, (2) due to
enormous amount of data transfer that takes place on them,
it is much easier to conceal malicious content and messages
as part of regular communication, and (3) nodes connected to
a P2P network by definition are aware of other nodes on the
network and hence do not have to randomly scan the Internet
for vulnerable hosts.

Interestingly, as technically savvy security researchershave
been analyzing scanning-based self-propagating worms ex-
ploiting intricate software vulnerabilities; malware developers
have been developing technically less savvy yet equally potent
attack vectors using email and P2P file sharing. Of the
more than twenty thousand worms and viruses reported by
Symantec in year 2005, only a handful were scanning-based
self-propagating worms that exploited a software vulnerability
[27]. The majority of malware discovered was viruses, which
is basically an executable code, compiled for a particular
platform, typically MS Windows. The propagation vectors for
these viruses are mostly email, P2P or instant messaging,
instead of vulnerability scanning. It can be difficult to detect a
virus if it does not exhibit any unusual behavior like opening
a back door or altering the kernel. Therefore, in theory a
P2P virus can persist under the radar as long as it behaves
like a normal P2P application; surreptitiously using the P2P
overlay network itself for distributed coordination with other
infected nodes. In this paper, we present a stochastic model
for P2P virus propagation and coordination such that once a
critical mass of nodes get infected, all covert nodes become
aware of that with high probability and can drop their cover
to simultaneously launch a usual scanning-based Internet-wide
worm infection. Effectively, we propose a novel malcode
termed “Worus” that starts out as a virus and then morphs
into a worm. A worus can potentially beat worm defenses
that require a typical delay ofTR after detection to activate
filters over the global Internet (see Figure 1).

The remainder of the paper is organized as follows. In Sec-
tion II we discuss the related work in the area of worm/virus
propagation. Section III presents a background on P2P file
sharing protocol. The Worus propagation model is discussed
in Section IV, while Section V describes the distributed
coordination scheme based on probabilistic counting. Sections
VI and VII present a simulation model and its results. Section
VIII proposes some countermeasures against the proposed
Worus. Directions for future research and conclusions are
presented in Sections IX and X, respectively.

II. RELATED WORK

Computer security researchers have applied the knowledge
in the field of epidemiology to estimate the birth, death and
cure rates of virus infections in computer networks to model
the infection trajectory [15]. Zou et al. [36] developed a
propagation model that fit the spread of the Code Red worm.
Wang et al. [28] describe propagation models in terms of



TR=Time to respond TR
Time

Detection
Threshold

100%

Worus

Worm Penetration

Traditional worm

Fig. 1. This figure illustrates how a delayed yet quick ramp up of distributed stealthy worm coordination mechanism termed “worus” can gain higher
penetration than a traditional worm, when defense techniques after detecting the worm activity exhibit a minimum delay ofTR before successfully activating.

graphs, removing some of the constraints of previous models
where homogeneous connectivity between nodes is assumed.
Propagation models of other non-homogeneous systems, such
as wireless networks [13] where the issues include dynami-
cally changing connectivity levels, have also been developed.
Zou et al. [34] modeled the spread of email viruses considering
factors such as email checking time and the probability of a
user clicking on an attachment. Similarly, instant messaging
worms were analyzed by Mannan and van Oorschot [11].

On the other hand, considerable research has focused on
developing techniques to specifically enhance (or contain)
the severity of infection [24], [25], [29], [31]. Weaver et
al. describe a number of new and highly virulent techniques
that could be employed to increase infection rates and stealth
[30]. The techniques proposed include hit-list scanning (where
the worm contains a built-in list of vulnerable hosts) to create
a Warhol worm; permutation scanning (where worms limit the
wasted effort in scanning the same IP range multiple times)
resulting in self-coordinated scanning; and flash worms which
utilize Internet sized hit-lists. Our work is perhaps most closely
related to what the authors describe as a surreptitious worm.
However, during the later phase of our attack, the worm could
be classified as a hybrid Warhol/flash worm.

While the security aspects of P2P have been studied in
past, the focus has been on improving their architecture [5],
[18], [19], [33], strengthening the P2P network, rather than
considering the possibility that the P2P network itself may
be used as an attack vector. Recently, some researchers have
looked at this issue, for instance, Daswani et al. [6] simulate
the impact of a Gnutella DoS caused usingquery flooding.
McGann [12] describes how a self-replication attack can be
launched through the Gnutella network and also discusses the
susceptibility to Man-in-the-Middle attacks as well as port
crawlers. Zeinalipour-Yazti [32] focuses on the exploitation
of the inherent security weaknesses in the Gnutella protocol.
The experiments they conducted outline the ease with which
these security flaws can be converted into DDoS attacks,
user privacy violations and IP harvesting mechanisms. They
evaluate protection against such attacks and suggest certain

improvements in the protocol. Bawa et al. [4] have developeda
mechanism based on birthday paradox to determine aggregate
content on a P2P network.

III. B ACKGROUND

P2P file-sharing is a decentralized end-user application
where millions of users across the world interconnect with
each other on an ad hoc basis to share files. Although
decentralized, P2P networks can be structured or unstructured.
Popular P2P networks like Gnutella and KaZaA are classified
as unstructured as the placement of data files is completely
unrelated to the network topology. In contrast, on structured
P2P networks such as Chord [5], CAN [18], PASTRY [19] and
Tapestry [33], the nodes are positioned based on the content
they offer. Content search in the latter is more efficient through
the use of techniques such as distributed hash tables. On the
other hand, searching on Gnutella is done rather randomly
with queries being propagated along all paths except the path
through which the query was received. This search continues
up to a limit of 7 hops determined via a TTL field in the
Gnutella packet header. In order to improve the efficiency of
search in the Gnutella architecture, the Query Routing Protocol
[1] was developed in which special nodes, called ultrapeers,
maintain a hash table of content available at their respective
leaf nodes. They perform a lookup within these tables before
forwarding a query to the leaves in order to limit unnecessary
query messages.

A typical host on a P2P network shares files by copying
them to a specific folder and then publishing the contents
of that folder to the network. The contents of the folder can
then be searched by other users on the network and copied if
desired by them. P2P viruses (or trojans) propagate by copying
themselves to the user’s shared directory under a deceptive
name, such as a popular video game, song or a movie. The
users who download these files also copy the virus and thus
continue to propagate it on the file sharing network. In the
past three years, over 300 such viruses have been found [2].
P2P viruses like other worms and viruses strive to steal either
user information (for identity theft, fraud etc.) or computing
resource (to form botnets, DDoS etc.).



IV. WORUSPROPAGATION MODEL

The worus technique that we propose behaves like a normal
virus in its initial phase when the malcode diffuses through
user queries. The users query for files and receive responses,
some of which are infected by the worus malcode. Once the
user clicks on an infected file, its P2P client gets infected and
starts returning worus infected files in response to queriesfrom
other users. However, at this time the worus does not commit
any other malicious action(s) in order to avoid detection by
early warning systems. Only after a critical mass of nodes
get infected in this way, the worus transforms into a worm,
starts to directly infect other hosts and performs its intended
malicious actions.

A simplified model for the diffusion in virus phase can be
formulated as follows:

N(t′) = N(t) + ∆(t) (1)

Where,
N(t): Number of infected nodes at time t; t’-t is one time
unit
∆(t): Number of nodes infected during time t’-t by the virus
diffusion

The ∆(t) is calculated as follows:

∆(t) = pi × (N0 − N(t)) (2)

Where,
pi : Probability that an uninfected node is compromised
within a time interval
N0: Total number of nodes on the network

When a P2P user issues a query, the probability that his
client gets infected depends on two factors. First, that at least
one of the query responses received is infected and, second,
that the user clicks on a infected response. We calculate the
two probabilities below.

1. In order to determine the probability that a malicious
query-hit makes it to the user’s consideration set1 we make
the following intermediate computations,

Step 1: Experiments were conducted on Gnutella network
to determine the average number of nodes that can be reached
0-6 hops away from any random node. The values observed
based on whether the querying node was a leaf2 or an ultrapeer
are reported in Table I.

Step 2: With each node responding on an average to 1%
of the queries they receive [8], we can determine the average
number of responses that are received for any random query.

1The user’s consideration set are those responses that are displayed on the
screen to the user from which he chooses one.

285% of nodes on a Gnutella network are leaf nodes [8].
3The anomaly in # of nodes reached for 5th and 6th hop for ultrapeer is

attributed to the fact that several clients have implemented “high out-degree”
wherein a client reduces the TTL of a query to 4 if it has a high out-degree
in order to limit the query responses for optimizing bandwidth. In the case
of a leaf node, the connection to its immediate ultrapeer is notcounted as a
hop.

Step 3: A variable parameterf is used to set the limit on
the consideration set. Allowing this parameter to be a variable,
ensures greater accuracy as this variable can be modeled based
on usage patterns.4

Thus, depending on whether the querying node is a leaf or
an ultrapeer, we can determine the probability that a query-hit
in a user’s consideration set is malicious,pm.

2. For the sake of simplicity, we assume that the user is
equally likely to select any response from the consideration
set. Therefore, the probability of a query-hit being downloaded
equals1/f . Hence, we evaluate the probability of getting
infected,

pi = pm × 1/f (3)

In the following section we present the mechanism through
which these infected nodes learn about and coordinate with
other infected nodes on the network.

V. PROBABILISTIC COUNTING

In this section, we describe a novel probabilistic counting
mechanism that the worus infected nodes use to monitor
the state of infection on the network. Instead of an explicit
communication channel, nodes rely on query and query-hit
messages that are part of the P2P protocol to coordinate.
Distributed and secret coordination between the nodes is an
integral aspect of the attack we describe. It ensures that (1)
every infected node launches the attack at the same time,
and (2) malcode is not detected before it reaches the critical
mass. Once the critical mass is achieved the worus immedi-
ately transforms into a worm and all infected nodes launch
a synchronized attack. Synchronization is achieved through
multiple stages of coordination described below.

Each node in the network, which is infected through the
virus infection process described in previous section, can
belong to one of three phases based on its knowledge of
the spread of infection in the network. As the node learns
of more infections on the network it progresses from phase 1
to phase 2 and so on. Therefore, as more nodes get infected,
infected nodes progress to later phases. The purpose of having
multiple phases is that with every successive phase change,the
level of synchronization achieved across nodes is higher. This
distributed synchronization is used to evade worm defenses
by delaying the worm phase. We describe the phases and the
synchronization process in detail in the next section.

A. Phase Definitions

1) Phase 1:When a node is initially infected (by down-
loading a virus from a malicious peer), it is considered to be
in phase 1. As the number of infected nodes on the network
increases they need some mechanism to keep tract of their
count. In order to estimate this count, each infected node
generatesR files with b bit long random filenames5. All

4Casual discussions with many P2P users suggests a consideration set of
15-20.

5Generating random filenames as opposed to predefined filenames increases
the stealth of the attack and reduces possibility of false positives.



TABLE I

REACH OF ULTRAPEER AND LEAF NODES IN A GNUTELLA NETWORK

Hops Number of nodes reached from ultrapeerNumber of nodes reached from leaf

0 25 4
1 156 24
2 1867 1354
3 16465 12317
4 37429 32807
5 03 32807
6 0 7266

infected nodes then periodically6 query forr (≤ R) files each
of which has a random filename of lengthb bits, expecting
positive responses (query-hits) from other infected nodeson
the network. A node continues to remain in phase 1 until it
receivest (≤ r ) query-hits. On receivingt hits, the infected
node progresses to phase 2. The same set ofr files is queried
periodically such that the phases are time-independent and
depend only on the actual number of infected nodes in the
network. We model the event of receiving a query hit as
a Bernoulli trial and compute the probability of gettingt
hits using a binomial distribution. We use it to compute the
probability of a node being in phase 1, i.e., getting less than
t hits for ther queries sent.

With an estimate of the number of infected nodes in the
network currently in phase 1,N1, and the probability of being
in phase 1,Pr(hits < t), using recursion we can calculate
the expected number of infected nodes in phase 1 as follows:

E[number of infected nodes in phase 1] =N1×Pr(hits < t)

2) Phase 2: After receiving t hits for the r queries sent,
an infected node in phase 1 progresses to phase 2. A node
transitions into phase 2 when it becomes aware of a certain
infection count having been reached in the network (based on
the t hits received). In order to achieve synchronization among
infected nodes, nodes in phase 2 have to speed up the process
of informing other nodes in phase 1 of the current infection
count. In order to do so, the nodes in phase 2 generateR’-R
additional files so that nodes in phase 1 would have higher
probability of receiving a hit. At the same time, they now
query for r’ files, which include ther files used in phase 1.
The phase 2 nodes wait for at leastt’ (≥ t) hits after which
they can progress to phase 3.

With an estimate of the number of infected nodes in the
network currently in phase 2,N2, and the probability of
being in phase 2,Pr(queryhits < t′), we can recursively
calculate the expected number of infected nodes in phase 2.

3) Phase 3: Once a node gets into phase 3, it is ready
to launch the attack because not only does it know that the
infection threshold has been reached, but it also knows thata
large proportion of other infected nodes also share the same

6The periodicity of these random queries has to be chosen appropriately to
ensure a certain degree of synchronization.

knowledge. In order to speed up the process of getting the
remaining nodes into phase 3 it generatesR”-R’-R files. This
is to help nodes that are still in phase 1 or phase 2 to quickly
transition to phase 3. The expected number of nodes in phase
3 can be calculated as follows:

E[x′′] = N(t) − E[x] − E[x′] − E[x′′′] (4)

Where,
x = Number of infected nodes in phase 1
x′= Number of infected nodes in phase 2
x′′= Number of infected nodes in phase 3
x′′′ = Number of infected nodes in phase 4

4) Phase 4:When a node reaches phase 3, the worus turns
into a worm and attempts to infect all the nodes, it can, using
software vulnerabilities. The vulnerable nodes that get infected
through this process are considered to be in phase 4. A node
on entering this phase is ready to launch an attack (as in phase
3). The nodes in phase 4 also generateR” files to further speed
up transition of nodes in phases 1 and 2, and also try to spread
the worm to all hosts on and outside the P2P network. These
two phases (phase 3 and phase 4) are essentially differentiated
by the mechanism through which they are infected otherwise
they exhibit the same behavior. As mentioned before, the goal
of having multiple phases is to finally have an abrupt phase
change, such that all nodes can attack simultaneously without
any external trigger.

B. Analysis

Probability of an infected node getting a query-hit is deter-
mined using birthday paradox [4],

p =
(

1 − e−(xR+x′R′+x′′R′′+x′′′R′′)/2b
)

(5)

1) Modeling Phase 1:The probability of gettingt hits from
r queries is modeled as a binomial distribution,

Pt = C(r, t)ptqr−t (6)

Where, q = 1-p, the probability of not getting a hit.

The probability of being in phase 1 is equal to the proba-
bility of getting less thant hits.



Pr(hits < t) =

t−1
∑

t=0

Pt (7)

Hence,

E[x]new = E[x]prev × P (hits < t) (8)

Where,
E[x]prev := Expected number of nodes in phase 1 at the last
infected count
E[x]new := Expected number of nodes in phase 1 at the
current infected count.

2) Modeling Phase 2:The probability of gettingt’ hits
from r’ queries is,

Pt′ = C(r′, t′)pt′qr′
−t′ (9)

The probability of being in phase 2 is equal to the proba-
bility of getting fewer thant’ hits.

Pr(hits < t′) =

t′−1
∑

t=0

Pt′ (10)

Hence,

E[x′]new = E[x′]prev × P (hits < t′) (11)

Where,
E[x′]prev := Expected number of nodes in phase 2 at the last
infected count
E[x′]new := Expected number of nodes in phase 2 at the
current infected count.

3) Modeling Phase 3:From Section V-A.3 we have ex-
pected number of nodes in phase 3 as,

E[x′′]new = T − E[x]new − E[x′]new − E[x′′′]new (12)

Where,
T := Total number of nodes currently infected
E(x”)new := Expected number of nodes in phase 3 at the
current infected count
E(x′′′)new := Expected number of nodes in phase 4 at the
current infected count.

4) Modeling Phase 4:Number of infected nodes in phase
4 is modeled as explained in Section V-A.4.

VI. SIMULATING A P2PNETWORK

The large scale interest in P2P systems has stimulated
research efforts for simulating P2P networks. The GeorgiaTech
network simulator [7] simulates a large-scale P2P network like
Gnutella using a generic framework that supports packet level
details. Similarly, a Query-Cycle simulator which attempts to
accurately model real-life P2P networks is described in [22].
Our simulator, CMU-GNS, is built on top of a basic Gnutella

TABLE II

SIMULATION PARAMETERS

b R r t R’ r’ t’ R”
17 15 10 6 85 15 11 500

simulator GnucNS developed by the makers of the Gnucleus
Gnutella client [3]. The GnucNS simulator was designed as a
tool to study the performance of the Gnutella network and has
a number of programmable parameters. It supports version 0.6
of the Gnutella protocol and comes with support for features
such as ultrapeers, node upgrade and downgrade algorithms,
and average connectivity. CMU-GNS supports a number of
extensions to the basic simulator. The network parameters have
been adapted for bandwidth and average connectivity to more
accurately reflect current statistics [8], [21]. Our simulator
also more accurately follows the Gnutella RFC for the query
generation and routing [1].

The simulation takes place in two stages. During the first
stage a lookup table is constructed that takes into account the
current network topology and determines for a given number
of malicious nodes how many of those are in each phase of the
probabilistic counting mechanism. The second stage then uses
the diffusion model developed above to increase the number
of malicious nodes with time and at each time instant looks up
the table generated during step 1, to determine which nodes
would transition to the next phase.

VII. S IMULATION RESULTS

Using the simulator described above, we model the spread
of infection on a small network of 500 nodes. The parameters
were adjusted so that the final worm attack would be launched
when the number of nodes ready to attack was close to 90%.
The parameters used for the probabilistic counting are shown
in Table II.

In Figure 2, we plot the results from the simulation, with
the percentage of nodes in each phase against the total number
of malicious nodes in the network. The number of non-
malicious nodes in the network decreases steadily as infected
nodes transition into higher phases. As expected, we observe
a sudden transition of nodes into phase 3 which results in a
synchronized attack. It is important to note that the actualtime
taken is dependent on the rate at which coordination queries
are sent. There is indeed a trade-off here in achieving swiftness
while maintaining low rate of queries to evade detection.

VIII. C OUNTERMEASURES

Gnutella network (much like other networks seen in nature)
is scale-free and exhibits a heavy-tail or power-law nature.
This means that a few nodes (usually the most popular
and dependable ultrapeers) have a large outdegree while the
remaining nodes have much lower outdegrees. This mathemat-
ically implies that the variance exhibited by the node degrees is
infinite. Pastor-Satorras and Vespignani [17] show analytically
and empirically that in a scale-free network the concept of an
epidemic threshold, generally associated with epidemiology,



0 100 200 300 400 500

0
10

0
20

0
30

0
40

0
50

0

Nodes in network

No
de

s a
ffe

cte
d

Total uninfected
Infected in phase 1
Infected in phase 2
In attack mode (phase 3 + 4)

Fig. 2. This figure shows that initially almost all infected nodes are in phase 1, but as the number of infected nodes approaches 450 (i.e. =90% of nodes in
the network), all infected nodes get quickly synchronized for a simultaneous attack.

does not exist and viruses with even low spreading rates
can survive for long times. They also show that immunizing
random nodes in the network has no effect. Therefore, none
of the traditional immunization strategies would work as a
countermeasure for the attack we described.

We have developed a countermeasure, which may not be
able to completely stop the attack but can certainly reduce
its severity by ensuring that fewer nodes participate in the
synchronized attack. If used in combination with other worm
detection and suppression techniques, it may render the attack
ineffective.

We observed that the effectiveness of our attack stems from
the fact that a large number of nodes simultaneously initiate
the attack. Hence, if it was possible to artificially reduce
the threshold at which a majority of nodes enter phase 3,
and to also reduce the initial slope of the phase 3 curve,
then, we could ensure that fewer nodes would participate
in a synchronized attack, thereby limiting its efficacy. We
therefore suggest that ultrapeers respond with bogus query-
hits to querying nodes, in order to introduce noise in their
counting mechanism and thus throw their synchronization
off. Using the same parameters as those used to obtain the
results described above, we implemented this countermeasure
strategy. The results were encouraging, indicating earlier onset
of phase 3 and a much slower transition. Figure 3 shows the
results of the simulation with the countermeasures in use.

However, there are some limitations of such a defense.

An innovative attacker might find it relatively easy to bypass
this security mechanism by adjusting the tunable parameters
that form the probabilistic counting method. By doing so, an
attacker can make allowance for those query-hits which may
have come from immunized ultrapeers. Therefore, we believe
that a more advanced security scheme is warranted if such
an attack is observed. Furthermore, the detrimental impact
of implementing such a noise introduction scheme must be
studied to observe any loss in functionality for normal users,
who will be annoyed by seeing many bogus hits to their
legitimate queries.

An effective approach, that has emerged in practice to filter
out known P2P viruses is through use of rating systems for
files on the networks. Instead of just relying on the filename,
users are able to view other users’ rating of the file as linked
to its content hash, such that infected files are less likely to be
hosted and copied by unsuspecting users. However, this ap-
proach is effective only against known viruses, and especially,
against those viruses that have exhibited specific malicious
actions. Moreover, considering the increasing sophistication
of attacks we believe that it is likely that in future the virus
(worus) infected clients could easily rack up the ratings of
their viral files, enticing users to download them. Therefore,
the attack that we have described could potentially become a
serious threat that requires further research attention tofind
defenses.



0 100 200 300 400 500

0
10

0
20

0
30

0
40

0
50

0

Nodes in network

No
de

s a
ffe

cte
d

Total uninfected
Infected in phase 1
Infected in phase 2
In attack mode (phase 3 + 4)

Fig. 3. This figure shows that by providing dummy hits the synchronization of infected nodes is thrown off. Infected nodes transition into phase 3 much
sooner thereby reducing the efficacy of force multiplier effect.

IX. FUTURE WORK

Though our simulator attempts to model the Gnutella v6
network accurately, its features could certainly be extended
to support the dynamic nature of the network due to entry
and exit of nodes as well as real-world Gnutella traffic.
Network flux could play a significant role and potentially
act as an inherent countermeasure because when malicious
nodes go offline/online they can throw off synchronization.
Certain parameters that are part of the diffusion model have
been obtained through prior research work. Since most of the
papers cited have based their results on experimental setups
in Gnutella v4 networks, there exists a need to validate their
findings on a Gnutella v6 setup. In addition, the assumption
regarding equiprobable download pattern of query hits in a
consideration set is simplistic and needs to be modeled more
accurately through a proper user study.

As outlined earlier, the approach of rate limiting does not
serve as a substantial countermeasure against the proposed
attack and more research is required in this area. A possible
extension could be to explore if the query pattern or in-channel
communication of worus can be statistically detected in early
phases, even if attackers generate plausibly random-looking
files.

X. CONCLUSIONS

Using simulation model of a P2P file-sharing network, we
have shown that a covert yet formidable worm can exist. More

importantly, the stealth during the initial phase, the quick ramp
up to an attack state, and finally the full blown worm/DDoS
attack only goes to show that serious thought must be put
into the security of P2P networks, and overlay networks in
general. We have successfully shown that combining two
attack methodologies can only serve to increase the magnitude
of the attack at the same time letting the attacker remain
anonymous. The absence of a command and control chan-
nel differentiates Worus from other traditional worms. Time-
bomb-based worms can also achieve similar synchronization
in absence of command and control channel, but they may be
set off too early in the worm propagation cycle or too late in
the worm detection cycle.

When considering countermeasures, it is important to con-
sider the impact they have on normal usage. Any improvement
to the protocol that reduces the functionality or increasesthe
possibility of being tracked is not likely to be acceptable to
millions of file swappers on the Internet.

Finally, the worus approach proposed in this paper is general
and can be applied to any popular overlay network like email
or messaging. Therefore, more attention is required from the
security research community to tackle these new threats before
attackers implement them in the wild.

ACKNOWLEDGMENT

The authors thank three anonymous reviewers for valuable
comments. This research was supported in part by CyLab at
the Carnegie Mellon University under grant CNS-0509004



from the National Science Foundation. The views and con-
clusions contained here are those of the authors and should
not be interpreted as necessarily representing the officialpoli-
cies or endorsements, either express or implied, of Carnegie
Mellon University, NSF, or the U.S. Government or any of its
agencies.

REFERENCES

[1] http://rfc-gnutella.sourceforge.net.
[2] http://www.symantec.com/avcenter.
[3] http://www.gnucleus.com/GnucNS/.
[4] M. Bawa, H. Garcia-Molina, A. Gionis, and R. Motwani, “Estimating

aggregates on a peer-to-peer network,” inTechnical report, Stanford
University, 2003.

[5] F. Dabek, E. Brunskill, M. F. Kaashoek, D. Karger, R. Morris, I. Stoica,
and H. Balakrishnan, “Building peer-to-peer systems with chord, a
distributed lookup service,” inProceedings of the 8th Workshop on Hot
Topics in Operating Systems (HotOS-VIII), May 2001.

[6] N. Daswani and H. Garcia-Molina, “Query-flood dos attacks in gnutella,”
in Proceedings of the 9th ACM conference on Computer and communi-
cations security, 2002, pp. 181–192.

[7] Q. He, M. H. Ammar, G. F. Riley, H. Raj, and R. Fujimoto, “Mapping
peer behavior to packet-level details: A framework for packet-level
simulation of peer-to-peer systems,” inMASCOTS 03, 2003, pp. 71–
78.

[8] M. Kapadia and S. Bagla, “Peer-to-peer self-organizingcommunities,”
Master’s thesis, Carnegie Mellon University, May 2003.

[9] C. Kreibich and J. Crowcroft, “Honeycomb - creating intrusion detection
signatures using honeypots,” inProceedings of the Second Workshop on
Hot Topics in Networks (HotNets-II), November 2003.

[10] J. Ma, G. M. Voelker, and S. Savage, “Self-stopping worms,” in Pro-
ceedings of the ACM Workshop on Rapid Malcode (WORM), November
2005.

[11] M. Mannan and P. C. van Oorschot, “On instant messaging worms,
analysis and countermeasures,” inProceedings of the 2005 ACM Work-
shop on Rapid Malcode, November 2005, pp. 2–11.

[12] S. McGann, “Self-replication using gnutella,” inSecurity Focus Online.
BugTraq Archive, May 2000.

[13] J. W. Mickens and B. D. Noble, “Modeling epidemic spreading in mobile
environments,” inProceedings of the 4th ACM Workshop on Wireless
Security, September 2005, pp. 77–86.

[14] D. Moore, “Network telescopes: Observing small or distant security
events,” inProceedings of the 11th Usenix Security Symposium, August
2002.

[15] Y. Moreno, R. Pastor-Satorras, and A. Vespignani, “Epidemic outbreaks
in complex heterogeneous networks,”European Physical Journal B,
vol. 26, no. 251, 2002.

[16] J. Newsome, B. Karp, and D. Song, “Polygraph: Automatic signature
generation for polymorphic worms,” inProceedings of the IEEE Security
and Privacy Symposium, May 2005.

[17] R. Pastor-Satorras and A. Vespignani, “Epidemic dynamics in finite size
scale-free networks,”Physical Review, vol. E65, no. 035108, pp. 1–4,
2002.

[18] S. Ratnasamy, P. Francis, M. Handley, and R. Karp, “A scalable content-
addressable network (can),” inProceedings of ACM SIGCOMM, 2001.

[19] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems,” in IFIP/ACM
International Conference on Distributed Systems Platforms (Middle-
ware), November 2001, pp. 329–350.

[20] SANS, “Internet storm center. http://isc.incidents.org/.”
[21] S. Saroiu, P. K. Gummadi, and S. D. Gribble, “Measuring andanalyzing

the characteristics of napster and gnutella hosts,”Multimedia Systems,
vol. 9, no. 2, pp. 170–184, 2003.

[22] M. Schlosser, T. Condie, and S. Kamvar, “Simulating a file-sharing p2p
network,” in 1st Workshop on Semantics in Grid and P2P Networks,
2003.

[23] S. Singh, C. Estan, G. Varghese, , and S. Savage, “Automated worm
fingerprinting,” in Proceedings of the 6th ACM/USENIX Symposium on
Operating System Design and Implementation (OSDI), December 2004.

[24] S. Staniford, D. Moore, V. Paxson, and N. Weaver, “The top speed of
flash worms,” inProceedings of the ACM Workshop on Rapid Malcode
(WORM), October 2004.

[25] S. Staniford, V. Paxson, and N. Weaver, “How to 0wn the internet in
your spare time,” inProceedings of the 11th Usenix Security Symposium,
August 2002.

[26] Symantec, “Enterprise early warning solutions.” [Online]. Available:
http://enterprisesecurity.symantec.com/
SecurityServices/content.cfm?ArticleID=1522

[27] D. Turner, S. Entwisle, O. Friedrichs, D. Ahmad, J. Blackbird, M. Fossi,
D. Hanson, D. Cowings, D. Morss, B. Bradley, P. Szor, E. Chien,
A. Burton, T. Conneff, P. Ferrie, T. Johnson, and D. McKinney, Symantec
Internet Security Threat Report, Volume VIII. 20330 Stevens Creek
Road, Cupertino CA: Symantec Corporation, 2005.

[28] Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos, “Epidemic
spreading in real networks: An eigenvalue viewpoint,” in22nd Interna-
tional Symposium on Reliable Distributed Systems (SRDS’03). IEEE
Computer, October 2003.

[29] N. Weaver and V. Paxson, “A worst-case worm,” inThird Workshop on
Economics and Information Security, 2004.

[30] N. Weaver, V. Paxson, S. Staniford, and R. Cunningham, “Ataxonomy
of computer worms,” inFirst Workshop on Rapid Malcode (WORM),
2003.

[31] N. Weaver, S. Staniford, and V. Paxson, “Very fast containment of scan-
ning worms,” in Proceedings of the 13th Usenix Security Symposium,
2004, pp. 29–44.

[32] D. Zeinalipour-Yazti, “Exploiting the security weaknesses of the gnutella
protocol,” in University of California Report, May 2002.

[33] B. Y. Zhao, J. Kubiatowicz, and A. Joseph, “Tapestry: Aninfrastructure
for fault-tolerant wide-area location and routing,” inUCB Tech. Report
UCB/CSD-01-1141, 2001.

[34] C. C. Zou, D. Towsley, and W. Gong, “Email worm modeling andde-
fense,” in13th International Conference on Computer Communications
and Networks, October 2004, pp. 409–414.

[35] C. C. Zou, L. Gao, W. Gong, and D. Towsley, “Monitoring and early
warning for internet worms,” inCCS03. ACM, October 2003.

[36] C. C. Zou, W. Gong, and D. Towsley, “Code red worm propagation
modeling and analysis,” inProceedings of the 9th ACM conference on
Computer and communications security. ACM, November 2002, pp.
138 – 147.


