Rapid Trust
Establishment
for Pervasive

|SECURITY & PRIVACY

Personal Computing

Trust-Sniffer’s staged approach to establishing confidence in untrusted
machines balances security and ease-of-use, facilitating rapid use of

transient hardware.

Ajay Surie, Adrian Perrig,
Mabhadev Satyanarayanan,

and David J. Farber

Carnegie Mellon University

PERVASIVE computing

n the emerging Internet Suspend/Resume

mobile computing model,'~? users exploit

pervasive deployments of inexpensive, mass-

market PC hardware rather than carrying

portable hardware. ISR’s driving vision is
that plummeting hardware costs will someday elim-
inate the need to carry computing environments in
portable computers. Instead, ISR will deliver an
exact replica of the last checkpointed state of a user’s
entire computing environment (including the oper-
ating system, applications, files, and customiza-
tions), on demand over the Internet to hardware
located nearby. So, ISR cuts the tight binding
between PC state and PC hard-
ware. ISR is implemented by lay-
ering a virtual machine on dis-
tributed storage. The virtual
machine encapsulates execution
and user customization; the dis-
tributed storage transports that
state across space and time.

In this new computing model, establishing trust
in unmanaged hardware for transient use becomes
a major issue. Today, when a user sits down at a
computer in the office or home, he or she implic-
itly assumes that the machine hasn’t been tampered
with and that it doesn’t contain malware, such as
a keystroke logger. This assumption is reasonable
because unauthorized physical access to the
machine is restricted. The same assumption applies
to a portable computer that the user physically
safeguards at all times. For ISR’s vision of transient

hardware use to become commonplace, users must
be able to quickly establish a similar confidence
level in hardware that they don’t own or manage.

To address this problem, we’ve created Trust-
Sniffer, a tool that helps users incrementally gain
confidence in an initially untrusted machine.
Trust-Sniffer focuses on software attacks but
doesn’t guard against hardware attacks, such as
modifying the basic I/O system. Potential defenses
against hardware attacks include physical sur-
veillance or the use of tamper-proof or tamper-
evident hardware. Although Trust-Sniffer is de-
signed to safeguard mobile users, you can couple
it with system operators’ security technologies,
such as full disk encryption, direct memory-access
monitoring, and remote attestation.

Trust-Sniffer’s staged approach to establishing
confidence in an untrusted machine balances the
needs for security, usability, and speed (for a com-
parison of Trust-Sniffer and other approaches,
see the sidebar).

Design overview

Trust-Sniffer aims to enhance security with
modest user effort. A key design principle, moti-
vated by ISR’s unique characteristics, is to vali-
date only the software a user needs for a task.
Specifically, most of a user’s execution environ-
ment is fetched from a trusted server over an
authenticated, encrypted channel. This includes
the guest operating system and applications that
execute inside the user’s virtual machine. Cached

Published by the IEEE Computer Society ® 1536-1268/07/$25.00 © 2007 IEEE

Figure 1. Trust-Sniffer’s staged approach
to trust establishment. Initially, all
software is untrusted. (a) The trust
initiator’s boot uses a minimal trusted
operating system to validate the on-disk
OS. (b) Next, the trusted host OS is
booted from disk, which validates
applications as required. (c) The host
OS only permits trusted applications

to execute.

virtual-machine state on disk is always
encrypted, and ISR verifies its integrity
before a virtual machine uses it. So, it’s
only necessary to verify the integrity of a
small core of local ISR and Linux soft-
ware. Other compromised state isn’t a
threat if it’s never used when a machine
is functioning as an ISR client. This min-
imalist approach speeds trust establish-
ment and makes ISR more ubiquitous. A
second important design principle is to
prevent the execution of untrusted soft-
ware. This is in contrast to attestation
techniques, which facilitate the detection
of untrusted software but don’t prevent
its execution.

Staged approach
Figure 1 shows Trust-Sniffer’s staged
approach to trust establishment.

Establishing a root of trust. First, the user
performs a minimal boot of the untrusted
machine from a small, lightweight device
such as a USB memory stick that the user
owns and carries at all times. This #rust
initiator device serves as the root of trust
in Trust-Sniffer. Relying on a trusted
physical possession is convenient and
easy for the user to understand. This
stage involves a minimal boot, because
its sole purpose is for Trust-Sniffer to
examine the local disk and verify that it’s
safe to perform a normal boot using the
on-disk operating system and its associ-
ated boot software. The minimal boot
ignores the network and any devices
other than the disk.

Booting the on-disk operating system.
Next, Trust-Sniffer performs a normal

OCTOBER-DECEMBER 2007

Untrusted code
Trusted code

Minimal trusted 0S
(from trust initiator)

Validate 0S

Host hardware

(a) (b)

Trusted host 0S
(from disk)

Validate application 1

Host hardware

Trusted application
1

Trusted host 0S
(from disk)

Application 1

Host hardware

(c)

reboot from disk, which is now known
to be safe. This ensures that a full suite
of drivers for the local hardware (such
as graphics accelerators) as well as cor-
rect local environment settings (such as
those for printers, networks, and time)
is obtained. During this boot process,
Trust-Sniffer dynamically loads the ¢rust
extender module into the kernel, which
extends the zone of trust as execution
proceeds. On the first attempt to execute
any code that lies outside the current
zone of trust (including dynamically
linked libraries), the kernel triggers a
trust fault. The trust extender handles a
trust fault by verifying the suspect mod-
ule’s integrity and stops execution if the
module’s integrity cannot be established.

Validating other local software on trust
faults. As each component of ISR client
software is accessed for the first time, the
kernel generates trust faults and Trust-
Sniffer validates the component’s inte-
grity. Once the user gains confidence in
the machine and its ISR software, he or
she can perform the resume step of ISR.
On the other hand, if Trust-Sniffer can’t
validate any component of ISR client
software, it alerts the user and terminates
the ISR resume sequence.

On-demand validation is much more

robust than en-masse validation with
respect to ISR software evolution. If a
new release of ISR client software uses a
local software component that previous
releases didn’t use, Trust-Sniffer will dis-
cover its use, even if a software devel-
oper fails to list it.

Example use

The following example illustrates our
system’s use. Bob boots up a PC at his
hotel’s business center using his USB key.
Trust-Sniffer’s initial scan quickly vali-
dates the on-disk operating system, which
is subsequently booted. Bob then initiates
the resume step of ISR. Once Trust-Snif-
fer verifies the ISR client software’s
integrity, ISR fetches Bob’s personal exe-
cution environment over a trusted com-
munication channel. The locally installed
Web browser is riddled with malware, but
this doesn’t affect Bob’s task because he
works only within his trusted personal ex-
ecution environment.

Threat model and assumptions
Machines used as ISR clients are vul-
nerable to attacks such as modifications
to client or system software and installa-
tion of malware such as key-logging or
screen-capture software. Trust-Sniffer’s
goal is to avoid potential loss or disclosure

PERVASIVE computing

25

L e RN] RAMA Y|

26

Trust initiator

Trust-fault Mismatched data

M

d-

H

Untrusted machine

Figure 2. The Trust-Sniffer architecture. The trust initiator plugs into an untrusted machine, validates its operating system, and

equips it with a list of trusted applications’ SHA-1 hashes (reference measurements). Applications that haven’t been validated cause

a trust fault, which the trust extender handles. If an application can’t be validated, the user-space trust alerter notifies the user.

of user data by validating software on an
ISR client machine before a user accesses
his or her personal execution environment.

We assume that, to use our system, the
user may reboot the untrusted machine
and that the BIOS allows booting from a
USB memory stick. We also assume that
modifying the BIOS is difficult. So, we
don’t guard against virtual-machine-
based attacks, such as SubVirt,* where a
compromised BIOS could boot directly
into a malicious virtual-machine monitor.

In addition, Trust-Sniffer is based on
load-time binary validation, so it doesn’t
protect against runtime attacks. Speci-
fically, only applications with valid sig-
natures may load and execute, but
Trust-Sniffer wouldn’t detect, for exam-
ple, buffer overflow attacks initiated
after execution has begun.

Detailed design
and implementation

Figure 2 shows Trust-Sniffer’s three
major components:

e the trust initiator and its associated
minimal boot software;

e the trust extender, implemented as a
kernel module; and

e the trust alerter, a user-space notifier
application.

Integrity measurement architecture
Trust-Sniffer builds on the imple-

PERVASIVE computing

mentation of Integrity Measurement
Architecture for Linux.> IMA checks
the system software stack’s integrity
by computing a SHA-1 hash over an
executable’s contents when it’s loaded.
This SHA-1 hash is called a measure-
ment. IMA is built into the kernel and
is invoked whenever executable code
is loaded, accounting for user-level bi-
naries, dynamically loadable libraries,
kernel modules, and scripts. IMA mea-
sures each loaded executable and
stores its measurement in a list in the
kernel. An aggregate measurement of
the list is stored in the Trusted Plat-
form Module, a secure hardware
coprocessor that protects the list’s
integrity. The TPM aggregate and the
kernel-measurement list facilitate
remote-party attestation of the system
software stack.

IMA is part of the kernel and assumes
trust in all software that’s executed be-
fore it’s invoked. Our system builds on
IMA and addresses these concerns. Be-
cause remote-party attestation isn’t our
system’s intent, we don’t use a TPM
chip. Instead, we use a small, user-car-
ried passive device to initiate the estab-
lishment of confidence in the boot
loader and kernel on the untrusted ma-
chine. The machine’s OS kernel is then
responsible for measuring software
applications and preventing untrusted
software from executing.

Validating applications

Trust-Sniffer validates an application
by comparing its sample measurement,
obtained when the application is loaded,
to a known list of reference measure-
ments generated from trusted applica-
tions. A mismatch is an inequality be-
tween a sample measurement and every
reference measurement in the list. In
contrast to attestation, where measure-
ments detect untrusted software after it
has been loaded, validation refers to
detection of untrusted software before
it’s used.

The reference measurement list must
be generated initially and updated only
when patches and new software are
released. Failing to update the mea-
surement list implies that new trusted
software will be prevented from exe-
cuting. Execution of untrusted software
is never allowed. For simplicity and
comparability, our measurement list for-
mat is the same as that output by shalsum,
a utility commonly available on most
distributions.

In our initial implementation, we
recorded measurements for the latest
version of an application. However, the
list could contain multiple trusted mea-
surements for an application such as the
kernel. In this case, if Trust-Sniffer
encountered a system with multiple ker-
nels, it could permit the execution of a
trusted kernel even if the remaining ones

www.computer.org/pervasive

W hen comparing Trust-Sniffer to other work, we considered
the following:

® Most systems are designed with an administrator in mind and
don‘t focus on giving users security guarantees.

¢ Although some solutions offer more security than our system,
their complex hardware and software requirements limit their
adoption in practice.

The trusted boot and secure boot' mechanisms verify software
components required during a PC’s bootstrap process. However,
both mechanisms require platform modifications. Neither mecha-
nism verifies software, such as operating system services and user
applications, which are executed after the bootstrap process. Ad-
ditionally, although trusted boot helps detect untrusted software
through recorded application signatures, it doesn’t prevent un-
trusted execution because it doesn’t validate the signatures it
records.

Trust-Sniffer differs from solutions such as SoulPad, which lets
users configure a machine with their own personal computing
environment using software carried on a portable device.? This
approach isn’t always practical because personalized environ-
ments often don‘t contain correct local-environment settings,
such as printer and network settings, or appropriate drivers for the
target machine. Trust-Sniffer requires minimal boot software and
subsequently loads software on the target system after establish-
ing its integrity.

A well-studied problem is the untrusted terminal, where a user
interacts with an untrusted device. The most interesting formula-
tion of the problem is using an untrusted device to establish secure
communication with a trusted remote device. Researchers have
proposed several solutions, including camera-based authentica-
tion,? visual cryptography,* and trusted smart cards.® Other tech-
niques to verify the authenticity of a system'’s configuration include
a challenge-response mechanism between a trusted authority and
a remote system.® The Pioneer system uses a similar protocol to

provide verifiable code execution on an untrusted platform.” Be-
cause Pioneer establishes a dynamic root of trust, it can function as
a building block for future iterations of Trust-Sniffer.

Scott Garris and his colleagues describe a mechanism for a user
to establish trust in an untrusted kiosk—a problem similar to the
one Trust-Sniffer addresses.8 However, their implementation relies
on secure hardware, including a Trusted Platform Module chip,
and a new instruction recently added to the x86 architecture. In
addition, their implementation requires validating all the software
on a kiosk before it can be used, whereas Trust-Sniffer allows incre-
mental program validation to facilitate transient use.

1. W.A. Arbaugh, D.]. Farber, and J.M. Smith, “A Secure and Reliable Boot-
strap Architecture,” Proc. 1997 IEEE Symp. Security and Privacy, |EEE CS
Press, 1997, pp. 65-71.

2. R. Caceres et al., “Reincarnating PCs with Portable SoulPads,” Proc. 3rd
Int’l Conf. Mobile Systems, Applications, and Services (MobiSys 05), ACM
Press, 2005, pp. 65-78.

3. D.E. Clarke et al., “The Untrusted Computer Problem and Camera-
Based Authentication,” Proc. 1st Int’l Conf. Pervasive Computing, LNCS
2414, Springer, 2002, pp. 114-124.

4. M. Naor and B. Pinkas, “Visual Authentication and Identification,” Proc.
17th Ann. Int’l Cryptology Conf. Advances in Cryptology, LNCS 1294,
Springer, 1997, pp. 322-336.

5. M. Abadi et al., “Authentication and Delegation with Smart-Cards,” Sci-

ence of Computer Programming, vol. 21, no. 2, 1993, pp. 91-113.

6. R. Kennell and L.H. Jamieson, “Establishing the Genuinity of Remote
Computer Systems,” Proc. 12th Conf. Usenix Security Symp., USeNix
Assoc., 2003, pp. 295-310.

7. A. Seshadri et al., “Pioneer: Verifying Code Integrity and Enforcing
Untampered Code Execution on Legacy Systems,” Proc. 20th ACM
Symp. Operating Systems Principles, ACM Press, 2005, pp. 1-16.

8. S. Garris et al., “Towards Trustworthy Kiosk Computing,” Proc. 8th IEEE
Workshop Mobile Computing Systems and Applications, IEEE CS Press,
2007.

were compromised. Because ISR client
software fetches most of a user’s execu-
tion environment, Trust-Sniffer must
maintain measurements for only a small
set of OS and client software. To address
frequent software updates and patches,
users could obtain new measurements
from a server that periodically generated
updated lists and digitally signed them
for distribution.

OCTOBER-DECEMBER 2007

Rapidly establishing a root of trust
As we mentioned earlier, none of the

software on the target machine is initially

trusted. The trust initiator aims to

® bootstrap the trust-establishment pro-
cess by establishing a root of trust and

e equip the on-disk OS with the neces-
sary tools to validate the rest of the
software on the machine.

It does this as rapidly as possible to avoid
a long delay before the user can do use-
ful work.

The trust initiator is partitioned, for-
matted, and loaded with the Finnix
bootable OS, a derivative of Knoppix.
Finnix provides both excellent support
for devices and automatic hardware
detection. It’s suitable for our purposes
because it boots quickly and has a small

PERVASIVE computing

27

28

[l el s Mo N v |

footprint. The trust initiator is loaded
with the list of reference measurements
for the initial boot-validation phase as
well as subsequent application valida-
tion by the on-disk kernel.

After the machine is booted using the
trust initiator, all on-disk software com-
ponents associated with the boot process
are validated. A custom start-up script
mounts local hard disks and discovers
the boot partition. It then uses shalsum to

to load the trust extender with the trust
initiator’s list of reference measurements.

The trust extender can begin enforc-
ing measurement mismatches only after
the reference measurement list has been
loaded. So, it’s imperative to load this
list as early in the boot process as pos-
sible. Until the list is loaded, the trust
extender is nonintrusive and allows all
execution. We use a custom initrd (ini-
tial RAM disk) image with modified

The system’s caching mechanism

reduces the overhead of measuring

unchanged applications when they’re

executed more than once.

measure the kernel image, the initial ram
disk, and the GRUB boot loader. Trust-
Sniffer compares the measurements of
this set of software to the trust initiator’s
list of reference measurements. Any mis-
matches cause the boot process to be
untrusted and to halt trust establishment
because a trusted OS is required to vali-
date the rest of the software stack. If all
the boot software is valid, Trust-Sniffer
copies the trust initiator’s reference mea-
surement list to a predetermined loca-
tion on disk, which the kernel subse-
quently accesses when it boots.

Dynamically extending
the root of trust

Next, the trust extender validates appli-
cation software. We avoid making the
user manually reboot (that is, powering
off the machine, removing the trust ini-
tiator, and then powering the machine on)
by using kexec, which lets you boot into a
new kernel directly from the current run-
ning kernel without using a boot loader.

The trust extender kernel module uses
the securityfs pseudo file system to commu-
nicate with user-space programs. This pro-
vides an interface for a user-space program

PERVASIVE computing

boot scripts to load the reference mea-
surements into the trust extender. All
initial execution before the list is loaded
is from the initrd, which is part of the
root of trust. Once the reference mea-
surements are loaded, the trust exten-
der protects the in-kernel list’s integrity
by disabling the measurement-loading
interface in securityfs.

The reference measurement list re-
sides in a hash table indexed by each
executable’s SHA-1 hash value. The
trust extender uses the file_mmap Linux
Security Module hook to measure files
mapped with the PROT_EXEC bit set (which
includes dynamically loadable libraries
and executables) and a custom hook in
the load_module function to measure ker-
nel modules. The LSM interface is part
of the main kernel. Each measurement
consists of the executable code’s SHA-
1 hash value. The trust extender also
stores additional file metadata such as
pathname, user ID, and group ID. The
metadata doesn’t affect the actual mea-
surement validation, but we use it to
communicate information to the user
(see the next section for more details).
When a trust fault triggers the mea-

surement of an executable, its value is
compared against the reference list. If
no matching reference measurement
exists, the measurement is untrusted,
and the kernel disallows the execution.

The system’s caching mechanism
reduces the overhead of measuring
unchanged applications when they’re
executed more than once. When a pre-
viously measured application is executed
again, the kernel simply uses the appli-
cation’s cached measurement value,
unless it’s stale (that is, unless the file is
opened for writing or is on an un-
mounted file system). Stale measure-
ments must be recomputed.

Alerting the user

When an untrusted application is
encountered, the kernel blocks its exe-
cution. The user isn’t aware of commu-
nication between applications and the
kernel and must be alerted to relevant
information in two instances: when the
trust extender encounters an untrusted
application, and when a failure occurs
in the kernel that would compromise the
measurement process. The latter case
encompasses unexpected failures in the
measurement process, such as out-of-
Mmemory errors.

To establish a communication channel
between the trust alerter and the trust
extender, we used the netlink socket inter-
face. The netlink interface is a bidirec-
tional, versatile method for passing data
between the kernel and user space, and
the interface is well documented. We
installed a new netlink protocol type,
TS_NETLINK, and added the TS_NLMSG_MISMATCH
and TS_NLMSG_FAILURE message types. When
the trust extender is initialized, it opens a
netlink socket using a call to netlink_
kernel_create. A user process that binds to
this socket waits for messages from the
kernel using the recvmesg system call.

When the trust extender encounters
an untrusted application, it sends the ap-
propriate message with a call to neflink_

www.computer.org/pervasive

broudeast. In the case of a mismatch, this
includes the process ID of the process
that failed and the file name of the appli-
cation on disk, if available. We’ve imple-
mented a simple console application that
communicates with the kernel in the cur-
rent implementation. We plan to convert
this into a friendlier GUI application in
the future.

Evaluation

We evaluated Trust-Sniffer in light of
user expectations about the system’s
security guarantees and performance.

Security

We needed an appropriate balance be-
tween ease of use and security guaran-
tees. Currently, users have no choice but
to trust any unmanaged hardware that
they encounter. Trust-Sniffer provides a
simple solution designed for use by non-
experts and security guarantees that are
a substantial improvement over current
practice.

Trust-Sniffer isn’t foolproof. It’s vul-
nerable to certain attacks. As we men-
tioned earlier, we don’t guard against a
malicious BIOS or virtual-machine attack.
We also assume that the hardware is trust-
worthy, so we don’t protect against direct-
memory access (DMA) based attacks by
malicious devices.

Although Trust-Sniffer disallows the
execution of unknown software, this
shouldn’t inconvenience users. Estab-
lishing trust in a machine for use as an
ISR client requires validation of only a
small subset of software because most
applications are contained in the user’s
personalized execution environment
that’s downloaded from a trusted server.
It’s easy to equip the trust initiator with
reference measurements required to val-
idate an ISR client’s software.

Because the trust initiator is write pro-
tected, unauthorized external sources
can’t modify its software. Of course, users
can disable write protection on their own

OCTOBER-DECEMBER 2007

machines to update the reference mea-
surement list. In addition, the trust es-
tablishment procedure doesn’t depend
on network communication with the
untrusted machine. So, we disable net-
working capabilities on the minimal OS
that we use to validate the on-disk kernel.

Performance

Our prototype implementation used
the Fedora Core 5 distribution, config-
ured with version 2.6.15 of the Linux
kernel. We implemented Trust-Sniffer by
extending a core part of the Linux ker-
nel, so configuration changes (such as
using a different Linux distribution)
shouldn’t significantly affect the results.
Our test hardware consisted of an IBM
T43 laptop with a 2.0 GHz Pentium M
processor and 1 GB of RAM. We used a
standard USB memory stick with 1 GB
of storage capacity as the trust initiator.

From the transient usage model’s per-
spective, we evaluate how much over-
head the Trust-Sniffer system requires
compared to a system without security

We averaged latency measurements over
10 runs of the benchmark.

When an application is executed for the
first time, the system computes the ap-
plication’s SHA-1 measurement, which
we denote as a cache miss. If on subse-
quent executions an application’s
cached measurement is valid, its execu-
tion results in a cache hit. In our exper-
iments using a system without Trust-
Sniffer, an mmap operation’s latency was
0.99 ps. A cache hit had a latency of 1.19
us, with an overhead against the base-
line of 0.20 us. A cache miss had a
latency of 4.29 us, with an overhead of
3.3 us. Clearly, with a cache hit, the over-
head of validating a previously measured
application isn’t significant. When an
application is first executed, there’s some
measurement overhead compared to the
baseline. However, this overhead is low
in absolute terms because applications
are measured only once.

To evaluate the boot process, we mea-
sured the average time (over five trials) it
took to boot a machine from when we

We needed an appropriate balance between

ease of use and security guarantees. Trust-Sniffer

provides security guarantees that are

a substantial improvement over current practice.

checks. The user cares most about how
long the system takes to boot and the
overhead it needs to check applications.
With Trust-Sniffer, the downtime caused
by having to reboot is small and the
additional security is worth the perfor-
mance penalty. Note that the perfor-
mance overhead for application mea-
surements is only on the first execution.

Because the trust extender primarily
uses the file_mmap LSM hook to measure
applications at load time, we measure an
mmap operation’s latency in different con-
texts using the HBench-OS framework.6

pushed the power button until a logon
prompt appeared. This metric is relevant
to the user because it defines the “warm-
up” time the system requires before the
user can start working. These results
depend somewhat on system configura-
tion, such as the number of daemons
started when the OS is booted. However,
they illustrate sufficiently that the over-
head of using Trust-Sniffer is small. A
standard machine without Trust-Sniffer
takes 97.1 seconds to boot; a machine
with Trust-Sniffer takes 111.4 seconds.
The overhead of using Trust-Sniffer is

PERVASIVE computing

29

30

[l el s Mo N v |

thus only 14.2 percent over a standard
system. One might argue that users don’t
usually have to reboot a system. How-
ever, we believe that the additional time
spent to establish trust is well worth the
security improvement.

Usability and extensibility

In computing systems, very often a
solution’s complexity hinders its accep-
tance in practice. We focused our design
of Trust-Sniffer on simplicity and ease-
of-use to facilitate adoption by nonex-
pert users. With Trust-Sniffer, the zone
of trust expands from a small, conve-
nient, trusted device that the user carries.
Trust-Sniffer’s operation model can help
increase awareness and security for sim-
ple day-to-day computing tasks.

Our design is flexible and extensible. It
should be easy to set up a mechanism for
users to obtain updates to reference mea-
surement lists. Our prototype used Fedora
Core; however, because we implemented
the trust extender as a kernel module, the
trust initiator could be loaded with appro-
priately configured kernel modules and
initial ram disks for stock kernels of var-
ious distributions. This would make it
possible to equip arbitrary machines that
don’t have preconfigured kernels with
Trust-Sniffer software.

rust-Sniffer provides greater

overall security for users and

increases their awareness about

security risks. In future ver-
sions, we plan to explore ways to provide
increased security while keeping the de-
sign focused on nonexpert users. M

ACKNOWLEDGMENTS

We thank Reiner Sailer of IBM Research for his assis-
tance with the Integrity Measurement Architecture
and Jan Harkes for his suggestions on the project.
This research was supported by the US National

PERVASIVE computing

Ajay Surie is a graduate student in computer science at Carnegie Mellon University.
His research interests include distributed systems and security. He received his BS in
computer science from Carnegie Mellon University. Contact him at the Computer
Science Dept., Carnegie Mellon Univ., Wean Hall 4212, 5000 Forbes Ave., Pitts-
burgh, PA 15213; asurie@cs.cmu.edu.

Adrian Perrig is an assistant professor in electrical and computer engineering at
Carnegie Mellon University. His research interests include networking and systems
security and security for mobile computing and sensor networks. He received his
PhD in computer science from Carnegie Mellon University. He’s a member of the
ACM and IEEE and a recipient of the NSF Career award, an IBM faculty fellowship,
and a Sloan research fellowship. Contact him at 2110 Collaborative Innovation Cen-
ter, 4720 Forbes Ave., Pittsburgh, PA 15213; adrian@ece.cmu.edu.

Mahadev Satyanarayanan is the Carnegie Group Professor of Computer Science at
Carnegie Mellon University. His research interests include mobile computing, perva-
sive computing, and distributed systems. He received his PhD in computer science
from Carnegie Mellon University. He’s a fellow of the ACM and IEEE and the found-
ing editor in chief of IEEE Pervasive Computing. Contact him at the Computer Science
Dept., Carnegie Mellon Univ., Wean Hall 4212, 5000 Forbes Ave., Pittsburgh, PA
15213; satya@cs.cmu.edu.

David). Farber is a Distinguished Career Professor of Computer Science and Public
Policy at Carnegie Mellon University. His research interests include networking, dis-
tributed systems, and public policy. He received an honorary doctor of engineering
degree from the Stevens Institute of Technology. He’s a fellow of the ACM and IEEE.

Science Foundation under grant CNS-0509004, the
US Army Research Office under grant DAAD19-02-
1-0389 to Carnegie Mellon’s CyLab, and the Intel
Corporation.

REFERENCES

1. M. Kozuch and M. Satyanarayanan, “Inter-
net Suspend/Resume,” Proc. 4th IEEE
Workshop Mobile Computing Systems and
Applications, IEEE CS Press, 2002, p. 40.

2. M. Satyanaranyanan et al., “Towards Seam-
less Mobility on Pervasive Hardware,” Per-
vasive and Mobile Computing, vol. 1,no. 2,
2005, pp. 157-189.

3. M. Satyanaranyanan et al., “Pervasive Per-
sonal Computing in an Internet Suspend/
Resume System,” IEEE Internet Comput-
ing, vol. 11, no. 2, 2007, pp. 16-25.

4. S.T. King et al., “SubVirt: Implementing
Malware with Virtual Machines,” Proc.
2006 IEEE Symp. Security and Privacy,
IEEE CS Press, 2006, pp. 314-327.

Contact him at the Inst. for Software Research Int’l, Carnegie Mellon Univ., 5000
Forbes Ave., Pittsburgh, PA 15213; dfarber@cs.cmu.edu.

5. R. Sailer et al., “Design and Implementa-
tion of a TCG-Based Integrity Measurement
Architecture,” Proc. 13th Conf. USENIX
Security Symp., UsENIx Assoc., 2004, pp.
223-238.

6. A.B. Brown and M.L Seltzer, “Operating
System Benchmarking in the Wake of
LMbench: A Case Study of the Performance
of NetBSD on the Intel x86 Architecture,”
Proc. 1997 ACM SiGmeTRICS Int’l Conf.
Measurement and Modeling of Computer
Systems, ACM Press, 1997, pp. 214-224.

For more information on this or any other comput-
ing topic, please visit our Digital Library at www.
computer.org/publications/dlib.

www.computer.org/pervasive

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

