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ABSTRACT
The authentication of VANET messages continues to be an impor-
tant research challenge. Although much research has been con-
ducted in the area of message authentication in wireless networks,
VANETs pose unique challenges, such as real-time constraints, pro-
cessing limitations, memory constraints, requirements for interop-
erability with existing standards, extensibility and flexibility for fu-
ture requirements, etc. No currently proposed technique addresses
all of these requirements.
After analyzing the requirements for viable VANET authentica-
tion, we propose a modified version of TESLA, TESLA++, which
provides the same computationally efficient broadcast authentica-
tion as TESLA with reduced memory requirements. To address
the range of needs within VANETs we propose a new hybrid au-
thentication mechanism, VANET Authentication using Signatures
and TESLA++ (VAST), that combines the advantages of ECDSA
signatures and TESLA++. ECDSA signatures provide fast authen-
tication and non-repudiation, but are computationally expensive.
TESLA++ prevents memory and computation-based Denial of Ser-
vice attacks. We analyze the security of our mechanism and sim-
ulate VAST in realistic highway conditions under varying network
and vehicular traffic scenarios. Simulation results show that VAST
outperforms either signatures or TESLA on their own. Even un-
der heavy loads VAST is able to authenticate 100% of the received
messages within 107ms.

1. INTRODUCTION
Within the next decade, vehicles will be equipped with Dedicated
Short Range Communication (DSRC) capabilities to provide a means
for a Vehicular Ad Hoc Network (VANET) where vehicles’ On-
Board Units (OBUs) communicate wirelessly with other vehicles’
OBUs or Road Side Units (RSUs) [2]. Vehicle manufacturers and
federal entities intend to leverage these VANETs to make road-
ways safer and improve the driving experience through a number
of safety, convenience, and commercial applications.
For VANET applications to operate safely, an authentication frame-
work is necessary to help identify valid participants, ensure partici-
pants are who they claim to be, and prevent malicious parties from
modifying messages. Without an authentication framework, attack-
ers could physically or financially harm other drivers. For example,
malicious parties could broadcast spurious data and cause vehicu-
lar accidents–accidents which otherwise would have been avoided
if VANETs were not in use. Malicious parties could pose as elec-
tronic toll booths and steal drivers’ financial information.
The current IEEE 1609.2 standard for secure VANET communica-
tion proposes the use of the Elliptic Curve Digital Signature Algo-
rithm (ECDSA) for signatures to verify messages [7]. Prior work
has shown that the verification of a single ECDSA signature re-
quires 7ms of computation on proposed OBU hardware [15]. How-
ever, an attacker can send an invalid signature in a fraction of that

time. This imbalance between time needed to process and time
needed to receive gives rise to Denial of Service (DoS) attacks. An
attacker could use a fraction of the DSRC bandwidth to flood re-
ceivers with invalid signatures which will take much longer to pro-
cess. Without a more efficient authentication mechanism, attackers
could cripple a VANET.
TESLA appears to provide an efficient alternative to signatures [12].
Rather than using asymmetric cryptography, TESLA uses symmet-
ric cryptography with delayed key disclosure to provide the nec-
essary asymmetry to prove the sender was the source of a mes-
sage. Since symmetric cryptography is orders of magnitude faster
than signatures, TESLA is resilient to computational DoS attacks.
However, TESLA is vulnerable to memory-based Denial of Service
attacks. In TESLA, receivers store data until the corresponding key
is disclosed. Malicious parties can flood receivers with invalid mes-
sages which never have a corresponding key disclosure as part of a
“pollution attack” [12]. If an attacker can fill a receiver’s memory
with junk data, performance on the receiver’s system degrades. To
address such memory-based DoS attacks in TESLA, we propose
TESLA++ a modified version of TESLA that reduces memory re-
quirements on the receiver without sacrificing security.
Alas, we cannot abandon digital signatures. At this time, VANET
applications are still in the process of being defined, leaving their
authentication requirements unclear. In addition, manufacturers
may also develop new applications which require additional se-
curity properties which were previously considered unnecessary.
Rather than proposing an authentication mechanism that focuses
on one aspect (e.g., computation or bandwidth overhead, DoS re-
silience, or security requirement), we propose a flexible solution
that provides a wide range of possible authentication properties and
enables developers to fine tune parameters at a later time to achieve
important properties.
The remainder of this work is organized as follows: Section 2 con-
tains a summary of previous work on broadcast authentication. In
Section 3, we discuss the different requirements for an authentica-
tion framework and why previous works fail to fulfill all of the pre-
requisites for a robust authentication framework. In Section 4, we
introduce our DoS resistant version of TESLA, TESLA++. Sec-
tion 5 contains the description of our authentication framework,
VAST. In Section 6, we evaluate VAST through a series of simula-
tions. In Section 7, we discuss some remaining topics which were
not addressed earlier in the paper. We make concluding remarks in
Section 8.

2. PREVIOUS WORK
Several works have investigated how to perform broadcast authen-
tication [4,5,9,14,15] and how to mitigate Denial of Service (DoS)
attacks against broadcast authentication [4,9,11].
Broadcast Authentication. To perform broadcast authentica-
tion, several works use asymmetric cryptography where the sender



digitally signs messages or some structure which links messages
together [4, 9, 15]. TESLA [14] and its derivatives use symmet-
ric cryptography for broadcast authentication and rely on time to
provide the necessary asymmetry so only the sender can gener-
ate a broadcast authenticator at a given time. Symmetric cryptog-
raphy significantly reduces computation, but cannot provide non-
repudiation (i.e., a recipient using TESLA cannot convince a third
party that the sender indeed broadcast the message).
The IEEE 1609.2 VANET standard calls for the inclusion of an
Elliptic Curve Digital Signature Algorithm (ECDSA) signature in
every packet as a means for broadcast authentication [7]. Work
by Raya et al. demonstrated that resource-constrained 400MHz
machines intended for use in VANETs could handle the workload
associated with asymmetric cryptography [15]. However, Raya’s
work assumes NTRU signatures which require less than 1/4 of the
time to verify. NTRU signatures are roughly 200 bytes (5 times the
size of ECDSA signatures) and present significant overhead when
included in every heartbeat message (a 32 byte or smaller message).
Researchers have proposed techniques which require less than one
signature per packet as a means to reduce computation and band-
width overhead associated with authentication. Broadcast Authen-
tication Streams [4] and Distillation Codes [9] use error correction
and limited digital signatures to address the scenario where a sub-
set of a sender’s packets are dropped or attackers inject malicious
packets into the data stream. Using these techniques, a sender pro-
cessesn packets as a set and only generates 1 signature for alln
packets. Such processing prevents the sender from broadcasting
any of the packets until the data in the last packet is known. This
requirement introduces a delay, which is unacceptable in VANETs,
since the sender will not know data for future heartbeat messages
(i.e., the OBU’s future location and velocity).
As an alternative to broadcast authentication based on asymmetric
cryptography, TESLA [14] uses symmetric cryptography and de-
lay key disclosure and time synchronization to provide the neces-
sary asymmetry for broadcast authentication. In TESLA, a sender
pre-computes a hash-chain of keys:Ki = h(Ki−1). The sender uses
each of these keys for a short period of time to generate Message
Authentication Codes (MACs). A certificate authority signs a copy
of the hash chain anchor (Kn), the starting time for the hash chain,
and the length of each key interval as a certificate for the sender.
When a sender wants to broadcast a messageM, the sender broad-
castsM and the MAC ofM generated with the key for that interval
Ki : MACKi (M). Once the time interval forKi is over, the sender
broadcastsKi and starts usingKi−1 to generate MACs for any mes-
sages broadcast in the new interval. Receivers store the message
and the MAC until the key is broadcast. To authenticate a message,
receivers hash the received key and compare it to the key in the cer-
tificate to verify the keys validity and use the now verified key to
check that the stored MAC was generated with the appropriate key
at the appropriate time. The maximum synchronization between
senders and receivers controls the length of the time interval and
subsequently the minimum authentication delay. Hu et al. propose
the use of TESLA within VANETs [5] to reduce the overhead asso-
ciated with authentication. As we discuss in Section 3 the fact that
receivers must store messages provides a possible memory-based
Denial of Service attack.
Denial of Service Mitigation. Several works have examined
how to mitigate DoS attacks against broadcast authentication mech-
anisms. These schemes use puzzles [11] or filters [4,9] to prevent
receivers from expending resources on maliciously injected pack-
ets.
Ning et al. [11] propose the use ofmessage specific puzzlesto pre-
vent DoS on broadcast authentication. Message-specific puzzles
are computational puzzles [8] which force the sender to expend
some amount of computation before receivers accept the message

as legitimate. Parties can generate valid puzzle solutions at a rate
proportional to the computation invested. This reduces the effec-
tiveness of a computationally bounded attacker. However, the tech-
nique is inappropriate for VANETs where a sending OBU will have
little spare computation power. Solving a new puzzle for each mes-
sage introduces significant computation and delay at the sender.
Gunter et al.’s Broadcast Authentication Streams (BASs) [4] use
forward error correction in broadcast streams such that the sender
has to generate one signature for several packets. To mitigate DoS
attacks where an attacker inserts invalid signatures, they propose
selective verification where only a fraction of the signatures are
verified. This approach is inappropriate for VANETs since a sender
must know the contents of every packet in a set before the sender
is able to compute the error correcting data which is inserted into
each packet. Since an OBU lacks knowledge of the vehicle’s future
location and velocity this scheme would introduce an unacceptable
delay as the OBU queued up packets in the set.
Karlof et al. propose the use of Distillation Codes [9] to prevent
computational DoS in broadcast authentication where malicious
parties inject spurious data in an attempt to interfere with error cor-
rection. This allows receivers to efficiently “distill” the sender’s
packets from malicious packets in the broadcast stream while per-
mitting the sender to use one signature for a set of messages. Again,
senders must process packets as sets. For scenarios where the
sender knows data in advance this technique works well. As men-
tioned in the previous paragraph, the need to simultaneously pro-
cess a set of packets introduces a delay which makes the technique
inappropriate for VANETs.
This section has provided a description of previous work on broad-
cast authentication and ways to address DoS attacks against broad-
cast authentication. Next, we discuss the different properties VANETs
require of a broadcast authentication mechanism and why the cur-
rent solutions fail to meet all of these properties.

3. REQUIREMENTS AND COMPARISON
OF BROADCAST AUTHENTICATION
SCHEMES

In this section, we discuss the desirable properties of a broadcast
authentication mechanism, potential attacks against those proper-
ties, and whether or not proposed broadcast authentication mecha-
nisms fulfill those requirements.

3.1 Broadcast Authentication Properties
A successful authentication mechanism should fulfill several prop-
erties: secure authentication, non-repudiation, Denial of Service
(DoS) resilience, and support for multi-hop communication. We
now discuss each of these properties in turn.
Authentication. Authenticated data ensures receivers can verify
that the message received was sent by the appropriate entity and
that it has not been modified in transit. If an attacker can pose as
another entity or modify another entity’s packets without being de-
tected, the mechanism fails to provide secure authentication. One
attack against authentication is to pose as another entity and gener-
ate or modify a packet, or block a future packet to prevent authen-
tication of the data. Such an attack is possible when, for example,
an attacker modifies a series of packets from senderA which lack
signatures. WhenA broadcasts the signature for the last few pack-
ets, the attacker could block the signature such that receivers will
find authentication of the data or the modified data impossible.
Non-repudiation. Non-repudiation allows a receiver to prove to
a third party that the sender is accountable for generating a mes-
sage. If the broadcast mechanism lacks non-repudiation, a mali-



Scheme Authentication Non-Repudiation DoS Prevention Support for
Computation Memory Multi-hop Comm.

ECDSA for Every Packet
√ √ √ √

ECDSA in 1 ofn Packets
TESLA

√ √

VAST
√ √ √ √ √

Table 1: Comparison of the different properties broadcast authentication schemes fulfill

cious party can claim another party generated the message.1 For
example, in TESLA once the symmetric key used to generate a
MAC is broadcast, any entity can use the disclosed key to generate
a MAC for an arbitrary message. A malicious party could also fail
to broadcast the necessary verification data that would hold them
responsible for that message. For example, in schemes that use one
signature forn packets, an attacker can broadcast spurious data and
never broadcast the corresponding signature packet.
Denial of Service (DoS) Resistant. A mechanism should re-
quire little computational or memory resources such that other OBU
operations may proceed unimpaired. Given the relatively expensive
nature of digital signature verification (≈ 7msfor ECDSA [15]), an
attacker can launch a computational DoS by flooding a receiver
with invalid signatures such that the receiver wastes processing
power to verify the signatures. TESLA incurs little computational
overhead, but requires entities to store messages and message-auth-
entication-codes (MACs) until the corresponding symmetric key is
broadcast. An attacker can broadcast a large number of invalid ma-
licious messages such that receivers expend an excessive amount
of memory resources as part of a “pollution attack” [12].
Multi-hop Authentication. Given the limited radio range of
DSRC radios (reliable up to 300 meters) [7], a VANET authenti-
cation mechanism should enable parties outside of a sender’s radio
range to authenticate messages after an intermediate party has re-
layed the message. Such multi-hop authentication is crucial for
applications that disseminate data over long distances or require
extensive time and distance for drivers to respond. For example,
knowledge of a closed or congested road is more useful miles away
from the incident on the highway. Unless your vehicle is near an
off-ramp, information about a traffic jam 300 meters ahead (e.g.,
just around the corner) is almost useless. Signatures allow multi-
hop communication as a result of the non-repudiation property be-
cause any receiver can use the signer’s public key to verify the sig-
nature. Multi-hop authentication is possible in TESLA, but one of
two undesirable use cases must happen: receivers will forward data
before having authenticated the message, or the sender must gen-
erate multiple MACs using different keys (i.e., keys for intervali,
i +1, i +2 etc.) so receivers can authenticate a packet after an inter-
val and forward the data and future key broadcasts from the sender
to receivers further away who uses the other MACs and subsequent
key broadcasts to authenticate the packet.

3.2 Comparison
We now compare previous proposals for VANET authentication
with our new protocol (VAST) with respect to the aforementioned
requirements. Table 1 contains a summary of this comparison.
IEEE 1609.2 [7] (the proposed standard) suggests the inclusion of
an ECDSA signature ineverypacket to provide broadcast authenti-
cation. A digital signature ensures instant authentication with non-
repudiation. However, the long verification time enables computa-
tional DoS attacks by flooding OBUs with bogus signatures.
The inclusion of a digital signature in a subset of the broadcast
packets (i.e., aftern−1 packets thenth packet includes a signature
over the lastn messages) can help reduce bandwidth and computa-

1The scenario where an entity broadcasts its private asymmetric
key to defeat non-repudiation is outside of the scope of this work.

tion overhead associated with security, but fails to fulfill the prop-
erties necessary for a VANET authentication scheme. As discussed
earlier, attackers can block other senders’ signatures to prevent au-
thentication. Attackers could also fail to generate a signature–
posing as though the packet was lost–to avoid non-repudiation.
Expensive signature verification operations permit computational
DoS where attackers broadcast a large number of invalid signa-
tures. Storing packets until the signature arrives permits mem-
ory DoS since malicious parties can send numerous junk messages
which victims store, expecting the broadcast of a signature. Given
signature verification requires a subset or alln packets to success-
fully authenticate the data, multi-hop communication is inefficient.
Rather than forwarding only the relevant packets, nodes must for-
ward multiple packets, making the scheme inappropriate for multi-
hop communication. Error correction codes can reduce the number
of packets necessary for verification. However, error correction
adds more data and introduces delay since the sender must know
the data in the entire set before broadcasting the first packet.
TESLA may work as a VANET authentication mechanism with
less computation and bandwidth demands. However, since TESLA
uses symmetric cryptography non-repudiation is impossible. As
discussed before, TESLA fails to support efficient multi-hop com-
munication. If senders are limited to one MAC per packet, two
unfortunate things can happen: a relayer forwards unauthenticated
data or a relayer sends potentially incorrect – but authenticated –
data as its own. If relaying entities forward messages and MACs
before receiving the corresponding key, receivers more than one
hop away from the sender will receive the data early enough that
they can authenticate the data once the key is broadcast. However,
an attacker could send invalid message/MAC pairs which relayers
will forward since they have no way to tell if the information is au-
thentic. This wastes bandwidth and storage since receivers should
have dropped the invalid messages. If relaying nodes wait until the
key is broadcast, the relaying node can verify the message is valid
before retransmitting the data. However, the nodes must use their
own TESLA credentials to retransmit data which may not necessar-
ily be true, even though it was authenticated. For example, a sender
can falsely claim debris is on the road and use TESLA to send an
authenticated message about the fake debris. Once a node authen-
ticates the message, the receiver will relay the message to other
nodes and use his own TESLA values to authenticate the message.
If the false debris notification results in legal actions, TESLA’s lack
of non-repudiation prevents the relaying node from proving to a
third party he did not craft the lie, but received the fake message
from the original sender. If the sender includes multiple MACs in
the packet, each hop can authenticate the message before relaying it
to nodes further away. Such an approach consumes a large amount
of bandwidth; the additional MACs increase the size of the origi-
nal packet. In addition, when a node relays a packetP, the relayer
has to rebroadcastP and any subsequent key broadcasts from the
sender to ensure recipients can verify the different MACs inP.
VAST uses a combination of TESLA++ (a modified version of
TESLA, which is resilient to memory-based DoS attacks) and digi-
tal signatures to provide authentication, non-repudiation, DoS pre-
vention, and multi-hop authentication. In Section 5, we provide
a detailed description of our scheme and exactly how we achieve
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Figure 1: A comparison of TESLA and TESLA++

these properties. Before describing our entire scheme, we present
TESLA++ and describe how it differs from TESLA in Section 4.

4. TESLA++
In this Section, we begin with a short description of TESLA [5,14]
as background. We describe TESLA++ with an emphasis on how it
improves on the techniques in TESLA. We also provide a security
analysis of TESLA++ and a discussion of how TESLA++ provides
resilience to memory-based DoS attacks.
Here we only present how a sender can perform broadcast authen-
tication of a message within an interval. In TESLA and TESLA++,
key management across intervals is the same (i.e., using key hash-
chains) and any party wishing more information on that portion of
the schemes should refer to the original TESLA publication [14].
TESLA Background. TESLA uses symmetric cryptography
and delayed key disclosure to perform broadcast authentication (the
left side of Figure 1 depicts the operations in TESLA). To authen-
ticate a messageM, a sender broadcasts the message and a Mes-
sage Authentication Code (MAC) (Step 2) of the packet using the
sender’s key for this interval (Ki). Recipients save the entire mes-
sage and MAC (Step 3) until the sender broadcasts the key. After
the key disclosure period, the sender broadcasts the key (Step 5).
To authenticate the message, receivers verify that the stored mes-
sage/MAC pair agrees with the broadcast key (Steps 6 and 7). As
we mentioned in Sections 2 & 3, one problem with TESLA is that
receivers store all message/MAC pairs. With enough pairs mali-
ciously broadcast, a pollution attack occurs where a receiver wastes
a significant amount of memory storing invalid data [12].
TESLA++. We propose TESLA++ to prevent memory-based
DoS attacks against TESLA. Like TESLA, TESLA++ provides
broadcast authentication using symmetric cryptography and delayed
key disclosure. However, in TESLA++, a receiver only stores a
self-generated MAC to reduce memory requirements. Since re-
ceivers only store a shortened version of the sender’s data, the
sender first broadcasts the MAC and later broadcasts the corre-
sponding key and message (similar to the Guy Fawkes protocol [1]).
Figure 1 shows an example of how to authenticate a broadcast mes-
sage using TESLA++.
To authenticate messageM, in TESLA++, the sender first broad-
casts the MAC (MACS = MACKi (M)) which is computed with the
current keyKi , along with the key indexi (Step 2). Upon recep-
tion, using the key indexi and the time associated with the start
of the sender’s key chain, a recipient first verifies the security con-
dition to ensure that the keyKi for the sender has not yet been
broadcast and is thus still only known by the sender. If the se-
curity condition does not hold, the receiver drops the MAC be-

cause an attacker could potentially have already received the cor-
responding keyKi . The receiver then re-MACs the received data
using a local secret keyKRecv that is only known to the receiver
(MACR = MACKRecv(MACS)) (Step 3) and stores this shortened
MAC (MACR) along with the key index (Step 4).
Once the keyKi can be disclosed, the sender will broadcast any
messages and the key used to calculate the messages’ MACs (Step
5). To verify a message, the receiver first verifies the validity ofKi
by following the one-way key chain back to a trusted key. The re-
ceiver then calculates the shortened MAC of the message (Step 6)
and compares it with the MAC and index stored in memory (Step
7). If the receiver has a matching MAC/key index pair in mem-
ory, the receiver considers the message authentic (Step 8). If none
of the stored pairs match the newly calculated value, the receiver
considers the message unauthentic and discards the message.
Over time the receiver will store more MAC and key index pairs
in memory. When a stored MAC successfully authenticates a mes-
sage, the receiver can free the memory used to store the MAC and
key index. However, when the receiver misses a legitimate senders
message and key broadcast or malicious nodes flood the network
with MACs in an attempt to waste a receiver’s resources, the re-
ceiver will need a policy to determine when to replace a MAC and
key pair. In the event of a MAC flood and the receiver has insuffi-
cient memory, the replacement policy for shortened MACs stored
in memory is an intricate issue in the design of TESLA++. For the
replacement policy below, receivers also store the sender id and an
arrival timestamp along with the shortened MAC and the key index
(for simplicity, we left it out of the description above). For each
sender (besides the trusted key chain value and key disclosure in-
formation), the receiver also stores the latest key index for which
an authentic message has arrived. If memory space becomes in-
sufficient, we make use of the following policy to identify which
shortened MACs to discard:

• All shortened MACs with key indices that are older than the
last authentic message received from that sender. The intu-
ition is that older shortened MACs are still stored because an
attacker injected the message or the corresponding message
and disclosed key were lost.

• If more space is needed, the message whose verification is
furthest out in the future is discarded. This addresses the
scenario where attackers try to trick receivers into storing
messages for a long period of time by claiming the key in-
dex isn when the real sender’s current key index isj where
j << n.

The DoS protection of TESLA++ comes at a cost: lack of non-
repudiation, poor multi-hop performance, and poor functionality
in lossy networks. Like TESLA, TESLA++ uses symmetric cryp-



tography and as a result prevents computational DoS, but does not
provide non-repudiation or efficient multi-hop authentication. In
addition, senders using TESLA++ broadcast the MAC and the mes-
sage in separate packets which impacts the functionality in lossy
networks. In TESLA, the receiver acquires and stores the MAC
and message together and can use any future key broadcast to au-
thenticate the message. In TESLA++ if the appropriate message
broadcast is lost the MAC is useless. We discuss the impact of this
difference in VANETs later in Section 7. One solution is for the
sender to broadcast the message with the MAC and allow the re-
ceiver the option of storing the message. A receiver that stores the
message can use any future key broadcast to authenticate the mes-
sage. Broadcasting the message multiple times presents a tradeoff
between resilience to lossy channels and bandwidth overhead.
Storing smaller MACs and discarding old MACs makes TESLA++
resilient to pollution attacks [12].In the next subsection, we dis-
cuss why TESLA++ is secure and resilient to DoS attacks. How-
ever, TESLA++ fails to provide all of the properties necessary for a
VANET authentication framework; TESLA++ lacks non-repudiation
and multi-hop authentication. Without these we need the full au-
thentication framework of VANET Authentication using Signatures
and TESLA++ (VAST) to meet the VANET requirements defined
in Section 3.

4.1 Analysis of TESLA++
This section analyzes the security and storage requirements of TESLA++.
We begin by assuming TESLA and the underlying cryptographic
functions (MACs and hashes) are secure. However, TESLA++
raises some questions since senders first broadcast a Message Au-
thentication Code (MAC) and receivers generate a shorter MAC
based on the received MAC and a secret key. Storing only the short-
ened MAC, instead of the original MAC and message, reduces the
possibility of memory exhaustion attacks. However, if storing only
a shortened MAC enables malicious parties to spoof other entities
the technique is useles. In this section, we will discuss why broad-
casting the MAC without the message is secure, why receivers can
use shorter MACs when storing records of received MACs without
decreasing security, and some rough calculations to demonstrate
the memory savings and thus DoS resilience of TESLA++.
Attacks on Broadcasting MACs Alone. Under TESLA++, a
sender first broadcasts the MAC and the key index and includes the
message in the key broadcast. Some may worry that without the
message and the MAC in the same packet, attackers can generate
false messages and pose as the original sender. Provided secure un-
derlying MACs and key hash chains, the probability of success for
this attack is negligible. If an attacker waits until the key and mes-
sage are broadcast, the attacker will try to find a different message
which results in the same MAC as the original sender’s message
(i.e., find a new messageM′ such that the original message (M) and
key (Ki) result in the same MACS (MACKi (M) == MACKi (M

′))).
Generation of such a message implies the underlying MAC was not
CMA secure. An attacker can try to calculate the key before the
original sender broadcasts the message and key. With knowledge
of the key, the attacker can generate any valid MAC and message
pair. For this attack to be successful, the sender must calculate
the next TESLA++ key and generate a new MAC (or use the old
one) such that the calculated key and desired message generate the
broadcast MAC. To discover an undisclosed TESLA++ key, an at-
tacker must defeat the one-way property of the hash used to build
the hash chain, which is computationally infeasible. If an attacker
broadcasts an arbitrary key (K′) and message (which produce a pre-
viously broadcast MAC), a receiver can verify thatK′ is invalid by
hashing the broadcast key (K′) and comparing its value to previous
keys from the claimed sender. Provided the underlying MAC algo-
rithm and hash chain are secure broadcasting the MAC without the

message in TESLA++ is secure.
Attacks on Storing Shortened MACs. In TESLA++, the re-
ceiver only records a shortened re-keyed MAC as a means to reduce
storage. When receivers’ keys are kept secret, TESLA++ provides
security guarantees based on the size of the interval and the band-
width of the medium. This is different and much easier to control
than other cryptographic techniques which base security guaran-
tees on computational capabilities which can vary greatly across
attackers (e.g., a nation state versus a lone attacker with a laptop).
To take advantage of the shorter stored MAC, an attacker wants
a smaller stored MAC to match the MAC for an attacker selected
message using a legitimate party’s key. For example if the short-
ened MAC is calculated as MACKrecv(X) where X is a broadcast
MAC and an attacker wants to spoof a messageM′, the attacker
will try to broadcast a MAC valueY such that after the spoofed
sender broadcasts his/her key for the interval (Ki) the MAC for
the attacker’s message matches the receiver’s stored MAC (i.e.,
MACKrecv(MACKi (M

′)) = MACKrecv(Y)). With more stored MACs,
the chance that a message key combination (and corresponding
MAC) corresponds to a previously heard MAC increases. How-
ever, the receiver’s key (Krecv) is secret so an attacker cannot calcu-
late the shortened MAC for a given broadcast value.
Without knowledge of the receiver’s key, an attacker’s best strategy
is to broadcast as many MACs for a given key interval as possible in
an attempt to make it appear as though an attacker generated mes-
sage and a legitimate user’s key correspond to a previously heard
MAC. If a receiver believes it has heard every possible MAC in the
appropriate key interval, the receiver will mistakenly verify every
TESLA++ key and message pair it receives as authentic since it will
have a record of the corresponding MAC. Assuming the re-MAC-
ing process uniformly assigns MACs, this problem reduces to the
coupon collector problem where each attacker broadcast MAC is
an attempt to have a receiver record a new shortened MACs.
Even with a very short stored MAC, an attacker will have a diffi-
cult time fooling a receiver with an arbitrary message. With a rela-
tively short stored MAC of 16bits, there are 216≈ 64000 shortened
MACs and the attacker needs to send on average 216 log216 = 220

or roughly one million MACs to ensure he can forge an arbitrary
message from a sender in a key interval. In the case of VANETs
with a DSRC bandwidth of 56Mb/s, a 100ms TESLA++ interval,
and an 80bit sender MAC, an attacker can only send≈ 70 thou-
sand MACs in an interval. As such, the probability of an attacker
successfully fooling a receiver with an arbitrary message with a
16bit stored MAC and the aforementioned bandwidth and inter-
val is around 7%. A 32 bit MAC would reduce the probability of
success to 10−6. If we consider the additional overhead for each
packet’s header and the key index, the actual number is smaller.
When attackers cannot find collisions in the larger broadcast MAC,
TESLA++ with small time intervals and relatively small receiver
MACs provides a negligible probability that an attacker can spoof
another sender as a result of the storage optimizations, independent
of the computational power of the attacker(s).
Maximum Storage. In the previous paragraph, we showed how
TESLA++ remains secure even when storing smaller MACs. The
reason to use smaller MACs is to reduce storage constraints in
TESLA++ and prevent pollution/memory-based DoS attacks. Here
we discuss the upper-limit on memory consumption for TESLA++
in different VANET configurations. When storing only re-MACed
values the maximum memory consumption is a function of the
maximum number of MACs which can be broadcast in an inter-
val and how long MACs are stored. Given, the acceptable latency
is on the order of a few hundred milliseconds in VANETs [3], the
TESLA interval should be made small (50 to 100ms) to ensure
messages are quickly authenticated. This also implies that senders
should broadcast messages within the next couple of intervals. If a



Sender Receiver
1. σSi = Sign(M,K−1

Sender)
2. µSi = MACKSendi

(M||σSi)

3.
µSi,i

-

4. µR = MACKRecv(µSi)
5. store(µR||i)

... (a TESLA++ interval later)

6.
M,σSi,KSendi

-

7. if(h(KSendi )! = KSendi−1)
ignore(M)

else
8. µ ′

R = MACKRecv(MACKSendi
(M||σSi))

9. i f (lookup(µ ′
R||i) == 1)

10. Veri f y(σSi,M,K+
Sender)

∗

11. accept(M)
else

12. i f (CPU_util < ω and #_Mess_In_Queue< λ )
13. Veri f y(σSi,M,K+

Sender)
14. accept(M)

Figure 2: VANET Authentication using Signatures and TESLA++ . KSendj are symmetric keys used for TESLA++. K+/−1
Senderare

ECDSA keys.∗ Step 10 is only performed when non-repudiation is necessary.

MAC has a key index that corresponds to disclosure multiple inter-
vals in the future, receivers can ignore the MAC since the data will
be old by the time message and key are broadcast. The real time
requirement in VANETs reduces the maximum number of MACs
stored to less than the maximum number that could be broadcast in
two TESLA++ intervals (≤ 200ms). Given VANETs have a band-
width of 56Mb/s [7], an OBU will have to store at most the maxi-
mum number of bits transmitted in 200ms times the space savings

of the receivers MAC, or 11.2Mb· |MACrecv|
|MACsend|

2. For example, if broad-
cast MACs are 80 bits and receiver MACs are 24bits long, receivers
only have to reserve less than 1/2 a megabyte of space. Even with
a limited space of 1 megabyte, a receiver can handle more than the
maximum amount of data an attacker can force the receiver to store.
In this section we have described a modified version of TESLA,
TESLA++, which reduces the storage requirements for receivers
without reducing security. As such, TESLA++ provides a broad-
cast authentication scheme based on symmetric cryptography with-
out a vulnerability to memory-based DoS attacks.

5. VANET Authentication using Signatures and
TESLA++ (VAST)

VANETs require an authentication framework which provides more
than just authentication of packets. Non-repudiation is necessary
for attribution and efficient multi-hop communication. The frame-
work must also provide efficient and timely authentication to pre-
vent flooding or computational DoS attacks. The previous works
discussed in Section 2 and Section 3 were good first approaches
to VANET authentication, but are not flexible enough to meet all
of the properties discussed in Section 3. In this work we pro-
pose a new framework, VANET Authentication using Signatures
and TESLA++ (VAST), which uses a combination of ECDSA sig-
natures and TESLA++ to verify each packet. TESLA++ provides
an efficient DoS resilient authentication mechanism to verify le-
gitimate packets and filters out the majority of malicious or spuri-

2Note that the per broadcast packet overhead of source address and
lower layer information overshadows the receiver stored key index
and other data used to determine when to replace a MAC.

ous messages. Once an OBU verifies the packet using TESLA++,
the OBU may verify the ECDSA signature if non-repudiation is
necessary (e.g., the message will cause a driver alert or any other
situation where the message may negatively impact the driving ex-
perience). The signature also enables authentication for multi-hop
communication. If the OBU has no record of the TESLA++ MAC,
the OBU will verify the signature, provided the OBU’s CPU and
message buffer indicate it has processing power to spare. In this
section, we present VAST and discuss how it meets the require-
ments set out in Section 3: authentication, non-repudiation, DoS
resistance, and efficient multi-hop communication.
VAST is shown in Figure 2 where the sender broadcasts an authen-
ticated messageM. Note that receivers perform two types of verifi-
cation: 1) a TESLA++ verification in steps 7, 8, and 9 and 2) digital
signature verification in step 10 when the application requires non-
repudiation or step 13 when TESLA++ authentication fails (possi-
bly due to a lost MAC) and if CPU utilization and the number of
messages in the processing queue are below certain thresholds (i.e.,
computational DoS is not an issue). These thresholds provide flex-
ibility within VAST such that VANET system designers can mold
the authentication framework to meet application needs. As such,
the exact values of the thresholds depend on the suite of VANET
applications and should be selected once the application require-
ments are defined.
TESLA++ provides authentication and a filter of the data broadcast
during times of high computational load. The previously received
and recorded MAC (steps 2 to 5) ensures the validity of the mes-
sage and the signature while the hash chain ensures the proper key
is used (step 7). The digital signature included with every mes-
sage provides non-repudiation in case the relevant application re-
quires non-repudiation orM must be forwarded to other VANET
participants which may have missed the broadcast of the original
TESLA++ MAC (step 3).
Under VAST, the digital signature is authenticated using TESLA++
(steps 7 to 9) before it is verified, preventing the majority of com-
putational and memory-based DoS attacks. Authenticated signa-
tures prevent attackers from broadcasting invalid signatures while
posing as other VANET entities. In the case where the receiver



has no record of the TESLA++ MAC, the receiver will only ver-
ify the signature if the extra computation will not lead to a DoS
(see step 12). We choose to use CPU utilization (ω) and number
of messages in the processing queue (λ ) to determine thresholds
for acceptable computational load, but other metrics could be used.
The only way a malicious party can trick receivers into verifying
digital signatures during times of high computation is by sending
a TESLA++ authenticated signature. Under such a scenario, re-
cipients can determine which entity sent the signature, and ignore
signatures from any sender that has a history of broadcasting in-
valid signatures. The storage techniques used in TESLA++ (see
Section 4 and steps 4 and 5 in Figure 2) reduce storage needs and
prevent pollution attacks [12].
VAST allows for multi-hop communication and authentication through
the use of both TESLA++ and ECDSA signatures. Vehicles further
away will miss the sender’s original TESLA++ MAC broadcast
so ECDSA signatures are needed for authentication. However, if
OBUs were to simply verify any signature they receive, a compu-
tational DoS attack would be possible. Instead, the relaying OBU
should include the original sender’s/forwarded message and sig-
nature (M f wd||σ f wd) as part of the relaying OBU’s own messages
(Mrelay = Mnew||M f wd||σ f wd) which are authenticated using either
the relaying nodes signature or TESLA++ authenticator. Now, the
recipient several hops away can use TESLA++ to verify the validity
of the relayers message (which includes the original sender’s signa-
ture) and only if that is authentic will the recipient expend the com-
putation to verify the original sender’s signature in the forwarded
message. In the case where the TESLA++ data allows authentica-
tion, but the forwarded signature is invalid, the receiving OBU can
label the relaying OBU as a potential attacker and ignore the relay-
ing OBU’s future messages. In the case with authentic, but false
data in the original message (i.e., the sender signed a lie), the sig-
nature in the original message indicates the true origin of the false
data.
In this section, we presented VAST and explained how it fulfills
the different requirements from Section 3: authentication, non-
repudiation, DoS resilience (computation- and memory-based), and
multi-hop communication. We discuss the simulation of ECDSA,
TESLA, and VAST in Section 6 and compare the performance of
each.

6. SIMULATION OF AUTHENTICATION
MECHANISMS

To evaluate the efficacy of our scheme, we use ns-2 [16] to sim-
ulate VANETs using ECDSA, TESLA, or VAST on a 1 kilometer
long stretch of a large highway (4 lanes of traffic in each direction
with 50 meter median between each side of the highway) with vary-
ing traffic densities, traffic speeds, and packet error rates. We only
simulate highway traffic since this presents a scenario where the au-
thentication framework encounters the greatest load due to a large
number of vehicles within range at a given time. During simulation
each vehicle broadcasts a heartbeat message every 100ms [2]. This
heartbeat message contains the size of the packet, the OBU’s ad-
dress, location, and velocity, the broadcast address (as the receiver
address), and the authentication data as contained in Table 2. For
simulation, the OBU’s radio range is set to 300m, signal attenua-
tion is modeled according to ns-2’s two ray ground model, and the
bandwidth is one DSRC channel (6Mb/s) [7]. For this simulation
we focus on the overhead associated with message authentication
and ignore the certificate broadcast and verification process since
it is the same for each mechanism (i.e., only one signature from
an authority is necessary to verify a sender’s public key, TESLA
anchor, or public key and TESLA++ anchor).
For simulation we assume OBUs’ cryptographic performance cor-

Structure Size

Vehicle Info 192 bits
ECDSA Signature 320 bits
MAC, MAC KEY 80 bits

ECDSA Only Packet Contents 64B
TESLA Only Packet Contents 44B
VAST Packet Contents 84B

Table 2: Size of Data in the Various Packets

Operation Comp. Time

ECDSA generation 4ms
ECDSA verification 7ms
Symmetric Cryptography 1µs
(Hash or MAC)

Table 3: Computational Times of Simulated Cryptographic
Operations

responded to the values from Raya et al. [15] shown in Table 3. To
analyze the performance of the different schemes under different
traffic scenarios we use the different values summarized in Table 4.
For simulation of ECDSA, we assume a fixed size queue to store
up to 50 messages while waiting for signature verification and that
if the queue was full any received message was dropped. A larger
queue would decrease the number of dropped packets, but would
also increase authentication delays since packets would be in the
queue longer. For simulation of TESLA, we consider any message
that was not verified within 1 second as dropped. For simulation
of VAST, we assume that if the message queue is larger than 10
messages (λ = 10) the message is dropped. For our simulation, we
allow full CPU utilization (ω = 100%) since the number of mes-
sages in the queue provides sufficient evidence of computational
DoS (i.e., if the message queue is growing the OBU is receiving
messages faster than it can process them).
In each traffic scenario, OBUs drive for 1 minute of simulation
time to fill their queues and begin to process messages. After this
warm-up period, we simulate the VANET for an additional 10 min-
utes of simulated time where each OBU in the 1km stretch of the
highway records the total number of messages received, number
of messages dropped (due to full processing queues or long time
between message reception and key broadcast), and authentication
delay. Authentication delay is defined as the amount of time be-
tween when the sending OBU knows the data and when a receiver
can authenticate the data. In our simulation we choose to have
TESLA++ and TESLA piggyback future MACs or key exposures
in the current heartbeat message. This optimization reduces band-
width usage since key exposure can occur in the same message as a
future MAC, but as a result the smallest possible authentication de-
lay for those schemes is the time between two heartbeat messages
(100ms).

6.1 Simulation Results
Figures 3 and 4 show the impact of increasing traffic density on the
percentage of received packets processed (i.e., 1 - percent dropped)
and the average authentication delay. For these scenarios the aver-
age vehicle speed was fixed at 30m/s (70mph) and 10% of pack-
ets were uniformly dropped at random due to wireless reception
errors. Across all scenarios, VAST performs well with little au-

Quantity Range

Traffic Density 1 - 75 cars in radio range
Wireless Errors P(error) = 0.00 - 0.50
Traffic Speed 10m/s (20mph) - 40m/s (90mph)

Table 4: Simulated Traffic Values
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Figure 4: Authentication Delay vs. Traffic Density

thentication delay and 100% of data received authenticated. As
traffic density increases, when OBUs only use ECDSA the pro-
cessing time is too large and as queues fill up delays increase and
packets are dropped. For OBUs using TESLA, denser traffic in-
troduces delays when channel contention causes more messages to
be missed. For VAST, as traffic density increases and more pack-
ets are missed due to channel contention, OBUs use signatures to
verify packets when the corresponding MAC was missed. How-
ever, OBUs used TESLA++ to authenticate a significant fraction
of packets so processing queues remain relatively empty. Figure 5
shows the percentage of received packets that were authenticated
using signatures under VAST and confirms that as more packets
are lost due to contention VAST utilizes the included signatures to
authenticate the messages. When 75 OBUs were in range, channel
contention reduces the number of received packets such that 50%
of those packets is less than the number of packets received dur-
ing the 25 cars in range scenario, allowing for VAST to handle that
many signature verifications. This finding indicates that the chan-
nel, rather than OBU processing capabilities, limits the rate of data
authentication possible in our simulation of VAST.
Figures 6 and 7 show the impact of increasing losses in the wire-
less network on packet processing capabilities and authentication
delay. The vehicles’ speed was fixed at 30m/s (70mph) and traf-
fic density was 25 cars in radio range. VAST performs well inde-
pendent of the error rate as it smoothly adjusts to different error
rates, using TESLA++ the majority of the time when error rates
are low and using more signatures as error rates increase (see Fig-
ure 8). When packet error rates are low, VAST uses TESLA++
to avoid excessive computation. With more packets lost to wire-
less errors, VAST begins verifying signatures in packets since the
corresponding MACs were lost. ECDSA performs well with more
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wireless errors. With more errors there are less packets received.
This reduces the computational load due to signature verification
and improves packet processing rate compared to previous simu-
lations. The increase in packet loss increases authentication delay
for TESLA since it is several intervals between when an OBU re-
ceives a message and a MAC and when the OBU receives a key it
can use to verify the MAC. As a result, when approximately every
other packet is dropped (50% drop rate) the authentication delay
increases to approximately two intervals.
We also ran simulations with speeds varying between 10m/s (20mph)
and 40m/s (90mph), but the change in speed did not have a statis-
tically significant impact on packet processing capabilities or au-
thentication delays.
The simulation results in this section show that our scheme is flexi-
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ble and efficient enough to provide timely authentication of VANET
messages under a wide range of scenarios that produce ill effects
for prior VANET authentication mechanisms.

7. DISCUSSION
In this section we discuss some remaining issues which were not
addressed earlier in the paper.
Authentication Delay. The delay between when a node receives
a message and when the node can authenticate the message is an
important value in VANETs. For example, safety messages require
a small authentication delay, otherwise drivers will not have suffi-
cient time to respond to an alert in a dangerous situation.
For VAST, the authentication delay depends on the time between
when the sender broadcasts the MAC and when the sender broad-
casts the message, the key, and the signature. In both cases, the
delay is roughly the time between when the sender knows the data
and when the sender reveals the data. The sender could reveal
the data and a signature along with the MAC (before revealing the
TESLA++ key), but OBUs should rely on TESLA++ for authenti-
cation to prevent computational DoS due to signature verification.
As a result, the receivers will wait until at least the TESLA++ key
is broadcast (or should have been broadcast) before the message is
authenticated.
TESLA++ can utilize the parameters defined for TESLA and achieve
a similar authentication delay. According to Perrig et al. [13] the
delay between MAC and key broadcasts within TESLA is a func-
tion of the maximum synchronization error between nodes, the
maximum network delay between hosts, and the size of the TESLA
time interval. If GPS synchronization is used, synchronization be-
tween nodes is around 20ns for expensive GPS units [10] and less
than 100ns for more economic devices. Given the 1kmmaximum
transmission range of DSRC and a 6 Mb/s throughput (the rate for
a single channel of DSRC), the network delay is less than 5msfor
single-hop communication. If OBUs will use a given key chain for
only a few minutes to help achieve privacy [15], we can select a
shorter interval to help reduce authentication delay. If we assign an
interval of 5ms, the authentication delay associated with TESLA++
is 1 interval or 5ms. However, this prevents senders from piggy-
backing messages like we did in simulation (where the MAC for
the next message was included in the current heartbeat message).
If senders use an additional broadcast, specifically for key disclo-
sure, each sender must broadcast not only the key, but also all of
the lower level data (MAC and Physical layers) associated with
a packet for an extra 40bytes of broadcast information [6]. The
sender only broadcasts a key at the end of the interval after every
message (as opposed to at the end of every interval) so the band-
width usage is a function of the number of messages. Without more

real world data about acceptable authentication delays and effective
throughput of the DSRC channel it is difficult to make any definite
statements about which approach is better: a small interval with
more packets or a larger interval which corresponds to the heart-
beat message interval.
Packet Loss. For TESLA++ to work successfully a receiver
needs both the original MAC packet and the packet with the mes-
sage and the key. If the receiver misses the message and key packet
(only the MAC is received), the receiver will not have the data. A
similar issue is present in TESLA when the recipient only receives
the key broadcast they will not know what data that key authenti-
cates. When only messages are received, but the MAC for VAST
was lost or the next key broadcast for TESLA is lost authentication
is still possible. In VAST, the receiver can use the signature to ver-
ify a message if TESLA++ authentication fails and the processing
queue is not full. In TESLA, a receiver can use any future key to
authenticate a previously received packet.
Even if receivers do miss a small number of heartbeat messages
applications will still work. The VANET heartbeat messages used
for most safety applications are frequently broadcast (every 100ms)
and each message overrides the values from previous messages
(i.e., the vehicle’s current position and velocity is more important
than where it was a few moments ago) [2]. As such, even if a
VANET recipient misses a message and key packet, the sender will
broadcast updated location and velocity information within a rela-
tively short period of time. Bai et al. [2] discuss this issue using
their terms of “network-level metrics” and “application-level met-
rics”. The probability of packet loss is a network-level metric for
reliability. While, some applications only need one message within
a given time window to work (“Application-level T-Window Relia-
bility”). Even with poor network reliability, application reliability
is fairly good. For example, if network reliability is 50%, an appli-
cation with a time window of 0.5 seconds has a reliability of 97%.

8. CONCLUSION
In this paper, we analyze the different requirements of Vehicular
Ad Hoc Network (VANET) authentication mechanisms and find
that prior approaches fail to meet all of the necessary properties.
To address this problem we propose a new authentication building
block TESLA++ that represents a DoS resilient version of TESLA.
Our authentication framework VANET Authentication using Sig-
natures and TESLA++ (VAST) uses both ECDSA signatures and
TESLA++ to provide timely and efficient authentication of VANET
messages while remaining resilient to DoS attacks. Simulation
results show that under a range of scenarios VAST authenticates
100% of the received data while maintaining acceptable authenti-
cation delays (worst case of 107ms). The combination of VAST and
our certificate management techniques provide a complete system
to efficiently manage authentication of VANET messages without
exposing VANET participants to Denial of Service attacks.
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