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Abstract

Key management has two important aspects:key distribution, which describes how to disseminate
secret information to the principals so that secure communications can be initiated, andkey revocation,
which describes how to remove secrets that may have been compromised. Key management in sensor
networks face constraints of large scale, lack ofa priori information about deployment topology, and
limitations of sensor node hardware. While key distribution has been studied extensively in recent
work [1, 2, 3, 4, 5], the problem of key and node revocation in sensor networks has received relatively
little attention. Yet revocation protocols that function correctly in the presence of active adversaries
pretending to be legitimate protocol participants via compromised sensor nodes are essential. In their
absence, an adversary could take control of the sensor network’s operation by using compromised
nodes which retain their network connectivity for extendedperiods of time. In this paper, we present
an overview of key-distribution methods in sensor networksand their salient features to provide context
for understanding key and node revocation. Then we define basic properties that distributed sensor-
node revocation protocols must satisfy, and present a protocol for distributed node revocation that
satisfies these properties under general assumptions and a standard attacker model.
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1 Introduction

As with all networks comprising geographically distributed nodes, communication security in sensor net-

works requires effective management of cryptographic keys. In contrast to traditional networks, key man-

agement in sensor networks is particularly complex due to the large numbers of sensor nodes, the lack

of a priori information about the deployment topology of the network, the limited hardware capabilities

of the nodes, and the constant exposure of nodes to capture byan active adversary who could obtain key

material. Two important aspects of key management arekey distributionandkey revocation. Key dis-

tribution refers to the task of distributing secret keys between sensor nodes to provide communication

secrecy and authenticity. Key revocation refers to the taskof securely removing keys that are known to be

compromised. If the cryptographic primitives themselves do not expose the secret keys – a reasonable and

common assumption – then secret keys can only be exposed by compromising sensor nodes. The problem

of sensor node revocation can thus be reduced to that of key revocation; i.e., by revoking all of the keys

belonging to a known compromised sensor node, we can effectively remove the node’s presence in the

network.

In contrast to key distribution, which has been studied extensively in recent work [1, 2, 3, 4, 5], key

revocation received relatively little attention; i.e., with the exception of the centralized revocation scheme

proposed by Eschenauer and Gligor [3] and the distributed revocation scheme proposed by Chanet al.[1],

no other schemes have been reported to date. Yet, key revocation is as important as key distribution

in sensor network key management. A sensor network is generally designed for deployment in open,

unmonitored environments exposing nodes to physical attacks. This requires that, in the event of node

capture by an adversary, the sensor network have the abilityto revoke the cryptographic keys of captured

nodes. Otherwise, the entire network’s operation may be compromised by an adversary that surreptitiously

controls both the operation and communication of these nodes.

In this paper, we first review in brief several known methods for key distribution in sensor networks.

This forms the background for our main discussion of the problem of distributed key revocation. Dis-

tributed node revocation is useful due to its ability to eliminate compromised nodes without requiring a

central authority that might become an attractive attack target. Thus, distributed revocation improves re-
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action time after node capture and overall system resilience. However, distributed revocation protocols

are more complex than centralized ones due to the fact that any of the nodes executing the protocol may

be malicious and attempt to block or subvert the protocol. Thus, even if a distributed revocation protocol

is correctly designed, specified, and formally verified in the absence of an active adversary, assurance of

correct behavior would still be lacking. For example, captured nodes could circumvent or block protocol

operation, or collude among themselves to execute the revocation protocol correctly against legitimate

nodes to disconnect them from the network. So far, research in sensor net key management has been miss-

ing the following tools: (1) a rigorous specification of distributed-revocation properties that must hold in a

sensor network even in the presence of an active adversary, (2) a precise definition of the adversary model,

and (3) a distributed key revocation protocol that satisfiesthose properties in a general sensor-network

setting.

The main contributions of this paper are a rigorous definition of distributed revocation properties

for sensor networks, a general active-adversary model, anda protocol for distributed key revocation that

satisfies the specified properties under the defined adversary model. However, distributed key revocation

cannot be defined independently of the specific key distribution scheme used in a particular sensor network.

This is the case because some key distribution methods are more suitable for specific key revocation

methods (e.g., centralized or distributed), while others may prevent key revocation altogether. A secondary

contribution of this paper is a succinct overview of key pre-distribution methods and their salient features

that affect key revocation and overall sensor-network operation and resiliency.

2 Overview of Key Distribution Schemes for Sensor Networks

1 The problem of key distribution in sensor networks is as follows. We wish to preload sensor nodes

with cryptographic information such that, after deployment, the nodes are able to perform secure com-

munications with each other and initiate a secure network. The scheme must be able to work without

prior knowledge of the network deployment topology and alsoallow new nodes to be added to the net-

work after deployment. A further constraint is that the protocol must be implementable on the nodes’

1This section is adapted from an earlier article [6]
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limited hardware and thus it must have low computational andstorage requirements; thus, in this article

we only consider schemes that do not use asymmetric cryptography. We review several classes of known

symmetric key distribution protocols suitable for sensor networks in this section.

2.1 Fully Pairwise-shared Keys

In this approach, every node in the sensor network shares a unique symmetric key with every other node

in the network. Hence, in a network ofn nodes, there are a total of
(

n

2

)

unique keys. Every node stores

n − 1 keys, one for each of the other nodes in the network.

This class of protocols achieves similar security properties to the class of asymmetric key-establishment

schemes: nodes captured do not reveal information in the rest of the network, and central revocation is

simple (just broadcast the revoked node’s set of keys). However, these protocols require a large amount of

memory storage space for all the keys, most of which are not actually used since nodes only communicate

with their immediate neighbors and do not need to establish keys with every other node in the network.

2.2 Use of a Trusted Base Station as a KDC

This method of key distribution uses a secure base station asa trusted third party (or Key Distribution

Center, KDC) to provide link keys to sensor nodes, e.g., similar to Kerberos [7, 8]. The sensor nodes

authenticate themselves to the base station, after which the base station generates a link key and sends it

securely to both parties.

An example of a base-station-mediated protocol is SPINS, which includes a protocol where two nodes

A andB can establish a session keySKAB by communicating with the base station [9]. The properties

of this method of key establishment are that each node only requires preloaded storage of one single key,

nodes captured do not reveal information in the rest of the network, and centralized revocation is simple

via authenticated unicasts from the trusted base station. The main drawback of this scheme is that the

trusted base station represents a single point of compromise for security information, and may also induce

a focused communication load centered on the base station which may lead to early battery exhaustion
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for the nodes closest to the base station. Another concern isthat certain networks do not have a suitable

highly functional, tamper-proof device that can be used as asecure KDC.

2.3 λ-securen × n Key Establishment Schemes

Blom [10] and Blundoet al.[11] addressed the problem of key distribution and key establishment between

all pairs ofn principals. While these schemes were originally intended for group keying in traditional

networks, and not for sensor networks, we include them here because of their relevance to the development

of subsequent key distribution schemes for sensor networks. Both the Blom and the Blundoet al.schemes

have an important resiliency property, called the theλ-secure property; i.e., the coalition of no more than

λ compromised sensor nodes reveals nothing about the pairwise key between any two non-compromised

nodes.

The main advantage of this class of schemes are that they allow a parameterizable trade-off between

security and memory overhead. Whereas the full pairwise scheme involves the storage ofO(n) keys at

each node and isn-secure, this class of schemes allows the storage ofO(λ) keys in return for aλ-secure

property: it is perfectly resilient to node compromise until exactlyλ + 1 nodes have been compromised,

at which point the entire network’s communications are compromised.

2.4 The Basic Random Key Predistribution Scheme

Eschenauer and Gligor proposed the basic random key predistribution scheme [3]. In this scheme, letm

denote the number of distinct cryptographic keys that can bestored on the key ring of a sensor node. The

basic scheme works as follows. Before sensor nodes are deployed, aninitialization phaseis performed.

In the initialization phase, the basic scheme picks a randompool (set) of keysQ out of the total possible

key space. For each node,m keys are randomly selected from the key poolQ and stored into the node’s

memory. This set ofm keys is called the node’skey ring. The number of keys in the key pool,|Q|, is

chosen such that two random subsets of sizem in Q will share at least one key with some probabilityp.

After deployment, neighboring sensor nodes then perform a challenge-response key discovery to find out if

they happen to share keys with each other; if they do, then they establish a secure link. If the probabilityp
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were chosen correctly for the network’s neighbor density (see the paper for details of how this calculation

is made), then the resultant graph of secure links will be connected with some high probability. The

remaining links in the graph are then filled in by routing key-establishment messages along this connected

network of initial secure links.

In the basic random key scheme, all nodes use the same key poolQ. This implies that the security of

the network is gradually eroded as keys fromQ are compromised by an adversary that captures more and

more nodes. In this scheme, the number of exposed keys is roughly linear to the number of nodes com-

promised. This characteristic of the basic scheme motivated development of key predistribution schemes

that have better resiliency to node capture. The basic scheme was extended by theq-composite scheme

Chanet al. [1], and generalized by the more advanced probabilistic schemes discussed in Section 2.6.

In the q-composite keys scheme, instead of designing for a given probability p of sharing a single

key, the parameters are altered such that any two nodes have agiven probabilityp of sharing at least

q different keys from the key pool. Allq keys are used in the generation of the key which encrypts

communications between sensor nodes, hence, in order to eavesdrop on the secured link, the adversary

now has to compromise allq keys instead of just one. Asq increases, the likelihood of the adversary

having compromised all the keys necessary decreases geometrically. However, increasing the probability

of overlap in this fashion naturally involves reducing the size of the key poolQ. The smaller key pool

size thus makes the scheme more vulnerable to an adversary which is capable of compromising larger

numbers of sensor nodes. This trade-off improves the initial resilience of the scheme toward low levels of

node compromise, for a subsequent weakness in security oncea larger number of sensor nodes have been

compromised.

In general, random key predistribution presents a desirable trade-off between the insecurity of using

a single network-wide key and the impractical high memory overhead of using unique pairwise keys. Its

main advantage is that it provides much lower memory overhead than the full pairwise keys scheme while

being more resilient to node compromise than the single-network-wide-key scheme. Furthermore, it is

fully distributed and does not require a trusted base station.

The main disadvantages of the approach are the probabilistic nature of the scheme, which makes it
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difficult to provide the guarantee of the initial graph of secure links being connected under non-uniform

conditions or sparse deployments. Furthermore, since keyscan be shared between a large number of nodes,

this class of schemes does not provide very high resilience against node compromise and subsequent

exposure of node keys.

2.5 Random Pairwise Keys Scheme

The Random Pairwise Keys scheme is a scheme proposed by Chanet al.which is a hybrid of the random

key predistribution scheme and the full pairwise keys scheme [1]. Recall that in the analysis for random

key predistribution, it was deduced that as long as any two nodes can form a secure link with at least

probabilityp, then the entire network will be connected with secure linkswith high probability. Based on

this observation, Chanet al.note that it is not necessary to perform full pairwise key distribution in order

to achieve a network where any two nodes can find a secure pathway to each other. Instead of preloading

n − 1 unique pairwise keys in each node, the Random Pairwise Keys Scheme preloadsm << n unique

pairwise keys from each node. Them keys of a key ring are a small, random subset of then − 1 possible

unique keys that this node could share with the othern nodes in the network. By the same reasoning

as the random key predistribution scheme, as long as thesem keys provide some sufficient probabilityp

of enabling any two neighboring nodes to be able to establisha secure link, the resultant graph of initial

secure links will have a high probability of being connected. The remaining links are then established

using this initial graph exactly as in the random key predistribution scheme.

In their paper, Chanet al.present a preliminary initial distributed node revocationscheme that makes

use of the fact that possessing unique pairwise keys allows nodes to perform node to node identity authen-

tication. In their scheme, each of them nodes which share a unique pairwise key with the target node (i.e.

the node’sparticipants) carries a preloadedvotewhich it can use to denote a message that the target is

compromised. Thesem votes form a Merkle hash tree [12] withm leaves. To vote against the target node,

a node performs a network-wide broadcast of its vote (i.e., its leaf in the Merkle hash tree) along with the

log m internal hash values that will allow the other participantsof the target to verify that this leaf value is

part of the Merkle hash tree. Once at leastt participants of a given target have voted, and the votes have
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been verified by the otherm participants using the Merkle hash tree, allm nodes will erase any pairwise

keys shared with the target, thus revoking it from the network.

The Random Pairwise Keys scheme inherits both strengths andweaknesses from the full pairwise keys

scheme (see Section 2.1) and the random key distribution scheme (see Section 2.4). Under the random

pairwise keys scheme, nodes captured do not reveal information in the rest of the network, and central

revocation can be accomplished by just unicasting to each ofthe nodes that share keys with the revoked

node. It also involves a much lower memory overhead than the full pairwise keys scheme. Unfortunately,

like the random key predistribution schemes, it is probabilistic and cannot be guaranteed to work in non-

uniform or sparse deployments.

2.6 Multi-Space Key Schemes

This class of schemes is a hybrid between random key predistribution and theλ-securen × n key estab-

lishment schemes. These schemes were first proposed by Du et al. [2] and by Liu and Ning [4].

Recall that in random key predistribution, a key pool is firstselected from the universe of possible

keys. Each sensor node is then given a set of keys from the key pool such that any two nodes possess

some chosen probabilityp of sharing enough keys to form a secure link. Multi-space keyschemes use

the same basic notion of random key predistribution, but usekey spaceswhere individual keys are used

in random key predistribution. Hence, the key pool is replaced by a pool of key spaces, and each node

randomly selects a subset of key spaces from the pool of key spaces such that any two nodes will have

some common key space with probabilityp. Each key space represents a unique instance of a different

λ-securen × n key establishment scheme (for example, Blom’s scheme [10],see Section 2.3). If two

nodes possess the same key space, they can then perform the relevantλ-securen × n key establishment

scheme to generate a secure session key.

The main advantage of of multi-space schemes are that node compromise under these schemes re-

veals much less information to the adversary than for the random key predistribution schemes. However,

they retain the disadvantage of being probabilistic in nature (no guarantee of success in non-uniform or

sparse deployments) and furthermore they experience the threshold-based sudden security failure mode
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that is a characteristic of theλ-secure schemes (see Section 2.3). Other schemes have combinedλ-secure

schemes with other constructions than random key-space selection; Liu and Ning [4] in particular de-

scribe a deterministic grid-based construction where key-spaces are used to preform intermediary-based

key establishment between nodes.

2.7 Deterministic Key Predistribution Schemes

One drawback of the random key distribution approach is thatit does not guarantee success; Lee and

Stinson [13], as well as Camtepe and Yener [14], both proposeusing combinatorial design techniques to

allocate keys to nodes in such a way as to always ensure key sharing between any two nodes. The amount

of memory required per node is typically some fractional power of the overall supported network size

(e.g.O(
√

n)). The main drawback of these schemes is that the same keys areshared between many nodes

leading to weaker resilience to node compromise. Chan and Perrig have proposed a deterministic scheme

using peer nodes as intermediaries in key-establishment with similar memory overheads [15]; compared

with the combinatorial design approach, this scheme tradesoff increased communication cost for greater

resilience against node compromise.

3 The Node Revocation Problem

Key revocation for captured sensor nodes poses new design challenges that do not arise in key pre-

distribution. Key revocation protocols are carried out in the presence of active adversaries. These adver-

saries can both monitor and modify network messages, and more importantly, can pretend to be legitimate

participants in the protocols themselves. Captured (and hence compromised) nodes may act as an adver-

sary’s surrogates within a revocation protocol, and may collude to subvert its execution (e.g., they could

block the operation of the protocol by exhausting resourcesof legitimate nodes, or refuse to carry out key

protocol steps). Thus, a specific challenge in the design of revocation protocols is to achieve revocation

of sensor nodes that are compromised by an adversary despitethe active participation of that adversary in

the protocol. An additional challenge, which is shared withkey pre-distribution protocols, is that of using
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only limited computation and communication resources in the protocol design; i.e., revocation protocols

must rely on very simple cryptographic primitives and achieve their goal with a limited number of mes-

sages. For example, effective primitives include hash functions such as SHA-1 [16] and hash trees [12],

authenticated encryption of protocol messages in one pass over the message data using only the block

cipher [17, 18, 19], and evaluations of low-degree polynomials. In contrast, energy or memory inten-

sive primitives such as public-key based primitives or consensus protocols that reach agreements in the

presence of malicious adversaries and require multiple network-wide broadcasts are much less desirable.

Recent research on key revocation in sensor networks illustrates two different approaches with orthog-

onal properties; i.e., a centralized approach (e.g. for thebasic random keys scheme [3]) and distributed

approach (e.g. for the random pairwise scheme [1]). In the centralized approach, upon detection of a

compromised node, a base station broadcasts a revocation message to all sensor nodes that need to remove

the copies of keys to be revoked from the compromised node.

In distributed revocation for random pairwise pre-distributed keys [1] (see Section 2.5), revocation

decisions are made by the neighbors of a compromised node. These neighbors vote to decide whether to

revoke a given node and, if the vote tally exceeds a specified threshold, revocation takes effect. In con-

trast with centralized revocation, distributed revocation should be faster, as it requires predominantly local

broadcast messages that are inexpensive, and avoids a single point of failure. These features are important

since compromised nodes must be sealed off and effectively disconnected from the rest of the network ex-

peditiously. However, the current known distributed revocation protocol proposed for the random pairwise

scheme solely uses network-wide broadcasts of long messages, which is slow, consumes communication

energy, and makes the network prone to denial-of-service attacks. Furthermore, its operation requires

each node to keep a record of which votes have been heard sincethe beginning of the network’s lifetime.

Not only is this memory-intensive, but it also can lead to stale state and incorrect results. For example,

suppose that on average, once a month each legitimate sensornode may mistakenly detect a neighbor as

having malicious characteristics, causing a revocation vote to be released against it. Further suppose that

the threshold number of votes for revocation is 3. Since eachvote, once cast, can never be retracted, this

means that on average any given legitimate node will be revoked from the network in much less than 3
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a ≫ b a is “much greater” thanb, we define this to mean:
we can always safely assumea > b regardless of network topology,
or changes due to node death, revocation, or compromise.
Specifically, the adversary does not have the ability to makea ≤ b at any point in time.

∆c maximum time taken for a local-neighborhood broadcast to fully propagate.
∆d maximum time taken for a network-wide broadcast to fully propagate.∆d > ∆c.
∆s length of time in the revocation session when a node is listening to votes

and recording them (i.e. the length of time a session is in theactivestate).∆s > 2∆c

∆t maximum time duration of a revocation process from the time the first vote is sent
until the node is revoked, or the entire sensor network knowsthat the session is over

dmax maximum number of nodes that have established a local 1-hop keyed link with any node
i.e. the maximum number of local participants for any node

Ek{M} messageM encrypted with keyk using an Authenticated Encryption (AE) mode
H (x) cryptographic hash of the valuex.
H (p) cryptographic hash of coefficients of the random polynomialp.

e.g. ifp = a0 + a1x + a2x
2 + . . . + at−1x

t−1 whereai are randomly selected
thenH (p) = H (a0||a1||a2|| . . . ||at−1)

m number of participants of each node
(i.e. nodes which share pairwise keys with the node)

n number of nodes in the network
qBs t-degree random polynomial used for revocation sessions against nodeB
stotal total number of revocation sessions available against eachnode
t threshold number of votes needed to revoke a node

Figure 1: Notation used in this paper

months. These serious flaws make the current scheme impractical.

In general, distributed revocation is inherently more complex than centralized revocation. Such proto-

cols are inherently prone to design error, and the verification of their correctness becomes essential. Cor-

rectness verification requires precise definition of both revocation properties and adversary attack model.

Both have been lacking to date. In this article, we present the first precise definition of desired properties

for the design of distributed revocation protocols. Furthermore, we present the first distributed revocation

protocol that can be shown to fulfil the list of desired properties. It is hoped that this new protocol can

demonstrate the usefulness and viability of the provided framework, thus facilitating further research into

distributed node revocation schemes.
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4 Adversary and Communications Model

In this section, we list the assumptions that are general to the node revocation problem. This defines the

standard adversary and communications model described by in the literature for key distribution in sensor

networks [1, 2, 3, 4]. These assumptions are independent of the details of our proposed protocol (for

protocol-specific assumptions, please see Section 6.2).

1. Adversary has universal communication presence. We assume that the adversary can simultane-

ously send and receive an arbitrary number of messages in anypart of the network at any time.

2. Adversary can perform chosen node compromise. The adversary can selectively compromise a

small fraction of the nodes in the sensor network. All data ona compromised node becomes known

to the adversary. Furthermore, compromised nodes are controlled by the adversary and can perform

active network functions as part of the network until they are revoked. In particular, compromised

nodes can launch revocation attacks (see Definition 1 below,in Section 5.2).

3. Compromised nodes collaborate. We assume a single adversary performs all the node compromise

in the network; hence all leaked information in the compromised nodes is collectively known to the

adversary and compromised nodes can coordinate to perform collaborative attacks on the sensor

network.

4. Adversary cannot block or significantly delay communications. We assume that compromised

nodes can selectively drop packets which they have received, but the adversary is unable to jam

or delay local (single hop) communications in the network whose source and destinations are both

uncompromised nodes. The adversary cannot block or delay multi-hop broadcast messages, either

neighborhood-wide or network-wide (i.e. compromised nodes can refuse to forward broadcasts but

we assume that there are sufficient legitimate nodes performing the forwarding to ensure complete

coverage). The adversary is also unable to partition the network via node compromise. Note that

implicit in this assumption is that since an adversary is unable to perform these disruptions, random

failures also do not affect the assumed connectivity and communication properties of the network.
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Under these assumptions, we can assume a bound on the time forbroadcasts to propagate over the

network. Neighborhood-wide broadcasts take at most time∆c to fully propagate over a neighbor-

hood. Network-wide broadcasts or node-to-base-station communications take at most time∆d to

propagate to every node, where∆d > ∆c. It may seem that this is a strong assumption, since pro-

viding efficient reliable broadcast in the presence of active adversaries is a challenging technical

problem in itself. However, we note that without this assumption, no revocation protocol (dis-

tributed or centralized) could be feasible, since the adversary would always be able to interrupt the

revocation messages to some part of the network and remain active there. Hence, this is a required

assumption if we are to discuss the revocation problem at all. Note that even in the absence of an

efficient solution, simple flooding still provides an inefficient but adequate solution to the reliable

broadcast problem. Given that revocation events are rare, it may be possible that the costs associated

with simple flooding are acceptable compared with the security benefits of node revocation.

5 Basic Properties of Distributed Revocation

To date, there has not been a succinct definition of distributed revocation properties. It is clear that a

distributed revocation protocol should enable a set of nodes to make a decision to exclude another node

from the network. However, the problem contains many complicating factors, such as the need to be

resistant to attempts by an adversary to block or subvert theprotocol. In this section, we describe a set of

desired properties, thus providing a precise definition of the problem. Figure 1 is available as a reference

which summarizes the notation used in this part of the paper.

5.1 Correct Operation

The following properties ensure the correct operation of the distributed sensor node revocation protocol.

Property 1 (Completeness). If a compromised node is detected byt or more uncompromised neighboring

nodes, then it is revoked from the entire network permanently (i.e. its subsequent re-insertion into another

part of the network is not possible).
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Property 1 ensures that if compromise is detected by sufficient nodes, then the protocol always op-

erates correctly in permanently removing the compromised node, and the adversary is unable to prevent

such a revocation from taking place, or circumvent it by reinserting the compromised node elsewhere.

Property 2 (Soundness). If a node is revoked from the network using this scheme, then at leastt nodes

must have agreed on its revocation.

Property 2 ensures that the protocol always requires the agreement of at leastt nodes to perform the

distributed revocation of any single node. The thresholdt provides a mechanism for verifying that the

compromise was detected by at leastt nodes before a revocation commitment can be made. Note that the

property does not state that the revoked node must be actually compromised, nor that all the collaborating

revoking nodes must be legitimate. In particular, this property allows an uncompromised node to be

revoked by a set oft malicious compromised nodes. This is allowed because it is not realistic to assume

that node compromise is always detected with 100% effectiveness; hence ift undetected compromised

nodes in the network collude to revoke an uncompromised node, this action is necessarily indistinguishable

from havingt uncompromised nodes agree to revoke a compromised node.

Property 3 (Bounded Time Revocation Completion). Revocation decision and execution occur within a

bounded time period (let this bound be∆t) from the time of sending of the first revocation vote.

Property 3 ensures that the revocation decision is completed in a timely fashion. This means that an

adversary cannot prolong the lifetime of a detected compromised node by delaying the outcome of the

revocation decision and thus slowing down the revocation process; in order to circumvent the revocation,

the adversary has to force the revocation decision to returna negative result (i.e. a decision not to revoke).

This property also means that sensor nodes do not have to carry revocation state information for long

periods of time, which is attractive since sensor nodes generally have limited memory. This condition also

implies that, within the time period∆t, if there is an insufficient quorum of sensor nodes that agreethat a

node is to be revoked, then the revocation decision correctly returns a negative result, instead of waiting

indefinitely for the threshold number of votes to be reached.This property resolves the problem of stale

state in the original random pairwise revocation scheme, where erroneous votes can accumulate over the

network’s lifetime and result in the revocation of a legitimate node.
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Property 4 (Unitary Revocation). Revocations of nodes are unitary (all-or-nothing) in the network. Specif-

ically, if a node is revoked in one part of the network, then itwill be revoked in the whole network within

time∆d, where∆d is the time taken for any message to propagate across the entire network. If it is not

revoked in one part of the network, then it was not revoked in any part of the network in the time prior to

the last∆d time period.

Property 4 ensures that revocation is universal within the given limits of communication delay. In

particular, the adversary cannot block or delay part of the revocation such that when a compromised node

is revoked in one part of the network, it can still operate in adifferent part of the network for a substantial

length of time.

5.2 Resistance to Revocation Attack

The properties in Section 5.1 ensure that the protocol operates correctly. However, correctness is insuf-

ficient. Since compromised sensor nodes can actively participate in the distributed revocation of other

nodes, an adversary could abuse the distributed revocationprotocol to further its own agenda without

actually interfering in the correct operation of the protocol. In particular, the adversary could use the

compromised nodes under its control to launch arevocation attack:

Definition 1 (Revocation Attack). An attack where an adversary uses the distributed node revocation

protocol to selectively revoke uncompromised nodes from the network.

Hence, we require an additional property:

Property 5 (Revocation Attack Resistance). If c nodes are compromised, then they can only revoke at

mostαc other nodes whereα is a constant andα ≪ m

t
.

A distributed revocation scheme that satisfies Property 5 restricts the adversary’s ability to perform a

revocation attack. Based on the property, when an adversaryhas compromised some number of nodes, it

is only able to successfully revoke a number of nodes that is much less than the total number of nodes it

would have been able to revoke if every compromised node had casted a vote against each of the nodes

which share a key with it.
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6 Our Protocol for Distributed Sensor Node Revocation

In this section we describe our protocol for distributed node revocation. Although for simplicity we present

our protocol in the context of the Random Pairwise Key Distribution scheme, our protocol can be extended

for implemention with other key distribution protocols, for example with the generalized random key

predistribution mechanisms proposed by Duet al. [2] and Liu and Ning [4].

Our distributed revocation protocol is a significant improvement of the distributed revocation scheme

presented by Chanet al.[1]. First, we add the idea ofrevocation sessions, which is a mechanism by which

a revocation decision can be completed in bounded time, thusresolving the issue of stale votes causing

eventual erroneous revocation of legitimate nodes. Second, we improve the efficiency of the scheme by

performing the voting and revocation decision process onlyusing hop-limited local broadcast messages

that cover only the target’s local neighborhood, thus eliminating the extremely high communication over-

head of the original scheme. After the voting process is complete, a single short cryptographic message is

then broadcast into the entire network to finalize the revocation outcome. This is in contrast to the original

scheme where all voting and communications are full network-wide broadcasts involving large amounts

of cryptographic information, which can be very expensive in a large sensor network. Finally, the protocol

that we describe is the first distributed node revocation protocol that provides rigorous proofs of high-level

desired properties.

The addition of sessions is necesary to facilitate the bounded-time completion of the revocation pro-

cess. Without sessions, each note could only cast a revocation vote at most once against any other node,

and, once cast, it would be unable to withdraw the vote. Giventhat intrusion detection may yield some

level of inaccuracy, this implies that each node can only estimate that one of its neighbors is malicious with

some level of certainty. If we set the nodes to trigger their votes at a low certainty level, then inaccurate

false-positive votes could accumulate and cause the revocation of legitimate nodes. If we set the nodes to

trigger only at a high level of certainty, then we lose the advantage the distributed revocation is fast react-

ing. The use of sessions avoids this dilemma by allowing nodes to react immediately with high sensitivity

to intrusion events, and yet not have to worry about accumulated votes from false positives being a factor.

Note that votes, once cast, become public and cannot be withdrawn. Hence session information cannot be
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re-used for a subsequent voting process — once voting is complete for each session, the session must be

closed regardless of the outcome of the vote.

In the description of the protocol we will assume that the Random Pairwise Key Distribution is the

underlying key establishment protocol, and we perform noderevocation actions only among them nodes

which share pairwise keys with the target (i.e. them participantsof the target). The set ofm participants

does not include the target itself. We note that our scheme isgeneral in the sense that it can be directly

adapted for other key distribution mechanisms and not just the Random Pairwise protocol. For example,

if SPINS [9] was used for key establishment, the set of a participants could be defined as the set of

neighbors of a node, and the required revocation data downloaded from the base station during the key-

establishment process. In the general case, we could setm = n and allow the set of participants of a node

to be the entire sensor network. Hence, any other key distribution scheme such as the generalized random

key predistribution schemes proposed by Duet al. [2] or Liu and Ning [4] could also be used with our

protocol. We further assume that each sensor node has a unique symmetric key that it shares with only the

base station. This key is used for authenticated, confidential communications between sensor nodes and

the base-station.

6.1 Definitions of Terms Used

In this section we will define the terms we will use in the description of the distributed revocation protocol.

As mentioned, Figure 1 summarizes the notation we will be using in this paper.

Definition 2 (Neighborhood). Theneighborhood of a node is the set of nodes that are within communi-

cation range of it.

Definition 3 (Target, Participants). A node to be revoked is called atarget node and any of them nodes that

has a shared pairwise key with a target node is called aparticipant. A participant is alocal participant if

it has established a direct (1-hop) communication link withthe target (hence it is must be located within

the neighborhood of a target); otherwise, it is anon-local participant. All other nodes are called the

non-participant nodes. The target node is a non-participant of itself, sinceit cannot participate in key-

agreement or node-revocation activities with itself.
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Definition 4 (Local Neighborhood Broadcast). A local-neighborhood broadcast is a multihop broadcast

that originates within a given neighborhood and reaches allthe nodes inside that neighborhood. Gen-

erally this refers to broadcasts limited to the neighborhood of a revocation target. Local-neighborhood

broadcasts take at most∆c time to propagate over the entire neighborhood (based on Attacker Model

Property 4).

6.2 Assumptions of Our Protocol

Before we describe our protocol, we list the assumptions under which our protocol operates. Each of these

assumptions was necessary to facilitate a proof that our protocol fulfils the set of properties we described

in our problem framework in Section 5. Hence, the strength ofthese assumptions is closely tied to the

strictness of the requirements in our problem framework: a weaker set of properties would require fewer

assumptions. Instead of opting for proving weaker properties with few assumptions in our initial protocol,

we chose instead to show that with some number of reasonable assumptions, we are able to describe the

first protocol that fulfils all the stringent properties we described in our problem statement. It is hoped

that future research will be able to pick up on this direction, and provide new protocols that require fewer

assumptions while fulfilling the same set of stringent requirements.

1. Deployment Atomicity. Deployment of new nodes is atomic (i.e. it appears to happen instanta-

neously from the point of view of the network). Deployments do not occur while there are active

revocation sessions in the network. All communications in the network are received at their final

destinations before deployment begins. In practice, this can be achieved by shutting down the net-

work in an orderly fashion prior to physical deployment of new nodes; after the new nodes have

been physically deployed, then the network is turned on again.

2. Locality Restriction Of Compromised Nodes.The problem of controlling replication of a single

node identity or the generation of multiple Sybil node identities across the network is an important

technical challenge that is independent of distributed node revocation — examples of techniques

to provide such functionality has been described by Newsomeet al. [20] and Parnoet al. [21].
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Since this problem is not the focus of our protocol, we assumethe functionality for addressing this

problem is already present. More specifically, we assume that node replication, Sybil node identities

or node movement can be detected and the offending node centrally revoked, hence each malicious

node is confined to a single neighborhood. However, all malicious nodes can share information

arbitrarily. We assume that all sensor nodes are immobile. Immobile sensor networks constitute a

majority of known sensor network applications to date. We design our protocol only for this subset

of applications, since mobility creates complications that this initial protocol is not meant to address.

3. Node Degrees.Each nodei hasdi ≫ t local participants with which it has successfully performed

key-establishment, wherem ≫ di (hence,m ≫ dmax wheredmax is the maximum number of local

participants for any node). We assume that this is enforced by some degree-counting mechanism,

where nodes with low degrees are centrally revoked (i.e. it is enforced thatdi > dmin for some

dmin). An example is described by Chan et al [1]. An adversary could attempt to exploit the degree-

counting mechanism by reducing the degrees of legitimate nodes (e.g. by causing malicious nodes

to refuse to complete key exchange with legitimate nodes). This is a very inefficient attack, since

in order to disable a single node in this manner, an adversaryhas to capture or disable a large

number of the nodes in its neighborhood. For example, typical values fordmin should not exclude

legitimate nodes that simply happen to be deployed in a sparse area. Sincet is typically also not

large compared with deployment density, the typical degreeof any node is usually much greater

thandmin + t. Hence, if an adversary wishes to cause the removal of a node,for the vast majority of

the nodes it would be more efficient to simply capturet local participants and perform a coordinated

revocation attack than to attempt to drive the target node’sdegree belowdmin in order to cause

automatic central revocation.

4. Events that can cause a node to start a revocation against another node are visible to the

node’s entire neighborhood.If we allow nodes to trigger revocation sessions based on events that

are only observable to themselves, then it is difficult to ascertain if this is a legitimate response to

misbehavior, or if a malicious node is performing spurious revocations, or if a malicious node is de-
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liberately inducing a legitimate node to perform legitimate revocation actions that are guaranteed to

fail. Hence, we only trigger revocation based on events thatare visible to all the target node’s neigh-

bors. By the previous assumption 3, this also means that suchevents are always observed by some

di ≫ t legitimate nodes. Hence, nodes only react to events which they know can also be observed

by many other nodes, and thus there is assurance of reaching the thresholdt whenever a voting ses-

sion is started legitimately. In practice, the legitimate nodes observing the event may encounter false

positives or false negatives, which may cause the initiation of failed revocation sessions. We assume

that the rate of false positives and false negatives is small. In fact, the development of distributed

intrusion detection mechanisms is a challenging research problem. As a current working example,

we can suppose that our detection mechanism only reacts to highly visible, egregious misbehav-

iors such as repeatedly performing spurious transmissions, or complete absence of communication

over a long period of time. As intrusion detection mechanisms become more advanced and more

accurate, the range of detectable behaviors supported by this scheme will also increase.

5. Revocation Sessions Are Always Available.We assume that revocation attempts by legitimate

nodes are infrequent enough that onlys sessions need to be stored on the sensor nodes such that

no node ever runs out of revocation sessions during its lifetime. We assume thats > t but it is

small (e.g. less than 10). If all the available sessions against a given target nodeB are exhausted,

all of B’s participants will be able to detect this since each of themis aware of how many sessions

are remaining forB. Hence, each participant simply suspends communications with B until new

sessions arrive, thus temporarily excludingB from the network as long as it cannot be revoked. An

adversary may attempt to exhaust all available revocation sessions against a given node such that this

behavior occurs, but it such an attack is easily detectable and counteracted. For example, if a node

A repeatedly initiates revocation sessions against nodeB that subsequently fail, then this behavior

is reported by its fellow participants to a central base station. By assumption 4 above, we know

that such behavior is not typical of a legitimate node, because a legitimate node should only react to

events visible to the entire node neighborhood. If this happens repeatedly the base station may then

detect if this is an attempt to perform a session exhaustion attack, and the offending nodeA will
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be centrally revoked. An adversary may attempt to circumvent this mechanism by usings nodes in

turn to attempt the session exhaustion attack. However, since we required thats > t, in this case the

adversary could simply revoke the target node permanently instead of performing such an attack.

Hence, we can assume that revocation sessions are always available for the revocation of any target

node. Node sessions may be slowly expended as false positives and random events accrue over time.

However, new sessions can be refreshed via encrypted transmissions from the base station to each

relevant participant. While such a refresh is very costly interms of communication overhead, we

note that since revocation attempts are infrequent, a node would probably only experience a very

small number of such refresh events in its lifetime.

We further note the the following non-assumptions of our protocol:

1. We do not assume time synchronization between sensor nodes.We do not make use of any

internal clock information in sensor nodes. We also do not expect sensor nodes or the network to

react instantaneously to any event.

2. We do not assume any asymmetric-key cryptography capabilities on the sensor nodes. We

present our protocol using only symmetric-key primitives,thus trading off an increased memory

requirement for lower energy and computational requirements. We note that it is simple to convert

our symmetric-key scheme to one based on asymmetric cryptography. In particular, note that such

a conversion would assure that revocation sessions are always available since each node would be

able to generate more revocation sessions for any number of neighbors indefinitely.

6.3 Protocol Overview

A high-level overview of our revocation protocol is as follows. Local participant nodes perform voting

in sessions to agree to revoke a neighbor. In each voting session, we use a secret-sharing scheme to

tally revocation votes from each participant. Each vote is asecret share, and voting is performed by

broadcasting the secret share to all the participant nodes in the target node’s neighborhood. Once a certain

time has elapsed since the first vote of the session was broadcast, each local participant tallies the votes
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that it heard; if sufficient votes were heard then it can provethis fact by broadcasting the secret of the

secret-sharing scheme. Such a broadcast indicates that thetarget was successfully revoked and causes all

nodes in the network to erase the keys associated with the target, thus eliminating it from the network. In

the subsequent sections, we decribe the protocol in detail.

6.4 Cryptographic Primitives

In the revocation protocol we make use ofrandom polynomials. Polynomialq(x) = a0 + a1x + a2x
2 +

. . . + at−1x
t−1 is random if all its coefficientsa0, a1 . . . at−1 are random uniformly distributed values in a

certain range[0, l − 1] (e.g.,l = 264). We define the cryptographic hash of a random polynomialq(x) to

beH (q(x)) = H (a0||a1||a2|| . . . ||at−1), whereH is a hash function anda0, a1 . . . at−1 are the coefficients

of q(x). We also use Merkle Hash Trees.

The protocol also uses Authenticated-encryption (AE) modes. AE modes detect (1) ciphertext forg-

eries (e.g., ciphertext messages produced by manipulationof encrypted-message blocks or simply by ar-

bitrary message strings that are not obtained by encryption) and (2) false (or inauthentic) decryption keys

(i.e., decryption keys not used by the corresponding encryption operation), during ciphertext decryption.

AE modes specially designed to save power and energy are particularly well-suited for sensor networks

(e.g., AE modes that use a single pass over the data using a single cryptographic primitive, namely the

block cipher [17, 18, 19]).

6.5 Off-line Node Initialization

For node initialization, we first computestotal random polynomials of degreet for each of then nodes

in the network, wherestotal is the number of revocation sessions (attempts) against anytarget node in the

network. For example, if the size of the sensor network isn = 10, 000 and the number of revocation

sessions isstotal = 6, this would require60, 000 polynomials of degreet. This is not a very large number

considering that they are generated off-line, efficiently.Furthermore, typicallyt is small hence these

polynomials are of low degree. For the purposes of discussion, we number each session against a given
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target from1 . . . stotal, with session 1 starting first and proceeding sequentially until the last sessionstotal.

The voting sessions are necessary to fulfil Property 3 (bounded-time revocation decision completion).

Second, on each nodeA, for each nodeB of A’s m participants, and for each revocation sessions

against targetB, based on our random polynomialqBs, we load the the revocation vote fromA againstB.

This revocation vote consists of the secret share(qBs(xABs), xABs), AE encrypted with the activation mask

MaskABs that B gives to A. The points at which the secret-sharing polynomial are evaluated (e.g.xABs)

are generated such that no two participants have the same revocation secret share. The preloaded data is

represented as (EMaskABs
{(qBs(xABs), xABs)}). The purpose of the masks is to ensure that each node is

only able to revoke nodes within its immediate neighborhood. Since we assume nodes are unable to move

or replicate (see Assumption 2), each malicious node can only collect masks from one neighborhood, thus

limiting their revocation power. For each vote we also load the log m authenticating hash values for the

Merkle tree with leaves(qBs(xiBs), xiBs) for each nodei in B’s participants (a total ofm leaves). The

root RB of this Merkle tree is also stored. When the revocation vote is cast, theselog m authenticating

values are also attached to the message. This allows fellow participants ofB to verify the authenticity of

the vote by computing the hashes up the tree and comparing it to the known root valueRB. Finally, we

loadH2(qBs), which is the hash of the hash of the revocation polynomial ofB. This will allow non-local

participants to verify the authenticity of a revocation decision againstB. Note that these Merkle trees are

typically low depth since typical values ofm are not high (m ≤ 40).

Third, on each target nodeA, for each nodeB in A’s m participants, for each revocation sessions

against target node A, we load the valueMaskBAs thatA will give to B to allowB to decrypt votes against

A.

The information that is preloaded on each sensor node is summarized in Figure 2. The total storage

overhead per node isO(stotalm log m). Note that the overhead of the random pairwise keys scheme itself is

alreadyO(m), hence this revocation scheme is only a small factor larger than the basic overhead necessary

for key-establishment.
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Stored on each nodeA:
For each nodeB in A’s m participants,

For each revocation sessions against nodeB (total ofstotal sessions):
1. EMaskABs

{(qBs(xABs), xABs)}
Revocation secret share (vote) fromA againstB
(AE encrypted with the activation maskMaskABs thatB gives toA)

2. log m authenticating hash values, for the Merkle tree with leaves
(qBs(xiBs), xiBs) for each nodei in B’s participants (totalm leaves)

3. RB

The root of the Merkle tree described above.
4. H2(qBs)

The hash of the hash of the revocation polynomial ofB

For each nodeB in A’s m participants,
For each revocation sessions against nodeA:

MaskBAs for B to decrypt votes againstA.

Figure 2: Information Preloaded On Each Sensor Node

6.6 Connection Establishment

The masks for the current revocation sessions are exchangedat connection time. Masks are verified if

votes can be decrypted — due to the authenticated encryptionproperty, an incorrect mask would cause

decryption of the vote to fail. If the mask exchange protocolis not completed (e.g. by a malicious node

refusing to reveal its mask, or revealing an incorrect mask), and still does not succeed after some number of

retries, then the link is dropped. Malicious nodes which repeatedly refuse to perform mask exchange will

have a low degree and this will be detected and centrally revoked by the degree-counting scheme assumed

in Assumption 3. Note that by Definition 3, if the unmasking protocol fails and the link is dropped between

two neighboring nodes, we consider them to benon-local participantseven though they are in physical

communication range of each other.

A malicious nodeM1 may attempt to circumvent the unmasking process by having another malicious

nodeM2 act as its proxy in a distant location to obtain extra masks. However, since all communications

are authenticated (node-to-node identity authenticationis a prerequisite for any distributed revocation

protocol), this is exactly equivalent toM1 producing a Sybil replication atM2’s location. By Assumption 2,
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functionality to address this kind of replication is already present, hence such an attack is not feasible.

Once the masks are exchanged, they are used to decrypt the relevant votes.

6.7 Stages of a Revocation Session

We now describe the process of an entire revocation sessions for some given participantA. Each node

keeps a state variable for each session. Before any voting occurs in a current session, nodeA’s state for

sessions is thepending state. In this state,A is awaiting the first vote in the sessions. When the first

vote of the session is cast or received byA, A starts its timer for the new revocation session, and changes

its state for the current revocation session toactive. Only whenA is in the active state does it record and

verify other votes cast in this session by fellow participants. WhenA enters the active state, ifA believes

thatB is compromised, it will cast its vote if it has not already done so. The active state lasts for exactly∆s

time for each node, after which the node transitions to thecompletedstate for this session, and starts the

pendingstate for the next session.∆s is a precomputed time duration based on the time that a revocation

decision is expected to take. In order to ensure full dissemination of all messages within a session, we

require that∆s > 2∆c where∆c is the maximum time that a message needs to completely propagate in a

local neighborhood broadcast.

Definition 5 (Current Session). Thecurrent session of a node for the revocation of a target is the session

with the smallest session number that has not yet completed (i.e. it is either active or pending).

Any session that comes after the current session is considered to be in thenot-current state. Any

votes received for a session that isnot-currentis buffered and only acted upon after the current session is

completed.

6.8 Voting in a Revocation Session

When a nodeA detects compromise of a nodeB, it reacts differently depending on whether nodeA is

aware of a revocation session currently active against nodeB. If the current session ispendingfor A, it

activates the current session by sending out its vote in thatsession only. If the current session is already in
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theactivestate forA, it votesbothin the current sessionandon the next session. Voting in the next session

occurs immediately upon completion of the current session.This voting process is to ensure thatA’s vote

is actually counted, because a vote in an already-active session cannot be guaranteed to disseminate in

time for all nodes to receive it. For example, suppose both nodeA andC are currently near the end of

an active revocation sessions againstB (i.e. both of them have been in theactivestate for sessions for

nearly∆s time). Suppose that both of them have recordedt − 2 votes againstB. Simultaneously, bothA

andC detect thatB is compromised. If they vote only in the current session, since the session is almost

over, it is possible that neither of their votes reach each other within the remaining time for the session,

so bothA andC tally t − 1 votes and fail to reach the threshold needed to revokeB, even thought votes

were cast in sessions. Hence it is necessary that the nodes also vote in the next sessions + 1. Voting only

in the next session (and not the current session) is insufficient since in the interest of speed, we would like

the current revocation session to succeed if at all possible.

WhenA votes againstB, it performs an unencrypted hop-limited broadcast ofA’s against nodeB

in the current revocation sessions, (qBs(xABs), xABs) along with thelog m Merkle authentication values

that verify that this vote is a valid vote. This is a local neighborhood broadcast, i.e. the broadcast only

needs to go far enough to ensure complete dissemination in the neighborhood ofB (4-6 hops can cover

the area with high probability [3]). Only nodes that can verify the authenticity of the vote using the Merkle

authentication values (i.e., the participants ofB) will disseminate the broadcast. This ensures complete

coverage with high probability [1].

6.9 Completing the Revocation Process

WhenA’s state for the session has transitioned tocomplete, it counts the number of votes it has received

while it was in theactivestate.

If A has at leastt revocation votes (including its own if it detected the compromise, otherwise not),

then it computes the revocation polynomial ofB for this session,qBs. From this,A computes the hash of

the polynomial,H (qBs). This value is then broadcast through the entire network. Note that we broadcast

only the hash of the polynomialqBs instead of the polynomial itself, thus we only need to transmit a single

26



cryptographic value instead of a lengthy set of large polynomial coefficients. All participants ofB verify

this pre-image against the value stored in their memory,H2(qBs). If the verification is successful, then all

shared keys withB are deleted andB is marked as revoked. The broadcast is then disseminated to the

other participants ofB until the entire network is covered.

If A does not have at leastt verified revocation votes, then the revocation session has failed. Each

local participant privately notifies the base station of thefailed revocation session, thus ensuring that

future deployed nodes will be deployed with the most currentrevocation session in the correct state (i.e.,

in the pendingstate, since deployments should not occur if there are any active revocation sessions in

the network). Local participants ofB then proceed to request the masks for the new sessions + 1, i.e.

MaskAB(s+1) (if B does not respond correctly then its degree is reduced and it may be centrally revoked

due to insufficient degree (Assumption 3). To save memory, any state regarding the old revocation session

s is cleared.

6.10 Proofs of Properties

In this section we shall prove that Distributed Sensor Node Revocation satisfies the properties outlined in

Section 5.

Lemma 6.1. Every node is deployed with the correct current revocation session for its participants.

Proof. Immediate from Deployment Atomicity (Assumption 1). We assume that the base station keeps

track of the current revocation session of each node and updates newly deployed nodes with the correct

session information; since deployment is atomic, the base station always has a correct notion of the current

session of every node in the network.

Definition 6 (Session Agreement). Two nodes are insession agreement with respect to a target node at

some instant in time if, for some sessions, either (1) sessions is pending for both nodes, or (2) sessions

is active for both nodes, or (3) sessions is active for one nodeB and sessions is completed for another

nodeA, but sessions is completing within time∆c for nodeB, or (4) sessions is active for one nodeA

and pending for the other nodeB, but nodeB is activating sessions within ∆c time.
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Lemma 6.2. At any given point in time, any two uncompromised local participants are in session agree-

ment for any target node.

Proof. Let the initial session of node that was deployed later ber. By Correct Deployment (Lemma 6.1),

when the later node was deployed, the earlier node also had sessionr pending since (1) deployment only

occurs when there is no active revocation session and (2) thedeployed nodes are always deployed with the

correct current session. Hence the two nodes are session agreement on sessionr when the later node was

deployed.

We now show the inductive step that if the two nodes are in session agreement in all time instants

T ′ ≤ T (after both nodes have been deployed), then they are still inagreement in timeT + ǫ where

ǫ < ∆s. If the states of the nodes are unchanged between the two times, or if both nodes changed states

into the same states at timeT + ǫ, then we are done. Otherwise, we have 5 non-degenerate cases. Recall

that∆s was chosen at design time such that∆s > 2∆c.

Case 1: Sessions is pending for both nodes at timeT , and at timeT + ǫ, nodeA activated session

s. SinceA is uncompromised, it will perform a local broadcast of the first vote of sessions. By Attacker

Model Property 4 local communications cross the local neighborhood in time∆c. Since nodeB is in

pending mode for sessions, it will receive the first vote of sessions in time ∆c and activate the session.

Hence the nodes are in agreement by option (4) of the definition of agreement.

Case 2: Sessions is active for both nodes at timeT . At time T + ǫ, nodeA completed sessions, but

nodeB still has the session active. By the induction hypothesis, the nodes are in agreement when the first

one of them started sessions, hence they must have both started sessions within ∆c of each other. Since

each session takes a fixed amount of time to complete (∆s), andA completed sessions at timeT + ǫ,

we know thatB will complete sessions by T + ǫ + ∆c, hence they are in agreement by option (3) of the

definition of agreement.

Case 3: Sessions is active for nodeB and sessions is complete for nodeA at timeT . At time T + ǫ,

sessions has completed for nodeB. Hence sessions + 1 must be either active or pending for nodeB.

If sessions + 1 is active or pending for both nodes, then by options (1) or (2)of the definition, we have

agreement. Otherwise, one node has sessions + 1 active and the other has sessions + 1 pending. By

28



Attacker Model Property 4 local communications cross the local neighborhood in time∆c. Hence the

node with sessions + 1 pending will receive the first vote for sessions + 1 within time ∆c and start the

session. Hence we have agreement by option (4) of the definition.

Case 4: At timet, sessions is active forA and pending forB. Two subcases:

Subcase 4a: At timeT + ǫ, sessions is completed forA and sessions is still pending forB. This

subcase is impossible. By the induction hypothesis, the nodes are in agreement whenA started sessions,

henceB must be starting sessions within ∆c of that time. In order forB to be still pending sessions at

timeT + ǫ, it must be thatA started sessions after timeT + ǫ − ∆c. However we know thatA needs at

least∆s time to complete sessions, so the earliest time it can complete the session is atT + ǫ−∆c + ∆s,

but since∆s > ∆c, this time is afterT + ǫ (contradiction). Hence this subcase is impossible.

Subcase 4b: At timeT + ǫ, sessions has completed forA and sessions is active forB. By the

induction hypothesis, the nodes are in agreement whenA started sessions, hence they must have both

started the session within∆c of each other. Since each session takes a fixed amount of time to complete

(∆s), andA completed sessions at timeT + ǫ, we know thatB will complete sessions by T + ǫ + ∆c,

hence we have agreement by option (3) of the definition.

Hence, we have shown by induction thatA andB are in session agreement for all timesT .

Property 1 (Completeness). If a compromised node is detected byt or more uncompromised neighboring

nodes, then it is revoked from the entire network permanently (i.e. its subsequent re-insertion into another

part of the network is not possible).

Proof. Suppose a compromised nodeB is detected by a setS of t or more uncompromised neighboring

nodes. By Lemma 6.2, allt nodes are in mutual session agreement on some session for thetargetB. We

proceed by 2 possible cases. Let nodeC be the node with thelowestcurrent session in the setS. Recall

that∆s was chosen such that∆s > 2∆c.

Case 1: The current sessions is pending for nodeC. Consider an arbitrary nodeA in S. By the

definition of session agreement (Definition 6),A either (1a) has sessions pending, or (1b) has session

s active. A cannot have sessions′ > s pending or active since in that case it could not be in session

agreement withC. For Case (1a), we have thatA will vote in sessions, and change its state to sessions
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active. Since sessions is starting at this instant forA, it has at least time∆s > ∆c to receive allt votes in

sessions. For Case (1b), nodeA will vote in sessions. We know by that sessions could not have been

active for nodeA for more than∆c time, otherwise within that time the first vote would have reached node

C and activated sessions. This is due to Attacker Model Property 4 which states that local broadcasts

take at most∆c time. Hence, since sessions has not been active for more than∆c time, so there is at least

∆s − ∆c > ∆c time remaining for it to receive all thet votes in sessions. In both cases (1a,1b), we have

that all nodes inS will vote in sessions and every node has at least∆c time to receive all the votes from

the other nodes. Since the votes are local broadcasts and so need at most∆c time to propagate and always

reach their destinations (Attacker Model Property 4), we know that all|S| ≥ t votes in sessions will be

received by all members ofS.

Case 2: The current sessions − 1 is active in nodeC. Consider an arbitrary nodeA in S. By the

definition of session agreement (Definition 6),A either (2a) has sessions−1 pending (2b) has sessions−1

active, (2c) has sessions pending, or (2d) has sessions active. It cannot be that sessions is completed for

A since that would mean that sessions would also complete forC within time ∆c, which cannot be true

sinceC will take at least∆s > 2∆c time to complete sessions which has started at this point. Case (2a)

is covered by Case 1 above. Hence we only have three cases (2b,2c,2d). For Case (2b), both nodesA and

C have detected compromise while a session is active, so they will vote in both sessions − 1 and session

s. We know by Lemma 6.2 thatA andC were in agreement when the first one of the started sessions− 1,

hence they must have started sessions − 1 within ∆c of each other. Since they will both start session

s immediately after they complete sessions − 1, they will also start sessions within ∆c of each other.

Hence, each node has at least∆s − ∆c > ∆c time to receive the votes in sessions. For Case (2c),A will

vote in sessions (as will C). Since sessions has not started for nodeA, it will have ∆s > ∆c time to

receive all|S| votes in sessions. For Case (2d), nodeA will vote in both sessions and sessions+1. Since

nodeC still has sessions − 1 active, it could not be that nodeA completed sessions − 1 and then started

sessions more than∆c time ago. This is because by Definition 6, nodeC must be completing sessions−1

within time∆c of the time when nodeA completed sessions − 1. Since this has not happened yet, node

A must have completed sessions− 1 (and started sessions) within the last∆c. Hence, nodeA still has at
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least∆s − ∆c > ∆c time to receive the votes in sessions. Hence in all cases (2b,2c,2d) we have that all

the nodes inS will vote in sessions, and every node has at least∆c time to receive the votes of the other

nodes inS. Attacker Model Property 4 states that local broadcasts always cover the local neighborhood

and take at most∆c time. Hence we know that all the nodes inS will have received all the|S| ≥ t votes

in sessions by the end of the session.

Hence, all|S| ≥ t nodes will receive and correctly verify (via the Merkle hashtree mechanism) all

unique votes in sessions againstB. By the pre-image resistance of the Merkle hash tree, the adversary

cannot fabricate and inject invalid votes, and it has no way of reconstructing a valid vote without first being

able to produce a pre-image for the cryptographic hash function. Replayed votes have no effect since only

unique votes are recorded by the nodes. Hence, each node inS is able to record at leastt valid votes

and thus generate the revocation secretqBs for sessions. The verifying revocation valueH (qBs) is the

broadcast throughout the network. By Attacker Model Property 4, this broadcast reaches every participant

of B and thus induces a permanent network-wide revocation of nodeB.

Property 2 (Soundness). If a node is revoked from the network using this scheme, then at leastt nodes

must have agreed on its revocation.

Proof. Suppose a nodeB is revoked in the network using this scheme. Then, the correct verifying revoca-

tion valueH (qBs) must have been broadcast for some sessions. Since the cryptographic hash is pre-image

resistant, this means that some party must have computed therevocation secretqBs. SinceqBs is not stored

in its entirety on any node in the network, by the threshold property of the random polynomial, the only

way to reconstructqBs is to obtain at leastt secret shares ofqBs. Hence, at leastt nodes must have colluded

to perform this computation.

Property 3 (Bounded Time Revocation Completion). Revocation decision and execution occur within a

bounded time period (let this bound be∆t) from the time of sending of the first revocation vote.

Proof. Let the time when the first vote is cast against some target nodeB be timeT . By Attacker Model

Property 4, all local participants will have received this vote by timeT + ∆c. By the protocol, each node

makes its revocation decision within time∆s of receiving the first vote. If the outcome is positive, the
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verifying revocation value is then broadcast to the rest of the network. Otherwise, the base station is

notified of the failure of the session. By Attacker Model Property 4, the broadcast takes at most time∆d

to reach the rest of the network (as does the base station notification). The total time taken is thus at most

∆t = ∆c + ∆s + ∆d.

Property 4 (Unitary Revocation). Revocations of nodes are unitary (all-or-nothing) in the network. Specif-

ically, if a node is revoked in one part of the network, then itwill be revoked in the whole network within

time∆d, where∆d is the time taken for any message to propagate across the entire network. If it is not

revoked in one part of the network, then it was not revoked in any part of the network in the time prior to

the last∆d time period.

Proof. Case 1 (If a node is revoked in one part of the network, it will be revoked in the entire network

in time ∆d): If a node is revoked in one part of the network, then it must be that the correct verifying

revocation valueH (qBs) must have been received in that part of the network. The nodesthat receive

H (qBs) will rebroadcast it to the rest of the network; by By AttackerModel Property 4, the entire network

will receive this broadcast in time∆d, and thus the node will be completely revoked in time∆d.

Case 2 (If a node is not revoked in some part of the network, then it was not revoked in any part of

the network in the time prior to the last∆d): We proceed to prove the contrapositive, i.e. if the node was

revoked in any part of the network in the time prior to the last∆d, then it must be revoked in this part of

the network. From Case 1, we can see that if the node was revoked in any part of the network in the time

prior to the last∆d, then it must be revoked in the entire network by now. Hence, it must be revoked in

this particular part of the network.

Property 5 (Revocation Attack Resistance). If c nodes are compromised, then they can only revoke at

mostαc other nodes whereα is a constant andα ≪ m

t
.

Proof. Supposec nodes are compromised. By Assumption 2 each of these nodes identities are fixed in one

location and the adversary is unable to create other points of presence elsewhere in the network. Hence, by

Assumption 3, each compromised nodei can only establish connections withdi ≪ m other nodes. Thus,

each compromised node can unmask at mostdi votes each. The total number of unmasked votes is thus
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∑

c

i=1 di. Hence, the maximum possible number of nodes revocable by these votes is
∑

c

i=1
di

t
< cdmax

t
≪

cm

t
.

7 Conclusions

In this article, we provide an overview of the key managementproblem for sensor networks. In the

first part of our paper, we provide a brief summary of existingkey distribution techniques for sensor

networks. These techniques address only the key-establishment part of our key-management problem. A

comprehensive key-management protocol suite must also possess the ability to revoke the secret keys that

have been compromised by an adversary. To date, this important research problem has been insufficiently

pursued. To address this, we have presented a precise formulation of the distributed revocation problem

as well as an initial protocol that has been shown to satisfy the requirements of this problem formulation.

Distributed revocation protocols have several advantagesover centralized revocation that come into

play when compromised nodes must be disconnected from the network. The first advantage is speed, due

to the fact that they require only broadcast messages of a fewhops that reach their local destinations reli-

ably. The second advantage is the avoidance of single pointsof failure. However, distributed revocation

protocols are inherently more complex than centralized protocols, and hence more prone to design error,

since compromised sensor nodes can participate in the revocation protocol and attempt to block or cir-

cumvent it. Thus the precise specification and verification of the revocation-protocol properties and of the

attack model are essential to the secure operation of sensornetworks deployed in hostile environments.

In this paper we defined a set of high-level properties for distributed sensor-node revocation and pre-

sented a protocol that satisfies these properties under general assumptions and a standard attacker model.

In particular, we showed that, unlike most other cryptographic protocols, distributed-revocation protocols

can be executed while the adversary exercisescompletecontrol of compromised nodes which take the role

of active participants in the protocol, but which have malicious objectives such as attempting to block

revocation, or selectively revoke non-compromised nodes and disrupt network operation. Hence, due to

the complex nature of distributed sensor node revocation, it is important to obtain rigorous proofs of our

set of high-level properties in order to show that the revocation protocols cannot be subverted or abused
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by compromised nodes. We have also described a distributed node revocation protocol that we proved to

have the essential set of high-level properties that ensurecorrect functioning and resistance to abuse by

a malicious attacker. Our scheme has stronger properties and is also more efficient and faster than the

previous distributed revocation scheme described by Chanet al. [1].

Several research problems are opened by our work in distributed revocation. First, our distributed re-

vocation protocol is described for networks in which keys are predistributed in a random pairwise manner.

While the protocol can be extended to other types of key predistribution, straightforward extension (e.g.

by setting the number of participants ton, the size of the network) may not be the most ideal method of

distributed revocation for all key predistribution protocols such as probabilistic predistribution of random

keys [3], or hybrid probabilistic and random pairwise pre-distribution [2, 4]. Hence, distributed revocation

schemes that are specially designed for other key distribution protocols are needed. Second, we present

a specific metric of protocol resistance to active attacks; i.e., the ratio of the number of uncompromised

nodes that can be revoked by a group of colluding compromisednodes under the control of an active

adversary, versus the number of colluding nodes. Other distributed revocation protocols may be more re-

silient under our metric, or may suggest other useful metrics for resiliency. Third, design space of policies

for distributed revocation is substantial: we only explored a policy based on local neighborhood decisions.

Other policies may be equally useful, for example, those that involve all key-connected neighbors of a

revocation target, and not just the local neighbors. Finally, we note that we established the proof of our re-

vocation properties only under some strong assumptions; future research to develop protocols that operate

under fewer, weaker assumptions (such as allowing sensor nodes to be mobile) may be fruitful.
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