
SPV: Secure Path Vector Routing for Securing BGP∗

Yih-Chun Hu Adrian Perrig Marvin Sirbu
UC Berkeley Carnegie Mellon University Carnegie Mellon University

yihchun@cs.cmu.edu perrig@cmu.edu sirbu@cmu.edu

ABSTRACT

As our economy and critical infrastructure increasingly relies on
the Internet, the insecurity of the underlying border gateway rout-
ing protocol (BGP) stands out as the Achilles heel. Recent miscon-
figurations and attacks have demonstrated the brittleness of BGP.
Securing BGP has become a priority.

In this paper, we focus on a viable deployment path to secure
BGP. We analyze security requirements, and consider tradeoffs of
mechanisms that achieve the requirements. In particular, we study
how to secure BGP update messages against attacks. We design
an efficient cryptographic mechanism that relies only on symmet-
ric cryptographic primitives to guard an ASPATH from alteration,
and propose the Secure Path Vector (SPV) protocol. In contrast to
the previously proposed S-BGP protocol, SPV is around 22 times
faster. With the current effort to secure BGP, we anticipate that
SPV will contribute several alternative mechanisms to secure BGP,
especially for the case of incremental deployments.

Categories and Subject Descriptors: C.2 [Computer-Commu-
nications Networks]: Security and protection; C.2.2 [Network
Protocols]: Routing Protocols

General Terms: Security, Performance

Keywords: Interdomain routing, security, routing, Border Gateway
Protocol, BGP

1 INTRODUCTION

Critical business and governmental functions increasingly rely on
the Internet. Even though the Border Gateway Routing Protocol
(BGP) is central for Internet packet routing, it was designed for a
trusted environment and provides relatively minimal security against

∗This research was supported in part by the Center for Computer and Communications
Security at Carnegie Mellon under grant DAAD19-02-1-0389 from the Army Research
Office, the National Science Foundation under grant CAREER CNS-0347807, the U.S.
Department of Homeland Security (DHS) and the National Science Foundation (NSF)
under grant ANI-0335241, and by gifts from Cisco, Intel, and Matsushita Electric
Works Ltd. The views and conclusions contained here are those of the authors and
should not be interpreted as necessarily representing the official policies or endorse-
ments, either expressed or implied, of ARO, NSF, Carnegie Mellon University, UC
Berkeley, Cisco, Intel, Matsushita Electric Works Ltd., or the U.S. Government or any
of its agencies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’04, Aug. 30–Sept. 3, 2004, Portland, Oregon, USA.
Copyright 2004 ACM 1-58113-862-8/04/0008 ...$5.00.

an attacker [46]. Recent studies and examples show that even rou-
tine misconfigurations severely disrupt Internet routing [34, 41].
The need to secure BGP has become increasingly pressing, so Kent
et al. proposed the Secure BGP routing protocol (S-BGP) [27], and
the IETF has established the rpsec working group [51] to detail re-
quirements for a secure routing protocol.

There are several impediments to the deployment of BGP se-
curity, many of which are inherent to any Internet deployment that
needs wide-spread adoption. A viable scheme must provide incre-
mental benefits even when not all routers participate. Changes to
existing router code should be minimized, and unchanged (legacy)
routers must not break when enhanced messages are received from
participating routers. Secured updates must fit within the length
limit of BGP Update messages. Some form of certificate hierar-
chy is necessary for authenticating public keys of participants, but
the use and management of private keys should be minimized for
operational simplicity.

Computational efficiency in authenticating Update messages is
important because core Internet routers receive a high volume of
such messages, and they may arrive in bursts. Efficient verifica-
tion during these bursts is of utmost importance, since such bursts
generally occur when the routing topology has changed, and data
packets will be dropped or misrouted until routing reconverges.
Moreover, providing security against routing update replay attacks
may require periodic Update messages rather than only event driven
messages, making efficient authentication even more desirable.

In this paper, we make several contributions to securing BGP.
We propose a new protocol, SPV, which replaces much of the com-
putationally expensive asymmetric cryptography, as used in S-BGP,
with a far less costly signature scheme based on symmetric cryp-
tography. Moreover, the proposed cryptographic mechanisms can
be cheaply implemented and easily parallelized in special purpose
hardware, thus providing additional speedup. To the best of our
knowledge, this is the first proposal to use efficient symmetric key
cryptography to prevent an attacker from modifying and truncating
the ASPATH. While still requiring some use of asymmetric cryp-
tography and certificate hierarchies, the proposed scheme removes
the need for keeping private keys on routers, which simplifies over-
all key management (we only store short-lived one-time private
keys on routers). Using BGP traces, we demonstrate that SPV is
much more efficient than previous approaches.

SPV also includes improved mechanisms for securing against
ASPATH tampering as compared to S-BGP as currently proposed;
we show how these same improvements could also be incorporated
into S-BGP. The focus of SPV is on protecting BGP Update mes-
sages; we do not focus on the integrity of BGP policy definitions.
However, SPV will protect against certain types of misconfigura-
tion, such as a BGP speaker configured with the wrong ASN.

Finally, we show how SPV provides improved security against
malicious ASPATH modifications, relative to S-BGP, when only
some routers implement a secure BGP protocol; in fact our mecha-



nisms provide attack and misconfiguration protections even if only
two ISPs deploy them. SPV provides an increased level of security,
which should make it easier to convince system administrators of
the value of deployment. Such tangible properties may help moti-
vate ISPs to deploy these mechanisms, since an administrator can
determine which recent routing problems the secure protocol could
have prevented.

Outline Our paper is organized as follows. Section 2 introduces
our assumptions and attacker model, and Section 3 discusses prior
research that is closely related. We describe SPV in Section 4 and
evaluate it in Section 5. Finally, we discuss other related work in
Section 6 and conclude in Section 7.

2 BGP SECURITY THREATS

Several researchers have studied BGP vulnerabilities [2, 11, 28,
51]. Based on this prior research, we establish classes of BGP vul-
nerabilities, and we discuss the security properties that SPV pro-
vides in Section 5.1.

We consider active attackers that actively inject malicious traf-
fic into the network. We consider a strong attacker model, where
the attacker compromises routers in the network to perform denial-
of-service (DoS) or falsification attacks. This is equivalent to a
malicious insider who can control the routers and will thus know
all cryptographic keys of the infrastructure. Even in this case, we
want to prevent the attacker from falsifying external information,
so that it can only affect internal prefixes.

We distinguish two main attack classes: falsification and denial-
of-service (DoS). Our categorization is based on the routing proto-
col’s reaction to the attack; in particular, because routing underlies
almost all services, falsification attacks can result in denial of a
specific service, but will in most cases not result in denial of the
routing service itself.

2.1 Falsification Attacks

We loosely define a falsification attack as a bogus BGP proto-
col message that differs from a message that a correctly configured
router would send.1 The term “falsification” is also used by Barbir,
Murphy, and Yang [2]. Due to space limitations, we do not dis-
cuss falsifications of components of an OPEN, NOTIFICATION, or
KEEPALIVE message; these messages could be secured by using
IPsec [26, 25] and appropriate certificates. In the subsequent dis-
cussion, we focus on the falsification of the UPDATE message.

We now consider the components of a BGP UPDATE message
(withdrawn routes, path attributes, and network layer reachability
information (NLRI)), and discuss the impact of a falsification of
the contained information.

An attacker can falsify information in the list of withdrawn
routes. For example, an attacker can fail to withdraw a route when
the attacker no longer has a working route, or send a withdrawal
for a working route. The latter may not be malicious, depending on
the policy of that AS; for example, if two peers may change their
transit agreement, then each of their neighbors may see withdrawals
for working routes.

An attacker can falsify the NLRI, i.e., the IP prefixes that the
UPDATE message and path attributes pertain to. Within the NLRI,
an attacker can originate a route to a prefix with which it is not
affiliated, and can try to force other routers to prefer that route by
advertising a longer prefix for that route. Since longer (more spe-
cific) prefixes are preferred, the attacker would thus be creating a
blackhole.

1Different BGP implementations may produce different messages; we consider a mes-
sage to be correct if it adheres to the BGP protocol specification and is produced by a
router with a “correct” configuration.

The blackhole attack is a general attack that relies on falsifica-
tion. In a blackhole attack, a malicious AS injects malicious routing
information to attract traffic that would otherwise not flow through
it, thus gaining control of a path. The blackhole attack is very pow-
erful, since an attacker in this position can deny routing to certain
addresses, eavesdrop on all traffic to a particular destination, or use
its routing position to perform man-in-the-middle attacks. An ex-
ample of a blackhole is the AS 7007 incident, where, due to a mis-
configuration, an AS announced short routes to many destinations,
causing global connectivity problems for two hours [41]. We distin-
guish blackhole and grayhole attacks. In a grayhole, the attacker se-
lectively drops traffic flowing through it, without injecting any ma-
licious routing information into the network. Grayhole attacks can-
not easily be prevented by a secure routing protocol (since no fal-
sified routing information was injected), whereas blackhole attacks
can be prevented.

We now discuss falsification of the path attributes. As a sim-
ple defense against falsification, the origin and local pref attributes
received from an eBGP session can be set to a default value, and the
MED and next hop attributes are ignored unless otherwise agreed
upon by both peers. Due to lack of space, we also do not fur-
ther discuss the atomic aggregate and aggregator attributes, though
these are automatically secured by SPV, as described in Section 4.5.

A severe attack is AS path or AS set falsification, since falsi-
fying the AS path has serious consequences. For example, many
policy decisions are made based on the AS path, and the length of
the AS path is (after the local pref value) the second consideration
in selecting a path towards a destination. As a result, changing the
AS path can cause the attacker’s route to be preferred.

An attacker can create a more preferable route by shortening
the AS path. In this paper, we refer to this attack as the truncation
attack, and it can be used to form a blackhole. An attacker can also
modify the AS path by altering ASNs. In this paper, we refer to
this attack as the modification attack. This may cause the next AS
to prefer a route through the attacker, and the attacker may be able
to create a blackhole.

An attacker with control of the preferred route can select be-
tween the grayhole attack (i.e., selective dropping) and a number
of similar attacks. For example, an attacker can make a neighbor-
ing AS discard a prefix by falsely prepending the neighboring ASN
to that prefix in the UPDATE to trigger loop detection when that
prefix reaches the AS [17]. (However, to recover from partitions
of an AS, some ASes do not drop UPDATEs that would result in a
loop [54].) A somewhat weaker attack is to prepend random ASNs
to the AS path for the purpose of making the path longer. In gen-
eral, this should discourage traffic from using this route; in fact,
this preference for shorter AS paths is useful for traffic engineering
(through the use of AS path prepending). An attacker can also at-
tempt to use BGP’s flap damping to delay a router from picking an
alternate route to some destination. This achieves the same result
as the grayhole attack (packets are dropped in the network), though
it is somewhat stealthier. All these attacks, however, require that
the attacker control the preferred path. As a result, we consider the
grayhole attack to be more powerful, and ignore these attacks in the
rest of the paper.

A wormhole or tunnel attack is a specific mechanism that can
be used to perform blackhole attack, where multiple colluding BGP
routers exchange BGP UPDATE traffic over a tunneled connection,
such as PPP over TCP [24]. These tunneled BGP UPDATEs allow a
router to claim better paths to a destination than actually physically
exist. The tunneling attack is devastating even against secure BGP
routing protocols; for example, in S-BGP, two colluding malicious
routers can forward UPDATE traffic to each other, signing route
attestations for each other. SPV is also unable to prevent these
attacks.



Unauthorized propagation or AS path announcements. An
attacker can propagate a route that it should not. For example, ser-
vice providers generally do not want their routes to be readver-
tised by their customers; otherwise, a multihomed customer may
begin advertising transit capability between two large providers.
However, that customer is unlikely to have sufficient resources to
provide such a service, which would result in either severely de-
graded performance or a blackhole. In addition, a router should
only announce prefixes and AS paths that it actively uses to route
towards that prefix. A malicious router may announce prefixes and
AS paths it is not actively using, and greatly increasing the rate of
BGP UPDATEs.

2.2 Denial-of-Service (DoS) Attacks

If we consider routing as a service, falsification attacks can also
result in DoS. However, here we discuss DoS attacks on the BGP
speaker, and on the TCP connection of the BGP session.

The classic DoS attack is a resource exhaustion attack. An
attacker may be able to paralyze a router by exhausting its compu-
tation resources. Several approaches may be used to perform this
attack. An attacker may be able to trick a router into performing
resource-intensive operations, such as public-key certificate veri-
fications or signature generations, which require on the order of
milliseconds each. Recently, researchers discovered algorithmic
complexity attacks, where an attacker fabricates inputs to evoke the
worst-case running time of an algorithm, slowing the device down
to a crawl [12]. As a result, a router may not be able to recompute
its routing table, process BGP UPDATE messages, or even keep the
BGP session alive. If a BGP session is torn down, each BGP peer
will withdraw any routing table entries learned from the other BGP
peer.

Another attack is to exhaust the bandwidth of a network link
to starve off the TCP connection used for the BGP session. If the
BGP peers are directly connected, they may allocate bandwidth re-
sources for the BGP session; however, some BGP peers are not di-
rectly connected (such as peers connecting over an exchange point);
in such cases, an attacker can flood intermediate links. A flooding
prevention mechanism such as SIFF could be used in this case [58].

Finally, an attacker can use low-layer protocol attacks to di-
rectly attack the BGP session. The attacker may mount a PHY
layer attack to disable communication links. Since BGP relies on
the TCP protocol, it inherits all TCP vulnerabilities [4].2 For exam-
ple, due to a lack of origin authentication in the TCP protocol, an
attacker can inject malicious TCP packets, spoofing the IP source
address of the other TCP end point, an attack which we call TCP
poisoning. In this attack, the attacker guesses the TCP sequence
numbers and injects bogus TCP reset (RST) packets to cause the
victim to close its TCP connection. Using IPsec will prevent this
attack.

3 CLOSELY RELATED WORK

In this section, we discuss prior work that is closely related to SPV.
We discuss the remaining related work in Section 6.

3.1 Hop-by-Hop Authentication

In hop-by-hop authentication, ISPs use authentication to prevent
attacks against the eBGP TCP session (e.g., malicious message
injection by an outsider). However, falsification of the AS path
cannot be addressed by hop-by-hop authentication. However, hop-
by-hop authentication is an important start, and several approaches
based entirely on hop-by-hop authentication have been proposed

2Even though TCP is technically at a higher layer of the protocol stack we include this
in the low-layer attack section, as BGP relies on TCP.

in the literature. Kumar and Crowcroft discuss security require-
ments and propose hop-by-hop encryption and authentication to
secure routing UPDATEs [31]. Smith and Garcia-Luna-Aceves [52]
discuss weaknesses of the BGP protocol and propose some basic
countermeasures, which use digital signatures to provide hop-by-
hop authentication. TCP-MD5 authentication has also been pro-
posed to provide authentication between two BGP speakers [21].
IPsec [25, 26] can also authenticate the link-level communication
between peering routers. The TTL value can be used to verify that
a packet really originates from a neighboring router [43].

3.2 Securing BGP Updates

Kent et al. propose S-BGP, the seminal work that protects the entire
BGP UPDATE message [27]. S-BGP assumes two parallel certifi-
cate hierarchies: an address space PKI, and an AS ownership and
router PKI. Both certificate hierarchies have ICANN as their cer-
tificate root. The address space certificate assigns ownership over
an IP prefix to an entity, the address space hierarchy parallels the
existing IP address allocation system (address issuer signs address
owner’s certificate). The AS ownership certificate assigns owner-
ship over an ASN to an entity. An AS uses its AS ownership to sign
certificates for routers.

The main goal of S-BGP is to protect the ASPATH from modi-
fication and truncation, and to prevent unauthorized advertisements
of an IP prefix. To prevent unauthorized prefix advertisements,
S-BGP uses address attestations, where the owner of an IP prefix
signs a delegation message allowing its first-hop AS to advertise
the prefix. Subsequently, each AS signs a route attestation for the
AS path up to and including that AS, and a delegation, allowing
the next AS the right to propagate that advertisement to its peers.
Hence, a S-BGP UPDATE message starts with an address attesta-
tion which proves that the originator has permission to advertise
the route. The originator signs a delegation which allows the next
AS to propagate the route, and each AS in turn signs a delegation
which allows the following AS to propagate the route.

Each delegation in the delegation chain ensures two properties:
first, the next ASN cannot be modified without the previous ASN’s
private key, and second, the AS path cannot be propagated without
the permission of the final AS on the AS path. As a result, an
attacker cannot introduce itself onto the AS path unless it receives
a delegation allowing it to propagate that prefix. It also cannot
remove previous ASNs from the AS path, because to do so would
require the private key of the AS before the removed AS. S-BGP
requires several digital signatures in each UPDATE, and as a result
has a high CPU overhead for verifying UPDATE messages. SPV
improves on S-BGP through the use of more efficient symmetric
cryptography.

3.3 Anomaly Detection

A number of approaches attempt to determine whether or not
a given UPDATE is likely to be valid. SPV is a complemen-
tary approach, designed to prevent modification and truncation of
ASPATHs. Though a combination of detection and prevention is
promising, it is beyond the scope of this paper, but represents an
interesting direction for future work. We now review some prior
work in anomaly detection.

Secure Origin BGP (soBGP) is an effort to secure BGP [57].
The approach of soBGP is for each router to keep a database of
network topology (AS connectivity information), BGP policy in-
formation, as well as trusted ISP certificates. The routers use this
database to assess the authenticity of UPDATEs, mainly by detect-
ing that a given UPDATE is impossible. Goodell et al. propose a
separate protocol to secure BGP route updates, without changing
BGP [19]. Their approach is similar in nature to soBGP, as it adds
a separate mechanism to authenticate BGP UPDATEs.



Cheung and Levitt [10] and Bradley et al. [7] propose intrusion
detection techniques for detecting and identifying routers that send
bogus routing UPDATE messages.

Subramanian et al. present new mechanisms to detect invalid
UPDATE messages in their Listen and Whisper work [55]. They
suggest adding a small amount of cryptographic information to
UPDATEs to enable an AS to detect ASPATH truncation (one of
their techniques is also based on efficient symmetric cryptographic
primitives). They also propose to monitor TCP flows to detect paths
that become unavailable.

Kruegel et al. present mechanisms to detect malicious updates,
based on AS topology information [29].

4 SECURING BGP
In this section, we describe our extensions to secure BGP, which
we call secure path vector (SPV). Our goal is to achieve ASPATH
integrity through purely symmetric functions. One of the main
motivations for this direction is to remove the need for routers to
perform computationally expensive public-key cryptographic op-
erations and to store asymmetric private keys. Private keys often
have long lifetimes, and their compromise represents a significant
security breach. As a result, managing private keys is a challenging
task. In SPV, routers need only store the short-lived private keys for
one-time signatures; these short-term keys can be generated offline.
This approach greatly improves security, as the prefix private key
could be stored on an off-line workstation.

By ASPATH integrity, we mean that a malicious AS or mis-
configured router cannot shorten the ASPATH (which we call the
truncation attack) or change autonomous system numbers (ASNs)
in the ASPATH. Preventing the shortening of the ASPATH pre-
vents blackhole attacks that are due to truncated paths, and ensur-
ing integrity of ASNs in the path prevents ASPATH modification
attacks. To achieve this integrity, we develop an ASPATH protec-
tor, a backwards-compatible cryptographic mechanism which can
be added as a path attribute.

To prevent the attack in which an attacker replays old UPDATE

messages to advertise routes which do not currently exist, we as-
sume that time is divided into epochs of fixed length, after which
all routes must be readvertised. Each UPDATE message is valid for
one epoch following the epoch in which it was announced. Epochs
are further discussed in Section 4.5.

In SPV, we use four different kinds of public/private keys (these
keys are described in more detail later in this section):

• A single-ASN public key authenticates the signature of one
AS in the ASPATH. The corresponding single-ASN private
key is used to derive the one-time signature and the single-
ASN public key.

• An epoch public key authenticates one ASPATH protector,
which consists of a sequence of single-ASN one-time signa-
tures. The epoch public key is the root of a hash tree over
multiple single-ASN public keys (we describe hash trees in
Section 4.2.2).

• A multi-epoch public key authenticates multiple epoch public
keys. This value is the root of a hash tree that is constructed
over multiple epoch public keys.

• A prefix public/private key is used to authenticate messages
from a given prefix. This is a standard public/private key pair
(for example using the RSA algorithm), which follows the
same structure as the address PKI structure of S-BGP [27].
The main purpose in SPV for the prefix public key is to
authenticate multi-epoch public keys, producing the multi-
epoch public key certificate. The prefix key pair prevents an
attacker from advertising a prefix which it does not own.

In the same way that S-BGP uses address attestations [27],
we assume that ICANN will issue certificates for prefix pub-
lic keys to designate address ownership.3

SPV secures BGP UPDATE messages as follows. A node adver-
tising a prefix must have the prefix private key associated with that
block in order to generate a valid SPV UPDATE message. Using
a combination of one-time signatures, hash trees, and one-way
chains, we design a novel construction to protect ASPATHs against
truncation and modification attacks. We observed that authenti-
cation of the AS forwarding UPDATEs is not necessary to secure
ASPATHs, and causes problems also for incremental deployment.
We propose an ASPATH protector that prevents a malicious AS
from truncating or maliciously modifying the ASPATH, without
authenticating the AS that updated the ASPATH and forwarded the
UPDATE message.

In our approach, the owner of a prefix creates a sequence of
one-time signatures, where each one-time signature is used to se-
cure one ASN in the ASPATH. The address attestation is used to au-
thenticate the public keys of the one-time signature, and the address
owner passes all the private keys in the UPDATE to the next AS.
Each AS that forwards the UPDATE uses up one one-time signature
to sign itself into the ASPATH and removes the private key for that
signature.

When a subsequent AS receives an UPDATE message, it can
verify the integrity of the ASPATH by verifying all the one-time
signatures. A malicious AS cannot truncate the ASPATH because it
cannot recreate the private key of the removed ASNs, and it cannot
replace a previous ASN with its own ASN (except with very small
probability, as we analyze in a later section).

4.1 Efficient Prefix Ownership Certificates

To ensure that a prefix actually belongs to the AS which is origi-
nating an update for it, we use certificates to build attestations of
prefix ownership. These certificates are equivalent to the address
space PKI structure of S-BGP [27]. ICANN assigns IP address
space to registries, which in turn delegate smaller blocks to ser-
vice providers. Service providers often delegate these blocks to
their customers. At each step in the delegation, the recipient of the
address block generates an asymmetric prefix private key to repre-
sent the block; we call the corresponding public key a prefix public
key. The address issuer uses its prefix private key to sign the prefix
public key of the delegated block, together with a list of prefixes
which are delegated to the new key, forming the prefix public key
certificate, or simply prefix certificate. The network that owns a
prefix thus has a certificate signed by the issuer of the prefix autho-
rizing the prefix public key to authenticate messages to originate
from that prefix.

Disseminating the prefix public keys is a challenge. A promis-
ing approach is to leverage identity based cryptography (IBC) [6].
In IBC any value can serve as the public key—the name IBC was
chosen because an arbitrary string such as a name, identity, or a
prefix can be used as the public key. Based on the public key, the
certification authority can then compute the corresponding private
key. In IBC, no public-key certificates are necessary, because the
name is the public key. Assuming ICANN as the globally trusted
authority of an identity based PKI, ICANN could issue IBC private
keys using the prefix as the public key, which would remove the re-
quirement for certificates, which in turn would solve the certificate
distribution problem. ICANN could authenticate the owner through
the prefix public key certificates we describe above. However, IBC

3However, in contrast to S-BGP, which requires additional certificates to authenticate
ASNs, address attestations are the only requirements for computationally expensive
public-key cryptography in SPV. We use these address attestations to bootstrap the
one-time public keys that protect the ASPATH.



has several drawbacks: key revocation is an issue since we cannot
revoke identities or prefixes (usually addressed by short-lived keys
by appending expiration times to the public keys along with fre-
quent private-key reissuing); and ICANN will know the private key
for every prefix. For the purposes of this paper, we assume either a
certificate distribution mechanism for the prefix public keys, or the
use of IBC.

Instead of signing UPDATE messages, we use an ASPATH
protector, which is built entirely from efficient symmetric primi-
tives. An ASPATH protector can be authenticated using a single
value, called the epoch public key. Because the ASPATH protec-
tor changes periodically, an AS builds a hash tree (described in
more detail in Section 4.2.2) over each of these authenticators for
a small set of ASPATH protectors. We call the root of this hash
tree the multiple-epoch public key, because all the ASPATH pro-
tectors for several epochs can be verified with that public key. The
AS signs the multiple-epoch public key with the prefix private key,
producing the multi-epoch public key certificate.

The multi-epoch public key certificate can be distributed in a
number of ways. For example, routers can use a separate protocol
to flood certificates through the network. Alternatively, certificates
could be erasure-encoded and pieces flooded within the UPDATE

messages themselves, for example using a Digital Fountain based
approach [8].

4.2 Cryptographic Mechanisms

In this section we review the basic cryptographic mechanisms
that we use in this work. We review one-way hash chains, tree-
authenticated values (also known as Merkle hash trees [38]), and
one-time signatures. For a reference text on cryptographic termi-
nology and constructions see [37].

In this paper we make use of highly efficient, symmetric
cryptographic functions, such as one-way hash functions (e.g.,
MD5 [48]), and block ciphers (e.g., AES [14]). Asymmetric cryp-
tographic primitives, such as RSA signatures [49], are computa-
tionally expensive: RSA signature verification is about three orders
of magnitude slower than one symmetric operation (block cipher
or hash function operation), and signature generation is about four
orders of magnitude slower. When implemented in hardware, the
speed difference is even larger. For example, when using a Xilinx
Virtex FPGA with a “-6” speed grade, a 1024-bit RSA acceler-
ator [15] can perform 54,610 modular multiplications (or 18,203
RSA verifications) per second in 5458 slices4 (679% of the perfor-
mance of a 1GHz Pentium III), whereas an unpipelined implemen-
tation of AES [56] using 460 slices can perform 5 million hashes
per second on a slower FPGA (137% of the performance of a 1GHz
Pentium III). Since these implementations are trivially paralleliz-
able, in the same size FPGA, symmetric cryptographic primitives
provide 1625% of the performance of a 1GHz Pentium III. For ef-
ficiency, we base our techniques on symmetric primitives. We need
two operations: a one-way function, and a pseudo-random number
generator.

For the one-way function H[x], we could use a cryptographic
hash function such as MD5 [48]. For the security of our mecha-
nisms, we require that the hash function provides second pre-image
collision resistance, which means that given a random value x, it is
computationally infeasible to find x′ 6= x such that H[x] = H[x′].
For efficiency reasons we use a hash function constructed from a
block cipher. We use the AES [14] block cipher in the Matyas,
Meyer, and Oseas hash construction [36]: o = H[i] = AESK(i)⊕ i.
Black, Rogaway, and Shrimpton also show the security of this con-
struction [5]. For the key K, we use a publicly known key K, note
that it is intractable to derive the input i even if given output o and

4A slice is used to measure the size of an implementation in an FPGA.

key K, thus giving us the one-way property. This construction is
standardized in ISO/IEC 10118-2 and is particularly efficient if we
hash an input value that is of the same size as the block cipher.

To generate a sequence of pseudo-random numbers, we use
pseudo-random functions (PRF) [18]. A PRF takes two arguments,
X is the key and i is the input value, and produces an output
value o = FX (i) that is indistinguishable from a random value
as long as the key X is secret. We will use the PRF to derive a
sequence of random values, such that given a sequence of output
values, assuming the key X is secret, it is intractable to find other
unpublished output values, or to derive the key X . We also use the
AES block cipher as our PRF, so FX (i) = AESX (i).5

For our cryptographic primitives, we aim for a security level
of 80 bits, requiring an attacker to perform on the order of 280

cryptographic operations to break. This level of security is higher
than a 1024 bit RSA key, which requires roughly 272 operations to
break [33]. Choosing 80 bits will provide ample protection even
against a determined attacker until about year 2015 (choosing 96
bits is expected to be secure until year 2035) [33].

4.2.1 One-Way Hash Chains

One-way hash chains, or simply one-way chains, are a frequently
used cryptographic primitive in the design of secure protocols. We
create a one-way chain by selecting the final value at random, and
repeatedly apply a one-way hash function H to derive previous val-
ues. For example, to create a chain, we select v0 at random, derive
v1 = H[v0], v2 = H[v1], etc.

The required one-way property of the hash function H makes it
computationally intractable for an attacker to derive value vi know-
ing value vi+1. More generally, given value vi of a one-way chain,
an adversary cannot find an earlier value v j such that H i− j[v j]
equals vi. (The notation Hx[y] here means that we apply the hash
function H x times on the input y, e.g., H2[y] = H[H[y]].) Even
when value vi is released, a hash function that is second pre-image
collision resistant prevents an adversary from finding v′i 6= vi such
that H[v′i] = vi+1.

The main property of values of a one-way chain is that once a
receiver trusts that a value vi is authentic, it can derive all following
values of the one-way chain by repeatedly computing the one-way
function H, and it can authenticate that an earlier value v j also be-
longs to the one-way chain, by checking that H i− j[v j] equals vi.
Moreover, an adversary cannot derive later values of the one-way
chain, unless the creator of the chain already published them.

4.2.2 Hash Trees

Hash Trees (also known as Merkle hash trees [38]) are an effi-
cient mechanism which reduces the problem of authenticating a
sequence of values v0, v1, . . . , vw−1 to authenticating a single value
r0. In SPV, we use hash trees for three purposes: to authenticate
the values of the single-ASN private key, to authenticate several
single-ASN public keys, and to authenticate the epoch public keys.

To construct the hash tree, we place the values v0, . . . , vw−1 at
the leaf nodes of a binary tree, as Figure 1 shows. (For simplicity
we assume a balanced binary tree, so w is a power of two.) We first
blind all the vi values with a one-way hash function H to prevent
disclosing neighboring values in the authentication information (as
we describe below), so v′i = H[vi]. We construct a hash tree over
the values v′0, . . . , v′w−1 as follows. Each internal node of the bi-
nary tree is derived from its two child nodes. The derivation of
a parent node mp from its left and right child nodes ml and mr is

5A block cipher is a pseudo-random permutation (PRP), and using a PRP to implement
a PRF is secure as long as we use it fewer than 2`/2 times for each key [3], where `
is the block size in bits. With 128-bit AES, we can use this PRP up to 264 times; we
satisfy this requirement since we only use the PRP only up to 28 times with any key.



PSfrag replacements

v0 v1 v2 v3 v4 v5 v6 v7

v′0 v′1 v′2 v′3 v′4 v′5 v′6 v′7

m01 m23

m03

m45 m67

m47

m07

Figure 1: Tree authenticated values

mp = H[ml || mr], where || denotes concatenation. 6 We com-
pute the levels of the tree recursively from the leaf nodes to the
root node. Figure 1 shows this construction over the eight values
v0, v1, . . . , v7, e.g., m01 = H[v′0 || v′1], and m03 = H[m01 || m23].

The root value of the tree enables authentication of all leaf
nodes. To authenticate a value vi the sender discloses i, vi, and
all the sibling nodes of the nodes on the path from vi to the root
node. The receiver can then use these nodes to recompute the val-
ues on the path up to the root, and if the recomputed root value
matches the known root value, value vi is guaranteed to be authen-
tic. For example, to authenticate value v2 in Figure 1, the values
v′3,m01,m47 are required for recomputing the root. A receiver with
the authentic root value m07 can verify the equality:

m07 = H

[

H
[

m01 || H
[

H[ v2 ] || v′3
]]

|| m47

]

If the verification is successful, the receiver knows that v2 is au-
thentic. The extra v′0, v′1, . . . , v′7 in Figure 1 are added to the tree to
avoid disclosing (in this example) the value v3 for the authentica-
tion of v2.

4.2.3 One-Time Signatures

One-time signatures are based on efficient one-way functions7 and
are used to replace more expensive asymmetric signatures in cases
where performance is critical. The drawback of one-time signa-
tures is that if we sign multiple messages, the security degrades.
The first instantiation of a one-time signature was by Lamport [32],
subsequently researchers further developed these ideas [16, 39, 47,
50]. Most of these one-time signatures work by constructing a
graph using one-way functions, where the verification value serves
as the public key, and some randomly chosen values serve as the
private key. For example, we could use the hash tree method we
present above as a one-time signature to sign t bits: we select 2t

random values vi (for example using a PRF F as outlined above:
vi = FX (i)), and build a hash tree over those values. (In this sec-
tion, we will use t = 80 as an example, since it corresponds to the
280 security level we explained earlier). The root of the hash tree
would become the public key, and all the 2t values at the leaves
would be the private key (or simply the random key X could also
serve as the private key, as all other values are derived from it).

6The initial hash also prevents a shifting attack that is introduced through the concate-
nation of the arguments. Consider the case where we have two leaf nodes, v1 and v2. If
we compute H [v1||v2], an attacker could “shift” least significant bits from v1 to become
the most significant bits of v2, thus breaking the authentication property. Because the
initial hashing step produces hashes of equal size, this attack is not possible.
7A trapdoor is defined as a small amount of information that allows us to invert a one-
way function. One-time signatures use one-way functions without trapdoors, because
the only way to invert these functions is to construct a table with all inputs and outputs,
which is not a small amount of information. Traditional signatures, such as RSA, are
also one-way functions, but these functions have a trapdoor. For example in RSA,
encryption with the public key is a one-way function, and the private key is the trapdoor
information that allows us to invert the function.

This would allow us to sign message M as follows. In the con-
text of SPV, the message M is an ASPATH suffix, e.g., 〈A,B,C,D〉.
We compute a cryptographic hash of the message and keep the t
least significant bits: [H[M]]t = h. We then disclose the value vh
of the private key, along with the tree values necessary to recal-
culate the root value for verification (as we describe above in the
hash tree section). Two approaches exist to attack this signature:
the attacker inverts the one-way function to derive the private key,
or the attacker finds another message with the same hash value.
Assuming a secure one-way function with an output length of 80
bits, it is computationally intractable for an attacker to invert the
one-way function. Hence, only the second attack is an option,
which is to find a second message M′ such that the t-bit hash value
is equal to that of message M: [H[M]]t = [H[M′]]t . The probability
that another message M′ has the same t-bit hash value as message
M is 1/2t , so an attacker would need to try 2t−1 messages on av-
erage until it could find another message with the same hash value
h. This simple example illustrates a one-time signature, but it has
a high computation and communication overhead compared to the
provided security.

To improve on this scheme, we can disclose multiple leaf nodes
to encode a signature. Assuming we have n = 2t leaf nodes, and
we disclose m leaf nodes for each signature, we could encode
blog2

(n
m

)

c bits—this encoding was proposed by Reyzin and Reyzin
in their HORS signature [47]. In this encoding, we map the output
of the hash function to one of the

(n
m

)

combinations.
We explain the HORS signature in more detail based on an ex-

ample. Consider that we want to sign message M. In this simplified
example, we use the parameters n = 8 and m = 2. To create the
private key, the signer selects a random key X , and derives the 8
values of the private key with the PRF F as follows: vi = FX (i)
for 1 ≤ i ≤ 8. Next, the signer computes a hash tree over these
values, as Figure 1 shows. The root value of the hash tree (m07 in
this case), serves as the public key. We assume that the verifier only
knows the public key. To sign message M, the signer computes the
hash hM = H[M] and derives the values to disclose from that by
selecting two three-bit sequences from the hash. In this example,
H[M] = 011110 . . . in binary notation, thus the signature will con-
sist of the private key values v3 and v6. The signature will consist of
values v3, v6, v′2, v′7,m01,m45. To verify the signature, the verifier
recomputes the hash of the message as well as the root of the hash
tree, and ensures that the recomputed root of the hash tree matches
the public key m07: based on H[M] the verifier knows that the dis-
closed values of the private key are v3 and v6, and it verifies that
m07 equals H[H[m01||H[v′2||H[v3]]]||H[m45||H[H[v6]||v

′7]]]. If an
attacker would want to forge this signature, it would have to invert
the one-way function (which we assume is computationally impos-
sible), or find another message that would also disclose values v3

and v6, which is easy in this case: 1/
(8

2

)

= 1/28.
We propose to use the HORS encoding in conjunction with a

hash tree to achieve fast verification and a small size of the public
key (the public key is simply the root node of the hash tree). This
approach has a much better security/cost tradeoff than the simple
scheme described above. Unfortunately, this approach also reduces
security as more signatures are made: since each signature dis-
closes m values from the private key, an attacker with r signatures
has approximately mr values. The probability that the attacker has
any given value is at most mr

t , so the probability that an attacker can
sign any given value is at most

( mr
t

)m. In Section 5.1 we present a
more sophisticated security analysis.

4.3 Basic ASPATH Protector

In this section, we present a new cryptographic mechanism, which
we call an ASPATH protector. As we show later, this protector has
some security weaknesses which we fix with a more sophisticated



A

B

C

PSfrag replacements

c1,0 c2,0 c3,0 c4,0

r0

bi, j,e

b′i, j,e

ri,e

Figure 2: This figure shows a diagram of one ASPATH pro-
tector capable of securing an ASPATH of length four. The
shaded box labeled “A” highlights the epoch public key, box
“B” highlights the four single-ASN public keys, and box “C”
highlights the four single-ASN private keys that form a one-
way hash chain. The black circles represent the ASPATH pro-
tector values that an AS sends with an UPDATE for one of its
own prefixes to a peer; the first single-ASN signature (spanned
by single-ASN private key c1,0) signs its own ASN, the second
single-ASN signature (spanned by c2,0) signs the BGP peer’s
ASN, and the router reveals c3,0 to allow further UPDATE prop-
agation.

structure in Section 4.4. The main purpose of the ASPATH pro-
tector is to secure ASPATHs from the truncation and modification
attack.

Properties. Our efficient ASPATH protector achieves the follow-
ing two properties. First, an attacker cannot claim a shorter route
to a prefix than the length of the shortest route it has heard since
the AS originating that prefix last advanced its epoch. Second, an
attacker cannot modify the ASNs which have already been inserted
into the ASPATH.

ASPATH Protector Construction. We now describe a crypto-
graphic mechanism that enforces these properties. The intuition be-
hind our scheme is to use a one-time signature scheme to sign each
suffix of the ASPATH (that is, we sign the entire ASPATH at each
AS traversed by an UPDATE) to make that suffix of the ASPATH
immutable to later ASes that forward the UPDATE. We leverage
one-time signatures to achieve ASPATH integrity, hash trees to en-
able authentication and verification of the one-time signatures, and
one-way hash chains to reduce the size of the ASPATH protec-
tor. We describe these cryptographic mechanisms in more detail
in Section 4.2.

To generate the ASPATH protectors, the AS selects a random
key X , and generates the seed values that span the individual
ASPATH protectors for epoch e using a PRF F : c1,e = FX (e).8

The advantage of this construction is that the AS only needs to
store the secret key X , and can reconstruct any of the seed values.
Alternatively, the AS could select all seed values at random, but
would then have to store them all.

Each HORS one-time signature structure can be derived from
one value, which we call the single-ASN private key. To secure
an ASPATH with ` ASNs, we need ` one-time signatures. Thus,
we randomly select ` single-ASN private keys for each epoch e:
c1,e, . . . , c`,e. Each value ci,e is used to derive the n nodes of

8Section 4.2 explains pseudo-random functions in more detail, and justifies why all
our values are 80 bits long.

the HORS one-time signature, from which m values will be dis-
closed in a signature.9 For each one-time signature, we derive
n values bi,1,e, . . . ,bi,n,e using a PRF F and the private key ci,e
as the key to the PRF: bi, j,e = Fci,e( j). To enable authentication
of these values, we first blind these keys with a one-way function
b′(i, j,e) = H[b(i, j,e)] ,10 and then we construct a hash tree over them.
Each hash tree computed over each one-time signature has a root
value ri,e; we use ri,e to denote the root value that serves as single-
ASN public key for the one-time signature with the single-ASN pri-
vate key ci,e. We then build a hash tree over the ri,e values, and use
re to denote the root value of that tree. We call re an epoch public
key, since it can be used to verify all the one-time signatures in the
ASPATH protector within one epoch.

Each ASPATH protector would need to carry all the single-ASN
private keys to enable subsequent ASes to sign in their ASN into
the protector. To lower the communication overhead, we use a one-
way chain to link the single-ASN private keys—this approach has
the advantage that all subsequent single-ASN private keys can be
derived from a previous single-ASN private key. Hence, value c1,e
serves as the single-ASN private key for the first ASN, and as the
seed value for the one-way hash chain which spans the subsequent
single-ASN private keys c2,e, c3,e, . . . , c`,e where ci+1,e = H[ci,e].

Figure 2 shows one ASPATH protector, securing an ASPATH
with up to four ASNs. The arrow from c1,0 to c2,0 in Figure 2
depicts the one-way function application: c2,0 = H[c1,0].

ASPATH Protector Use and Verification. In each epoch the
owner of a prefix uses one ASPATH protector to announce its pre-
fix in an UPDATE message. In the basic scheme, each one-time
signature is used to sign one ASN into the ASPATH protector. As
the ASPATH is passed in the UPDATE message, each AS uses the
next single-ASN private key to sign its ASN into the protector, re-
moving the current single-ASN private key ci,e by following the
one-way chain one step and passing ci+1,e = H[ci,e] to the next AS.
Based on the multi-epoch public key, an AS can verify an ASPATH
protector.

For example, consider three ASes with the following connectiv-
ity A ↔ B ↔C. AS A signs H[A] with the HORS signature spanned
by value c1,0, and sends to B the signature along with c2,0.

We assume that B has an multi-epoch public key to verify r0,
the root of the hash tree. B can verify all the one-time signatures
in the ASPATH protector by recomputing all one-time signatures
and verifying that the final root value matches r0. If successful, the
AS knows that all one-time signatures are correct, if not successful,
at least one of the values must be false.11 More concretely, B first
verifies the correctness of the one-time signature, and checks that
H[A] is correctly encoded in the first HORS one-time signature.
Based on A’s one-time signature, B can compute value r1,0, and
based on value c2,0 it computes r2,0. B then follows the one-way
hash chain and computes c3,0 = H[c2,0], . . . , c`,0 and from those
single-ASN private keys it can compute r3,0, . . . , r`,0. Based on all
these values, B next computes the root of the hash tree, and verifies
if it matches value r0. If it matches, it knows that all signatures are
correct.

B then signs H[〈A,B〉] with the one-time signature spanned by
c2,0, and sends on A’s and B’s signature along with c3,0 to C. To
allow further propagation of the UPDATE, B includes c3,0, thus al-
lowing C to advertise the route after appending its identifier.

9In Section 5, we discuss our choice for n and m and the resulting security margin.
10The b′ values are used to prevent disclosing a neighboring b value when publishing

the b values in a signature; Section 4.2.2 presents more details on this.
11Unfortunately, it is not possible to determine which signature is false; however, be-
cause the previous SPV speaker should have verified the signatures before sending
them out, we can infer that the previous SPV speaker must be malicious. This reason-
ing does not apply, however, if the UPDATE is received from a legacy AS.



PSfrag replacements

r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15

r
e

Figure 3: This figure shows a hash tree constructed over the
epoch public keys (root nodes of 16 ASPATH protectors). The
root node of this tree is the multi-epoch public key, which is
signed with the prefix public key to form the multi-epoch cer-
tificate.

Figure 3 shows the hash tree that enables authentication of mul-
tiple ASPATH protectors. The root value can be used to authenti-
cate the root value of each ASPATH protector, The internal nodes
of the tree needed to authenticate values within a given ASPATH
protector are included in the UPDATE.

By construction, our ASPATH protector secures the ASPATH
against modifications, in particular against route shortening. One
of the main advantages is the efficiency of authentication genera-
tion and verification, as we discuss in Section 5. In addition, the
one-way hash function design enables several new properties not
achieved by previously proposed mechanisms. Consider an AS that
does not use SPV, but transparently forwards SPV values as part of
the BGP UPDATE, unaltered. If the next AS implements SPV, it
can construct the ASPATH protector as if the previous AS imple-
mented SPV, as no AS-specific private key is involved in updating
the ASPATH protector. This property is important for incremental
deployment.

4.4 Advanced ASPATH Protector

The basic ASPATH protector has several drawbacks that we rem-
edy in this section. We discuss each drawback in turn and de-
scribe our countermeasure. The collection of all the countermea-
sures make up the advanced ASPATH protector.

Repeatable and Predictable Fraud. As we discuss in
Section 4.2.3, one way to forge a one-time signature is to
claim that a different message M′ was signed that has an identical
hash as the legitimate message M (so H[M] = H[M′]), or that the
encoding of H[M′] allows attacker to forge a valid signature given
the disclosed values of multiple one-time signatures. For example,
if C receives the UPDATE from B with ASPATH 〈A,B〉, it can
replace B with C if H[〈A,B〉] = H[〈A,C〉]. Similarly, if C receives
two ASPATHs 〈A,B〉 and 〈A,F〉 for the same prefix, it learns more
values of the second one-time signature and may be able to encode
H[〈A,C〉]. In both cases, if the condition is satisfied C will always
be able to forge a bogus ASPATH for all updates. As a counter-
measure, we add the epoch number e to each hash operation, so
instead of computing H[〈A,B〉] we compute H[e || 〈A,B〉]. This
approach makes the probability of forgery independent between
epochs, so an attacker cannot deterministically cheat. Thus, if an
attacker can cheat with a low probability p, the probability that it
can cheat each time in x successive epochs is px.

Single Malicious AS Fraud. In the basic ASPATH protector, an
attacker can easily forge a false ASPATH. Since the one-time signa-
ture is not binding the AS to sign its own ASN, a malicious AS can
sign an arbitrary ASN into the ASPATH protector before sending
it on to the next AS. However, this attack is easily prevented: the
receiving AS needs to verify that the sending AS is the last ASN in
the ASPATH.

Even with this rule, a malicious AS can still forge a false
ASPATH as follows. Consider that malicious AS C has two le-
gitimate neighbor ASes B and D that both implement SPV. When
C receives a prefix from B with the ASPATH 〈A,B〉, C can send the
forged ASPATH 〈A,B,M,C〉 to D. In the basic ASPATH protector,
C can simply use two one-time signatures to sign in M and C.

To prevent this attack, we require that the previous AS already
signs in the next AS into the ASPATH protector. (This approach is
similar to the route attestations in S-BGP, where an AS delegates
the right to forward an UPDATE to the following AS.) In the case
we describe above, when B forwards an UPDATE with ASPATH
〈A,B〉 to C, B will sign H[e || 〈A,B,C〉] into the one-time signature.
Moreover, when C forwards the UPDATE, D will verify that C’s
signature encodes H[e || 〈A,B,C,D〉]. It is now clear that C cannot
cheat any more, as it would need to create an ASPATH such as
〈A,B,C,M,C〉 which D could discard because it contains a loop.

Because each AS now signs the next ASN into an single-ASN
signature, we can optimize the efficiency of AS path prepending.
In particular, we specify that a node that wishes to include its ASN
more than once does not consume additional single-ASN signatures
for the additional ASNs, but rather includes them when it signs in
the next hop. For example, if B wishes to use AS path prepending
in the above example, then it signs H[e || 〈A,B,B,C〉] into the one-
time signature.

Multi-path Truncation Attack. If a malicious AS receives mul-
tiple UPDATEs with ASPATHs of different length, it may be able
to mount a multi-path truncation attack. For example, suppose
a router has an authenticator for the ASPATH 〈A,B,C,D〉, and
an authenticator for the ASPATH 〈A,E,F,G,H,D〉. From the
first ASPATH, the router has the single-ASN private key for the
ASPATH protector representing the fifth AS. The attacker can use
that private key to modify the second ASPATH; for example, the
attacker can change that ASPATH to 〈A,E,F,G,D〉, by using the
single-ASN private keys from the first ASPATH to secure its own
place, and the ASPATH public values from the second ASPATH to
secure the path up to itself. However, the resulting truncated path
will be one AS longer than if the malicious AS would simply for-
ward the shorter ASPATH, but the longer (altered) ASPATH may
get precedence due to routing policy. In this section, we discuss a
novel technique for reducing the impact of an attacker who wishes
to truncate longer ASPATHs based on information learned from
shorter ASPATHs, which we call postmodification.

In our postmodification mechanism, we modify the signature
such that the quality of a single-ASN signature degrades as the sig-
nature travels farther from the signer. In particular, we added an
additional level of values into the ASPATH authenticator, to allow
for degradation of the private values without converting them into
public values. Previously, the hash tree was constructed over the
b′i, j,e values, and now we use these b′i, j,e values as “semi-private”
values for the purpose of postmodification and add another layer
of values b′′i, j,e = H[b′i, j,e], trading off computation overhead with
increased security.

We now describe the ASPATH postmodification technique in
more detail, and then give a concrete example. As before, we re-
veal m private values in each one-time signature. In addition, an
AS degrades some private values of prior single-ASN signatures
into semi-private values. We use µi to denote the number of pri-
vate values that remain in the signature after i hops. When a private
value is removed, the corresponding semi-private value is added,
such that each signature always has a total of m values: µi private
values and m− µi semi-private values. These µi values are mono-
tonically decreasing: m = µ0 ≥ µ1 ≥ . . . ≥ µ∞ = 0.

We now give a concrete example of postmodification. We as-
sume that n = 4, m = 2, µ0 = 2, µ1 = 1, µ2 = 0, and that we
are in epoch e = 0. Consider four ASes with the connectivity



PSfrag replacements

c1,e c2,e c3,e c4,e

re

bi, j,e

b′i, j,e

b′′i, j,e

ri,e

Figure 4: This figure shows a diagram of one ASPATH
Protector using the postmodification mechanism. The grey cir-
cles represent the values of the ASPATH Protector that an AS
receives in an UPDATE: the origin AS signs the first two ASNs
with the one-time signature spanned by c1,e, the second AS
signs the first three ASNs with the one-time signature spanned
by c2,e, etc. We describe the details on which values are dis-
closed in the text.

A ↔ B ↔C ↔ D. Figure 4 shows the ASPATH protector that AS D
receives from C. AS A signs h = H[0 || 〈A,B〉] with the HORS sig-
nature spanned by value c1,0 (private values b1,1,0 and b1,4,0 were
chosen, indicated by the black circles in the figure). These values
are then sent along with c2,0 to B together with b′′1,2,0 and b′′1,3,0
(which are needed to authenticate those values).

B computes the hash h = H[0 || 〈A,B,C〉] which results in
the selection of b2,2,0 and b2,4,0 for the private values. Since
µ0 − µ1 = 1, B needs to degrade one of the private values from the
first authenticator as part of the postmodification. Again, based on
the hash value h, B deterministically selects one of the bi, j,e values,
picks b1,1,0 and thus forwards to C b′1,1,0 = H[b1,1,0] along with
the remaining private values of the ASPATH protector. Figure 4
shows the ASPATH authenticator that D receives from C; where
both private values from the first single-ASN signature have been
converted to semi-private values (µ2 = 0 so C degraded the value
b1,4,0), and C also degraded the value b2,4,0 from the second one-
time signature.

This toy example should make it intuitively clear that down-
stream ASes receive smaller sets of the private values. As we eval-
uate in Section 5, such postmodification increases security by re-
ducing the probability that an AS can perform the truncation attack.

4.5 Integration with BGP

To integrate our mechanisms with BGP, we include an optional,
transitive path attribute that contains our authentication information
for each hop in the UPDATE’s ASPATH. We can use the Partial bit
in the attribute flags to detect if there are any routers on the path
that do not speak SPV, as a router that does not understand the SPV
optional transitive attribute will set the Partial bit to indicate that it
does not recognize the attribute.

Aggregation SPV supports aggregation in the same way as does
S-BGP. In S-BGP, a BGP speaker aggregating two UPDATEs in-
cludes the authentication for both received UPDATEs and generates
a new ASPATH for the aggregated prefix. In SPV, we cannot eas-
ily create a new ASPATH, so instead we choose one of the aggre-
gated prefixes to carry the entire path. We then include the other
prefix, except that we do not include the ci,0 value from the bot-
tom hash chain, thus preventing any node from readvertising the
other prefix. For example, if AS E receives two prefixes x1 along

path 〈A,B,E〉 and x2 along path 〈C,D,E〉, it then chooses one of
these prefixes, possibly x1, to carry the entire path. It then prevents
further propagation of x2 by removing its bottom chain value ci,0.
When AS E propagates the aggregated block to AS F , it sends x1
with path 〈A,B,E,F〉 and x2 with path 〈C,D,E〉. AS F can see that
the paths join at E, and that the aggregation is valid. Choosing a
single branch in this way reduces the cost of authentication, with-
out compromising security. As in Murphy’s Internet-Draft [42], the
aggregator field would be mandatory, and the common AS must
match the ASN in the aggregator field.

SPV, like S-BGP, fully supports multihoming. As in BGP, a
multihomed subscriber speaks BGP to its two or more providers.
Each provider propagates these routes into the Internet, where each
AS uses local policy to select a route.

Securing Route Withdrawals To secure route withdrawals, we
rely on hop-by-hop authentication and policy. In particular, as in
BGP and S-BGP, an SPV router R should allow an AS A to with-
draw a route to prefix C if and only if AS A is a BGP peer and AS A
is R’s next-hop destination for packets sent to prefix C. That is, we
only accept withdrawals from a valid next-hop router. We do not
require that the AS prove that the withdrawn link is experiencing
some physical problem because doing so is very difficult [27], and
because it undermines our goals of allowing routers to keep their
policy secret.

In S-BGP, route withdrawals are signed as part of the UPDATE

message, which is significantly more expensive to verify than the
hop-by-hop authentication used by SPV. For example, with 1024-
bit RSA, a signature takes 401µs to verify, whereas a Message
Authentication Code takes under 2µs.

Expiration Route announcements and withdrawals are often vul-
nerable to the replay attack, where a BGP speaker replays an
ASPATH which it has previously heard. In particular, once a
BGP speaker has legitimately heard authentication information for
an ASPATH, it can replay that ASPATH and ASPATH protector,
even after that route has been withdrawn. To reduce the impact of
this attack, S-BGP provides replay protection through the use of a
Timeout field, which is signed by the BGP speaker which originally
advertised the prefix. Once this timeout expires, all S-BGP routers
will withdraw this route; as a result, for seamless routing connectiv-
ity, each S-BGP speaker must readvertise each of its routes before
the route’s Timeout expires.

In SPV, we can prevent replays through the use of epochs: each
epoch corresponds to a certain valid period, and each route is read-
vertised in each epoch. An epoch is an implicit Timeout: the adver-
tised route times out after the epoch ends. The length of an epoch
can be chosen in a way that provides higher security or lower over-
head, but a minimum epoch length (for example, one day) should
be enforced. Denial-of-Service attacks based on excessive epoch
changing can then be mitigated, for example by reducing the prior-
ity of verifying new epochs in excess of three or four per day.

To prevent synchronized epoch changes from causing a flood of
advertisements of different ASes, the boundaries between epochs
should be chosen uniformly at random. One approach is to hash
the prefix using a one-way hash function. The resulting number
is taken to represent the fraction of an epoch to offset from some
well-known time. For example, if the epoch is a day long, the prefix
“128.32.0.0/16” hashes to 5fbe73c..., which represents 8 hours,
58 minutes, and 33.58 seconds after the well-known time. If the
well-known time is midnight UTC, then each of 128.32.0.0/16’s
epochs will begin at 08:58:33.58 UTC each day.

To avoid the need for time synchronization, a router accepts
UPDATEs with an old epoch number for a fixed time after it first
receives an authentic UPDATE with the new epoch number. This
gives possibly better (or preferred) routes an opportunity to propa-
gate through the network. In addition, if the fixed time is chosen to



be sufficiently long (such as two hours), an attacker that does not
control all the routes to a prefix is unlikely to be able to prevent the
other advertisements from reaching other nodes for that long.

Both S-BGP and SPV require a timeout or epoch to prevent re-
play of old UPDATE messages. In general, since SPV is much more
efficient than S-BGP for ASPATH protector generation and verifi-
cation (as we evaluate in Section 5), SPV can operate with a shorter
epoch (or Timeout) than can S-BGP. As a result, SPV can more
readily defend against replay attacks. SPV also includes mecha-
nisms that allow for correct operation even when BGP speakers are
not time synchronized.

5 EVALUATION

We evaluate the security and efficiency of the SPV secure path vec-
tor routing protocol, and we contrast it with S-BGP. We first discuss
the security of SPV, then we analyze the performance benefits.

Unless otherwise noted, performance results are driven by data
from the Oregon route server [40] for the days of January 24–25,
2003, assuming connections to Level3 through AS 3356 and Cable
and Wireless through AS 3561. These ASes were chosen to repre-
sent a modestly multihomed customer; the same performance and
security levels should apply to any similarly connected customer.
The specific period chosen includes the substantial BGP UPDATE
traffic that resulted from the SQL Slammer worm. We chose that
time to best reflect the security and performance of the routing pro-
tocol under heavy load.

5.1 Security Evaluation

To evaluate the security of our approach, we first examine how SPV
prevents several attacks, such as falsely aggregating or deaggregat-
ing and falsely originating a route to a prefix. We then use statistical
analysis to determine the effectiveness of our ASPATH protector
and our truncation prevention schemes. Finally, we compare the
security of SPV to that provided by S-BGP.

5.1.1 SPV Security against Attacks

Security against Signature Forgery. For the two most serious
attacks that we want to protect, the attacker needs to alter one-time
signatures: ASPATH modification (in which an attacker alters the
ASNs in the ASPATH to cause a downstream BGP AS to choose a
route it would not have otherwise chosen) and truncation (in which
an attacker shortens the ASPATH to attract traffic).

In both cases the attacker needs to forge at least two one-time
signatures. Consider a malicious AS M receives the ASPATH
〈A,B,C,M〉. As we describe in Section 4.4, the first one-
time signature encodes H[e || 〈A,B〉], the second one encodes
H[e || 〈A,B,C〉], and the third one encodes H[e || 〈A,B,C,M〉].
By inspection, it is clear that if M wants to alter the ASPATH
to 〈A,B,F,M〉, this change would affect two one-signatures that
it would need to alter. Similarly, if M would attempt to truncate
the ASPATH and forward ASPATH 〈A,B,M,G〉 to AS G, it would
also need to alter two one-time signatures. One exception to this
two signature forgery requirement is that M can replace itself with
an arbitrary ASN and add itself at the end of the resulting path; for
example, it could advertise the ASPATH 〈A,B,C,H,M〉. However,
because no ASN is removed, we do not see this as more powerful
than a grayhole attack, for reasons we discussed in Section 2.

We now analytically compute the security against signature
forgery, and use these results to derive the parameters n (number
of private values per one-time signature) and m (number of private
values disclosed per one-time signature). Since the security of one-
time signatures diminishes if the same private key is used for multi-
ple signatures, we consider the case where the attacker learns r sig-
natures from the same private key. Given r signatures, the expected
number of private values that are disclosed is s = n · (1− (1 − m

n )r).

0 5 10 15 20 25 30
Number of Distinct ASPATHs

N
um

be
r 

of
 P

re
fix

es

PSfrag replacements

100

101

102

103

104

105

106

Figure 5: Number of distinct routes to each prefix.

With these parameters, the probability that an arbitrary message can
be signed given the s disclosed private values is

( s
m

)

/
(n

m

)

.
We aim for a forgery probability around p = 2−11 to forge one

digital signature. Since the attacker has to change two one-time sig-
natures, and the event that the attacker can forge the signature are
independent, the probability that an attacker can forge is at most
p2 = 2−22. This may appear like a high probability, as an attacker
could forge a signature after only 1/p2 = 222 tries. However, an
attacker cannot try that many different signatures. In the case of
truncation it would have to insert its own ASN as the last hop,
since the following AS will ensure that. In the case of ASPATH
modification, the attacker can try at most 216 different ASNs; how-
ever, a neighbor might validate ASNs, in which case the attacker
must choose from the 214 active ASNs. In addition, if the neigh-
bor knows (through prior configuration) which ASNs the attacker
may be connected through, it can ensure that the ASN preceding the
attacker is a neighbor of the attacker. Hence, the attacker’s message
space is so constrained that a 2−22 forgery probability may be ac-
ceptable. (If the size of an UPDATE message were not constrained
to 4096 bytes, we could achieve much better security.)

Figure 5 shows a histogram of the number of distinct ASPATHs
for each prefix received by our hypothetical AS connected to
Level3 and Cable and Wireless on January 24, 2003. Each dis-
tinct ASPATH along which a prefix is received during a single
epoch gives an attacker additional private and semi-private values.
In our analysis, we conservatively do not make a distinction be-
tween private and semi-private values. We found that our AS had
at most 15 routes to 99.9% of prefixes, so we chose parameters
that gave relatively high security at 15 routes: when n = 256 and
m = 6, p = 1.2792 × 2−11 for an attacker with 15 distinct routes.
The weighted average of p across all prefixes is 1.8069 × 2−19.
Unfortunately, because of limitations on the size of an UPDATE

message, we can only carry 14 single-ASN signatures; that is, we
can only authenticate 15 distinct ASNs. There are two ways to
cope with this limitation. The first is to authenticate only the first
15 distinct ASNs. The second is to observe that future single-ASN
signatures depend on previous ASNs, so keeping only the last 14
single-ASN signatures does not reduce security unless an attacker
is willing to insert 14 bogus ASNs into the ASPATH.

Aggregation. Our aggregation mechanism is secure against pol-
icy violation because the AS performing the aggregation must in-
clude paths up itself, and must possess the ci,e value for adding



itself to each ASPATH. If it has the ci,e values for each prefix, then
it could continue authenticating both routes.

Multiple Origin AS. An attacker can attempt to advertise for a
prefix with which it has no affiliation. In particular, the attacker will
not have a certificate for that prefix (Section 4.1), so no legitimate
SPV router will accept that advertisement.

5.1.2 Resilience to Multi-Path Truncation

We evaluated the postmodification scheme for resilience to multi-
path truncation, based on simulations on updates and routing tables
obtained from Oregon RouteViews [40] for the day of January 24,
2003. We consider two hypothetical ASes. The first hypothetical
AS is connected to Level3 and Cable and Wireless (as in the ear-
lier evaluation); the second to three randomly selected ASes (234
(Blackrose Society), 293 (Energy Sciences Network), and 8297
(Teleglobe America)).

For a given prefix, an AS receives UPDATEs with several
ASPATHs ρ1,ρ2, . . . ,ρi. When the AS wishes to shorten some ρF
by h hops, it needs µ`F− j − µ`F +h− j extra private values at each
position j from 1 to `F − h, where `i is the length of the path ρi.
At each of these positions, a different path ρi will contribute some
fraction of useful private values νi, j . For example, if j > `i, then
νi, j = 1 since all private values are released. When the j-hop prefix
of ρF and ρi differ, νi, j = (µ`i− j)/t, since the signatures will be
uncorrelated. Otherwise, suppose ρF and ρi are identical until hop
H ≥ j. Then the same private values were included in the single
ASN signature, and the same private values were discarded for the
first H − j hops, so νi, j = µ`i− j/µH− j. Given all the ASPATHs that
the attacker has, we compute the fraction of values it has at any hop
j as 1 − ∏

i
1 − νi, j , so the total probability of successful attack is

`F−h
∏
j=1

(1−∏
i

1− νi, j)
µ`F − j−µ`F +h− j . 12

When choosing µi, we know that µ0 = m and µ∞ = 0. The prob-
lem is choosing the rate at which µ declines. When µi = 0, then if
an attacker has a route i hops shorter than the one being truncated,
the attacker has all of the private values it needs. As a result, having
µi decline slowly provides better security against an attacker with
a much shorter route. However, because µi − µi+1 is smaller, an
attacker needs to produce fewer private values to truncate a route,
so an attacker with many distinct routes is more likely to succeed.
Based on simulations with a small number of schemes, we chose
µ0 = 6,µ1 = µ2 = 5,µ3 = 4,µ4 = µ5 = 3,µ6 = 2,µ7 = µ8 = 1,µ9 = 0.

For the first AS (connected to Level3 and Cable and Wireless),
the attacker can only truncate an arbitrary ASPATH by one hop
with probability 1.5599 × 10−3. When a path of interest is less
than 3 hops longer than the shortest path, the probability that the
attacker can truncate a single hop is at most 1.3273× 10−7. When
the shortest path is less than 6 hops shorter, the attacker can trun-
cate with probability at most 0.4796%. If the shortest path is less
than 10 hops shorter, the attacker truncates with probability at most
3.5900%, and the attacker always succeeds if the shortest path is
more than 10 hops shorter.

In the other AS (connected to three random ASes), the attacker
is also generally unable to truncate arbitrary ASPATHs. For exam-
ple, when the shortest path is less than 6 hops shorter, the proba-
bility of successful truncation is at most 8.1894 × 10−5, and when
the shortest path is less than 8 hops shorter, the probability of suc-
cessful truncation is at most 0.6978%. Between 8 and 10 hops
shorter, the attacker succeeds at most 8.0707% of the time. Again,

12This analysis conservatively ignores correlations that reduce the attacker’s ability to
attack, which occur when two ASPATHs are correlated, but are not correlated to the
route being attacked.

the attacker always succeeds if the shortest path is more than 10
hops shorter.

In general, ASPATHs with 6 extra unique ASNs are unlikely
to be preferred routes. Furthermore, an attacker cannot generally
select an arbitrary ASPATH to truncate, since it has a limited prob-
ability of success, and when it is able to succeed, such success is
not repeatable in the next epoch. Finally, these evaluations show
the probability of successfully truncating the last ASN before the
attacker. Intuitively, these probabilities would be squared for trun-
cating two ASNs, since twice as many extra private values would
need to be included at each hop.

5.1.3 Comparison to S-BGP

S-BGP is designed to provide security to a prefix only when the
originating AS deploys S-BGP, and only to routers within a group
of contiguous deployment that reaches the origin AS. SPV, on the
other hand, attempts to provide security to any prefix when the
originating AS deploys SPV. In this section, we explore the se-
curity achieved by SPV and S-BGP, and suggest how asymmetric
cryptographic primitives could provide better properties than either,
though at substantial cost.

When the origin AS doesn’t deploy a secure routing protocol,
S-BGP speakers can still sign attestations, ensuring that an S-BGP
AS cannot be falsely added to the ASPATH. SPV does not achieve
any properties in this case.

When an origin AS doesn’t deploy secure routing, but all of its
peers do, both S-BGP and SPV can, with the permission of the ori-
gin AS, secure the origin’s prefix. In SPV, a single entity computes
the private keys, and signs each peer’s ASN into every UPDATE

that would be protected by that private key. A peer is then un-
able to spoof being another peer. In S-BGP, threshold cryptogra-
phy could be used, wherein peers together generate a key for the
non-deploying AS, and use a separate protocol to sign UPDATEs
for each other.

Within a contiguous group of deploying ASes, S-BGP ensures
that each AS on the ASPATH has been transited by the UPDATE,
and that ASNs cannot be dropped from the ASPATH. In SPV, an
attacker controlling two ASes can insert bogus ASNs between its
two ASNs. In addition, as an AS receives several UPDATEs from a
single prefix within the same epoch, it can with increasing proba-
bility truncate the longer paths (but generally not the shorter ones)
and insert itself into the path. Section 5.1.2 analyzes the effective-
ness of multi-path truncation prevention.

An UPDATE that has traversed a non-deploying AS loses some
amount of security under both schemes. In both S-BGP and SPV,
the contiguous deploying prefix can be verified by any deploying
router. In S-BGP, any speaker can remove any AS that follows a
non-SBGP AS, but any subsequent S-BGP ASes must also be re-
moved. In addition, any speaker can add a non-deploying AS after
any other non-deploying AS, but any subsequent S-BGP ASes must
be removed. In SPV, only the first SPV AS can add or remove an
AS following a non-SPV AS; subsequent ASes cannot modify the
ASPATH, except to the extent that an attacker can receive sufficient
UPDATEs to compromise the security of the truncation prevention
scheme.

To provide even stronger incremental deployment properties
using asymmetric cryptography, we modify S-BGP such that each
time a speaker sends an UPDATE for its own prefix, it also gener-
ates a public-private key pair for that UPDATE. Figure 6 illustrates
this new protocol. For example, when AS A originates an UPDATE

for its own prefix to AS B, it generates a public-private key pair.
We use k+

1 to denote the public key and k−1 to denote the private
key in this pair. It signs the UPDATE as in S-BGP, but also includes
the public value k+

1 in the signed fields. It also sends the private
key k−1 to the next router; in this case, AS B. Each AS propagating



A → B : 〈{ASPATH A,B; k+
1 }K−

A
, k−1 〉

B →C : 〈{ASPATH A,B; k+
1 }K−

A
,

{{ASPATH A,B,C; k+
2 }K−

B
}k−1

, k−2 〉

C → X : 〈{ASPATH A,B; k+
1 }K−

A
,

{{ASPATH A,B,C; k+
2 }K−

B
}k−1

,

{{ASPATH A,B,C,X ; k+
3 }K−

C
}k−2

, k−3 〉

X → D : 〈{ASPATH A,B; k+
1 }K−

A
,

{{ASPATH A,B,C; k+
2 }K−

B
}k−1

,

{{ASPATH A,B,C,X ; k+
3 }K−

C
}k−2

, k−3 〉

D → M : 〈{ASPATH A,B; k+
1 }K−

A
,

{{ASPATH A,B,C; k+
2 }K−

B
}k−1

,

{{ASPATH A,B,C,X ; k+
3 }K−

C
}k−2

,

{{ASPATH A,B,C,X ,D,M; k+
4 }K−

D
}k−3

, k−4 〉

Figure 6: An example run of the stronger asymmetric
protocol designed for incremental deployment described in
Section 5.1.3. ASes A,B,C,D are legitimate, deploying ASes,
AS X is a non-deploying AS, and AS M is a malicious AS. If
AS M wants to remove AS D from the ASPATH, it needs k−3
to sign the required certificate, in which case a non-deploying
path exists from X to M.

that prefix generates a new public-private key pair, signs the entire
UPDATE using both its private key and the private key it got from
the previous AS, and passes only the new private key to the next
AS (not the private key it got from the previous AS). For example,
when B propagates the UPDATE, it generates k+

2 , k−2 , and signs the
UPDATE and k+

2 using both K−
B and k−1 . This construct prevents an

attacker from removing an ASN once the UPDATE has traversed a
legitimate deploying router, unless the attacker receives the same
UPDATE over a different path that does not contain a legitimate
deploying router.

5.2 Performance Evaluation

In this section, we discuss the performance of SPV and contrast
it with S-BGP. S-BGP can be used with any digital signature
algorithm, we chose to compare with RSA 1024-bit modulus be-
cause RSA is the fastest algorithm for sequentially generating and
verifying a signature. RSA verification is by far the fastest for all
digital signature schemes, it is over 10 times faster than DSA for
example. Since a signature is generated once and verified several
times at each hop, RSA has a big advantage over other signature
algorithms. While S-BGP can also cache verified signatures, the
same trick can be applied to SPV and thus lower SPV overhead as
well.

The security of 1024-bit RSA signatures requires on the order
of 272 operations to break [33], so on a first glance, the compari-
son appears unjust— why not compare with a version of RSA that
also has a lower security margin? The reason is because RSA with a
lower security margin requires a one-time effort to break, for exam-
ple a 512-bit RSA modulus requires approximately 250 operations
to break [13]. In contrast, as long as the attacker cannot invert the
hash function (which requires on the order of 280 operations), an
attacker can spoof an SPV update only with very low probability,
and it cannot spoof that update during a different epoch without
doing more computation.

Computational Overhead Figure 7 shows the cumulative distri-
bution function of CPU usage required in each second in both our

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Fraction of CPU used

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

S−BGP Computation
SPV Computation

Figure 7: CPU Utilization

5 10 15 20 25 30
0

50

100

150

200

250

300

Day in January 2003

T
ot

al
 U

pd
at

e 
S

iz
e 

at
 r

ou
te

vi
ew

s.
or

g 
(M

B
)

Figure 8: BGP UPDATE traffic during an attack. Late January
24th, 2003, the “SQL Slammer” worm was unleashed. Most of
the damage was seen on January 25th.

protocol SPV and S-BGP. We built our hash function based on the
Rijndael block cipher [14] with a 128-bit key and a 128-bit block
size in the Matyas, Meyer, and Oseas construction [36, 5]. We
evaluate S-BGP based on a 1024-bit RSA operation, as we discuss
above. In evaluating both protocols we assume that the certificate
signatures are cached. The CPU usage is based on our timings of a
Pentium III running at 1GHz. In both SPV and S-BGP, CPU usage
for verifying two streams is generally negligible; however, more
connected parts of the network, the overhead of verification may
be much higher. In such areas of the network, SPV may be more
suitable because it is a factor of 22 faster.

The higher performance of SPV when implemented in hardware
makes it more suitable for deployment in the core of the Internet.
When an AS connects to many peers, the UPDATEs received over
one second often take BGP over 100 seconds to process in software.
When the Internet experiences attacks such as worms, the number
of UPDATEs may increase significantly. Figure 8 shows the effects
of the “SQL Slammer” worm on BGP routing traffic. Furthermore,
as the Internet continues to grow, the number of prefixes will rise,
thereby increasing the load caused by UPDATEs. Finally, SPV and
S-BGP both support UPDATE expiration to limit the impact of re-
play attacks. To support this, the network will send a larger num-
ber of UPDATE packets. Processing this UPDATE load with S-BGP
using general purpose CPUs is impractical. Because SPV is more
efficient, it can authenticate routing for more sparsely connected
networks. In more densely connected networks, hardware acceler-
ation is required for both SPV and S-BGP, and a SPV accelerator
will be much cheaper and faster than an S-BGP accelerator.



Network Overhead We evaluated the overhead of SPV relative
to S-BGP. On the two days of our simulation, SPV incurred a factor
of 2.731 more overhead than S-BGP.

6 RELATED WORK

In this section, we review related work that was not previously de-
scribed in Section 3. A number of secure distance vector [1, 30, 35,
53] and link state protocols [9, 20, 30, 45, 59] have been proposed,
but we will focus our discussion on secure path vector routing pro-
tocols, since BGP is a path vector protocol.

In the wake of recent Internet attacks, many researchers focus
on securing Internet protocols. As BGP is one of the fundamental
Internet protocols, it is clear that securing BGP is a priority. The
IETF has chartered the RPSEC working group to establish the secu-
rity requirements for routing protocols [51]. In response to the for-
mation of this working group, a number of researchers have drafted
documents that outline BGP security requirements and BGP se-
curity vulnerabilities: Barbir, Murphy, and Yang describe attacks
against BGP [2], as do Nordstrom and Dovrolis [43], and Convery
et al. present a tree of possible attacks against BGP [11].

Pei, Zhang, and Massey present a framework for building re-
silient Internet routing protocols [44]. They present an analysis of
the tradeoffs of various techniques.

In our previous work, we developed several new cryptographic
mechanisms for securing ad hoc network routing protocols [22, 23],
but these techniques were not applicable to BGP.

Although anecdotal evidence suggests that BGP attacks occur
on a daily basis, so far misconfigurations account for the majority
of route disruptions. Mahajan et al. find that each day, 200-1200
prefixes (0.2-1.0% of the BGP table size) are erroneous due to a
misconfiguration each day, and that almost 3 in 4 of all new prefix
advertisements are results of misconfiguration [34]. Secure routing
protocols should also filter out updates due to misconfigurations,
which will provide significant benefits.

7 CONCLUSIONS

Using purely symmetric cryptographic primitives to secure BGP
is appealing for many reasons: software implementations enjoy at
least a 20-fold speedup over digital signatures, and a hardware im-
plementation would provide an additional 2.4-fold speedup.

In this paper we develop the SPV protocol, a protocol leverag-
ing symmetric-key cryptography for securing against the truncation
and modification attacks. SPV is configurable to allow tradeoffs
between security and CPU usage.

SPV introduces three novel concepts to the design space of se-
cure routing protocols: first, it includes private keys within the
UPDATEs themselves; second, it does not authenticate the AS that
inserts itself onto the path, but relies instead on hop-by-hop authen-
tication to check this property; and finally, it provides security not
by requiring overwhelming computational complexity but instead
by limiting the number of options an attacker has for modifying
critical routing information.

SPV is much faster than S-BGP, so SPV would perform better in
periods of high BGP traffic. SPV can also use a shorter epoch time
(or timeout) than can S-BGP, because it can more quickly authen-
ticate new routes. In addition, when replay attacks are considered
a threat, SPV allows for shorter timeouts than does S-BGP, and
therefore can more effectively secure against replay attacks. SPV
is an attractive alternative in the design space of secure interdomain
routing protocols.

8 ACKNOWLEDGMENTS

We gratefully acknowledge support, feedback, and fruitful discus-
sions with Markus Adhiwiyogo, Prachi Gupta, Jorjeta Jetcheva,
Steve Kent, Dave Maltz, David McGrew, Sandra Murphy,
Srinivasan Seshan, Damon Smith, Dawn Song, Ion Stoica,
Lakshminarayanan Subramanian, Gene Tsudik, Nick Weaver,
Brian Weis, S. Felix Wu, Jibin Zhan, and Hui Zhang. We would
especially like to thank Jennifer Rexford for her excellent sugges-
tions on how to improve the paper, and the anonymous reviewers
for their insightful comments.

REFERENCES

[1] F. Baker and R. Atkinson. RIP-2 MD5 Authentication. Internet Re-
quest for Comment RFC 2082, Internet Engineering Task Force, Jan-
uary 1997.

[2] A. Barbir, S. Murphy, and Y. Yang. Generic Threats to Routing Proto-
cols. Internet-Draft draft-ietf-rpsec-routing-threats-06, April 2004.

[3] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A Concrete Security
Treatment of Symmetric Encryption: Analysis of the DES Modes of
Operation. In Proceedings of the 38th Symposium on Foundations of
Computer Science (FOCS), 1997.

[4] S. Bellovin. Security Problems in the TCP/IP Protocol Suite. Com-
puter Communication Review, 19(2):32–48, April 1989.

[5] John Black, Phillip Rogaway, and Tom Shrimpton. Black-Box Anal-
ysis of the Block-Cipher-Based Hash-Functions Constructions from
PGV. In Advances in Cryptology (CRYPTO 2002), 2002.

[6] D. Boneh and M. Franklin. Identity-Based Encryption from the Weil
Pairing. In Advances in Cryptology — CRYPTO ’2001, pages 213–
229, 2001.

[7] K. A. Bradley, S. Cheung, N. Puketza, B. Mukherjee, and R. A. Ols-
son. Detecting Disruptive Routers: A Distributed Network Monitor-
ing Approach. In Proceedings of the IEEE Symposium on Research in
Security and Privacy, pages 115–124, May 1998.

[8] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A Digital Fountain
Approach to Reliable Distribution of Bulk Data. In Proceedings of
ACM SIGCOMM ’98, pages 56–67, 1998.

[9] S. Cheung. An Efficient Message Authentication Scheme for Link
State Routing. In 13th Annual Computer Security Applications Con-
ference, pages 90–98, 1997.

[10] S. Cheung and K. Levitt. Protecting Routing Infrastructures from De-
nial of Service Using Cooperative Intrusion Detection. In The 1997
New Security Paradigms Workshop, pages 94–106, September 1998.

[11] S. Convery, D. Cook, and M. Franz. An Attack Tree for the Bor-
der Gateway Protocol. Internet-Draft draft-ietf-rpsec-bgpattack-00,
February 2004.

[12] S. Crosby and D. Wallach. Denial of Service via Algorithmic Com-
plexity Attacks. In Proceedings of the 11th USENIX Security Sympo-
sium, pages 29–44, August 2003.

[13] Security of E-commerce threatened by 512-bit number factorization.
http://www.cwi.nl/˜kik/persb-UK.html, August 1999. CWI
press release.

[14] J. Daemen and V. Rijmen. AES Proposal: Rijndael, March 1999.
[15] A. Daly and W. Marnane. Efficient architectures for implementing

montgomery modular multiplication and RSA modular exponentia-
tion on reconfigurable logic. In Tenth ACM International Symposium
on Field-Programmable Gate Arrays, pages 40–49, February 2002.

[16] S. Even, O. Goldreich, and S. Micali. On-line/off-line digital signa-
tures. In Advances in Cryptology — CRYPTO ’89, pages 263–277,
1990.

[17] N. Feamster and H. Balakrishnan. Verifying the Correctness of Wide-
Area Internet Routing. Technical Report MIT-LCS-TR-948, MIT,
May 2004.

[18] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Ran-
dom Functions. Journal of the ACM, 33(4):792–807, October 1986.

[19] G. Goodell, W. Aiello, T. Griffin, J. Ioannidis, P. McDaniel, and
A. Rubin. Working around BGP: An Incremental Approach to Im-
proving Security and Accuracy in Interdomain Routing. In Proceed-
ings of NDSS 2003, February 2003.

[20] R. Hauser, A. Przygienda, and G. Tsudik. Reducing the Cost of Secu-
rity in Link State Routing. In Proceedings of NDSS ’97, pages 93–99,
February 1997.



[21] A. Heffernan. Protection of BGP Sessions via the TCP MD5 Signature
Option. RFC 2385, August 1998.

[22] Y.-C. Hu, D. B. Johnson, and A. Perrig. SEAD: Secure Efficient Dis-
tance Vector Routing for Mobile Wireless Ad Hoc Networks. Ad Hoc
Networks, 1(1):175–192, 2003.

[23] Y.-C. Hu, A. Perrig, and D. B. Johnson. Efficient Security Mecha-
nisms for Routing Protocols. In Proceedings of NDSS 2003, February
2003.

[24] Y.-C. Hu, A. Perrig, and D. B. Johnson. Packet Leashes: A Defense
against Wormhole Attacks in Wireless Ad Hoc Networks. In Proceed-
ings of the Twenty-Second Annual Joint Conference of the IEEE Com-
puter and Communications Societies (INFOCOM 2003), April 2003.

[25] S. Kent and R. Atkinson. IP Encapsulating Security Payload (ESP).
Internet Request for Comment RFC 2406, Internet Engineering Task
Force, November 1998.

[26] S. Kent and R. Atkinson. Security Architecture for the Internet Pro-
tocol. Internet Request for Comment RFC 2401, Internet Engineering
Task Force, November 1998.

[27] S. Kent, C. Lynn, J. Mikkelson, and K. Seo. Secure Border Gateway
Protocol (S-BGP) — Real World Performance and Deployment Is-
sues. In Proceedings of NDSS 2000, pages 103–116, February 2000.

[28] S. Kent, C. Lynn, and K. Seo. Secure Border Gateway Proto-
col (S-BGP). IEEE Journal on Selected Areas in Communications,
18(4):582–592, April 2000.

[29] C. Kruegel, D. Mutz, W. Robertson, and F. Valeur. Topology-based
Detection of Anomalous BGP Messages. In Proceedings of the Sym-
posium on Recent Advances in Intrusion Detection (RAID), September
2003.

[30] B. Kumar. Integration of Security in Network Routing Protocols.
SIGSAC Review, 11(2):18–25, 1993.

[31] B. Kumar and J. Crowcroft. Integrating security in inter domain rout-
ing protocols. Computer Communication Review, 23(5):36–51, Octo-
ber 1993. Dept. of Comput. Sci., Univ. Coll. London, UK.

[32] L. Lamport. Constructing Digital Signatures from a One-Way Func-
tion. Technical Report SRI-CSL-98, SRI International Computer Sci-
ence Laboratory, October 1979.

[33] A. Lenstra and E. Verheul. Selecting Cryptographic Key Sizes. Jour-
nal of Cryptology, 14(4):255–293, 2001.

[34] R. Mahajan, D. Wetherall, and T. Anderson. Understanding BGP Mis-
configuration. In ACM Sigcomm 2002, August 2002.

[35] G. Malkin. RIP Version 2. Internet Request for Comment RFC 2453,
Internet Engineering Task Force, November 1998.

[36] S. Matyas, C. Meyer, and J. Oseas. Generating Strong One-Way Func-
tions with Cryptographic Algorithm. IBM Technical Disclosure Bul-
letin, 27:5658–5659, 1985.

[37] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook
of Applied Cryptography. CRC Press Series on Discrete Mathematics
and its Applications. CRC Press, 1997.

[38] R. Merkle. Protocols for Public Key Cryptosystems. In 1980 IEEE
Symposium on Security and Privacy, 1980.

[39] R. Merkle. A Digital Signature Based on a Conventional Encryption
Function. In Advances in Cryptology — CRYPTO ’87, pages 369–378,
1988.

[40] D. Meyer. Route Views Project Page.
http://www.routeviews.org.

[41] S. A. Misel. Wow, AS7007! NANOG mail archives, http://www.
merit. edu/mail.archives/nanog/ 1997-04/msg00340.html,
1997.

[42] S. Murphy. BGP Security Protections. Internet-Draft draft-murphy-
bgp-protect-01, October 2002.

[43] O. Nordström and C. Dovrolis. Beware of BGP Attacks. ACM Com-
puter Communications Review, 34(2):1–8, April 2004.

[44] D. Pei, D. Massey, and L. Zhang. A Framework for Resilient Internet
Routing Protocols. IEEE Network, 18(2):5–12, April 2004.

[45] R. Perlman. Interconnections: Bridges and Routers. Addison-Wesley,
1992.

[46] Y. Rekhter and T. Li. A Border Gateway Protocol 4 (BGP-4).
RFC 1771, March 1995.

[47] L. Reyzin and N. Reyzin. Better than Biba: Short One-Time Signa-
tures with Fast Signing and Verifying. In Information Security and
Privacy — 7th Australasian Conference (ACSIP 2002), July 2002.

[48] R. L. Rivest. The MD5 Message-Digest Algorithm. RFC 1321, April
1992.

[49] R. L. Rivest, A. Shamir, and L. M. Adleman. A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems. Communications
of the ACM, 21(2):120–126, 1978.

[50] P. Rohatgi. A Compact and Fast Hybrid Signature Scheme for Mul-
ticast Packet Authentication. In Proceedings of ACM CCS ’99, pages
93–100. ACM Press, November 1999.

[51] Routing Protocol Security Requirements (rpsec). IETF
working group, http://www.ietf.org/html.charters/
rpsec-charter.html, 2004.

[52] B. R. Smith and J.J. Garcia-Luna-Aceves. Securing the Border Gate-
way Routing Protocol. In Global Internet’96, pages 81–85, November
1996.

[53] B. R. Smith, S. Murthy, and J.J. Garcia-Luna-Aceves. Securing Dis-
tance Vector Routing Protocols. In Proceedings of NDSS ’97, pages
85–92, February 1997.

[54] J. W. Stewart. BGP4: inter-domain routing in the Internet. Addison-
Wesley, 1999.

[55] L. Subramanian, V. Roth, I. Stoica, S. Shenker, and R. Katz. Listen
and Whisper: Security Mechanisms for BGP. In Proceedings of First
Symposium on Networked Systems Design and Implementation (NSDI
2004), March 2004.

[56] N. Weaver. The SFRA: A Fixed Frequency FPGA Architecture. Ph.D.
thesis, University of California, Berkeley, 2003.

[57] R. White. Deployment Considerations for Secure Origin BGP
(soBGP), draft-white-sobgp-bgp-deployment-01.txt. Draft,
Internet Engineering Task Force, June 2003. Available at
http://www.watersprings.org/pub/id/draft-white-sobgp-
bgp-deployment-01.txt.

[58] A. Yaar, A. Perrig, and D. Song. SIFF: A Stateless Internet Flow Fil-
ter to Mitigate DDoS Flooding Attacks. In Proceedings of the IEEE
Symposium on Security and Privacy, May 2004.

[59] K. Zhang. Efficient Protocols for Signing Routing Messages. In Pro-
ceedings of NDSS ’98, March 1998.


